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CHAPTER 1
INTRODUCTION

A magjor challenge in making software easy for people to use isto design screen
layouts that people can search efficiently. Although there has been agresat deal of research
on visua search, the field of human-computer interaction (HCI) till does not have an
empirically validated model of the perceptual, cognitive, and motor processes that people
use when they look for aknown item on a computer screen. There are many guidelinesto
direct the design of computer screen layouts, but few if any have been explained in terms of
how these processes give rise to the guidelines. This dissertation presents the first
empirically validated models of the perceptual, cognitive, and motor processesinvolved in
the visua search of computer menus, models that can be generalized to explain the
cognitive processes involved in more general computer layout visual search taskson a
computer.1 These models should contribute to the design and analysis of more usable

computer systems.

1.1 Computer Interfaces Require Visual Search

People using computers are routinely faced with the challenge of finding something
on acomputer screen. The task could be as ssimple as finding the trash can on the Apple
Macintosh desktop (it is always at the bottom right hand corner), or as difficult as finding
thelink to “Liberal Arts’ on the Oregon State University web page shown in Figure 1.1.

Asmoreinformation is delivered via computers (such as the World Wide Web)

1The same models have already been presented by Hornof and Kieras (1997; 1999).
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Figure1.1. Thelinkto“ Liberal Arts’ isvery difficult to find on this
web page because of the random placement of all the items.
(http://osu.or st.edu/colleges/colleges.htm, 6/8/99)

rather than print media, and in the absence of typographic standards for computer layouts
and in the absence of armies of trained graphic designers, people will continue to be faced

with difficult visual search tasks.

1.2 Many Screen Layouts Are Unnecessarily Difficult to Search

The World Wide Web offers a cornucopia of screen layouts that are difficult to
search, such as that shown in Figure 1.1, but even day-to-day desktop software presents
challenging visual search tasks. Software developers have led the public to believe that the
more buttons and gadgets that are visible to the user on the computer screen, the better.

But the proliferation of menu bars (such asthat shown in Figure 1.2) has only added to the

difficulty in finding the few things that the user really needs.
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Figure 1.2. The menu bar in Microsoft Word 97. Some users opt to display
another three or four rows of buttons, led to believe by software
manufacturers that more is better. But more visual distractorswill only make
it more difficult to find the truly useful visual targets.

1.3 Possible Solutions Exist

Itis possible to design computer screensthat can be efficiently searched.
Guidelines exist (Apple Computer, 1993; Galitz, 1993; Mayhew, 1992; Smith & Mosier,
1986), and most difficult-to-search screen layouts could have been vastly improved if the
designers had better followed these guidelines. But sometimes guidelines can be
misleading. For example, some designers (Tufte, 1983) profess that visual clutter should
be eliminated. Thiswould seemto fix alot of problems, such astheicon bar proliferation
shown in Figure 1.2, but sometimes a crowded layout is actually best.2 Staggers (1993)
demonstrated thisin afield study of computer workstations used by nurses; the densest
screen layouts evoked the best overall performance, and were also the nurses' preferred
layouts. Guidelines need to be further evaluated and improved based on empirical studies,
but even those that currently exist can help software designersto develop more usable
software.

Guidelines can only take the designer part way to a usable interface; the usefulness
of many screen layouts depends largely on the task for which the screen layout is intended.
Hence, the true usefulness of alayout will always be an empirical question that can only be

answered in the exact context of itsintended use. A person designing a screen layout can

2Carswell (1992) in fact demonstrated that Tufte's (1983) data-ink principle (which states
that any redundant display of information should be avoided) is not a good predictor of
user performance for a graphical perception task, and that a more principled approach such
as Cleveland' s basic tasks model (Cleveland & McGill, 1985) is a better predictor.



work with guidelines as best as possible, but he or she cannot conduct a usability study for
every single layout he or she proposes. Designers need automated usability prediction
tools built directly into the same tools that they use to build their interfaces. The designers
would set ausability goal in terms of time, number of steps required to accomplish atask,
cognitive or visual complexity, or other objective criteria, and propose and evaluate layout
after layout until arriving at one that the tool predicts would meet the design requirements.
Just as guidelines need to be based on empirical observations, atool that predicts
human performance in visual search tasks also needs to be based on a theory of human
visua search that isitself based on empirical data. Many theories have been proposed
regarding visual search. This dissertation attempts to synthesize a number of the dominant
theories into amodel that can be used to make apriori predictions regarding how long a
person would take to find something on a computer screen layout, and the cognitive
processing required. The specific task modeled in this dissertation isthat of searching for a
known target item in a pull-down menu. Cognitive models of how people search pull-
down menus will lead to models of more general search tasks, both of which will lead to

better predictive tools and more usable interfaces.

1.4 The Goals of This Research

The high level goals of this dissertation are: (a) Build modelsthat explain the
perceptual, cognitive, and motor processes that people use when they search for aknown
item in apull-down menu. (b) Vaidate these models with empirical data. (c) Usethe
models to propose the perceptual, cognitive, and motor processes that people likely usein
more general search tasks on computer screen layouts. (d) Make practical and theoretical
contributions, enumerated next.

Practical contributionsinclude: (a) With a better understanding of how people find
what they are looking for on a computer screen, provided by this dissertation, screen layout

designers will be able to design interfaces that better complement the processes and



strategies that people really use. (b) The dissertation provides atheoretical basisfor design
guidelinesthat will help the field of human-computer interaction to better understand which
guidelines have true merit and should be promoted. (c) Exploratory modeling of visual
search, such asthat done this dissertation, is necessary before purely predictive modeling
of visual search can be done; this dissertation thus moves the field of human-computer
interaction closer to when it can incorporate predictive toolsinto screen layout design tools.
Theoretical contributionsinclude: (a) This dissertation contributes to basic research
in the area of visua search by applying the new theory-building power of cognitive
modeling to pre-existing data and tasks, and in doing so resolves theoretical debates that
exist in theliterature. (b) This dissertation integrates research from many different
researchers and many different subfields (including vision, visual search, cognitive
psychology, and computer science) and moves the scientific community closer to a

realization of Newell’s (1990) unified theory of cognition.

1.5 The Structure of This Dissertation

This chapter introduces the high level problem addressed by the dissertation.
Chapter 2 discusses previous work done in the major areas of research that feed into this
dissertation, including search, visua search, and menu search. Chapter 3 introduces the
basic components of the cognitive models of menu search developed for this dissertation.
Chapter 4 presents the results of these models. Chapter 5 discusses various implications of

the models, such as how they contribute to improving the usability of computer systems.



CHAPTER 2
REVIEW OF RELEVANT RESEARCH

There has been an enormous amount of research done in the fields of visual search,
menu search and selection, and cognitive modeling, much of which contributes to the
cognitive models of visual search of pull-down menus and computer screens presented in
this dissertation. This chapter reviews the literature, emphasizing research that contributes
to the modeling work presented in this dissertation, and that demonstrates the need for this
new work. The main bodies of literature that will be reviewed include genera visual
search, visual search of computer menus, and cognitive modeling of human-computer

interaction.

2.1 The Origin of the Scientific Study of Search

Many important technological advances have been motivated by military enterprise
(Smith, 1985). One of these was the study of search. The military began the scientific
study of search during World War |1 because, in this war, search requirements and
challenges vastly exceeded those of previouswars. In World War I1, complex human-
machine technology systems were used to move, hide, search, and kill over much longer
distances than in previous conflicts. Developmentsin electronic search aids to meet these
challenges, such as radar and sonar, were required.3

Thefirst modern scientific work studying search is a Navy document entitled

3Dramatic accounts of high-tech searches for submarines, for example, are presented in
Sontag and Drew (1998) and Clancy (1984).



Search and Screening (Koopman, 1946). The preface of this report states:

In World War 11, it became progressively more apparent that large classes of

problems were united by common bonds and could be handled by common

methods, that there was indeed unity in diversity. And asin other fields of
scientific endeavor, where the clarifying influence of general ideas and

methods can form a body of isolated facts into a powerful theory...,

methods borrowed from the mathematician and mathematical physicist

showed their power and usefulness in those classes of problemsin which

the body of practica information had sufficiently accumulated. Inthis

regard, one field was pre-eminently ripe for mathematical treatment: the

field involving problems of search.

In every question of search there are in principle two parts. One

involves the targets, and studies their physical characteristics, position, and

motion.... The other part involves the searcher, his capabilities, position,

and motion. (p. ix)

This excerpt points out that (a) thiswas, as far as these scientists could determine, the first
scientific investigation of the study of search, and (b) the new field brought together
problems and methods from many different fields of study. The latter has remained the
case over the years, aswill be seen in the discussion of visual search that follows. The
excerpt also succinctly states the basic problem of search—a person with certain capabilities
looks for atarget with certain features. This characterization of the problem pervades all
models of search.

Koopman (1946) contains numerous mathematical models for target detection by
visual contact, radar, and sonar. The report details tactics for conducting aerial escorts,
sonar screens, and other wartime activity. Sinceit presents techniques for finding and
avoiding being found by the enemy, it is easy to understand why the report was initially
classified as“confidential.”

But the report is more than just an interesting historical artifact; rather, it seedsthe
field of visual search. The earliest mathematical models of computer-based menu selection,
those of Card (1982; 1983) were influenced by the work of Krendel and Wodinsky (1960),
who were influenced by the work of E. S. Lamar, the author of the visual search models

presented in Koopman (1946).



2.2 Psychological Research on Visual Search

The two fields that seem to be making the most progressin building comprehensive
theories of visual search are the fields of cognitive psychology and eye movement research.
A third field that provides awealth of data, but less theory to integrate it, isthe field of
human factors. Thisreview will discussthe literature that is most relevant for this
dissertation drawing from al three fields—experimental observations from the field of
human factors, and theory devel oped from the fields of cognitive psychology and eye
movement research.

The theories developed in cognitive psychology and eye movement research will be
presented separately because, when it comesto visua search, the two fields are somewhat
disconnected. Cognitive psychology emphasizes the cognitive processes that are required,
and tends to assume that eye movements will occur when needed. Eye movement research
looks at the processes that would be needed to move the eyes, but says little about how
these processes would be integrated into other perceptual, cognitive, and motor processes.
One researcher states that “eye movements and visua cognition have in the past seemed like
two separate continents separated by an enormous and ill-charted ocean.” (Findlay, 1992)

But thereisgold in al three continents. Thisreview will first discuss empirical
observations, drawing in part from the field of human factors. Then, the review will
discuss theories of visual search from cognitive psychology and from eye movement

research.

2.2.1 Experimental Phenomena of Visual Search

In visual search experiments, participants are presented with a series of individual

tasks, or trials, of the following form:

1. Theparticipant is shown the object that he or she will be expect to find,
the object that will be the target during the search. This preparatory
presentation is called the precue.

2. The precue disappears and the target appears hidden amidst many



nontarget objects, or distractors, usually in an unstructured visual field
that has no particular organization. A clock starts to measure how long
the participant takes to find the target.

The participant searches for the target and indicates when he or she has
found it, which stops the clock. The participant also provides some
information to confirm that they did actually find the target, such as by
indicating the location of the target object.

An example task can be seenin Figure 2.1. Thetarget isthe open circle. Thedistractors

arethe closed circles.

O 0
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Figure 2.1. An example of a target (an open circle) amidst
distractors (closed circles), based on Treisman (1986).

Many visual search experiments have been nicely summarized by Boff and Lincoln (Boff &

Lincoln, 1988). Basic phenomenathat have been consistently observed include:

1.

A person can find atarget more quickly when the target can be
distinguished from distractors based on a primary feature, such assize,
color, shape, or orientation. Thisis sometimes described as “target pop-
out.” (Engel, 1977; Treisman, 1986; Williams, 1966a)

A person can find atarget more quickly when there are fewer distractors
present (Drury & Clement, 1978; Neisser, 1963).

A person can find atarget more quickly when there are fewer different
kinds of distractors present (i.e., the same number of distractors, but of
more different colors, shapes, sizes, or orientations.) (Gordon, 1968).

The more discernible the target is from the background (i.e., the greater
the contrast), the more quickly a person can find the target (Boynton &
Boss, 1971; Krendel & Wodinsky, 1960).

The more discernible the target is from the distractors (i.e., the greater the
differencein color or size), the more quickly a person can find the target
(Bloomfield, 1972; Carter & Carter, 1981).

A person can find atarget more quickly in asmaller search field (Krendel
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& Wodinsky, 1960).

7. A person can find atarget more quickly after practice with the same target
and distractors (Gordon, 1968; Neisser, 1963).

8. A person can find atarget more quickly than they can determine that a
target is absent (Jonides & Gleitman, 1972; Neisser, 1963).

9. A person can find atarget more quickly when there is a predictable

structure to avisual scene (Biederman, 1972; Biederman, Glass &
Stacey, 1973).

Thisisabrief summary of consistently observed phenomena from experimentsin
which participants were presented with visual search tasks. Many of these studies also
propose some sort of small-scale theory to explain the particular phenomena observed in
the study. But rather than discussing these isolated theories, this review will instead

discuss three comprehensive theories of visua search from the field of cognitive

psychology.
2.2.2 Models of Visual Search

This section will present three cognitive psychology models that account for many
of the experimental observations made in visual search experiments discussed above. They
are Neisser's (1963) simple search model, Treisman’s (1986) feature integration theory,

and Cave and Wolfe' s (1990) guided search model.

Smple Search Model

Neisser's (1963) simple search model assumes that people ook at each item in turn
and terminate the search when they find the target. The model thus predicts that response
time will increase linearly as afunction of the total number of objects that must be
examined. The modd (as presented by Dosher, 1998) states that the mean predicted
response time when atarget is absent will be

RT =0y +[5(ms)

and that the mean predicted response time when atarget is present will be
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B(mg+1)
RTp = OCp+T

where mg represents the total number of itemsin the display; B represents the amount of
search time required to examine each item in a seria, non-overlapping search; and o
represents a constant amount of time required for other processes not related to the number
of itemsin the display (which might change depending on whether the target is absent or
present).

This model can explain the preceding experimental observations 2 and 8.

Feature Integration Model

Treisman’s (1986) feature integration theory pertains to what kind of pre-attentive
visua information is placed in visual working memory and isthus made availableto a
search strategy. Thetheory is not a complete model of visual search. However, when
combined with atheory of parallel and serial search strategies, the theory becomes a
complete model of visua search.

The feature integration theory asserts that early in the processing of visual
information, a separate feature map is created for each primary feature (such as size, color,
shape, and orientation), a map that encodes the location of al occurrences of that feature.
These feature maps are searched in paraldl, pre-attentively, for the presence of asingle
object that possesses a smple feature corresponding to one of the maps. If the target item
possesses such afeature, it can be found very quickly and without serial attentive search.
To the participant, the target object appearsto “pop out” without search. If the target item
does not possess a distinguishing primary feature, then the model must resort to a seria
search process much like Neisser’s (1963) simple search model. Hence, the model asserts
an initial paralle search followed, if necessary, by a secondary seria search.

Thismode can explain al of the preceding experimental observations except (#9)

that a person can find a target more quickly when there is a predictable structure to avisua
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scene.

Guided Search Moddl.

Cave and Wolfe' s (1990) guided search model asserts adightly different
combination of parallel and serial processes. In the guided search model, an activation
score is calculated for each display object in an early, parallel processing stage. The
activation score combines target-driven and display-driven contributions. The target-driven
contribution is a measure of how similar the object is to the anticipated target along various
stimulus dimensions. The display-driven contribution is a measure of how unusual the
object isin the display along various stimulus dimensions. These stimulus dimensions
correspond roughly to the primary featuresin Treisman’s feature integration theory.

This activation score is computed for every item in the display in an early paralle
processing stage, which isfollowed by a serial processing stage in which items are
evaluated in order of their activations. The object with the highest activation scoreis
evauated first, followed by the object with the next highest activation score, and so forth.
The sequence of evaluation stops either when the target is found or when all items above a
threshold or criterion activation level have been examined. This threshold can be varied
depending on task requirements. An additional detail isthat atiny bit of noise, or
variability, is added to each activation before ordering them; as aresult, even if the target
item has adightly higher activation than some similar nontargets, in the final ordering those
nontargets might get ranked higher and evaluated earlier in the serid stage.

Like the feature integration model, this model can also explain al of the preceding
experimental observations above except (#9) that a person can find atarget more quickly
when thereis a predictable structure to avisua scene.

It isinteresting to note that Cave and Wolfe used a computer program to compute all
of the activation scores for al of the visual objectsin their guided search model, and to

generate the model’ s predictions. Doing so, they demonstrated how computational
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cognitive modeling may be the most practical approach to building s mulations of human

visua search, simulations that will need to incorporate many complex interacting systems.

Summary

This section presented three visual search models: Neisser’s simple search mode,
Treisman’s feature integration theory, and Cave and Wolfe' s guided search model. All of
these model s discuss the perceptual, cognitive, and motor processes involved in visual
search. Neisser proposed asimple seria search strategy. Treisman and Cave and Wolfe
account for preattentive processing and combine both serial and parallel consideration of
visual objects. But something is missing from al three models: Though al of the models
the models assume that eye movements will take place, none of the models explicitly
predict or account for them; instead, they discuss the “focusing of attention,” which may or
may not correspond to eye movements. As mentioned earlier, there seemsto bea
separation between the literature discussing the cognitive processing involved in visual
search and the literature discussing eye movements. Theories pertaining to eye movements

and eye movement programming will be presented next.

2.2.3 The Programming of Eye Movements for Visual Search

Humans perceive their visual environment vialight that enters the eyeball through
the cornea, the transparent front surface, passes through alens, and falls on the retina, the
thin, light-sensitive surface that lines the inside back of the eyeball. The retina contains
millions of receptor cellsknown asrods and cones. Thereisasmall areaon theretina
opposite the cornea, the fovea, in which the rods and cones are most dense and thus
resolution of visual information isthe greatest. The fovea correspondsto afield of view
that isroughly circular and roughly two degrees of visual anglein diameter. Around the
fovea, resolvability tapers gradually.

When conducting a visua search, a person moves his or her eyesto get different
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areas of the visual scene into the fovea (to foveate different areas), so that those areas can
be examined with greater precision. In anonmoving scene, these eye movements will be
saccades, quick, ballistic movements, typically lasting about 5 to 30 msec and separated by
saccadic latencies of at least 200 msec (Rosenbaum, 1991). The lack of eye movement
between two successive saccades is by default afixation, during which visual information
isgathered. Saccades have two main features: direction and extent. Saccades are typically
synchronized so that the same image will fall into the fovea of both eyeballs.

There is an extensive literature of theories regarding the preparation, or
programming, of eye movements (Fisher, Monty & Senders, 1981; Monty & Senders,
1976; Rayner, 1992; Senders, Fisher & Monty, 1978). One basic question that these
researchers ask is how and when the features (direction and extent) of a saccade are
programmed. Two major opposing ideas regarding high level control of saccade
programming have been proposed, global control and local control. Under global control,
saccades are programmed in advance using strategies that are based on the structure of the
visual field and the task. Under local control, saccades are programmed in response to
visua information that becomes available during task execution. Enough evidence
supports both ideas, however, to suggest that saccade programming is both strategy-driven
and feature-driven.

It is easy to imagine that both strategy and perceptual features contribute to the
programming of saccades. A person looking for a hardware store whileriding acity bus,
for example, will make strategy-driven saccades to look at each storefront. But perceptual
features (such as color, size, or shape) will guide the eyesto the sign identifying each
store.

Feature-driven theories have been proposed for avariety of tasks. Antes (1974)
and Loftus (1976) studied how people accomplish a picture-viewing task, and proposed
that eye movements are programmed based on perceptual featuresin the visual field.

Williams (1966a) studied how people accomplish avisua search task, and also concluded
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that peripherally available perceptual information can be used to direct the gaze.

Feature-driven models of saccade programming can be further separated into (a)
direct moment-to-moment control models, which use features gathered during one
fixation to program the features of the very next saccade, and (b) indirect local control
models, which use features gathered during the last severa fixationsto gradually modify a
scan path of saccades. Prinz, Nattkemper, and Ullmann (1992) made this distinction and
collected data that support the idea that people use direct moment-to-moment control.

Other researchers have emphasized the strategy-driven component in the
programming of eye movements for visua search. Neisser (1976) asserted that people use
a stored pre-programmed plan or a schema to program eye movements, but that the schema
can be influenced by both perceptual information and other task details gathered during
schema execution.

Russo (1978) a so emphasized the contribution of strategies. He studied the
relationship between eye movements and cognitive strategies to account for the time course
of cognitive processes that givesrise to theinterval between saccades. Russo points out
that eye movements themselves take only about 30 msec, but are separated by about 200
msec of no movement; he emphasizes that a good model should account for all cognitive

processing occurring during the 230 msec between successive saccade initiations.

Eye fixations serve only to acquire the information needed to execute a
given cognitive strategy. Therefore, “interpreting” eye fixations should
imply identifying the underlying cognitive strategy. Instead, the use of eye
movements to study cognitive processes has been characterized by sterile
analyses based exclusively on summary statistics, such as fixation
frequency, spatial distribution, and mean duration.... Rather, eye
movements should be aggregated into meaningful cognitive units or
examined for interpretable sequential patterns.... Because eye movements
are aways directed by the active cognitive process, an explanation of the
eye movements must rely on an understanding of the controlling cognitive
strategy. (Russo, 1978, p. 109)

Russo emphasizes strategy-driven analysis, but does not claim that such analysis can
exclusively account for eye movements. He proposes a stage model that incorporates (a)

strategies, (b) peripherally visible information, and (c) information gathered from previous
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fixations, but not necessarily the immediately prior fixation. The model usesall three
sources of information to program each saccade.4

Other researchers have validated such an integrative explanation. Cohen (1981),
for example, provided evidence that people use schematathat are influenced by perceptual
features.

A good model of visual search should account for al nine of the basic visua search
phenomena enumerated in the previous section. A good model should also account for eye
movements, strategy-driven and feature-driven aspects of visual search, and be explicit
regarding whether the feature-driven component of the search assumes direct moment-to-
moment control (in which each fixation can influences the very next saccade) or indirect
local control (in which the last several fixations influence the next saccade). Though a great
deal of work has been done to account for reaction time and eye movement data, thereis
not yet amodel of visual search that explicitly accountsfor al of these processes and all of

the data.

2.2.4 Toolsfor Predicting Visual Search of Computer Interfaces

If an empirically validated model of the perceptual, cognitive, and motor processes
involved in visual search did exist, it could be used to predict how long a person would
take to find something on a computer screen. Thiswould be very useful to interface
designers. Severd researchers have aready developed automated techniques for predicting
aspects of visual search in human-computer interaction tasks (Lohse, 1993; Sears, 1993;
Tullis, 1988).

Tullis (1988) built atool called the Display Analysis Program (DAP) that takes as

input an al phanumeric computer screen layout and analyzes the layout with respect to

4Thisisaparticularly interesting model because the menu search models presented later in
this dissertation also combine all three sources of information to predict eye movements.



17

grouping, density, and layout complexity. DAP predicts the time required for auser to find
any object on the screen based on those input parameters. DAP cannot take a specific
search task as an input, but instead predicts one mean search time per display. Though
DAP has predictive power, it says nothing and make no claims about the underlying
processes involved.

Lohse (1993) developed a system called Understanding Cognitive Information
Engineering (UCIE) that predicts the time required to answer a specific question based on
information presented in aline graph, bar graph, or table. He attached timing parameters to
eye fixations and other component processes. UCIE predictstotal task execution time by
summing the time required for all component tasks. Unlike DAP, UCIE makes some
claims and assumptions about perceptual, cognitive, and motor processes involved.
Though UCIE might generalize to other visual search tasks, it was only built and validated
for graphs and tables. It does not address more general visual search tasks that arise when
using a computer.

Sears (1993) developed a metric called Layout Appropriateness (LA) that can be
applied to many computer search tasks. LA evaluates a screen layout with respect to how
well it supports efficient execution of atask specified by the analyst. Thetool is based on
the human factors method called link analysis, which is used to determine the optimal
placement of equipment inaroom. Inlink analysis, adesigner defines links between
pieces of equipment that a person will need to use in consecutive order, and labels each link
with how frequently that movement will need to be made. The designer then determines
the optimum placement of equipment to minimize the overal distance that a person will
need to travel while using the equipment. Sears' tool works similarly, and recommends
where to place visual objects on a screen to reduce the distance the cursor and the eyes will
need to travel while accomplishing a specific task. One shortcoming with LA isthat it
reduces the distances the eyes will need to travel but not the number of fixations required,

which might thus result in little overall time savings because eye movements are fast
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compared to fixations. Another shortcoming isthat it does not simulate the perceptual,
cognitive, and motor processes required for atask, but stays on a higher level of analysis.
It does not predict how long a person would take to accomplish atask, but just compares
each layout against atheoretically LA-optimal layout.

The tools built by previous researchers suggest that even better predictive tools
could be built, and that they would be very useful. Such tools could be used to predict
how long a person would take to find something on a computer screen, such asanitemon
apull-down menu. The next section delves into this specific subproblem—visual search of

pull-down menus.

2.3 Menu Search

Ever since computers advanced to where the user could interact directly with the
machine via a keyboard and video display terminal, menu systems have been used to
visualy inform the user of the available command options a any point in time, and to
enable the user to select one of the options. Computer menus are one of the most important
visua components of contemporary graphical user interfaces, which incorporate all sorts of
menus.

Menus pervade contemporary computer systems. Most textbooks on human-
computer interaction or interface design and analysis have a chapter dedicated to the topic
(such as Mayhew, 1992; Shneiderman, 1992). Most web pages contain a menu in one
form or another; in a sense, every web page that contains linksis amenu, and every link is
amenu option. Pull-down menus are used extensively by most contemporary computer
operating systems. For example, menus are the starting point for launching applicationsin
Microsoft Windows (see Figure 2.2, |eft), and are used by most computer programs that
run on the Apple Macintosh (see Figure 2.2, right).

Computer menus pervade life in the United States. Computer menus are used in

bus information kiosks in downtown Portland, Oregon; computer menus have replaced the
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Figure 2.2. On the left, the Microsoft Windows NT “ Start”
menu, opened millions times across the world every workday.
On theright, the standard “ File” menu that appears in most
Macintosh applications.

old wall-mounted building directoriesin New Y ork City office buildings, computer menus
appear on new televisions across the country when the viewer tries to adjust the picture
quality or other settings using the remote control. At many restaurants, cashiers and
waliters enter food orders by finding the items on computer menus.

Auditory computer menus aso pervade life in the United States, menus such as
those encountered when calling an airline (“ Press 1 to make areservation, press 2 for flight
information...”). Auditory menus are discussed by Resnick (1993), Raman (1997), and

others. But most computer menus are visual menus, and thus require visual search.

2.3.1 Menu Design Guidelines

Researchers have proposed many guidelines to help people design menu systems
that are efficient and easy to use (for example, Galitz, 1993; Mayhew, 1992; Shneiderman,
1992; Smith & Mosier, 1986). The guidelines are often based on empirical studies that

determine which design choices result in superior performance. Sometimes the guidelines
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are based on common practice or supposition. This section will present a comprehensive
list of guidelinesthat has proposed by Mayhew (1992). The list seems particularly useful
to designers because of itslevel of detail and the directness of its recommendations. Smith
and Mosier (1986) provide an equally useful but more detailed set of guidelines. Galitz
(1993) provides alist that is too detailed, and almost reads asif it were adesign
specification. Shneiderman (1992) provides alist that is too vague.

To explain how these guidelines might help a person use a menu more quickly and
easily, the guidelines can be examined in terms of the menu usage subtasksthey are likely

to affect. Subtasksin using amenu include:

1. Decideif the menu can be bypassed entirely by using a shortcut key. 1f
not, continue...

2. Open the menu and/or move your gaze to the menu.
3. Figure out where to look next in the menu, and move your gaze there.

4. Find the best match (either an identical match or a close approximation of
the target).

5. Figureout how to select the found item. For example, figure out exactly
where to point or which key to press.

6. Select thedesired item, and confirm that you successfully selected it.
7. If necessary, navigate through a series of menus.

8. Learn the menu items as you use the menu.

Menu design guidelines proposed by Mayhew (1992) are shown in Figure 2.3. Also
shown are the subtasks that each guideline islikely to help a person accomplish more
quickly or easily.

Examining each guideline in terms of the perceptual, cognitive, and motor
processing it is likely to influence should help the field of HCI (a) to better understand the
usefulness and validity of each guideline, and (b) to propose new guidelines based on an
understanding of the perceptual, cognitive, and motor processing that takes place during

menu selection.



21

Search-related subtasks
Selection-related subtasks

Figure out Find | Figure Navigate

Bypass Open whereto best outhow  Select through Learn
Menu Design Guidelines menu menu look next 'match to select item  hierarchy menus
Establish conventions for menu design and apply them'  x X X X X X X X
consistently on all menus within a system.
Allow direct access through type-ahead, menu screen X
names, and user-created macros for expert users.
Use permanent menus when possible. Reserve pop-
up or user-invoked menus for high-frequency users X
and situations where screen real estate is scarce.
On full-screen text menus, present menu choice lists X X X

vertically.

Make menu choice labels brief, consistent in
grammatical style and placement, and matched with X X
corresponding menu titles.

Create logical, distinctive, and mutually exclusive X X X
semantic categories with clear meanings.

Order menu choice labels based on the user and task X X X
variables.

Either gray out or delete inactive menu items, X X X X

depending on user experience and the input device.

Use menu choice descriptors if choice labels may not X X
be clear and unambiguous.

Provide menu selection defaults when possible. X

Use cursor selection for short menus on keyboard-

driven menu systems with casual use. Use

mnemonically lettered selection codes for longer X X
menus and/or high-frequency users. Let the user point

if there is a pointer.

Consider pie menus when the choices lend X X X
themselves to a pie format.

Provide menu selection feedback. X
Make menu hierarchy shallow and broad, if possible.

Allow context labels, menu maps, and place markers
as navigation aids in complex menu systems.

Facilitate backwards navigation.

X X X X

Distinguish between “Choose one” and “Choose X
many” menus.

Match menu structure to task structure. This guideline is too vague.
Allow users to tailor menu structure to task structure. | There is no clear benefit from this guideline.

Figure 2.3 Menu design guidelines proposed by Mayhew (1992), and menu usage
subtasks. The subtasks that are part of the processes of search and selection are

indicated at the top. An x indicates that accomplishing the subtask will probably
be easier when the guideline is followed.

2.3.2 Experimental Phenomenain Computer Menu Search

Thisisadiscussion of phenomenathat have been observed in experiments that

involve finding and selecting an item on a computer menus. The review islimited to
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experiments that emphasi ze the visual search component of the task by reducing the task to
(@) finding the target and (b) selecting the target. This review will exclude studies that
introduce subtasks such as navigating through more than one menu or deciding which
menu item provides the best semantic match with the target. Rather, the review will only
include research that pertains to the search of a single menu for aknown target item.

Most of the menu studies reviewed have an experimental procedure similar to that
of the general visual search tasks discussed in the previous section. The experimental

procedureis asfollows:

1. The participant is presented with a precue of the target menu item on the
computer screen.

2. Thetarget precue disappears.
3. Themenu appears on the screen, and the clock starts.

4. The participant finds and selects the target item, and the clock stops.

The usua experimental variations include exactly how the participant is precued,
what are used as menu items, the ordering of the menu items, the number of itemsin the
menu, the size and spacing of menu items, whether or not menu items are grouped, and
how the participant indicates that they have found the target item (usually with amouse
click or akey press). The dependent variable of interest is usually selection time, measured
from when the menu appears to when the participant has selected the correct target item.
Another important dependent variable is number of errors.

The location and duration of eye fixations during task execution are emerging in the
literature as another dependent variable. But because of the large amount of (a) data
generated by eye tracking devices, (b) data processing required in order to report these
variables, and (c) noise in fixation locations, it is very challenging to record and summarize
these datain amanner that reveal s fundamental aspects of visual search. Nonetheless,
several researchers have braved the flood of data and distilled some interesting

observations, including Crosby and Peterson (1991), Aatonen, Hyrskykari and Raiha
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(1998), and Byrne, Anderson, Douglass, and Matessa (1999). The eye movement data
reported by Aaltonen et al. and by Byrne et a. are subject to Russo’s (1978) criticisms and
are reported as “summary statistics, such as fixation frequency, spatial distribution, and
mean duration” rather than “ aggregated into meaningful cognitive units or examined for
interpretable sequential patterns.” The data reported by Crosby and Peterson, however, are
what Russo seeks—interpretable sequential patterns. All three studies are informative
nonetheless, and will be discussed below.

A review of the literature reveals eight basic phenomenathat are consistently
observed from study to study. Thereisaclose parallel between these phenomenaand
those that have been observed in more general visua search tasks, which were summarized

in Section 2.2.1, “Experimental Observations’. These phenomenainclude:

1. Peoplecan find atarget more quickly when it appears higher (physically
closer to the top) in the menu (Card, 1983; Nilsen, 1991; Perlman, 1984;
Somberg, 1987; Somberg, Boggs & Picardi, 1982).

2. People can find aword more quickly in avertical list than in a horizontal
list (Backs, Walrath & Hancock, 1987; Wolf, 1986; Woodward, 1972).

3. Peopletake moretimeto find atarget item in alonger menu thanin a
shorter menu. This even holds true when the target items are in the same
position of two randomly ordered menus (Nilsen, 1991; Perlman, 1984;
Somberg et al., 1982).

4. People can find atarget more quickly when menu items are a phabetically
or numerically ordered than when they are randomly ordered (Card,
1982; Perlman, 1984; Somberg, 1987).

5. With practice, people can learn to find atarget in an unordered menu
almost as quickly asin a sorted menu (Card, 1982; Somberg, 1987).

6. People can search some kinds of menu items more quickly than others,
such as simple icons more quickly than complex icons (Arend, Muthig &
Wandmacher, 1987; Bednall, 1992; Byrne, 1993; Landauer & Nachbar,
1985; Perlman, 1984; Vartabedian, 1971; Williams, 1988).

7. When searching unordered menus, people adopt somewhat systematic
top-to-bottom scan patterns (Aaltonen et al., 1998; Byrne et a., 1999;
Crosby & Peterson, 1991).

8. Peopledo not fixate every item aong the way to finding the target
(Aatonen et a., 1998; Byrne et al., 1999; Crosby & Peterson, 1991).
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Studiesilluminating each of these eight basic phenomenawill now be presented.

1. Higher items are faster.

A systematic increase in selection time as afunction of the Serial Position of the
target item, referred to asa Serial Position effect, appears across all positionsin randomly
ordered menus, but only for the topmost menu itemsin ordered menus and positionally
constant menus.

In randomly ordered menus, Somberg et al. (1982) found a Serial Position effect of
140 msec per position for words and Nilsen (1991) found an effect of about 100 msec per
position for single numerical digits.

In alphabetically or numerically ordered menus, Somberg (1987) and Perlman
(1984) found a Serial Position effect, but only for items near the top of the menu, and
Nilsen (1991) found alogarithmic Serial Position effect.

Card (1983) presented his participants with an initially randomly ordered menu but
kept the ordering constant for atotal of forty-threetrials, resulting in something between
randomly ordered and positionally constant menus. Card found a Serial Position effect of
only 26 msec per position.

It should be pointed out that in none of these studies did the experimental design
motivate the participant to start the search at the bottom of the menu, as might be the case
with menus that open from the bottom, such as the Microsoft Windows “ Start” menu

shown in Figure 2.2. For such menus, this observation might not generalize.

2. Vertical isfaster than horizontal.

Backs et al. (1987) demonstrated that people can select atarget item more quickly in
avertica menu than in ahorizontal menu. They presented participants with menus of either
one vertical column or multiple horizontal rows, and observed that participants took on

average 150 msec lessto select atarget item in the vertical menu.
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Wolf (1986, cited by Tullis, 1988a) observed that using vertical lists a phabetized
within each column, rather than using horizontal lists, resulted in 37% less time being
required to locate atarget.

Woodward (1972) asked participants to compare pairs of 3-digit numbersin
different arrangements presented on paper and to respond as to whether or not the two
numbersin each pair wereidentical. He observed that response time was significantly
faster when one number was directly above the other (asin vertical menus) than when the

numbers were arranged side-by-side on the same line (asin horizontal menus).

3. Longer menus take longer.

This phenomenais not surprising because in alonger menu there will be more
menu items that need to be examined. Perlman (1984) observed average selection times
ranging from 1.26 seconds for 5-item menus, to 2.23 seconds for 20-item menus. Nilsen
(1991) observed average selection times ranging from 0.57 seconds for 3-item menusto
0.99 seconds for 9-item menus.

Researchers have also observed the more surprising phenomenon that, when the
target item appears in the same position in two different randomly ordered menus of
different lengths, more timeis required to select atarget from the same position of alonger
menu. But this only seems to be the case when the participant can predict the length of the
menu in advance, as when experimental trials are blocked by menu length. Perlman
(1984) observed that selection time for the same menu position increased by about 0.1
seconds each time the menu length was increased by 5 items. Nilsen (1991) observed that
selection time for the same menu position increased by about 0.15 seconds each time the
menu length was increased by 3 items. Both Perlman and Nilsen blocked their experiments
by menu length. Both Somberg (1982) and Byrne et al. (1999) did not block by menu
length (hence the participant could not predict the menu length from trial to tria), and they

did not find a consistent, significant increase in selection time for the same position in
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randomly ordered menus of different lengths.

4. Sorted isfaster than randomly ordered.

Card (1982) asked participants to select atarget item from amenu of command
names presented in different orderings. He observed that, in early trials, participants
tended to find the target more quickly when the menu was ordered either a phabetically
(0.81 sec) or by function (1.28 sec) than when the menu was ordered randomly (3.23 sec).

Perlman (1984) asked participantsto find aword in alist. He presented both sorted
and randomly ordered lists, and observed that participants could find atarget significantly
faster in sorted lists (1.45 sec) than in randomly ordered lists (2.01 sec).

Somberg (1987) presented participants with menus of twenty words that were
either alphabetically or randomly ordered, and observed that people performed significantly
faster with alphabetically ordered menus.

5. Positional constancy is fastest.

If the positions of menu items are held constant across trials, with practice people
can find atarget in arandomly ordered menu as quickly asin a sorted menu.

Card (1982) asked participants to select atarget item from amenu of command
names presented in different orderings. Each ordering was held constant across all trials.
He observed that in early trials participants tended to find the target more quickly when the
menu was ordered al phabetically than when the menu was ordered randomly. But he also
observed that in later trials the relative advantage of a phabetized menus nearly disappeared,
and participants could select items almost as quickly in the randomly ordered menu.

Somberg (1987) presented participants with menus of twenty words that were
randomly ordered. For some participants, he kept the initially random positions constant
throughout the experiment. For other participants, he re-ordered the menu randomly for

every trial. He observed that on thefirst trial people took about the same amount of timeto
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select the target item (2780 msec), but that after an average of just one presentation, people
could select the target more quickly from a positionally constant menu (2090 msec) than
from arandomly re-ordered menu (2690 msec). After twenty trials for each position,
performance for randomly re-ordered menus stayed relatively constant but performance for

positionally constant menus improved (to 1400 msec).

6. Some menu items are faster than others.

When scanning a menu, the nature of the menu items sometimes affects how
quickly a person can find the target. For example, people can search through numbers
more quickly than words, and some kinds of words or icons more quickly than others.

But of course not all features affect search time. Whether items are in upper versus lower
case, for example, does not significantly affect search time.

Comparing the search of numbers versus words, Perlman (1984) presented
participants with menus of either the Arabic numbers from 1 to 20, or of well known
words drawn from Battig and Montague (1969). Perlman observed that, on average,
participants selected the numbers (1.56 sec) more quickly than words (1.89 sec). Landauer
and Nachbar (1985) presented participants with menus of either Arabic numbers (1 to 4
digitslong) or words randomly chosen from an online dictionary (4 to 14 characterslong).
Participants sel ected the numbers more quickly than the words.

Comparing different kinds of icons with text-only menus, Arend, Muthig and
Wandmacher (1987) observed that people could find atarget in a menu of distinctive icons,
each with adistinct primary feature, more quickly (1173 msec) than they could find atarget
in amenu of words (2011 msec) or amenu of representational icons, icons whose
meanings are represented in smaller details (2004 msec). Similarly, Byrne (1993)
observed that participants could find atarget icon more quickly when all icons are smple
rather than complex; thisis analogousto the “target pop-out” phenomena mentioned in

Section 2.2.1.
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However, it is not always possible predict which kinds of menu items can be
searched faster. Itisnot clear, for example, how upper versus lowercase text of menu
items affects search time. Thereisempirical evidence (reviewed briefly by Bednall, 1992)
that lowercase text can be read more quickly than uppercase text, but Vartabedian (1971)
observed that uppercase lists could be searched more rapidly than lower caselists. Other
researchers observed no clear advantage to upper or lowercase. Bednall (1992) observed
that participants took the same amount of time to search uppercase and mixed case menus.
Williams (1988) observed that there was no clear time advantage between upper or

|owercase menu items.

7. People adopt somewhat systematic scan patterns.

Researchers have used eye tracking devices to capture eye movements during menu
search tasks, and found that saccade scan paths tend to be somewhat systematic (that is,
regular and orderly). The systematicity manifested itself in various ways.

Crosby and Peterson (1991) presented participants with a screen containing three
columns of randomly ordered three-digit numbers, and asked participants to find a number
inthelist. Crosby and Peterson categorized the visual scan path used for each trial, and
found that the college student participants exhibited a systematic scan path on 66% of the
trials. The scan path was usually top-to-bottom, but was sometimes bottom-to-top for the
second column.

Aaltonen et al. (1998) presented participants with pull-down menus containing
names or concepts grouped by category, and asked participants to find specific targetsin
the menus. Participants tended to scan menus with a series of upward and downward
sweeps—sequences of eye movements in the same direction—that decreased in both
duration and length throughout the trial. Downward sweeps were more common that
upward sweeps.

Byrne et al. (1999) presented participants with pull-down menus containing
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numbers or |etters, randomly re-ordered for each trial, and observed that (a) the initial
fixation was usually on one of the top few menu items, (b) more fixations were required to
find atarget lower in the menu, and (c) people tended to not fixate items below the target

position.
8. People do not fixate every item.

The same researchers found that people scanning arandomly ordered menu do not
fixate every menu item on the way to finding the target, but instead jump over severa items
at atime.

Crosby and Peterson (1991) found that, after practice, participants were ableto find
the target item with fewer saccades than would be required if they fixated every item.
Crosby and Peterson also report a pictorial representation of one specific scan path that was
recorded, and it can be seen that the participant systematically fixated every third or fourth
item.

Aaltonen et al. (1998) found an average vertical saccade distance of 2.21 menu
items, which suggests that participants did not fixate every item. Though this average
saccade distance might have been inflated by saccades in which participants jumped over
itemsto get to the next group, a pictorial representation of two specific scan paths aso
suggests that participants did not fixate every item.

For menus containing nine or twelve items, Byrne et al. (1999) found that
participants made an average of 2.5 fixations before selecting the target when the target
appeared in the first position but that, on average, participants made only an additional 0.2
fixations per Serial Position for targets further down in the menu. Hence, for items below
the fourth position, people exhibited too few fixations to have fixated all of the items aong

the way to the target.
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Other observations

Researchers have studied other factors that relate to how people search for aknown
item in asingle menu, such as the effects of arranging menu items in groups, (Bednall,
1992; Hollands & Merikle, 1987), removing temporarily disabled menu items completely
versusjust lightening the text (Francik & Kane, 1987), and varying the distance between
adjacent menu items (Nilsen, 1991; Williams, 1988). But the effects of these and other
factors are not as clear or are not confirmed by duplicate studies as are the above five
phenomena. Thelist above represents the current understanding of what will be reliably

observed when a person selects a known item from a single computer menu.

2.3.3 Proposed Hypotheses for Menu Sear ch

Besides making observations about how people search menus, researchers have
proposed hypotheses relating to menu search. Thisreview will only include hypotheses
that attempt to explain fundamental underlying principles of human performance that come
into play when people search menus. A statement such as “ People search vertical menus
more quickly than horizontal menus’ will not be included as a hypothesis since thisis more
of asummary of observed data. Asin the previous discussion regarding observed data,
this review will only include hypotheses that relate to visual search when the target item is
known in advance. Thisreview excludes hypotheses that discuss how the search process
is affected by processes such as deciding which menu item best matches the precued target

item. Hypotheses that have been proposed, including several that conflict, are asfollows:

1. People userecognition memory for menus, and recall memory for
command line interfaces.

2. People process one menu item at atime and hold their gaze on each item
asthey consider it.

3a. People search systematically from top to bottom.
Versus

3b. People search randomly.
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versus
3c. Search isboth random and systematic.

4a. People terminate the search when they find the target.
versus

4b. People exhaustively examine every item on the menu before deciding
which isthe target.

5a. People do not begin the process of selecting atarget item until they have
found the target.

versus
5b. People overlap the search and selection processes.

Each of these hypotheses will now be discussed in greater detail, including who
proposed each one, observationa datathat supportsit, and a brief critique of each

hypothesis.

1. People use recognition for menus and recall for command lines.

To support abelief that menu interfaces are superior to command line interfaces,
some researchers point out that humans are better at recognition than recall, and theorize
that people use recognition for menu interfaces and recall for command line interfaces (for
example, Galitz, 1993, p. 209; Mayhew, 1992; Paap & Roske-Hofstrand, 1988). The
hypothesis that people use recognition for menusis relevant to this project because it bears
on the ecological validity of the assumption that atarget menu item can be knownin
advance. Inall of the menu models built in this research project, it is assumed that the
person knows the target in advance. It could be argued that people using menus do not
recall the target menu item in advance but instead recognize it only when they seeit, and
thus the models are built on aflawed reproduction of atask. A response to such acriticism
would be to point out that the initial distinction—that people use recognition for menus and
recall for command lines—isitself flawed.

In classic recognition and recall tasks, a participant istypically given alist of words
to learn followed by atest. Thetest for the recognition task differs from the test for the

recall task. In the recognition test, the participant is given alist that contains words from
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the original list, aswell as distractor (non-target) words, and must identify which words
arefrom the original list. Intherecall test, the participant is asked to recall the list with no
retrieval cues other than an indication of which list to recall. In terms of proportion of
correct responses, people are much better at recognition tasks than recall tasks (Klatzky,
1980).

But it isnot clear that these experimental tasks of recognition and recall map to the
computer tasks of using menu interfaces and command line interfaces as readily as some
researcherswould like to believe. Issuing acommand to a computer viaamenu or a
command lineis avery different task than merely reporting words that were previously
observed, especialy if the person using the computer is accomplishing a piece of work and
knows the steps required to accomplish the task. Mayes, Draper, McGregor and Oatley
(1988) observed that when people were in the middle of accomplishing atask, they could
recall menu items needed to accomplish atask without looking at the menu, even menu
items they could not recall when asked to list the contents of menus. These results
demonstrate that experienced users recall commands based on retrieval cues that come from
the execution of the procedural knowledge, and know what they are looking for when they
open amenu. Thereislittle or no evidence that experienced users use recognition for

menus and recall for command lines.

3. People serially process one menu item at a time.

Researchers have proposed that people conduct a serial, nonoverlapping scan of
menu items. These hypotheses are proposed to account for the Serial Position effect,
discussed earlier. Norman (1991) proposed that people find the next item, encode it,
decideif it matches, and proceed to the next item if the previous did not match. Somberg
et a. (1982) and Anderson, Matessa, and Lebiere (1997) made similar proposals.
Vandierendonck, Van Hoe, and De Soete (1988) even went so far asto assert that people

hold their gaze on each menu item, oneitem at atime asthey consider each item; but this
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was evidently not based on analysis of eye movement data. Card (1982; 1983) also
assumed that people process one item at atime; this assumption was carried over from the

early mathematical models of visual search on which he based his models.

4a. People search systematically from top to bottom.

Researchers have proposed that, to examine a vertical menu, people begin their
search at the top of the menu and move their gaze down across successive menu items.
Observing anearly linear Serial Position effect, several researchers concluded that people
search menus systematically from top to bottom (Nilsen, 1991; Somberg, 1987; Somberg
et a., 1982; Somberg & Picardi, 1983). Aswell, MacGregor and Lee (1987) interpreted
menu selection data presented by Card (1982; 1983) to explain how a sequential search

could account for Card’ s data.

4b. People search randomly.

Other researchers have proposed that when people search a vertical menu, they
move their eyes randomly up and down thelist. Card (1982; 1983) observed that the
cumulative probability of selecting atarget item within a given amount of time increases as
time increases, and at arate that can be explained by arandom search model and not by one
specific systematic model. Other researchers have restated Card’ s assertion that search is
entirely random (such as Giroux & Bellau, 1986; Parton, Huffman, Pridgem, Norman &
Shneiderman, 1985) but without offering new rationale or data. MacGregor and Lee
(1987) argued that Card' s conclusion does not necessarily follow from his observations.
There are a so other problems with Card’ s conclusion, which will be enumerated here.

Problem 1: Asdiscussed at the beginning of this chapter, Card’s models are
derived from the visual search of menus based on models of visual search for enemy
airplanes and warships, which assume visua search in an unstructured visual field. Since

amenu isahighly structured visua field, these mathematical models do not necessarily



apply to menu search. Even though the trends in the data for both structured and
unstructured visual fields are the same, the same models will not necessarily account for
both sets of data.

Problem 2: Card's conclusion of random search relies on the assumption that
people will consider only one menu item at atime. The origina visua search models for
search in an unstructured field assume that people consider only one fixation at atime.
Card’ s models carry forward this assumption, but also assume that only one menu item
will be processed per fixation, and thus assume serial processing of menu items. But in
Card' s task, when menu items can fall closely together (about 0.5° of visual angle apart), it
is possible that more than one menu item could be examined at the sametime. So the serial
processing assumption may not apply, but his conclusion of random search relies on this
assumption.

Problem 3: Card concluded that people searched randomly based in part on
observing that, during search, participants tended to make roughly the same number of
upward and downward eye movements. But in Card’ stask the to-be-selected item
appeared above the menu at the same time as the menu itself, and at the same time that
timing started. The participant did not know the target item in advance and may have spent
time and eye movements getting the target item into memory even after beginning the
search. In experiments run by other researchers—experiments that gave rise to Seria
Position curves with slopes that suggest systematic search—the participant knew the target
item before opening the menu and before timing started, which perhaps more closely
resembles a real-world menu task in which the participant knows the target in advance.
Card’ s task was perhaps less of a search task and more of a matching task in which
participants compared menu items to the to-be-selected item. In fact, Aaltonen et a. (1998)
ran a menu experiment in which the precue stayed visible after the menu appeared, collected
more precise eye movement data, and observed that sometimes the gaze returned to the till-

visible precue during search.
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4c. Searchis both random and systematic.

Perhaps the most plausible explanation is that visual search of menusis both
random and systematic. This explanation can perhaps be derived from a hypothesis
proposed by Williams (1966b), that people use a systematic process with randomness
superimposed upon it. Another hypothesis, proposed by Arani, Karwan and Drury (1984)
isthat people attempt to search in a systematic manner, but forget al of the places where
they have aready looked, which introduces randomness. Another menu selection model
that incorporates both random and systematic search is presented in this dissertation, which

was presented in Hornof and Kieras (1997).

5a. People terminate the search when they find the target.

Researchers have proposed that when people know the exact target that they are
looking for in advance, they terminate their visual search as soon as they have found the
target. Based primarily on the Serial Position effect, Somberg (1982), Somberg and
Picardi (1983), and Nilsen (1991) proposed that people terminate their search as soon as
they find the target. Eye movement data collected by various researchers seemsto confirm

this assumption (Aaltonen et a., 1998; Byrne et al., 1999; Crosby & Peterson, 1991).

5b. People exhaustively examine every item on the menu.

Other researchers have proposed that, even when people know the exact target item,
they exhaustively examine all menu items before selecting the target.

Lee and MacGregor (1985) offer agenera approach for predicting menu selection
time across a series of menus that allows for either a self-terminating or exhaustive search
strategy within each menu. Their model |eaves search strategy as a free parameter,
allowing for either a self-terminating or exhaustive strategy. MacGregor, Lee, and Lam
(1986) extended their previous model to assert that a self-terminating search occurs when a
single menu item is highly likely to be recognized as the target, but that an exhaustive

search occurs when no singleitem is highly likely to be recognized as the target.
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MacGregor and Lee (1987) also proposed that even when a person knows the exact
target in advance, they might exhaustively examine all items before deciding on the target.
But MacGregor and L ee were offering this hypothesis mostly to counter Card’ s assertion
that a self-terminating random search could best explain aflat Serial Position curve.
MacGregor and Lee argued that this data could also be accounted for by an exhaustive

systematic top-to-bottom search.

6a. Search and selection are independent.

Researchers such as Norman (1991) and Vandierendonck et a. (1988) have
proposed that people do not begin the process of selecting the target item (as with a mouse)
until after they have found it, but do not offer any empirical evidence for this supposition.

Card (1983) also speculates that the two are independent. 1n analyzing the menu
selection times he observed, he assumes that some of the total selection time is dedicated
exclusively to search, and some exclusively to selection. When plotting the selection times,
he states that “the intercepts for the regression lines’ of roughly 1100 msec can be
considered to be “the contribution to the task of the nonvisual search components such as

mouse movement and reaction time.”

6b. Search and selection are combined.

Other researchers have proposed that people combine the processes of search and
selection.

Sears and Shneiderman (1994) proposed a specific, time-consuming combination
of the search and selection processes. They propose that as people “move the cursor down
the menu to the item of interest, the cursor acts as a visual anchor guiding their search.”

But they do not discuss whether or not they observed the participantsin their study actually
moving the mouse in such amanner. They did report selection times as fast as 1.75 sec for

the 13th item on the list, which suggests that their participants were not limiting their eye
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movements (which are fast by nature) by their mouse movements (which are slow by
nature).

Anderson et al. (1997) proposed a menu selection model that contained asimilarly
time-consuming and implausible combination of search and selection. To account for
Nilsen’s (1991) menu data, the model assumes that “ Subjects tend to move the mouse
down as they scan for the target” and that no mouse movement is required once the target is
located. Thistheoretical assumption is not supported by the raw selection times, which are
always under 1.7 seconds even for randomly ordered menus of nine items. Selection times
arejust too fast for participants to have waited until they completed each mouse movement
before making their next eye movement.

It is doubtful that people constrain their eye movementsto be as slow as their hand
movements in a high speed visual search task, and there is no evidence to support this
hypothesis. Since people can move their eyes and their hands independently and in
parallel, it is reasonable to expect that they would find away to use this ability to optimize
performance.

Though these fast selection times for randomly ordered menus indicate that people
do not move the cursor and their gaze to menu items at the same time, this does not mean
that search and selection are completely independent. A reasonable conclusionisthat at a
higher level of analysis, the search and selection processes can be thought of as

independent, but at alower level of analysis, the two are combined.

2.3.4 Many Conflicting Hypotheses

Researchers have proposed many hypotheses about the details of how people select
aknown item from amenu on a computer screen. These hypotheses are generally based on
interpretation of data, so sometimes different researchers have proposed conflicting
hypotheses even from the same data. Usually, just one or two of the above hypotheses are

proposed at atime, and the others are held as (sometimes unstated) assumptions, even if
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the assumptions have not been generally accepted. Asaresult, many of the conflicts are
still unresolved, and the field of HCI does not have a good theoretical understanding of the
cognitive processes that people use when they select an item from a menu.

Thisreview of previous literature regarding menu selection indicates that, though
much research has investigated menu selection, many questions remain open. As recently
as 1993, in fact, areview of the literature on visua search in human-computer interfaces
(Scott, 1993) stated that “Littleis yet known about user search processesin menu

retrieval.”

2.4 Cognitive Modeling

Cognitive modeling is the study and the process of building simulations of human
performance which are referred to as cognitive models. Calling the smulations cognitive
models can lead to some confusion because cognition generally refersto central strategic
and decision processing, and is thought to be separate from the peripheral processes of
perception and action. Actionisalso referred to as motor processing. In this
dissertation, cognitive models are assumed to account for al three: perceptual, cognitive,
and motor processing.

Cognitive models permit aspects of user interfacesto be evaluated for usability by
making predictions based on task analysis and established principles of human performance
(Card, Moran & Newell, 1983; John & Kieras, 1996). Cognitive models can predict task
execution time based on specification of interface and task, and thus reduce the need for
user testing early in the development cycle. They can revea underlying strategies that
people use to accomplish atask, and thus help designers build interfaces and interaction
techniques that better complement the strategies. Cognitive modeling has demonstrated its
usefulness in the design and analysis of interfaces through simple KLM models as well
with more complex GOMS models.

An emerging form of cognitive modeling that shows great promise for the design
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and analysis of interfaces is computational cognitive modeling, in which computer
programs are written to simulate the various perceptual, cognitive, and motor processes
involved in accomplishing atask. One form of computational cognitive modeling is GOMS
modeling using a computer-based interpreter such as GLEAN (Kieras, Wood, Abotel &
Hornof, 1995; Wood, 1993). Another is building models with acognitive architecture
such as EPIC (Kieras & Meyer, 1997; Meyer & Kieras, 1997a; Meyer & Kieras, 1997b),
Soar (Laird, Rosenbloom & Newell, 1986; Newell, 1990), EPIC-Soar (Chong, 19983;
Chong, 1998b), ACT-R (Anderson, 1993; Anderson et al., 1997), or ACT-R/PM
(Anderson & Lebiere, 1998). A cognitive architecture is a computational framework for
building cognitive models that ssimulates and constrains fundamental aspects of human
performance.

The cognitive models presented in Chapter 3 and 4 of this dissertation were built
using the EPIC cognitive architecture. EPIC is particularly well-suited for modeling visual
search because (a) it has a particularly well-developed set of constraints regarding visual
and ocular-motor processing and (b) it uses a multi-match, multi-fire production system,
which means that the cognitive processor can match and fire any number of production
rulesin asingle cycle.

EPIC’ s constraints regarding visual processing include that visual stimuli are less
perceptible when they appear further from the foveal region of theretina. EPIC’s ocular-
motor processing includes simulating the preparation and execution of physical eye
movements. These are important aspects of human performance that will constrain the
search space of models that can be used to explain visual search data.

Other architectures vary with respect to how well the architectures themselves
account for these aspects of visual and ocular-motor processing. Though Soar does not
incorporate visua perceptual and ocular-motor mechanisms at the architectural level, the
architecture has nonethel ess been used to model some aspects of visual performance

entirely through the creation and application of Soar operators (Wiesmeyer, 1992).
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EPIC-Soar of course incorporates visual perception and ocular motor processing at the
architectural level because it incorporates these components from EPIC. But since the
modelsin this dissertation do not model learning, the learning that is afforded by the Soar
component of EPIC-Soar is not needed.

Thevisua interface of ACT-R and ACT-R/PM partially accounts for these aspects
of visual and ocular-motor processing. ACT-R and ACT-R/PM’svisua interface assumes
that visual features are available no matter where they appear in the visual field, but that
conjunctions of an object’ s features can only be formed when the object is captured in the
“spotlight of attention.” The visual interface also assumes that timeis required to shift
attention from one location to another. The spotlight of attention, however, isnot linked to
any physical zones on theretina, and it is unclear whether or not the simulated attentional
shifts are intended to represent physical eye movements.

A multi-match, multi-fire production system such asthat used by EPIC is preferred
because it means that the cognitive processor will not constrain the overlapping of
perceptual and motor processing that is likely to occur during ahigh speed visua search.
Soar is also a multi-match, multi-fire production system. ACT-R and ACT-R/PM are also
multi-match, but single-fire. Asargued by Meyer and Kieras (1997a; 1997b), people do
not seem to have a central cognitive processing bottleneck of this sort, and so the
architecture should not impose this constraint. A multi-fire production system, for
example, allows one subset of production rules to move the eye throughout the visual scene
as quickly as possible while another subset of rules, in parallel, keeps track of whether or

not the target has yet been seen.

2.5 Conclusion

Visua search isavery important human activity for accomplishing many tasks,
from survival in war to day-to-day computer usage. Much work has been done to collect

data and build modelsto try to predict and explain how people accomplish these tasks.



41

There are large bodies of work studying general visua search in cognitive psychology,
vision research, and human factors. Visual search of computer menus has sparked debate
in the human-computer interaction literature for decades. And yet, there are no empirically
validated models that explain the perceptual, cognitive, and motor processesinvolved in
visua search. Accounting for the perceptua and motor processing involved is critical
because these peripheral processes will constrain the assumptions that can be made about
the central cognitive processing involved. Building cognitive models using an existing
computational cognitive architecture such as EPIC holds great promise for accounting for

these basic processes and for the data.



CHAPTER 3
INTRODUCTION TO THE MODELS

This dissertation presents the first empirically validated models of the perceptual,
cognitive, and motor processes involved in the visual search of computer menus. This
chapter discusses the basic components of these models: the cognitive architecture used for
the model-building, the human experiment that the models are based on, the empirical data
collected during the experiment, and the specific inputs to the architecture that are used to
model the data.

3.1 The EPIC Cognitive Architecture

The EPIC (Executive Process-Interactive Control) cognitive architecture (Kieras &
Meyer, 1997; Meyer & Kieras, 1997a; Meyer & Kieras, 1997b) provides a general
framework for smulating a human interacting with his or her environment to accomplish a
task, and is well-suited to model visual search. EPIC resembles the Model Human
Processor (Card et al., 1983), but differsin that EPIC is a precise computational model,
has a programmable production-rule cognitive processor, and incorporates more specific
constraints synthesized from human performance literature.

EPIC consists of a production-rule cognitive processor and perceptual -motor
peripherals. To model human performance aspects of accomplishing atask, a cognitive
strategy and perceptual-motor processing parameters must be specified. A cognitive
strategy is represented by a set of production rules, asin CCT (Bovair, Kieras & Polson,
1990), ACT-R (Anderson, 1993; Anderson et a., 1997), ACT-R/PM (Anderson &
Lebiere, 1998), and Soar (Laird et al., 1986; Newell, 1990) represent procedural

42
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knowledge. The simulation is driven by a description of the task environment that specifies
aspects of the environment that would be directly observable to a human, such as what
objects appear at what times, and how the environment changesin responseto EPIC’s
motor movements.

EPIC models are generative. When al the necessary inputs for amodel are
provided to the architecture and the model is run, EPIC interacts with the task environment
and generates (a) a specific sequence of perceptual, cognitive, and motor activities to
accomplish the task and (b) a prediction of the time required to accomplish the task.

EPIC takes asitsinput:

»  The cognitive strategy for accomplishing atask, stored as production
rules in the production memory.

* Theavailability of each object property for each visual zone, to represent
human perceptua capabilities.

» Details of the task environment, such as when and where objects appear.
EPIC generates as output:

» A detailed trace of the flow of information and control among the various
processors and memories.

*  Thetimerequired to execute the task.

As shown in Figure 3.1, information flows from the task environment into sense
organs, through perceptual processors, to a cognitive processor (consisting of a production
rule interpreter and a working memory [WM)]), and finally to motor processors that control
effector organs that interact with the task environment. All processors run independently
and in parallel. Information processing and motor movement times are held constant across
models, and are based on human performance literature.

A single stimulusin the task environment can produce multiple inputsinto a
perceptua processor, which can be deposited in WM at different times. First to arrivein
WM isthe detection of a perceptual event, followed later by properties that describe the

event. The perceptual processors are “pipelined.” If an object’ s properties begin moving
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Figure 3.1. Overview of the EPIC architecture, showing flow
of information and control. The processors run independently
and in parallel. (FromKieras & Meyer, 1997.)

to WM, the arrival of those properties will not be delayed by any other processing. WM
contains these items deposited by perceptual processors, aswell as control information
such asthe current task goal. At the end of each smulated 50 msec cycle, EPIC firesal of
the production rules whose conditions match the current contents of WM. EPIC allowsfor
parallel execution of production rules in the cognitive processor, and some paralelismin
each motor processor.

EPIC is particularly well-suited for modeling aspects of visual search because
EPIC, in effect, has eyesthat see. EPIC has an ocular motor processor that moves a
simulated gaze to locations in the environment as specified by the executing strategy. The

gaze can befixed at one point in the task environment at atime. Timeis required to prepare
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and execute an eye movement to anew location. Retinal zones are defined as concentric
circles around the center of the gaze, with sizestypically set asfollows. The bouquet (a
radius of 0.25° of visual angle), the fovea (1°), the parafoves, (7.5°), and the periphery
(60°). These zones are depicted in Figure 3.2.

center of gaze
parafovea

bouquet fovea periphery —»

not in
view

Figure 3.2. Theretinal zones defined in EPIC, and typical sizes used in
modeling. Szes aretheradii in degrees of visual angle. The visual
stimulus“ A” appears outside of the bouquet and fovea, but inside of
the parafovea and periphery.

Recall that one of the inputs to an EPIC model is the availability of object
properties. These parameters define (a) which properties are available in which zones, and
(b) the delay imposed on each property in each zone. The availability of each property of
an object is afunction of in which zone the object islocated during the current fixation.
Thus, there isadifferent availability and delay setting for each property for each zone
(bouquet, fovea, parafovea, periphery, and not-in-view). The availability and delay for the
location and text properties, for example, are typically set asfollows. Thelocation
property will be available aslong as the object isin view, and will take 50 msec to travel
from the retina to the visual processor. The text property will only be available when the
object fallswithin the fovea, and will take 100 msec to travel from the retina to the visual
processor.

Thus, if during the execution of amodel a box containing the text “GO” suddenly

appears in the periphery, itslocation will be availablein WM shortly thereafter, but not its
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text. Aneye movement to that location can then be executed. Oncethe “GO” box appears
in the foves, the text will aso make itsway into WM after adelay.

Setting these zones with fixed boundariesis clearly asimplification in the
architecture, but it is a profound architectural feature nonetheless. The feature alowsthe
availability of object properties to decrease gradually as the objects appear further from the
center of the gaze. Thisisawell-documented aspect of human performance that is not
present in other cognitive architectures such as ACT-R, ACT-R/PM, and Soar, but one that
needs to be incorporated into model's of visual search because it will constrain the strategies
and ocular motor processing that can be used to explain and predict data. EPIC-Soar
(Chong, 1998a; Chong, 1998b) of course uses the same visual zones because EPI C-Soar
directly combines EPIC’ s perceptual and motor processors with Soar’ s cognitive
processor.

L ocation information can also be made available to the cognitive processor by
defining named locations for a particular task environment. Named locations represent
knowledge of fixed locations in visual space, task knowledge that has been gained with
task experience.

To act upon the environment, a production-rule strategy sends motor commands to
the various motor processors. These motor commands specify a movement in terms of its
style, aswell as other characteristics such as direction and extent. Predefined manual
movement styles allow EPIC to point with amouse (the POINT style), press a mouse
button (PRESS), point with a mouse while holding down the mouse button (POINT-
PRESSING), and release a mouse button (RELEASE).

There isan assumption in EPIC that with practice a person can combine two or
more consecutive motor movements into one compound movement, all the submovements
of which can be prepared in advance. Compound movement styles combine multiple
movements into asingle command. For example, the PUNCH compound movement style

executes a PRESS and REL EA SE with a single command. A PUNCH of a mouse button
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is more commonly referred to as “clicking” the mouse button. It iscalled PUNCH,
however, because it is an EPIC movement style for interacting with any button.

A motor movement must be prepared and then executed. Movement preparation
time will be reduced if the previoudy executed movement had any identical features. A
POINT, for example, has four features. movement style, hand (left or right), direction, and
distance. The standard 200 msec to prepare a POINT will be reduced to zero if al four
features are identical to those of the previous manual motor command. Execution time
represents the time required for mechanical muscular movements in the physical world, and
isthus determined in part by features such as the distance that an effector must travel.
Motor movement styles and their associated timing functions and parameters are based on
the human motor control literature (see Rosenbaum, 1991). Execution time for amouse
point, for example, is determined by the Welford version of Fitts' law (Card et al., 1983),

with aminimum execution time of 100 msec enforced:

T = max <100, K - |092<D\i/\?3rt1;1:e + 0.5>> msec
|

For aPOINT movement, the coefficient K isset to 100, asgivenin Card et a. (1983). For
aPOINT-PRESSING movement, the coefficient K is set to 140; this valueis derived from
data reported by Walker, Meyer & Smelcer (1993). These two vauesallow EPIC to
account for the button-depression effect discussed by Nilsen (1991).

In short, EPIC is applied to atask asfollows: The production-rule strategy directs
the eyesto objectsin the environment. The eyes have aresolving power which determines
the processing time required for different object features, such aslocation and text. When
information needed to determine the next motor movement arrivesin WM, the strategy
instructs the ocular motor and manua motor processors to move the eyes and hands.

This provides a cursory overview of the EPIC cognitive architecture. A more
thorough description of EPIC is presented by Kieras and Meyer (1997) and Meyer and
Kieras (1997a; 1997b; 1999)
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All of the models for this dissertation were built using the EPIC cognitive
architecture. There are many reasons for building models using an existing architecture
such as EPIC, including (a) the models contribute to the validation and thus evolution of a
unified theory of cognition (Newell, 1990), (b) the architecture represents atheory, so the
models build on existing theory, and other researchers can more readily understand and
evaluate basic assumptions of the models, and (c) the model builder can get something

interesting up and running much more quickly.

3.2 The Modeled Task

The menu selection task modeled in this dissertation was designed by Nilsen, who
presented the task to human participantsin an experiment (Experiment 2 in Nilsen, 1991).
This study isin some ways typical of the menu studies discussed in Chapter 2, but it also
has some unique features that make the experiment and its data particularly useful for
studying the perceptual, cognitive, and motor processes of visual search and response
selection. Firgt, this experiment isolates a subset of the processes required in a“real
world” menu task. Thetask is not confounded with more complex processes of reading,
comprehension, judgment, decision making, and problem solving. Second, Nilsen varied
menu length and reported selection time as a function of the Seria Position of the target
menu item. Few researchers have reported such data but, as will be seen in Chapter 4, this
combination was critical for revealing search strategy.

A description of the experimental procedure and observed data follows.

3.2.1 Procedure

In his experiment, Nilsen presented participants with pull-down menus of three,
six, and nine menu items. Menu items were the numerical digitsfrom 1 to n, where n was
the length of the menu. Menu items were either randomly re-ordered for each tria or

presented in numerical order. Trials were blocked by menu length and ordering. Menus
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always appeared at the exact same location on a computer screen. The distance between
menu items was roughly 0.2 inches. The distance from eye to screen was neither
controlled nor measured, but was probably between fifteen and thirty inches for each
participant.

Asshown in Figure 3.3, each trial consisted of the following steps. Using a
mouse, the participant moved the cursor to the GO box, which caused the precue of the
target item to appear above the GO box. The participant clicked the mouse button. The GO
box and precue disappeared, the menu appeared, the cursor was automatically positioned
one pixel above the first menu item, and the clock started. The participant used the mouse
to move the cursor to the target item in the menu. The participant clicked the mouse button.

The clock stopped.

Figure 3.3. Nilsen’s menu selection task with a
randomly ordered menu and six items in the menu.
Two different menu styles were used: walking and click-open. With walking
menus, participants moved the cursor to the GO box, pressed and held down the mouse
button, moved the cursor to the target while keeping the mouse button depressed, and then

released the mouse button. With click-open menus, participants moved the cursor to the



50

GO box, clicked the mouse button, moved the cursor to the target, and then clicked the
mouse button. Within ablock, al menus were of the same style.

Eight experienced mouse users participated in the experiment, and were financially
motivated to perform each tria as quickly aspossible. Nilsen presented each participant
with eighteen trials for every possible combination of target position, menu length, menu
ordering, and menu style (walking versus click-open). Thefinal fifteen asymptotic trials

arereported in the data.

3.2.2 Results

Figure 3.4 shows Nilsen’s observed data for randomly and numerically ordered
menus, averaged across participants, blocks, and menu style (walking versus click-open),
aswell asthe time required to move the mouse to each position as predicted by the Welford
form of Fitts' law (see Card et al., 1983, Ch. 2) with a coefficient of 120. Figure 3.5
shows the same data, but collapsed by menu length and expanded by menu style (walking
versus click-open).

The important festuresin the randomly ordered menu data include:

*  Menu length effect. When thetarget itemisin the same Seria Position
across menus of different lengths, shorter menus are faster.

» Serial Position effect. Selection time increases with afairly linear dope
of about 100 msec per item. As can be seen in the graph, the mouse
movement time predicted by Fitts' law cannot entirely account for this
dlope either in shape or magnitude.

* Position 1 effect. The sdectiontimefor Seria Position 1isalittle
higher than the selection time for Serial Position 2.

The important features in the numerically ordered menu data include:

* Faster than random. Participants select an item from anumerically
ordered menu substantially faster than from a randomly ordered menu.
The same model will probably not be able to account for both random
and numerically ordered menu data. Evidently, less extensive visual
search is needed for the numerically ordered menus.

» Veryfast. Participants select the target item from numerically ordered
menus very quickly, requiring only 350 to 950 msec to click on the GO
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box, move the cursor to the target, and click on the target.

*  No menu length effect. Inthe numerically ordered menu data, every
Serial Position takes the same amount of time regardless of the menu
length.

» Diminishing Serial Position effect. Thereisa negatively accelerated

increase in the numerically ordered menu data; the increase is greater than
that of the Fitts' law prediction aso shown on the graph.

The important feature for both randomly and numerically ordered menusthat is
illustrated in Figure 3.5 is the button depression effect: People move the mouse more
slowly when the mouse button is depressed, asis the case with walking menus.

The above featuresin the datawill help to guide the construction of cognitive
modelsin Chapter 4. All of the proposed models will be evaluated in terms of how well

the models' predictions match Nilsen's observed data
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3.3 Inputsto the Architecture

All of the components that were required for the models to run using EPIC are
discussed in this chapter. These componentsinclude (a) the smulation of the task
environment, (b) the perceptual encodings, (c) minor enhancements to the architecture, (d)

named locations, and (e) task strategies.

3.3.1 TheTask Environment

Though ultimately it is the perceptual, cognitive, and motor processing that is of
interest in a cognitive model, there is atight coupling between the perceptual-motor systems
and the task environment in avisual search task. Hence, Nilsen'stask environment must
be smulated precisely to provide EPIC an accurate “ physical” world with which to interact.

The task environment is basically responsible for two things—displaying stimuli
and responding to actions. The stimuli that must be displayed in Nilsen’s experiment
include: (&) the cursor, (b) the GO box, (c) the precue, and (d) each of the individual menu

items. The responses to actions include:

1.  When the mouse is moved, move the cursor.
2. When the cursor is moved into the “ GO” box, display the precue.

3. When the mouse clicksinside the*GO” box, remove the “GO” box,
remove the precue, start the clock, and display the menu.

4. Whenthetarget itemis clicked, stop the clock, record the time, remove
the menu, and display the“GO” box.

The task environment was programmed in LISP to replicate Nilsen's experiment. It
displays all of the appropriate stimuli at the correct time and location, and responds to
EPIC’ s motor activities in the same manner as the experimenta software would have
responded to the participants mouse points and clicks.

A visua depiction of the physical environment of an executing model appearsin
EPIC’ s Visual Space window (see Figure 3.6). Thisview is helpful for verifying correct

interaction between EPIC and the task environment.
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Figure 3.6. EPIC’ s Visual Space window shows the objects in the task
environment and where EPIC islooking during model execution. Shown hereis
the task environment for the Nilsen menu selection experiment with an eye-to-
screen distance of 24 inches. The mouse cursor, represented by the crosshairs, is
sitting where it clicked on the* GO” box. The gray circleis EPIC’ s fovea,
indicating that EPIC’ s gaze is currently on the bottom menu item. The borders
of the parafovea can be seen in the top left and right corners.

The task environment simulates the creation of physical objectsin the physical
visua space. A separate physical object isdefined for the cursor, the GO box, the precue,
and each of the individual menu items. Each object is given a unique name, such as
physobj29. The task environment assigns properties to each physical object. Each
property isassigned avalue. The object-property pairs used in the Nilsen models will now
be enumerated.

Every physical object isassigned alocation, which is a Cartesian (x, y) coordinate
that corresponds to that object’ s location on an imaginary stationary grid in physical space.

Every physical object isaso assigned a zone property with avalue that identifies the
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physical location of the object’ simage on the retina; the value can change when the eye or
the object moves.

The cursor object also has a shape property that identifiesit asthe cursor. 1t also
has a points-to property with avalue that is the name of the physical object currently under
the cursor, or nil if the cursor points at nothing; this represents the physical relationship
between the cursor and the object under the cursor.

The remaining objects are al text items, and are assigned atext property, set to
“GO” for the GO box, and set to anumerical digit for the precue and menu items. Text
objects are also assigned an in-menu property, set to yes for itemsin the menu, and no for
all other items; this represents physical clues would distinguish the “GO” box and precue
from itemsin the actual menui.

Every menu item object also has additional properties that represent its physical
position in the menu in relationship to the other menu items. Theis-above property names
the menu item that is below the object, and is-bel ow property names the menu item that is
abovethe object. Theis-below of the top item and the is-above of the bottom item has a
value of nothing.

All objectsthat will be selected with the mouse also have a size property that is
used to predict the time required for a mouse movement to the object.

After being deposited into visual physical space, physical objects and properties
are perceived by EPIC’ s perceptual processors and transformed into psychological objects.
The exact perceptual encodings of physical object properties are defined by the visual
encoding function in the visual perceptua processor. The exact parameters used in the

visual encoding function for the Nilsen models will be discussed next.

3.3.2 The Perceptual Encodings

For every physical object that enters EPIC’ s simulated eyeball, a corresponding
psychological object is created. First, apsychological sensory property is created for
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every physical property asafunction of the availability of that property for the zonein
which the object appears. The availabilities and delays used in the models are listed in
Table 3.1. These parameters were established and validated in other EPIC models that
involved reading text from computer screens (Kieras & Meyer, 1997; Kieras, Wood &
Meyer, 1997).

After each psychological sensory property is created, it isthen recoded into a
psychological perceptual property as afunction of the recoding defined in the visual
recoding function. The visual recoding function gets called every time an object appears,
disappears, or moves from one retinal zone to another. It gets called once for every
sensory property of that object, and receives asinput (a) the time tag (after the zone
property delay), (b) the psychological object name, (c) the sensory property name, and (d)
the property value. The visual recoding function uses these inputs to create perceptual
properties that are then deposited into visual WM.

In the visual recoding function for the Nilsen models, most of the sensory
properties are passed through and encoded into perceptual properties“asis’, with no

additional delay. Thisisthe casefor shape, in-menu, is-above, and is-below. Other

Object Property Availability of property when object is...
In bouquet In fovea In parafovea  In periphery Not in view

Used by all items

LOCATION 50 50 50 50 —
ZONE 50 50 50 50 50
Used by cursor only

SHAPE 100 100 — — —
POINTS-TO 50 50 50 — —
Used by all text items

TEXT 100 100 — — —
Used by menu items only

IN-MENU 50 50 50 50 —
IS-ABOVE 51 51 51 51 —
IS-BELOW 51 51 51 51 —

Table 3.1. The availability of physical object propertiesin the menu models as a
function of the retinal zone in which the object appears. A number indicates the delay
(in msec) imposed by retinal filtering. A dash indicates the property is not available
in that zone.
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sensory properties, however, trigger more elaborate recodings.

The sensory property text is recoded into the perceptual property label, with an
additional text-recoding-time delay of 100 msec; the renaming of the property and the
delay represent the mental effort required to transform each physical piece of text into
something meaningful to the cognitive processor.

The sensory property points-to, used only for the mouse cursor, enters the visual
recoding function with avalue that is either nil or the physical object currently pointed to by
the cursor. A value of nil gets passed through directly, but aphysical object is recoded as
the corresponding psychol ogical object.

When the recoding function is called with the sensory property zone, the perceptual
property-value pair fovea yes or fovea no is created for the object. Thisrepresentsa
theoretical assertion that, when visually searching, a person can distinguish whether or not
each object isinthefovea. This property isused by some strategies to saccade to items
outside of the fovea, and represents a perceptual feature that contributes to direct moment-
to-moment control (Prinz et d., 1992), a saccade programming scheme in which perceptual
features gathered during one fixation are used to program the features of the very next
saccade.

The sensory properties zone and location are also used to encode a global
perceptual property named next-sweep-item. A global perceptua property residesin
visual WM but is not attached to a specific psychologica object. The next-sweep-item
property is assigned the name of the next psychological object that must be fixated in a
maximally efficient foveal sweep of the menu. Thisrecoding represents a theoretical
assertion that people have the ability to move their gaze down the menu and foveste all
menu items with as few saccades as possible, and that the sweep is carried out by selecting
the next appropriate menu item as quickly as possible after the previous saccade, another

example of direct moment-to-moment control. Figure 3.7 depicts such a sweep.



58

/ 9
Hypothesized 1
foveal coverage

of successive. = 4

fixations.

Figure 3.7. A maximally efficient foveal sweep. The models make the

theoretical assertion that a person can make a chain of eye movements that
will sweep a column of visual objects with as few fixations as possible, and
yet insure that every object will be captured by the fovea during a fixation.

A maximally efficient foveal sweep requires a specific interaction between
perceptua availabilities and search strategy. As soon as a saccade is completed, the visual
recoding function must compute a new next-sweep-item, a computation that is assumed to
require 100 msec. As soon asthe new location is available, the strategy must command an
eye movement to the new location. The processing resultsin an intersaccade latency of 200
msec, which fits well with what is typically observed for arapid succession of saccades

(Russo, 1978).

3.3.3 Enhancementsto the Architecture

Two small enhancements are made the EPIC architecture to model the Nilsen data.
They arevisual recoding after saccade and aclick-and-point compound movement. The
first isintroduced to model Nilsen's randomly ordered menu data, and the second to model

Nilsen’s numerically ordered menu data.
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Thefirst enhancement, visual recoding after saccade, is required to implement
direct moment-to-moment control, in which the direction and extent of the next saccade are
programmed using information gathered after the completion of the previous saccade.
Such control isrequired for the maximally efficient foveal sweep described above. To
facilitate the sweep, anew value for the global property next-sweep-item is computed
after every saccade. To trigger this computation, the visual perceptual processor must be
notified whenever a saccade has occurred. Though research has demonstrated that the
human visual system is notified when an eye movement occurs (Rosenbaum, 1991), this
notification had not yet been incorporated into the EPIC architecture.

EPIC was thus modified to call the new visual recoding after saccade function
following the execution of every ocular-motor move command. For these models, the
function then triggers the computation of a new next-sweep-item, which alows the
models to make amaximally efficient foveal sweep.

The second enhancement to the EPIC architecture is a click-and-point compound
movement. Asdiscussed in Chapter 3, there is an assumption in EPIC that with practice a
person can combine two or more consecutive motor movements into one compound
movement, all the submovements of which can be prepared in advance. Several compound
movements are aready defined in the architecture. The new click-and-point compound
movement alows the preparation for a point to be combined with that of an immediately
preceding click. Such overlapped preparation would be possible when a person decidesto
click and point, and knows the destination of the point before clicking.

The specific modifications to the architecture to implement the click-and-point
compound movement are asfollows: (a) The existing point movement style is modified to
allow apoint to begin during the release of a mouse button rather than waiting for its
completion. (b) The existing point and point-pressing movement styles are modified to
require only 150 msec of preparation rather than the usual 200 msec if the movement was

preceded by a press or punch.



60

The click-and-point modifications are exploratory; a more complete representation
would be to introduce a completely separate movement style to the EPIC motor processor.
These modifications will only be used in the final models for the numerically ordered

menus.

3.3.4 Named Locations

EPIC uses named |ocations to represent the notion that people can learn alocation
and initiate amovement to that location even if no physical object is currently visible at that
location. The Nilsen models employ three named locations: first-fixation-location,
target-location-correct, and target-location-with-error.

First-fixation-location is used to program the initial eye movement in the visual
search of the randomly ordered menus. It is assigned one of three locations: the position of
the first or second menu item, or the position of arandomly-chosen menu item.

Two named locations are used by the numerically ordered menu models. They
represent the notion that, when the exact same menu items appear in the exact same
locationstrial after trial, people can learn the location of every item, and they can thus
anticipate the target location before the menu actually appears.

Thefirst of these, target-location-correct, is used to explore the possibility that
people can exactly predict where the target will appear. At the beginning of every ordered
menu trial, this named location is set to the exact location where the target will appear.

The second, target-location-with-error, is used to explore the possibility that
people can approximately predict where the target will appear, that they sometimes get it
wrong, and that the error will be greater for items lower in the menu. To introduce this
variable error, the vertical coordinate of target-location-with-error is perturbed at the
beginning of every trial. The perturbations are normally distributed with a mean that isthe
correct vertical position, and with a standard deviation

s=e-d
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where e isaconstant error coefficient, and d is the distance from the GO box to the target.
Thus, the lower the target on the menu, the greater the error in target-location-with-error.
Abrams, Meyer, and Kornblum (1989) observed just such alinear relationship
between target distance and the standard deviation of endpointsininitial eye movements
directed at asingle target that is peripherally visible before the start of thetrial. A valueof e
= 0.04 provides avery good fit with the data presented in Abrams et al. (1989). Though
Abrams et a. were explaining error in eye movements to visible targets and not error in

predicted |locations, asimilar relationship is used here.

3.4 Conclusion

This chapter introduced the basic components of the menu models, including an
overview of the EPIC cognitive architecture, Nilsen’s menu experiment, and the parameters
in the models. The next chapter presents the strategies that were devel oped to explain
Nilsen’s data using EPIC.



CHAPTER 4
MODELING RESULTS

This chapter compl etes the presentation of the menu selection modelsintroduced in
the previous chapter. Specificaly, this chapter narrates the development of cognitive
strategiesin an effort to explain Nilsen’s menu selection data. Each strategy, and thus
model, will be evaluated with respect to how well it accounts for Nilsen’s data. Models of
Nilsen’s randomly ordered menu data will be presented first, and then models of Nilsen's

numerically ordered menu data .

4.1 Randomly Ordered Menu Models

As discussed in the previous chapter, the important featuresin Nilsen’s randomly
ordered menu datainclude:

*  Menu length effect. When thetarget itemisin the same Seria Position
across menus of different lengths, shorter menus are faster.

» Serial Position effect. Selection time increases with afairly linear dope
of about 100 msec per item. Ascan be seen in Figure 3.5, the mouse
movement time predicted by Fitts' law cannot entirely account for this
dlope either in shape or magnitude.

* Position 1 effect. The sdectiontimefor Seria Position 1isalittle
higher than the selection time for Serial Position 2.

Six randomly ordered menu models will be presented. The six models result from varying
two strategic dimensions and one parameter in the task environment. The strategic
dimensions are (a) serial versus parallel processing of menu items, and (b) random versus
systematic search. The parameter in the task environment is eye-to-screen distance, which
is set (to either 8 or 20 inches) to result in one or three items being visible in the fovea at the

sametime.
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The discussion of each moddl includes a flowchart that summarizes the production
rules written in EPIC to represent that model. Production rules were written to maximize

performance within the constraints imposed by EPIC, and to be as ssmple as possible.

4.1.1 Serial Processing Models

The seria processing models represent a belief that people process one menu item at
atime—that people move their gaze to an item, visually processit, decideif it isthe target,
click ontheitemif it is, or go on to the next item if it isnot. Asdiscussed in Chapter 2,
many researchers have proposed such aprocess. The proposed model does not specify the
search strategy used to find the next item and, as discussed in Chapter 2, researchers have
proposed two major opposing ideas. random versus systematic. So two separate sets of
production rules were built in EPIC to represent two possible serial processing models: one
with random search and the other with systematic top-to-bottom search. These sets of rules
arelisted in Appendices A and B.

Both seria processing models were only run with an eye-to-screen distance of 8
inches so that only one item would fit into the fovea at atime, insuring a serial encoding
process. At greater distances, more than one item would fit into the fovea simultaneously,

and parallel encoding would ensue.

Serial Processing Random Search Model

The results from running the Serial Processing Random Search model are shown in
Figure 4.1. Each predicted selection timeis averaged from 300 trials run for that menu
length and Seria Position combination.

Theresultsin Figure 4.1 suggest that the Serial Processing Random Search model
iswrong. The only feature in the observed data that this model accounts for isthat shorter
menus are faster than longer menus. Otherwise, the model does not fit the observed data.

Selection times are much too high overall. Slopes are very small because every item takes
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Figure4.1. Selection times observed (solid lines) and predicted
(dashed lines) by the Serial Processing Random Search model run with
one item fitting into the fovea.

on average the same amount of time to find and select; any dope that appears is due to the
mouse movement. A higher selection time for Serial Position 1 isnot predicted. This

model does not account for the observed data.

Serial Processing Systematic Search Model

The results from running the Serial Processing Systematic Search model, shown in
Figure 4.2, suggest that this model is also wrong. The only feature in the observed data
that thismodel accountsfor isa positive slope greater than that of the predicted Fitts
movement time. The model accounts for no other features in the observed data. Shorter
menus are not faster. The slope of the predicted dataistoo steep. The selection time for
Serial Position 1 isnot higher than for Serial Position 2. This model does not account for
the observed data.

The prediction has a slope resulting from more than just the mouse movement, but
the predicted slope is too steep, about 380 msec per item as opposed to about 100 msec per
item in the observed data. The discrepancy between the predicted and observed data results
from al of the processing that must take place before moving the gaze to the next menu

item. The dope of approximately 380 msec results because thisis the time required for
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Figure 4.2. Selection times observed (solid lines) and predicted
(dashed lines) by the Serial Processing Systematic Search model run
with one item fitting into the fovea. The predicted times for the same
Serial Position in different menu lengths are the same and are thus
superimposed.
EPIC to move the eye, perceptually process a menu item, move the features to working
memory (WM), and decide on an item. Serialy processing each item cannot produce a
dope of 100 msec per item unless the architecture isradically atered by setting the
processing times for each of these componentsto be implausibly fast. Only by processing
multiple items at once can amodel produce such asmall slope.

The results provided by the seria processing models provide strong evidence that,
when scanning a menu, people process more than one menu item at atime. The serial
processing models proposed by Norman (1991) and Vandierendonck et al. (1988) are
highly implausible given the constraints set by the architecture. Menu selection models

should incorporate the assumption that people process more than one menu item at atime.

The remaining models presented in this paper utilize paralel processing of menu items.

4.1.2 Parallel Processing Models

The parallel processing models represent a belief that people move their gaze across
the menu as quickly as their perceptual -cognitive-motor processes allow, process the

features of al objects that appear in the foveain paralel using a“pipeline’ facility to



66

continue recognition even after the gaze has shifted away, and at the same time continually
check WM to seeif the target item has been seen. As soon asthe target item has been
located, the person moves hisor her gaze to it and clickson it. I1n one of the parallel
processing models, people search randomly for the target; in the other, they start at the top
and scan down the menu.

Both parallel processing models were run with different eye-to-screen distances that
resulted in one and three items fitting into the fovea s multaneously. When more than one
itemisvisiblein thefovea, al of those objects properties are sent to WM in parallel and,
when searching, the next eye movement will always be to an item not currently in the

fovea.

Parallel Processing Random Search Model

The Parallel Processing Random Search model was inspired by Card (1983,
reviewed above in Chapter 2), who proposed that people search randomly. The production
rulesfor the Parallel Processing Random Search strategy are listed in Appendix C. Figure
4.3 shows a flowchart summarizing the rules. For the sake of brevity, the flowchart
summarizes the two different sets of motor movements required for the two different menu
styles (walking versus click-open) asjust click, move, and click. To prevent arandom eye
“movement” to essentially the same location, the model chooses the next item to look at
from the items currently outside the fovea.

Look at the precue.

Click the mouse on GO box to show menu and
move eyes to a random location on menu.

As soon as it is determined which items are not in the fovea,
These | randomly choose one of the items and move eyes to it.
steps take
place in

paralle Quit searching when target item appears in working memory.

Move cursor and eyes to item.
Click mouse.

Figure 4.3. Parallel Processing Random Search model.
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The results from running the Parallel Processing Random Search model are shown
in Figure 4.4. Each predicted selection time is averaged from 300 trials run for that menu
length and Seria Position combination.

The predictions from the Parallel Processing Random Search model have some
features that correspond to the observed data, but also have some problems.

As can be seen in Figure 4.4 (top graph), when oneitem at atimeisvisiblein the
fovea, the model accounts for shorter menus being faster, but no other features of the
observed data. The overal predicted times are, however, significantly lower than in the

Serial Processing Random Search model discussed above.
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Figure 4.4. Selection times observed (solid lines) and predicted
(dashed lines) by the Parallel Processing Random Search model run
with one item (top graph) and three items (bottom graph) fitting into
the fovea.
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As can be seen in Figure 4.4 (bottom graph), when three items are visible in the
fovea ssimultaneously, the model accounts for shorter menus being faster, and about the
right amount faster, asis shown by the distance between the predicted lines approximating
the distance between the observed lines. The predicted valuesfall entirely within the range
of the observed values. Most importantly, this model accounts for Serial Position 1 being
higher than Serial Position 2. However, the overall dopeis till too small.

In Figure 4.4 (bottom graph), both the first and last Serial Positions are higher
because the model combines random search with three menu itemsfitting into the fovea.
Items at both ends of the menu have alower probability of being in the fovea after any
random fixation. Any of the middle menu items can be foveated by moving the eye to that
item, or to either of the two adjacent items. But thefirst and last items only have one
adjacent item. Thismight explain Serial Position 1 being higher than Serial Position 2in
the observed data.

The predictions from the Parallel Processing Random Search model suggest that the

model is partly correct, and partly incorrect.

Parallel Processing Systematic Search Model

Figure 4.5 isaflowchart that represents the production rules built in EPIC to
investigate the possibility that participants used a Parallel Processing Systematic Search
strategy. Though other systematic searches are possible, top-to-bottom is the most obvious
oneto explore. The production rules are also listed in Appendix D.

In thismodel, the first eye movement is made to any of the items that are within one
foved radius from the topmost item (to insure the first gaze captures the topmost item).
Each subsequent movement is made to an item one foveal diameter below the center of the
current fixation. These details represent the belief that, when using a systematic search
strategy, people attempt to maximize the foveal coverage with a minimum number of eye

movements.
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Look at the precue.

Click the mouse on the GO box to show the menu and
move eyes to where one of the top items will appear.

These Determine the item one foveal diameter below gaze.
steps take Move eyes to that item.
place in

parallel. ] ) ) ) )
Quit searching when target item appears in working memory.
Move mouse and gaze to item.
Click mouse.

Figure 4.5. Parallel Processing Systematic Search model.

The results from running the Parallel Processing Systematic Search model are
shown in Figure 4.6. Each predicted selection time is averaged from onetria run for each
possible combination of menu length, Serial Position, and first eye movement.

The predictions from the Parallel Processing Systematic Search model have some
features that correspond to the observed, but also have some problems.

As can be seen in Figure 4.6 (top graph), when one item at atimeisvisiblein the
fovea, the model only accounts for apositive ope. The model does not predict that
shorter menus will be faster, the slope istoo steep, and Serial Position 1 is not higher.

As can be seen in Figure 4.6 (bottom graph), when three items are visible in the
fovea smultaneoudly, the model can account for important features of the data. The slope
is correct and the predicted values fall entirely within the range of the observed values. But
again, the model does not account for shorter menus being faster, and Serial Position 1is
not higher.

These results show that the Parallel Processing Systematic Search model can
partialy explain how the participants accomplished the task, but not account for all aspects

of the observed data.
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Figure 4.6. Selection times observed (solid lines) and predicted
(dashed lines) by the Parallel Processing Systematic Search model run
with one item (top graph) and three items (bottom graph) fitting into
the fovea. In each graph, the predicted times for the same Serial
Position in different length menus are the same and are thus
superimposed.

Hybrid Models

None of the models presented thus far can account for al of the featuresin the
observed data. The serial processing models account for essentially none of the features of
the observed data. But all features of the observed data are accounted for by at |east one of
the various parale processing models. The hybrid models represent a belief that, when
Nilsen ran his experiment, (a) participants used both random and systematic search, and

(b) screen-to-eye distance varied acrosstrials.
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The hybrid models were motivated by observing that all of the featuresin the
observed data are accounted for by at least one of the parallel processing models with one
or three itemsfitting into the fovea. The random search model accounts for faster selection
timesin shorter menus. When three itemsfit into the fovea, the random search model aso
accounts for Serial Position 1 being higher. The systematic search model accounts for the

correct slope when three items fit into the fovea.

Dual Strategy Hybrid Model

The Dua Strategy Hybrid model represents the hypothesis that participants
processed menu itemsin parallel in all of the observed trials, but that participants searched
randomly in some of thetrials and systematically in the remainder of thetrials. Such a
model could accurately account for the observed data if (a) some participants searched
randomly and others systematically, or (b) participants varied their search strategy from
trial totrial. Since the observed data were averaged across participants and blocks, either
scenario would produce the same resullts.

Predictions from this hybrid model can be obtained in two ways. Thefirst isto
build a set of EPIC production rules that contain the rules from both the Parallel Processing
Random Search strategy and the Parallel Processing Systematic Search strategy; the
strategy would randomly choose which search strategy to use at the start of each trial. The
second is to compute the weighted average of the predicted values produced by running the
two models independently. Since both approaches would produce the same predictions,
the second approach was chosen for expedience. Figure 4.7 shows the results of this
model, as determined by averaging the results shown in Figure 4.4 and Figure 4.6. An
initial weighting of 50% for each strategy was chosen to explore the predictive potential of
the model.

The predictions from the Dua Strategy Hybrid model can account for most of the

features in the observed data, but do not fit the observed values perfectly.
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Figure4.7. Selection times observed (solid lines) and predicted
(dashed lines) by the Dual Strategy Hybrid model, with one item (top
graph) and three items (bottom graph) fitting into the fovea.

As can be seen in Figure 4.7 (top graph), when one item fitsinto the fovea, the
model accounts for faster selection times in shorter menus and produces a near-perfect
dope. But the model does not account for the higher selection time in Serial Position 1,
and overall the predicted values are higher than the observed values.

As can be seen in Figure 4.7 (bottom graph), when three itemsfit into the fovea,
the model accounts for faster selection times in shorter menus, produces a comparable
dope, accounts for the higher selection timein Serial Position 1, and predicts values that
areinrange of the observed data. The only shortcoming of this model is that the predicted

values do not exactly match the observed values.
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Dual Strategy Varying Distance Hybrid Model

The Dua Strategy Varying Distance Hybrid model represents a hypothesisthat (a)
participants searched randomly in some of the trials and systematically in the remainder of
thetrials and (b) the eye-to-screen distance varied acrosstrials. Since this distance was not
controlled or measured during the experiment, it isvery likely that some participants sat
closer to the computer screen than others, and that participants moved nearer to and further
from the screen during the course of the experiment.

Predictions from this hybrid model can be obtained in two ways. Thefirst isto
build atask environment that varies the screen distance from trial to trial, and to randomly
choose the search strategy at the start of each trial. The second isto compute the weighted

average of the predicted values produced by each of the following four models:

1. Random search, oneitem in the fovea (Figure 4.4, top).
2. Random search, three itemsin the fovea (Figure 4.4, bottom).
3. Systematic search, one item in the fovea (Figure 4.6, top).

4. Systematic search, three itemsin the fovea (Figure 4.6, bottom).

Since both approaches would produce the same predictions, the second approach was
chosen for expedience.

The procedure for obtaining the best-fitting weighted average of the four models
will now be described. The four models result from varying two factors: (a) strategy and
(b) eye-to-screen distance (which determines the number of itemsin the fovea). Each of
the two factors was varied independently. A computer program stepped through all
possible contributions of each of the two factors, that is, w,% random and (100-w;)%
systematic, and w, one-item-in-the-fovea and (100-w,)% three-items-in-the-fovea, where
w, and w, were both integers from 0 to 100. The contribution of each of the four models
was determined by multiplying the strategy weight by the items-in-the-fovea weight, such
asw, ~ w; to determine the contribution of random search with one item in the fovea.

The weights that produced the lowest average absolute error across all of the data
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points were 43% random (and 57% systematic) and 18% one item in the fovea (and 82%
threeitemsin the fovea). Multiplying these strategy weights and items-in-the-fovea
weights resulted in the following contribution for each mode:
7.7% Random search, oneitem in the fovea (Figure 4.4, top).
35.3% Random search, three itemsin the fovea (Figure 4.4, bottom).
10.3% Systematic search, one item in the fovea (Figure 4.6, top).

46.7% Systematic search, threeitemsin the fovea (Figure 4.6, bottom).
Summing these contributions for each data point individually resultsin the Dual Strategy

Varying Distance Hybrid model shown in Figures 4.8 and 4.9.

The Dual Strategy Varying Distance Hybrid model accountsfor all of the featuresin
the observed data. As can be seenin Figure 4.8, the model predicts the observed values
very well, with an average absolute error of 2.8%. Ascan be seenin Figure 4.9, the
model aso accounts for the data when the data and the predictions are collapsed by menu
length and expanded by menu style (walking versus click-open), with an average absolute
error of 2.2%. Matching the observed values, the Dual Strategy Varying Distance Hybrid
model offers ahighly plausible explanation of the task environment and strategies used by
participants in Nilsen's experiment.

The empirical datathat is available aggregates the performance for al participants,
and thus the models do the same. If individual participant data were available, they could
be used to determine if some participants tended toward random search and others towards
systematic search. This could be done by determining, for each participant, whether his or
her data were better explained by the Parallel Processing Random Search Modédl or by the
Parallel Processing Systematic Search.
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Figure 4.8. Selection times observed (solid lines) and predicted
(dashed lines) with by the Dual Strategy Varying Distance Hybrid
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Figure 4.9. The same data and predictions as shown in Figure 4.8, but
collapsed by menu length and expanded by menu style (walking versus

click-open).
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4.2 Numerically Ordered Menu Models

Models of Nilsen's numerically ordered menu datawill now be presented. As
discussed in Chapter 3, the important features in the numerically ordered menu data

include;

* Faster than random. Participants select an item from anumerically
ordered menu substantially faster than from arandomly ordered menu.
The same model will probably not be able to account for both random
and numerically ordered menu data.

» Veryfast. Participants select the target item from numerically ordered
menus very quickly.

*  No menu length effect. Every Serial Position takes the same amount of
time regardless of the menu length.

» Diminishing Serial Position effect. Thereisa negatively accelerated

increase in the numerically ordered menu data; the increase is greater than
that of the Fitts' law prediction aso shown on the graph.

Two classes of models will be presented to explain the data—the Immediate L ook,
Point, and Click models and the Immediate L ook, Point, Check and Correct models. All of
the models assume that people will use anticipated location knowledge to prepare and
execute eye and hand movements to the target without waiting for the menu to actually
appear in WM. The anticipated |ocation knowledge is made available by means of the

named |ocations discussed in Chapter 3.

4.2.1 Immediate Look, Point, and Click Models

The Immediate Look, Point, and Click models represent a hypothesis that people
anticipate atarget location before opening a menu, execute an eye movement and amouse
movement to that location immediately upon opening the menu, and then click on that
location without confirming that the cursor isactually on thetarget. This strategy assumes
that anticipated target locations are correct, and thus takes maximum advantage of the

anticipated locations to compl ete the selection as efficiently as possible. The EPIC
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Eyes and cursor are on GO
box. Target textis in WM.

\
Click on GO box.

\
Move eyes and cursor to
anticipated target location.

y
Click on the anticipated
target location.

Figure 4.10. The Immediate Look, Point,
and Click strategy.

production rulesto represent this strategy are summarized in Figure 4.10, and arelisted in

Appendix E.

Standard Fitts' Law Coefficients Model

The results from running the Immediate L ook, Point, and Click strategy are shown
in Figure4.11. Each predicted selection time is averaged from onetrial run for every menu
length and Serial Position combination. For thesetrials, the Fitts' law coefficientsin EPIC
were set to the standard 100 for a POINT and 140 for a POINT-PRESSING.

The predictions of this model are shown in Figure 4.11. Since thereis no menu
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Figure4.11. Selection times observed by Nilsen and predicted by
the Immediate Look, Point, and Click strategy run with standard
Fitts' coefficients of 100 and 140.
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length effect in the numerically ordered data, as shown earlier in Figure 3.4, Nilsen's data
and the modéel’ s predictions are shown collapsed by menu length, but expanded by menu
style (walking versus click-open). The predictions demonstrate that the model isincorrect.

The predicted values are negatively accelerated, as are the observed data, and the
difference between the two menu styles is predicted to be the same as the observed data.
But the predictions for most Serial Positions are much too fast, the trend in the predicted
values does not increase steeply enough, and the prediction for Serial Position 1 is much
too high.

For Serial Positions 2 through 9, the model could be underpredicting for a number
of reasons, including (&) participants could not anticipate the exact location of the target,
which would imply that (b) thisis not the strategy participants really used, or (c)
participants took longer to point than is predicted by Fitts' law with the standard

coefficients. The next moddl investigates the third of these possibilities.

Nonstandard Fitts' Law Coefficients Model

The Immediate Look, Point, and Click strategy run with nonstandard Fitts
coefficients represents the belief that participants could anticipate the exact location of a
target item before the menu appears and always execute a correct eye and hand movement
to the target, but that mouse points took longer than is predicted by standard Fitts
coefficients. The results from running the Immediate Look, Point, and Click strategy with
exactly known location information and with nonstandard Fitts' coefficients of 175 and 220
are shown in Figure 4.12. The values of 175 for POINT and 220 for POINT-PRESSING
were chosen iteratively to provide agood fit. The implications of these increased values are
discussed later.

With the increased Fitts' coefficients, this model now does avery good job of
predicting selection times for Seria Positions 2 through 9. The difference between the

predicted and observed values for the two menu styles is the same, and both the predicted
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Figure 4.12. Selection times observed by Nilsen and predicted by the
Immediate Look, Point, and Click strategy run with Fitts' coefficients
increased to 175 and 220.

and the observed values follow the same negatively accelerated trend. The overall
plausibility of thismodel and the implications of the nonstandard Fitts' coefficients will be

discussed after providing a plausible explanation for the high speed of Serial Position 1.

Soecial Case for Position 1 Model

An explanation for how participants selected targets in Serial Position 1 so quickly
requires a detailed analysis of thetask. Recall that upon clicking on the GO box, the cursor
isautomatically positioned exactly one pixel above the first menu item. When the
participant knows the target item will be in Serial Position 1, al that he or shemust do is
click on the GO box, make atiny downward movement with the mouse, confirm that the
target has actually appeared, and click again.

Additional production rules were added to the Immediate L ook, Point, and Click
strategy to create a Specia Case for Position 1 branch, rules that will only be executed if
theprecueisal. A flowchart summarizing the production rules appearsin Figure 4.13.
In the Special Case for Position 1 branch, there is no separate POINT movement. Rather,
to accommodate this aspect of the experimental procedure that only affects Serial Position

1, the click on the GO box is assumed to include atiny downward twitch. Therulesare
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Eyes and cursor are on GO
box. Target text is in WM.
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No Targel Yes
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anticipated target location. item 1 to appear.
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Click on the anticipated Click again.

target location.

Figure 4.13. The Immediate Look, Point, and Click
strategy with Special Case for Position 1 branch.

listed in Appendix F.

EPIC’ s predictions when running the Immediate L ook, Point, and Click strategy
with Special Case for Position 1 and nonstandard Fitts' coefficients are shown in Figure
4.14. As can be seen, this model predicts the observed data very well, for an average
absolute error of 3.0%.

These nonstandard Fitts' coefficients will only dlightly decrease the good fit of the
Dual Strategy Varying Distance Hybrid model for randomly ordered menus presented in
Section 4.1.10 above. Repeating the procedure outlined in that section, but with these
nonstandard Fitts coefficients of 175 and 220, resultsin a Dual Strategy Varying Distance
Hybrid model with nonstandard Fitts' coefficients prediction of 4.3% rather than 2.8%
when run with the standard Fitts' coefficients.

Though this model explains the datawell and offers a reasonable explanation for
how people accomplish the task, there are two aspects of this model that make it
guestionable. Firgt, itishard to accept Fitts' coefficients so much higher than the standard
values. Second, the model asserts people know exactly where to ook and point before the
menu even appears.

Thefirst problem, of the increased Fitts' coefficients, actually pointsto a
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Figure 4.14. Selection times observed by Nilsen and predicted by the
Immediate Look, Point, and Click strategy with Special Case for
Position 1 run with nonstandard Fitts' coefficients of 175 and 220.

shortcoming in the HCI literature. Though Fitts' law is often cited as a useful tool for
prediction and design in HCI (such asin Card et a., 1983; Han, Jorna, Miller & Tan,
1990; MacKenzie & Buxton, 1992), the exact form and coefficients of Fitts' law are not
settled. Fitts' equation appearsin severa forms (for example, compare Card et al., 1983;
Han et a., 1990; MacKenzie & Buxton, 1992), which makes some coefficients
incomparable. Some studiesin fact provide evidence for aWelford form of Fitts' law with
a coefficient of about 175 for amouse point (Han et al., 1990; MacKenzie & Buxton,
1992). Buit it isnot clear whether such large Fitts' coefficients are reasonable. Much more
work needs to be done to determine the correct Fitts' coefficients for various tasks,
pointing devices, and environments.

The second problem isthat al of the Immediate Look, Point, and Click models
assume that a person has exact location knowledge for all menu items before the menu even
appears. This assertion seems to contradict Perlman’s (1984) and Somberg’s (1987)
findings that, even with numerically and a phabetically ordered menus and a constant time
to select anitem once it isfound, the top menu items can be selected faster than lower menu
items. Perlman’s and Somberg’s findings suggest that some items do take longer to locate

even in aknown, ordered menu.
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So, the Immediate Look, Point, and Click models provide agood fit and a
reasonabl e explanation for how people select an item from an ordered menu. But the
models discussed next provide an equally good fit and perhaps an even more plausible

explanation.

4.2.2 Immediate Look, Point, Check and Correct Models

The Immediate Look, Point, Check and Correct models represent a hypothesis that
peopl e anticipate a target location before opening a menu, execute an eye movement and a
mouse movement to that location immediately upon opening amenu, check to seeif the
cursor actually landed on the target, make a corrective eye movement and mouse movement
if necessary, and then click on the target. These models allow usto explore the possibility
that people cannot predict the exact location of the target before it appears, but only an
approximate location.

The flowchart in Figure 4.15 summarizes the production rules written in EPIC to
explore the plausibility of this strategy. Note that the strategy carries forward the Special
Case for Position 1 branch discussed in the previous section. Therulesarelistedin
Appendix G.

For smplicity, the model asserts that a third eye and mouse movement will never be
necessary. For the small amount of error introduced in these models, the first movement
will rarely fall more than one menu item away from the target, in which case the correct

location information will be readily available for the second eye and hand movement.

Exactly Known Location Model

Running the Immediate L ook, Point, Check and Correct strategy in EPIC with
exactly known location information reveals the baseline prediction of the strategy, before
adding any error to the initial eye and hand movement location. The results from running

this model are shown in Figure 4.16. Each predicted selection time is averaged from one
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Figure 4.15. The Immediate Look, Point, Check and
Correct strategy.

trial run for every menu length and Serial Position combination.

As can be seen in Figure 4.16, the model does not account for the data. But the
results are informative nonetheless. The model’ s predictions for the first three Serial
Positions are very close to the observed, and with roughly the same negatively accelerated
dope asthedata. The model underpredicts for Serial Positions 4 and above, which might
be remedied by adding some error to the model that would sometimes make necessary a

second, corrective eye and hand movement.

Approximately Known Location Model

The Immediate Look, Point, Check and Correct model run with approximately
known location information represents the belief that people can anticipate the location of a
target in amenu before the menu actually appears, but that people can anticipate the location
of items higher in the menu more accurately than items lower in the menu. Approximately

known locations are introduced to the model by means of the tar get-location-with-error
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Figure 4.16. Selection times observed by Nilsen and predicted by the
Immediate Look, Point, Check and Correct strategy run with exact
location knowledge.

named location. Asdiscussed in Section 3.3.4, this named location is computed at the
beginning of every tria by first computing the exactly correct location, and then perturbing
the vertical component of that location. The error increases as afunction of the distance
from the GO box to the target, and as a function of a constant error coefficient e.

The results from running the Immediate L ook, Point, Check and Correct strategy
with aninitial error coefficient e = 0.1 are shown in Figure 4.17. The value of 0.1 was
chosen iteratively to provide asimilar slope asthat of the data. Three hundred tria runs
were executed for every unigue combination of menu length, Serial Position, and menu
style. The predictionsin Figure 4.17 average those results.

Ascan be seen in Figure 4.17, the model comes very close to explaining the
observed data. The predicted values have amost exactly the same negatively accelerated
slope as the observed data, and are very close to the observed data, but the model’s
predictions are alittle too slow for how quickly people accomplished this task.

Perhaps the overall high speed of the observed data results because people are able
prepare and execute complex and subtle combinations of movements asif they werea
single movement. For example, perhaps people can prepare and execute a compound click-

and-point movement, a movement style not currently implemented in EPIC. To explore
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Figure 4.17. Selection times observed by Nilsen and predicted by
the Immediate Look, Point, Check and Correct strategy run with
approximate location knowledge (e = 0.1).

this possibility, the tentative new click-and-point compound movement style, discussed in
Section 3.3.3, isused in the next model.

Introducing the click-and-point compound movement style to the Immediate L ook,
Point, Check and Correct model represents a hypothesis that, since the destination of the
initial mouse point can be determined in advance, the motor preparation for the point

movement can also be partly prepared in tandem with the first mouse click.

Click-and-Point Compound Movement Style Model

The results from running the Immediate L ook, Point, Check and Correct strategy
with aninitia location error coefficient e = 0.1 and a click-and-point compound movement
style are shown in Figure 4.18. The predictionsin Figure 4.18 average the results from
three hundred trial runs executed for every unique combination of menu length, Serial
Position, and menu style.

As can be seen in Figure 4.18, thismodel explains the observed data very well,
with an average absolute error of 3.92%. This model demonstrates that two problems with
the Immediate Look, Point, and Click models—increasing the Fitts coefficients and

asserting perfect location knowledge—can be overcome by a more subtle analysis of the
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Figure 4.18. Selection times observed by Nilsen and predicted by
the Immediate Look, Point, Check and Correct strategy run with
approximate location knowledge (e = 0.1) and with a click-and-point
compound movement style.

task and a more detailed representation of the perceptua-motor activity required to
accomplish the task.

4.3 Discussion

4.3.1 Further Support of the Models

Thelevel of detail and completeness of these models lends them to awide variety of
testing and validation, including with eye movement studies. Two recent independent eye
movement studies evaluate the Dua Strategy Varying Distance Hybrid (DSVDH) model for
randomly ordered menus presented in Section 4.1.2. Both studies support the major
findings of the mode!.

Aadtonen, Hyrskykari, and Ré&iha (1998) ran an experiment in which they presented
participants with pull-down menus containing names or concepts grouped by category, and
asked participants to find specific targets in the menus. They collected eye movement data

that support the two major conclusions of DSV DH model—that people process menu items

in parallel, and that search is both random and systematic. They went so far asto state:
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“The average saccade length... was 2.21 menu items. This supports the parallel search
strategy (suggested by Hornof and Kieras [1997]) where more than one menu item are
processed at atime.” Aswell, Aatonen, Hyrskykari, and Raha observed systematic top-
to-bottom scan paths on some trials, and more random scan paths on other trials.

Byrne et al. (1999) presented participants with pull-down menus containing
numbers or letters, randomly re-ordered for each trial, in an experiment that closely
resembled Nilsen’s. The Byrne et al. study was designed in part to evaluate the plausibility
of the DSVDH model. The various data reported in the study support several aspects of the
DSVDH model, asfollows.

The eye movement data from Byrne et al. support the mgjor conclusions of the
DSVDH model—that people process menu items in parallel, and that search is both random
and systematic. The dataindicate that participants executed fewer fixations per item than
would be required by seria processing, indicating parallel consideration of items. The data
revealed more fixations to lower items when the target was lower in the screen—suggesting
systematic search—Dbut with alot of noise in the actual fixation locations—suggesting
random search.

The selection time data from Byrne et al. (1999), shown in Figure 4.19, also
support the DSVDH modéel’ s finding that the menu length effect in Nilsen's data results
from an interaction between random search and menu length. The menu length effect,
though persistent in al Serial Positionsin Nilsen’'s data, mostly disappears for Serial
Positions 2 through 4 in Byrne et a.’sdata. Thisiswhat the DSVDH model would predict
if the first random eye movement were constrained to the first few menu items. Thiswould
be a reasonable constraint when modeling the data from Byrne et a. because the experiment
was not blocked by menu length, aswas Nilsen's. Hence, participantsin Byrneet a.’s
experiment could not anticipate the menu length before the menu appeared, and would
likely confine their first eye movement to alocation where they would be confident a menu

item would appear.
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Figure 4.19. Observed data from Byrne et al. (1999). Mean selection
times as a function of the Serial Position of target item, for menus
with six, nine, or twelve items. The disappearance of the menu length
effect in Serial Positions 2 through 4 would be predicted by the
DSVDH strategy if the first random eye movement were constrained
to land on one of the first few items.

Lastly, the mouse movement data collected by Byrne et a. support the DSVDH
model’ s assumption that, in a high speed menu task, people wait until they have found the
target and then execute one mouse point to thetarget. A single aimed movement to atarget,
such as a mouse point to a known menu location, is likely to contain several submovements
(Meyer, Abrams, Kornblum, Wright & Smith, 1988; Meyer, Smith, Kornblum, Abrams &
Wright, 1990; Rosenbaum, 1991). Fitts' law predicts the total time required for all of the
submovements that together comprise asingle aimed movement (Meyer et a., 1988; Meyer
et a., 1990; Rosenbaum, 1991). The Byrne et a. dataindicate that, for each trial, the
initial submovement covered an average of two-thirds of the distance to the correct target
location, and that there was on average 1 to 1.6 total submovements. These are the
submovements that would be expected as part of a single aimed movement to the correct
target location, such as the mouse point in the DSVDH model, but not what would be
expected of submovements made while dragging the mouse down the menu while
searching, as several researchers assumeisthe case.

All in all, the data provided by Aaltonen, Hyrskykari, and Réiha (1998) and Byrne
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et a. (1999) provide strong support for the assumptions and conclusions of the models

presented in this dissertation.

4.3.2 Comparison toaMenu Model in ACT-R

This section compares the EPIC models presented above to menu selection models
built by Anderson et a. (1998; 1997) using another cognitive architecture, ACT-R
(Anderson, 1993). The ACT-R models attempt to explain Nilsen’s randomly ordered
menu data

ACT-R was originaly developed as amodel of higher cognition, but it has recently
been updated to account for visual attention (Anderson & Lebiere, 1998). Nilsen's (1991)
menu selection task is one of visually intensive tasks that Anderson et al. have modeled
using ACT-R with its new visual interface.

The predictions of the EPIC and ACT-R models are shown in Figure 4.20. Ascan
be seen, the EPIC model better predicts the data. For randomly ordered menus, the EPIC
model has an average absolute error of only 3%, and the ACT-R model has an average
absolute error of 12%. The EPIC model accountsfor al of the featuresin the observed
data: the dope, the Position 1 effect, and the menu length effect. The ACT-R model
accounts only for the slope.

There are other differences between the two models.

The EPIC architecture and thus the EPIC models make specific assertions regarding
eye movements. The ACT-R model “moves attention,” and the relationship between ACT-
R’s attentional shifts and physical eye movementsis unclear.

The EPIC models specifically account for the mouse movement time that was part
of Nilsen's observed selection time. The ACT-R model assumes that mouse movement
time was 0 msec based on an assumption that “ subjects tend to move the mouse down as
they scan for the target” (Anderson et a., 1997, p.456), so no mouse movement is

required once the target has been found. But empirical evidence (Byrne et al., 1999)
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Figure 4.20. Selection times observed by Nilsen and predicted
by the EPIC and ACT-R menu selection models, for both
randomly and numerically ordered menus. The EPIC models are
the Dual Strategy Varying Distance Hybrid (DSVDH) model and
the Immediate Look, Point, Check and Correct (ILPCC) model.
Also, the average absolute error (AAE) of each model.

suggests that participants did not move the mouse until after they found the target.

On atheoretical level, the EPIC and ACT-R models for randomly ordered menus
take different approaches to modeling the data. The EPIC model distributes the activities of
perception and visual search more throughout the model, using EPIC’ sretinal zones and
perceptual encodings to account for the availability of simple perceptual features, but the
strategic component to account for how a person might use the perceptual information to

guide the search. The ACT-R model, however, folds most of the perception and search-
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related activity into a single complex encoding of stimulus features, which are then made

available to asimple, two-rule, purely seria, purely systematic search strategy.

4.4 Conclusion

The models presented in this chapter provide plausible explanations for the
perceptual, cognitive, and motor processing required for selecting aknown target item from
apull-down menu, either an unfamiliar randomly ordered menu, or afamiliar ordered
menu. The next and final chapter will discuss the contributions these models, and

implications for future research.



CHAPTER 5
CONTRIBUTIONS AND IMPLICATIONS

This dissertation demonstrates that for a very important practical applicationin the
context of human-computer interaction, adetailed computational model of the mental and
physical processes embodied in the human user provides detailed theoretical, empirical, and
practical insights with which to understand the user and make fundamental improvements
to software and hardware design. Specifically, these insights are relevant to addressing
basi ¢ issues associated with graphical interface design that relate to computational cognitive
modeling, visual search, menu search, and manual motor control. The contributionsin

these areas, aswell asimplications for future research, will now be discussed.

5.1 Further Validation of Cognitive Modeling

These models presented in this dissertation contribute to the study of computational
cognitive modeling by further validating the principles, assertions, assumptions, and
conventions embodied in EPIC. These models apply EPIC to anew set of dataand to a
new aspect of human performance—visua search. EPIC s ability to explain the datawith
straightforward strategies and perceptual encodings, and with minor enhancements to the
architecture, provides further evidence that the architecture captures the fundamental
processes, memories, and timings of human perception, cognition, and action. The menu
models demonstrate that EPIC is particularly well-equipped to investigate previousy
disconnected theories of visua search and eye movements, and to provide asolid
foundation for further investigation into visual search and other aspects of human

performance.

92
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Besides validating EPIC, the models also stimulate architectural enhancementsto
EPIC. Thisservesasareminder that the EPIC architecture is built from the ground up to
represent only the fixed components of the human information processor. Severa
conditions must exist before an architectural modification will be considered: empirical
evidence, sound theoretical foundation, and reliable data that cannot be explained by
straightforward inputs to EPIC. The two enhancements proposed in this dissertation—the
visual recoding after saccade function and the click-and-point compound movement

style—result from these conditions being met.

5.2 A Unified Theory of Visual Sear ch

The modelsin this dissertation integrate research from many different studies and
from several different fields, and synthesize previous research into a unified theory of
visual search within aunified theory of cognition. These dynamic computational models
incorporate and subsume previous descriptive and mathematical models of visual search
and eye movement generation, including elements of Treisman’s (1986) theory of parallel
and seria feature extraction, Russo’s (1978) models of cognition and eye movement
integration, and various researchers’ theories regarding eye movement preparation and
execution (such as those reviewed by Rosenbaum, 1991).

The models for randomly ordered menus utilize the parallelism built into the EPIC
architecture to combine previous research into a new theory of overlapped eye-movement
programming and visual object evaluation. The basic theory is that people conduct the two
processes independently and in parallel: (@) moving their eyes around a scene as quickly as
possible, using only the object properties of appearance and location, and (b) evaluating
whether or not the target object has been viewed yet. These models demonstrate various
interactions between the two processes. For example, when it takes longer to identify a
target than to program the next saccade, a person might actually foveate the target but

continue scanning before realizing he or she just looked at the target; in such a situation, an
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eye movement would be needed to return the gaze to the target.

The models provide new theoretical, empirical, and practica insightsinto
fundamental aspects visual search. The models for randomly ordered menus, for example,
propose two complementary ideas of how more than one visual object can be processed
simultaneously in avisual search task.

Thefirst ideaisthat visua objects can be pipelined. People can begin the
processing required for one object before they have completed the processing of a previous
object, and thus have several objects moving from the eye to visual WM at the same time,
each item in a different stage of processing.

The second ideais that further parallelism is possible when more than one visual
object fitsinto the fovea simultaneoudly. Thisin effect widens the pipeline, allowing
severa objectsto fit into each stage of the pipeline at the same time. This does not assert a
“spotlight of attention” within the fovea, as some researchers propose, but instead assumes
that everything in the fovea begins moving to the visual WM at the sametime. Thisidea
hel ps to explain why people can scan vertical lists more rapidly than horizontal lists, and
has many implications for screen layout design.

The models also offer a broader view of visua search strategies. Asdiscussed in
Section 2.3.3, previous research contends that menu search is either random or systematic.
The Dual Strategy Varying Distance Hybrid (DSVDH) model for randomly ordered menus
proposes and demonstrates that it can actually be both. Inthe DSVDH model, each trid is
all random or all the systematic. Future work will determine exactly how elements of both
areincorporated into asingle search trial. This research has advanced the question from

“random or systematic?’ to “exactly how both random and systematic?’

5.3 New Insightsinto Menu Search

This dissertation provides new theoretical and empirical insight into the fundamental

human information processing involved in the visual search of computer menus, insights
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that have implications for fundamental improvementsin the design of menus.

Previous theories of menu search, though supported by empirical data, emphasized
the cognitive strategies involved in menu search and said little or nothing about the
perceptual and motoric processing involved. Asaresult, previous models were
incomplete, made implausible assumptions, and led to lengthy debate regarding some
aspects of menu search while remaining silent regarding others. For example, the
extensive debate about whether menu search is random or systematic (such as between
Card, 1983, and MacGregor and Lee, 1987) implicitly assumed serial consideration of
items. The models presented here account for all of the processing required and, asa
result, offer new insight.

The models provide theoretical validation for several of the hypotheses about menu
search discussed in Section 2.3.3, including (a) that people learn where things are, (b) that
search is both random and systematic, and (c) that people terminate the search when they
find the target. The models also support the hypothesis that search and selection are
independent to the extent that, in a high speed menu task, people will not drag the cursor
down the menu as each item is considered; but that search and selection are overlapped in
that mouse movement preparation will occur before the target is found.

The models suggest that the hypothesis that people serialy process one menu item
at atimeisincorrect. Rather, the models support a new hypothesis, that people consider
several menu itemsin paralel. Parallel consideration of objectsis not a new notion to
cognitive psychology, but thisis the first model of menu search model to incorporate the
idea

The models offer the first theory-based explanation for several previousy
unexplained phenomenain menu selection studies, including (a) the Position 1 effect, (b)
the menu length effect, and (c) alonger search time for items lower in a positionally
constant menu.

The Position 1 effect isthat selecting atarget in Position 1 is consistently slower
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than in Position 2. This effect first appeared in data collected by Somberg (1982), and
more recently in that of Nilsen (1991) and Byrne et a. (1999) The DSVDH model
reproduces the effect by incorporating two different features into the model—more than one
item fitting into the fovea at atime, and random search. These two featuresinteract,
creating a situation in which items at both ends of the menu have an overall lower
probability of being in the fovea after any given fixation, and thus will have an overall
dower selection time. Thisisaunigque explanation for this phenomena that was made
possible by building computational cognitive models, running the models, generating the
data, observing the replication of the Position 1 effect, and studying the information
processing traces provided by EPIC to determine the source of the effect in the model.
When explanations for how random and systematic search are incorporated into asingle
strategy are devel oped, even more subtle explanations for the Position 1 effect should
become available.

The menu length effect is that a target item can be selected in a shorter menu faster
than in alonger menu, even when the target isin the same Serial Position. This effect was
reported by Perlman (1984) and Nilsen (1991). The DSVDH model demonstrates that this
effect occursin randomly ordered menus as a result of random search interacting with the
menu length.

A longer search time for items lower in a positionally constant menu was observed
by Perlman (1984) and Somberg (1987). The effect was observed despite selection being
held constant by selecting with a keystroke rather than a mouse movement. The target-
location-with-error named |ocation incorporated into the Immediate Look, Point, Check and
Correct (ILPCC) model for numerically ordered menus offers a theory-based explanation
for this phenomena, as well as a characterization of the error in movements to known
locations, error that increases for targets further from the starting position.

Early indications are that the principles embodied in the DSVDH and ILPCC

models will be able to contribute to a priori predictions of other menu selection data.
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Figure5.1. Selection time as a function of the Serial Position of
the target item, for menus of alphabetically ordered words and
numerically ordered digits. Selection time for words and digits
increase at the same rate, but words consistently require an
additional 850 msec.

Figure 5.1 shows Sears and Shneiderman’ s (1994) datafor aphabetically ordered words
next to Nilsen’s (1991) for numerically ordered digits. Participants consistently required
an additional 850 msec for the word menus. The ILPCC should be able to account for this
data after the model is expanded to simulate the additional eye movements and processing

that would be required to scan and evaluate words rather than digits.

5.4 Implications for Menu Design Guidelines

When designers better understand the human information processing involved in
looking for something on a menu, they will be able to design menus that are easier for
peopleto use. Without scientific theory to guide them, however, designers will work in
the dark, using only their intuitions of how people will use their menus. Previous
researchers have assumed that people consider each menu item one at atime. Based on

menu items used in commercial applications, designers have evidently made the same
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assumption.

The menu shown in Figure 5.2, for example, does not fully support parallel
consideration of adjacent items. When a person islooking for the command to correct
misspellings in a document, “Spell” is amore relevant keyword than “ Check.” But “ Spell”
will not be captured in amaximally efficient foveal sweep of the leftmost word of every
menu item, and a slower more thorough scan will be required. The designer’ s decision to
use “ Check Spelling...” instead of “ Spelling...” islikely based on an intuition that people
will examine each menu item from beginning to end before proceeding to the next item.

New insights such as these provide a scientific basis for evaluating existing and
establishing new menu design guidelines. A contradiction between existing guidelines that
can now be addressed is whether menu items should be consistent in grammatical style
(Mayhew, 1992) or begin with a keyword (Shneiderman, 1992). Perhaps there are
benefits to using a consistent grammatical style, such aslearnability or smplicity of design.
But based on the notion of amaximally efficient foveal sweep, starting each menu item
with the keyword should help a user to find a known target more quickly. Perhaps these

two guidelines can be combined into “1f the system will be used by novices, make menu

/'
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Figure5.2. If a user islooking for the keyword “ Spelling”
and makes a maximally efficient foveal sweep down the left
edge of these menu items, he or she will miss the target.
(This menu is from MORE 3.1 by Symantec.)
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items consistent in grammatical style. But if the system will be used primarily by
experienced users, line up the keywords above and below each other in the leftmost
position of each menu item.”

A new guideline might be smply “Make sure initial parts of words are distinctive
and not obscured. For example, starting each item with abullet or other irrelevant marker
could increase search time.” Aaltonen et al. (1998) observed that non-text items such as
checkmarks to indicate status and shortcut key information tend to attract peopl€' s attention
during menu search. Thelittle iconsto the left of the text items in the Microsoft Windows
NT menu in Figure 2.2 will hinder an efficient visual search if the user makes a maximally
efficient foveal sweep of theicons rather than the words, and if some of the icons are
meaningless.

Another guideline that can be proposed based on these models is that menu search
should not be constrained by mouse movements. An extreme violation of thisguidelineis
amenu in which every item isinvisible except for the menu item where the mouse cursor is
currently pointing. Such amenu might seem obviously unusable, but dightly less extreme
violations are quite common. Many icon menus, such as the menu shown in Figure 5.3,
require the user to move the cursor to theicon in order to display atext description of the
item. To use this menu, the user must either spend alot of time learning the exact meaning
of every icon or, more likely, move the cursor over each item, wait for the text description
to appear, examine the text, and then move the mouse to the next item. Such a menu does
not readily support a high speed visual search.

Interestingly, the models can also inform the design of auditory menus. In

B EEEEENE]

Find Text On Page
Figure 5.3. Some menus require the user to move the mouse
cursor to the item to determine what the itemis. Such menus
result in very slow visual search. (Netscape Navigator 3.04 for
the Macintosh)
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auditory menus, users listen to options and make selections based on what they hear. One
common use of auditory menusisin telephone information systems, asin “For flight
arrival and departure information, please press 1....”  Auditory menus are also incorporated
into eyes-free interfaces that improve accessibility for blind users (Raman, 1997), and are
likely to be incorporated into automotive information systems.

Though there are clearly many differences between visua and auditory perception,
there are also similarities between the two. For example, vision and audition both impose a
delay between the onset of the physical stimulus and the arrival of stimulus propertiesin
WM, and both allow new stimuli to begin being processed while earlier stimuli are till
being processed further down the pipeline. These similarities allow the DSVDH model to
inform the design of auditory menus.

The DSVDH model demonstrates that people do not decide on one menu item
before moving to the next, but instead move to and examine the next item before deciding
on the previousitem. Such a highly efficient search can made possible with an auditory
menu by giving usersa“forward” button that interrupts the current option and immediately
starts the next, a“backward” button that interrupts and immediately starts the previous
option, and a“select” button to select the current option. Resnick and Virzi (1993) built
such a system and found that people could select a name from alist significantly faster with
their new “skip and scan” menu than with the more typical “For Joe, press 1. For
Michelle, press 2....”.

The parallel processing models suggest that a“skip and scan” menu system could
be optimized if users could be confident that the first »250 msec of a option would be
enough to identify the option. This could be done by putting the key syllablefirst, similar
to the above recommendation for visual menus, and also by providing other auditory cues
such as different voices and sound effects. Users could then press the “forward” button
four times a second and, as people seemed to be doing in the visual menu experiments,

move through an audio menu at high speed, not waiting to evaluate each item before
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moving to the next, and find the target as quickly as possible. Instant accessto the
“backward” command is critical in such an interface because, as in the menu models above,
it ispossible that a user might skip over the target before realizing that they had done so,
and need to backup to select the target.

5.5 New Insightsinto Manual Motor Control

The models presented here contribute to an understanding of fundamental aspects of
manual motor control, specifically with respect to interface analysis and design. The
DSVDH and ILPCC models both provide further validation of standard Fitts' coefficients
of 100 for a mouse point and 140 for a mouse point with the mouse button depressed. The
value of 100 isthe only Fitts coefficient in the literature proposed for predicting mouse
movement time (Card et a., 1983). The vaue of 140 isthe only coefficient available in the
literature for a pure pointing task with the mouse button depressed (Walker et al., 1993).
The DSVDH modd and the ILPCC model use these coefficients and successfully generate
predictions that account for the “button depression effect” observed by Nilsen (1991), as
can be seen in Figure 5.4. The models thus provide independent validation that these are
appropriate values for using Fitts' law for apriori predictions of movement times for
Mouse points.

The models of numerically ordered menus explore the possibility that Nilsen's data
could be explained by smply raising the Fitts' coefficients. One reason that such
exploration isat all feasibleisthat the literature reports awide variety of Fitts coefficients
for predicting mouse pointing times. Even though Fitts' law isregarded by human-
computer interaction researchers as an equation for predicting mouse pointing time, Fitts
coefficients are usually treated as free parameters and set after analyzing a new set of data
There has not been a systematic effort to calibrate Fitts' law for avariety pointing devices
and tasks and, as aresult, Fitts' law has questionable utility for making apriori predictions.

A more systematic effort is needed to collect consistent and reliable coefficients.
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Figure 5.4. The DSVDH and ILPCC models’ predictions for,
respectively, Nilsen’s randomly and numerically ordered menu data.
All are collapsed by menu length and expanded by menu style. For
each ordering, the * button depression effect” is the difference
between the walking (M) and click-open (®) selection times. The
button depression effect is explained very well by Fitts' coefficients
of 100 and 140.

5.6 Future Modeling of Menu Sear ch

Future improvements to the menu models will increase their predictive power and
provide new insights with which to improve software and hardware design. One future
research goal isto precisely model the new empirical datafrom Byrne et al. (1999) and
Nilsen and Evans (1999).

Another important research challengeisto build amodel that incorporates elements
of both random and systematic search into the same trial, and still accounts for Nilsen's
(1991) data. The DSVDH model assumes people use either completely random or
completely systematic search strategies for each trial. This assertion merits investigation.

One way that amodel could incorporate both random and systematic search into a
single trial would be to use a strategy that makes a maximally efficient downward fovea
sweep, asillustrated in Figure 3.7, but adds random noise to each saccade distance. When

a saccade distance is too great, items would getting skipped. An additiona sweep would
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be required to capture the skipped items. If every item in the menu has a chance of getting
skipped, this would add an element of randomness to every position. The randomness
would not be part of a deliberate strategy, but aresult of anoisy systematic strategy.

A second way that randomness could be incorporated into a maximally efficient
foveal sweep would be to limit the number of objects whose movement to visual WM can
be initiated during each fixation. For example, even if more than three itemsfit into the
fovea during afixation, perhaps only three randomly chosen items would begin moving to
WM from that fixation; additional items, though in the fovea, would get skipped and
require an additional sweep to be perceived.

A third way that randomness could be added to a systematic scan would be to vary
the size of the fovea from saccade to saccade. EPIC models currently set the foveaasa
circular region with aradius of one degree of visual angle. Varying thisradiuswould
allow models, acrosstrials, to simulate a more gradual degradation of property availability
around the edges of the fovea and to more realistically model human vision. Nilsen and
Evans (1999) suggest this modification to the DSVDH model to explain new empirical data
that they collected.

5.7 Future Modeling of General Visual Search

An important component of future research will be to build models of more general
visual search tasks. The menu modelsin this dissertation provide an excellent foundation
for building models of more general visual search.

In amore general visual search task, visual objects are more widely dispersed
across the screen than in amenu task. Figures 5.5 and 5.6 illustrate more general visual
search tasks. Thetask in Figure 5.5 isarea-world task; in Figure 5.6, an experimental
task. Though one might expect that an experiment using the task in 5.6 would be relatively
uninformative because of the simplicity of the task, reliable data from such an experiment

will reveal fundamental aspects of visual search and guide model-building.
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Figure5.5. Find the “ Case Sensitive” check box. Thisisa more
general visual search task than finding an itemin a pull-down menu.
(From BBEdit 3.5.2 by Bare Bones Software)
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Figure 5.6. Findthe” SAQ” object inthe“ 111" group. Thisisa
less real-world task than that shown in Figure 5.5. But reliable data
from such a task can reveal fundamental aspects of visual search.

Though visual search has been studied at length (see Section 2.2), there are few if

any available experimenta data sets that lend themselves to building models of the same

detail and accuracy as the menu selection models presented in this dissertation. One
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shortcoming of most published data setsis that selection times are usually averaged across
all positionson ascreen. Nilsen's datawere particularly useful for revealing search
strategies because they included average selection times for every Serial Position.

Nilsen’s experiment was also particularly useful for model-building because it
manipulated few factors—ordering, length, and style (walking versus click-open)—and
because these few manipulations produced reliable effects in the data that were sufficiently
detailed and distinct to guide the model-building process. These effectsincluded the menu
length effect, Serial Position effect, Position 1 effect, and others.

A challenge in designing amore general visual search experiment will be to select
and manipulate factorsthat, like Nilsen’s, produce reliable effects in the data and guide the
model-building process. Hereisalist of each factor that might be manipulated, why it is of
particular interest, the effect that would likely be observed when varying the factor, and

how the effect would likely be explained in amode:

1. Factor: Number of items.

Why of interest: This should produce an effect akin to the menu length
effect in Nilsen’ s experiment, which proved invaluable for revealing
underlying search processes.

Likely effect: Moreitems should increase overal search time.
How to model: Extend the existing menu models to search in two
dimensions.

2. Factor: Group titles present or absent.

Why of interest: Thisfactor will introduce another level of search.
There should be one search for the group, and then a second search
within the group for the target.

Likely effect: When group titles are available, search should be faster.

How to model: When titles are present, conduct an initial search that
only examines the group headings. When titles are absent, search every
item.

3. Factor: Alignment.

Why of interest: A basic principle of graphic design isthat visual
objects should be arranged in a highly regular pattern, such ason agrid
that is consistent from page to page or screen to screen (Mller-
Brockmann, 1981). Varying the extent to which objects are aligned on
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agrid might affect aspects of visual search.
Likely effect: Good alignment should be faster.

How to model: When objects are poorly aligned, additiona saccades
may be required to foveate all objects. Also, there may be fewer
identical consecutive saccades, so EPIC will have fewer opportunitiesto
re-use the ocular-motor program from the previous saccade, and more
saccade preparation time will be required.

4. Factor: Spacing.

Why of interest: Varying the visua angle between adjacent items
should affect the number of eye movements required to examine every
item on a screen, and thus overall search time. Nilsen and Evans (1999)
recently demonstrated that spacings of one and two degrees do not
produce dramatically different search times. Moreinvestigationisin
order.

Likely effect: More space between items should increase overall search
time.

How to model: Just extend the existing menu models to search in two
dimensions. The models aready require more eye movementsto get al
of the objectsinto the fovea at least once when menu items are more
spread out.

5. Factor: Horizontal versus vertical arrangements.

Why of interest: Asdiscussed in Section 2.3.2, vertical lists of words
can be searched more rapidly that horizontal lists. Collecting precise
data that demonstrates this phenomena could lead to a detailed
explanation of the source of the phenomena.

Likely effect: Vertical listswill be faster.

How to model: Just extend the existing menu models to search in two
dimensions. Horizontal lists will require more eye movementsto get all
of the objectsinto the fovea at least once.

6. Factor: Thetype of objects searched.

Why of interest: This should help to reveal why some kinds of objects
can be found more rapidly than others, such asicons versus text.

Likely effect: Some kinds objects will be found more quickly than
others.

How to model: Cdibrate the perceptual encoding availabilities and
delays for each kind of object.
7. Factor: Useof primary features.

Why of interest: Primary features such as size, color, shape, or
orientation are known to “pop out.” A comprehensive search model
would have to account for this phenomena.

Likely effect: Targetsthat can be distinguished by a single primary
feature will be found quickly.
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How to model: Make primary features available outside of the fovea.
Interrupt any search in progress as soon as a primary feature
distinguishing the target appearsin visual WM.
Modeling new data setswill be challenging. But lessons learned from the menu
models will help to guide the process. Once a sufficient body of visual search data has
been modeled, the various models and strategies can be combined into avisual search

prediction tool.

5.8 Building a Screen Layout Analysis Tool

Insights gained from the modeling of more general visual search tasks will inform
the design and construction of a screen layout analysistool that will contribute to
fundamental improvements in the design of human-computer interfaces. Thistool will
evaluate screen layouts based on the amount of time required to find information on the
screen, and provide software designers with useful feedback as they design their software.
Thetool will take as input a definition of a screen layout and a visual search task. The tool
will provide as output a prediction of the time required for the user to execute the task.
Designers will use thisinformation to compare alternative designs and to meet system
requirements specifications.

The current menu models provide the basics for the search engine of such atool.
The inputs to the tool—a screen layout and a search task—could be trandated into inputs to
an EPIC model. The EPIC model could then generate a prediction that would be reported
to the designer.

Such an approach to building a predictive tool would improve on the systems
developed by Tullis (1988) and Sears (1993), which were discussed in Section 2.2.4. The
tool would improve on Tullis' Display Anaysis Program (DAP) by making more specific
predictions for awider variety of tasks. DAP only predicts for a phanumeric screens, and
only makes one time prediction per screen. The tool would improve on Sears' Layout

Appropriateness (LA) by predicting search times rather than just computing an arbitrary
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cost for each layout that is then compared to the cost of atheoretically LA-optimal layout.

The proposed tool would most closely resemble Lohse’ s (1993) tool for
Understanding Cognitive Information Engineering (UCIE). UCIE predicts how long a
person will take to answer a question by studying a graph or table. Just like the models
presented here, UCIE accounts for specific, detailed aspects of perception and cognition
such as eye movements and the relative level of difficulty to acquireinformation in each
glance. UCIE generatesits predictions by executing asimulation of all of the processing
required for atask.

The proposed tool would improve upon UCIE by incorporating more subtle and
detailed aspects of visual search, such as the ability to perceive multiple objects with the
same fixation, to pipeline severa visua objectsto visua WM at the same time, and to
overlap perceptual and motor activities. A tool based on more detailed models should
provide more accurate predictions of visual search.

Thetool will work asfollows. First, the designer will propose a screen layout and
aspecific task or set of tasks. For example, given the web page shown in Figure 5.7, how
long will it take for someone to find all of the links to other pages? Second, an EPIC

model will be semi-automatically constructed and executed as follows:

1. A digita bitmap of the screen layout isimported into the tool and encoded
into visual objects or regions, such asthose shownin Figure 5.8. In
early versions of the tool, the designer will manually specify the
boundaries. In later versions, the process will be more automated.

2. Thefeatures of the screen objects and regions defined in step 1 are
defined, features such as color and shape. In early versions of the tool,
the designer will manually enter these descriptionsinto atext file. In later
versions, this step will eventually be somewhat automated.

3. Thedesigner listsal of the meanings of non-text objects that he or she
expects the user to know, such as meanings of icons. Thisforcesthe
designer to articulate his or her assumptions, which can then be critiqued
separately.

4. Based on the visual information provided in steps 1, 2, and 3, a
description of each item is deposited into EPIC’ s physical space.

5. Standard visual recoding delays, taken from previous modeling efforts,
areimposed for each visual feature.
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Figure5.7. A screen layout that could be used as an input to a screen layout
analysistool. Thisisthe main web page for undergraduate engineering
computer support services at the University of Michigan in early 1997.
(http://www.engin.umich.edu/caen/, 3/10/97)

6. A genera visual search strategy is applied to thetask. The strategy
includes the following components:

a. For the most part, conduct maximally efficient foveal sweeps of the
layout but, occasionally, make arandom jump to arandomly chosen
item on the screen.

b. Movethe eyesas quickly as possible without waiting to evaluate each
item.
c. Consider itemsin paralel whenever possible.

d. Decide whereto move eyes next based on proximity, whether or not
the items have been in the fovea yet, and primary features such as
size, shape, and color.

e. Halt the search as soon as the target text or the icon corresponding to
the target text isfound.

The EPIC model will execute and the search strategy will halt when thetask is
completed. The model will be executed several times and the predicted task execution times

from al executions will be averaged. Thetool will then report this average prediction as
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Figure 5.8. The visual regions and objects corresponding to the screen
layout shown in Figure 5.7. Thisis spatial information that would be used
by the screen layout analysis tool to predict visual search times.

the output of the tool. Different screen layouts can be compared and the most efficient one

chosen.
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5.9 Concluding Remarks

When using a computer, a substantial amount of time is spent looking for thingsin
menus and el sawhere on the computer screen. Asthefield of human-computer interaction
gains a better understanding of the perceptual, cognitive, and motor processes that people
use when they conduct a visua search, researchers can better advise practitioners how to
design menus and computer layouts that are easier to use. The advice can be in the form of
explanations of human processes, theoretically-based guidelines, and model-based
predictive tools.

By assembling what is currently known about visua search and menu search, and
presenting the first empirically validated computational models of the perceptual, cognitive,
and motor processes involved in the visua search of pull-down menus, this dissertation
makes a contribution towards providing a scientific foundation for designing computer
menus and screen layouts that are easier to search, and thus computers that are easier to

use.
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APPENDIX A
THE SERIAL PROCESSING RANDOM SEARCH STRATEGY

R T T T R R R R R R I T T R R R R R R R N R I B B R R R R R R N R R I R R R R R R R R R R B B N R N N R R N R R R N SRR R R R R RN

N LSEN 1. 2. 2. PRS By Ant hony Hor nof
i, 8/22/96
;7 Random fixate on each, serial decision.

T T T O T T T T T R A T T T T T T T T I I A R R R R R R R R T T I T R R R R R R N N N R N N N A R R R R R RN |

(CHA CE-Start

I F

((GAL DO MENU TASK)

(NOT (Wv MENU TASK UNDERWMAY) ) )

THEN

((ADDDB (W MENU TASK UNDERWAY) )
(SEND- TO MOTCR COULAR Dl SABLE REFLEX)
(SEND TO MOTCR MANUAL RESET MEMCRY)

( ADDDB ( STEP | DENTI FY- CURSCR) ) ))

FRE T T T R R R R R R R I I T T R R R R N R N R N R N N A R R R R R R NI |

( START- OURSCR- TRACKI NG

IF

((GOAL DO MENU TASK)

( STEP | DENTI FY- CURSCR)

(VI SUAL ?CBJECT SHAPE CROSS))

THEN

((DELDB ( STEP | DENTI FY- CURSCR) )

(ADDDB ( STEP WAI T FCR GO BOX) )

(ADDDB (WM OURSCR | S ?CBIECT) )

(DELDB (V1 SUAL ?CBJECT DETECTI ON ONSET))))

(LOK- AT- GO BOX
;5 Just looks at the visual object that appears next.
IF
((GAL DO MENU TASK)
(STEP WA T FOR GO BOX)
(M SUAL ?CBJECT DETECTI ON ONSET)
(USE- O\LY- ONE ?CBJECT)
(MOTCR OOULAR PROCESSCR FREE) )
THEN
((DELDB (STEP WAI T FCR GO BOX))
(ADDDB ( STEP VER FY QO BOX TEXT))
( SEND- TO MOTOR OCULAR MOVE ?CBJECT) ) )

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

( VER! FY- GO BOX
;5 Verify the newthing that appeared really is the GO box.
I F
((GOAL DO MENU TASK)

(STEP VER FY QO BOX TEXT)

(M SUAL ?CBJECT LABEL Q0

( MOTOR OCULAR PROCESSCR FREE) )

THEN

((DELDB (STEP VER FY GO BOX TEXT))

( ADDDB ( STEP MOVE CURSCR TO GO BOX))
(ADDDB (Wv GO BOX | S ?CBIECT))
(SEND- TO MOTCR COULAR MOVE ?CBJECT) ))

IR R N R R R R R N T N N R R N R N A A N A A R R NI |

( MOVE- CURSCR- TO- GO BOX
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I F
((GOAL DO MENU TASK)

(STEP MOVE OURSCR TO GO BOX)
(W CURSCR |'S ?CURSCR- CBJECT)
(W GO BOX |'S ?TARGET- CBJECT)
(MOTOR MANUAL PROCESSCR FREE)

)

THEN

(( SEND- TO MOTCR MANUAL PERFCRM POl NT R GHT ?CURSCR- CBJECT ?TARGET- CBJECT)
(DELDB ( STEP MOVE OURSCR TO GO BOX))

(ADDDB ( STEP MOVE GAZE TO TARGET PRECLE))))

( MOVE- GAZE- TO TARGET- PRECLE
;; After the precue has appeared with its onset, nove the eyes to it.
;; But only nmove eyes to it if it is just above the GO BOX
| F

((GAL DO MENU TASK)

(STEP MOVE GAZE TO TARGET PRECUE)

(W QO BOX |'S ?G0 BOX)

(M SUAL ?CBJECT | S- ABOVE ?Q0 BOX)

(MOTOR OCULAR PROCESSCR FREE) )

THEN

((DELDB ( STEP MOVE GAZE TO TARGET PRECUE))
(ADDDB (STEP GET TARGET PRECUE))

( ADDDB (WM PRECLE | S ?CBJECT))

(SEND- TO- MOTCR GOULAR MOVE ?CBJECT)) )

;; Put the text of the precue object into WWas the target text.
I F
((QOAL DO MENU TASK)

(STEP GET TARGET PRECUE)

(WV PRECLE | S ?CBIECT)

(V1 SUAL ?CBJECT LABEL ?PRECUE- TEXT))
THEN

((DELDB (STEP GET TARGET PRECLE))

(ADDDB ( STEP MOVE GAZE BACK TO G0 BQOX))

( ADDDB (VW TARGET- TEXT |'S ?PRECUE- TEXT))))

( MOVE- GAZE- BACK- TO GO BOX

;; Move gaze back in preparation to start the trial.
I F

(( QAL DO MENJ TASK)

(STEP MOVE GAZE BACK TO GO BOX)

(Wv G0 BOX | S ?CBJECT)

(MOTOR OCCULAR PROCESSCR FREE) )

THEN

((DELDB ( STEP MOVE GAZE BACK TO GO BOX))

(ADDDB ( STEP PRESS CR PUNCH MOUSE- BUTTON TO SHOW MENUY) )
(SEND- TO MOTCR COULAR MOVE ?CBJECT) ) )

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

THESE TWD RULES SHOULD MATCH EXCEPT FCR "PRESS PUNCH' AND "MENU STYLE'.

IR R N R R R R R N T N N R R N R N A A N A A R R NI |

( PRESS- MOUSE- BUTTON- TO- SHOW MENU
=

(( STRATEGY MENU STYLE |'S WALKI NG

(GOAL DO MENU TASK)

(STEP PRESS OR PUNCH MOUSE- BUTTON TO SHOW MENU)
(W GO BOX |'S ?CBJECT)

(MOTCR MANUAL PROCESSCR FREE)
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(MOTCR OCULAR PROCESSCR FREE) )

THEN

(( SEND- TO- MOTCR MANUAL PERFCRM PRESS MOUSE- BUTTCN)
(DELDB ( STEP PRESS CR PUNCH MOUSE- BUTTON TO SHOW MENU))
(ADDDB ( STEP SACCADE TO FI RST RANDOM.Y CHCSEN | TEM))
(DELDB (WV GO BOX | S ?CBIECT))))

PRI I R R R R R R R R R R N R R N R R R R N R R AR RN R R R NI |

( PUNCH MOUSE- BUTTON- TO- SHOW MENU

IF

(( STRATEGY MENU STYLE | S CLI CK- CPEN)

(QAL DO MENU TASK)

(STEP PRESS OR PUNCH MDOUSE- BUTTON TO SHOW MENU)

(W GO BOX |'S ?CBJECT)

(MOTCR MANUAL PROCESSCR FREE)

(MOTCR OCULAR PROCESSCR FREE) )

THEN

(( SEND- TO MOTCR MANUAL PERFORM PUNCH MOUSE- BUTTCN)
(DELDB ( STEP PRESS CR PUNCH MOUSE- BUTTON TO SHOW MENU))
(ADDDB ( STEP SACCADE TO FI RST RANDOM.Y CHOSEN | TEM))
(DELDB (WV GO BOX | S ?CBIECT))))

FRE T T T R R R R R R R I I T T R R R R N R N R N R N N A R R R R R R NI |

( PREPARE- PO NT

;; As soon as possible after press or first punch, prepare for nouse novenent.
I F

((GAL DO MENU TASK)

(STEP SACCADE TO FI RST RANDOMLY CHOSEN | TEM)

(M SUAL ?FI RST- 1 TEM | S- BELON NOTH NG

(M SUAL ?FI RST-1 TEM | S- ABOVE ?SECOND- | TEM)

(WM OQURSCR | S ?20URSCR

( MOTCR MANUAL PROCESSCR FREE) )

THEN

((SEND TO MOTCR MANUAL PREPARE PA NT R GHT ?CURSCR ?SECOND- 1 TEV) ) )

IR R N R R R R R N T N N R R N R N A A N A A R R NI |

( SACCADE- TO FI RST- RANDOM_Y- CHOSEN- | TEM

;; Saccade to any item

IF

((Q0AL DO MENU TASK)

(STEP SACCADE TO FI RST RANDCMLY CHCSEN | TEM)
(M SUAL ?CBJECT | N- MENU YES)

( RANDOMLY- CHOOSE- ONE  ?CBJECT)

(MOTOR OCOULAR PROCESSCR FREE)

)

THEN

((DELDB ( STEP SACCADE TO FI RST RANDOMLY CHOSEN | TEM))
(ADDDB ( STEP RANDOM M SUAL SEARCH))

(ADDDB (WM CURRENT-I TEM | S ?CBJECT) )
(SEND TO MOTCR GOULAR MOVE ?CBJECT)) )

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

( TARCGET- | S- NOT- LOCATED- SACCADE- TO- ANOTHER- RANDOMLY- CHCSEN- | TEM
;; If this is NOT the target, then continue random search.

| F

((GOAL DO MENU TASK)

( STEP RANDCM VI SUAL

(WM CURRENT- | TEM | S ?CURRENT- CBJECT)

(VI SUAL ?CURRENT- CBJECT LABEL ?NT) ;; Wit for text to appear.
(NOT (WM TARGET-TEXT |'S ?NT)) ;; It is not the target text.
(VI SUAL ?NEXT- GBJECT | N-MENU YES) ;5 Get ready for next random saccade.

(NOT (Wv OURRENT- | TEM | S ?NEXT- GBJECT) )
( RANDOMLY- CHOOSE- ONE ?NEXT- CBJECT)
(MOTCR OCULAR PROCESSCR FREE) )
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THEN
((DELDB (W CURRENT- | TEM | S ?CURRENT- CBJECT) )
(ADDDB (WM OURRENT- | TEM | S ?NEXT- CBJECT) )
( SEND- TO MOTCR GOULAR MOVE ?NEXT- GBJECT) ) )

IR R N R R R R R N N I N A A R N R R A A N A R R R NI |

( TARCGET- | S- LOCATED- MOVE- GAZE- AND- CURSCR: TO- TARCET

;; Decides you found the itemduring the visual sweep.

I F

(( QAL DO MENJ TASK)

( STEP RANDCM VI SUAL

(WM QURRENT- | TEM | S ?TARCGET- GBJECT) ;; To distinguish fromthe precue.
(M SUAL ?TARGET- CBJECT LABEL ?T) ;; Wit for text to appear.

(WM TARGET- TEXT | S ?T) ;7 It 1S the target text

(WM OQURSCR | S ?AURSCR- CBJECT)

(MOTOR OCCULAR PROCESSCR FREE)

(MOTCR MANUAL PROCESSCR FREE) )

THEN

((DELDB ( STEP RANDCM M SUAL SEARCH) )

(ADDDB ( STEP RELEASE CR PUNCH MOUSE BUTTQON))

(SEND- TO MOTCR COULAR MOVE ?TARGET- CBJECT)

(SEND TO MOTCR MANUAL PERFCRM PO NT R GHT ?CURSCR- CBJECT ?TARCGET- CBJECT)))

IR R N R R R R R N T N N R R N R N A A N A A R R NI |

;; THESE TWD RULES SHOULD MATCH EXCEPT FCR " RELEASE PUNCH' AND "MENU STYLE'.

FRE T T T N R R R R R R I I T B R R R R R R N R N R NN A R R R R R NI |

( RELEASE- MOUSE- BUTTON- ON- TARGET

IF

(( STRATEGY MENU STYLE |'S WALKI NG

(QOAL DO MENU TASK)

(STEP RELEASE OR PUNCH MOUSE BUTTQN)

(MOTCR MANUAL PROCESSCR FREE) )

THEN

(( SEND- TO- MOTCR MANUAL PERFCRM RELEASE MOUSE- BUTTON)
(DELDB ( STEP RELEASE CR PUNCH MOUSE BUTTON))
(ADDDB (STEP WAI T FCR GO BOX))

(ADDDB ( STEP CLEANUP))))

FRE T T T N R R R R R R I I T B R R R R R R N R N R NN A R R R R R NI |

( PUNCH MOUSE- BUTTON- ON TARGET

IF

(( STRATEGY MENU STYLE | S CLI CK- CPEN)

(QOAL DO MENU TASK)

(STEP RELEASE CR PUNCH MOUSE BUTTQN)

(MOTCR MANUAL PROCESSCR FREE) )

THEN

(( SEND- TO- MOTCR MANUAL PERFCRM PUNCH MOUSE- BUTTCN)
(DELDB ( STEP RELEASE CR PUNCH MOUSE BUTTON))
(ADDDB (STEP WAI T FCR GO BOX))

(ADDDB ( STEP CLEANUP))))

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

;these rules clean up whatever needs to be cleaned up after the response
( CLEANUP- STEP- CLEANUP

I F

((G0AL DO MENU TASK)

(STEP CLEANWP))

THEN

((DELDB (STEP CLEANUP))))

( CLEANUP- TARGET- CBJECT
I F

((GOAL DO MENU TASK)
(STEP CLEANUP)
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(W TARGET- CBJECT |'S ?CBJECT))
THEN
(( DELDB (W TARGET- CBJECT |'S ?CBJECT))))

( CLEANUP- CURRENT- | TEM

IF

((GOAL DO MENU TASK)

(STEP CLEANUP)

(W CURRENT- 1 TEM | S ?X))

THEN

((DELDB (W CURRENT-1 TEM IS ?X))))

( CLEANUP- PRECLE

=

((GOAL DO MENU TASK)

(STEP CLEANUP)

(W PRECLE 1S ?X))

THEN

((DELDB (W PRECLE 1S ?X))))

( CLEANUP- TARGET- TEXT

IF

((GOAL DO MENU TASK)

(STEP CLEANUP)

(\WV TARGET- TEXT 1S 2X))

THEN

(( DELDB (W TARGET-TEXT 1S ?X))))



117

APPENDIX B
THE SERIAL PROCESSING SYSTEMATIC SEARCH STRATEGY

R T T T R R R R R R I T T R R R R R R R N R I B B R R R R R R N R R I R R R R R R R R R R B B N R N N R R N R R R N SRR R R R R RN

;5 NLSEN 1. 2. 1. PRS By Anthony Hor nof
7, 8/21/96
7, Systematic top-to-bottom fixate on each, serial decision.

T T T O T T T T T R A T T T T T T T T I I A R R R R R R R R T T I T R R R R R R N N N R N N N A R R R R R RN |

(CHA CE-Start

I F

((GAL DO MENU TASK)

(NOT (Wv MENU TASK UNDERWMAY) ) )

THEN

((ADDDB (W MENU TASK UNDERWAY) )
(SEND- TO MOTCR COULAR Dl SABLE REFLEX)
(SEND TO MOTCR MANUAL RESET MEMCRY)

( ADDDB ( STEP | DENTI FY- CURSCR) ) ))

FRE T T T R R R R R R R I I T T R R R R N R N R N R N N A R R R R R R NI |

( START- OURSCR- TRACKI NG

IF

((GOAL DO MENU TASK)

( STEP | DENTI FY- CURSCR)

(VI SUAL ?CBJECT SHAPE CROSS))

THEN

((DELDB ( STEP | DENTI FY- CURSCR) )

(ADDDB ( STEP WAI T FCR GO BOX) )

(ADDDB (WM OURSCR | S ?CBIECT) )

(DELDB (V1 SUAL ?CBJECT DETECTI ON ONSET))))

(LOK- AT- GO BOX
;5 Just looks at the visual object that appears next.
IF
((GAL DO MENU TASK)
(STEP WA T FOR GO BOX)
(M SUAL ?CBJECT DETECTI ON ONSET)
(USE- O\LY- ONE ?CBJECT)
(MOTCR OOULAR PROCESSCR FREE) )
THEN
((DELDB (STEP WAI T FCR GO BOX))
(ADDDB ( STEP VER FY QO BOX TEXT))
( SEND- TO MOTOR OCULAR MOVE ?CBJECT) ) )

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

( VER! FY- GO BOX
;5 Verify the newthing that appeared really is the GO box.
I F
((GOAL DO MENU TASK)

(STEP VER FY QO BOX TEXT)

(M SUAL ?CBJECT LABEL Q0

( MOTOR OCULAR PROCESSCR FREE) )

THEN

((DELDB (STEP VER FY GO BOX TEXT))

( ADDDB ( STEP MOVE CURSCR TO GO BOX))
(ADDDB (Wv GO BOX | S ?CBIECT))
(SEND- TO MOTCR COULAR MOVE ?CBJECT) ))

IR R N R R R R R N T N N R R N R N A A N A A R R NI |

( MOVE- CURSCR- TO- GO BOX
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I F
((GOAL DO MENU TASK)

(STEP MOVE OURSCR TO GO BOX)
(W CURSCR |'S ?CURSCR- CBJECT)
(W GO BOX |'S ?TARGET- CBJECT)
(MOTOR MANUAL PROCESSCR FREE)

)

THEN

(( SEND- TO MOTCR MANUAL PERFCRM POl NT R GHT ?CURSCR- CBJECT ?TARGET- CBJECT)
(DELDB ( STEP MOVE OURSCR TO GO BOX))

(ADDDB ( STEP MOVE GAZE TO TARGET PRECLE))))

( MOVE- GAZE- TO TARGET- PRECLE
;; After the precue has appeared with its onset, nove the eyes to it.
;; But only nmove eyes to it if it is just above the GO BOX
| F

((GAL DO MENU TASK)

(STEP MOVE GAZE TO TARGET PRECUE)

(W QO BOX |'S ?G0 BOX)

(M SUAL ?CBJECT | S- ABOVE ?Q0 BOX)

(MOTOR OCULAR PROCESSCR FREE) )

THEN

((DELDB ( STEP MOVE GAZE TO TARGET PRECUE))
(ADDDB (STEP GET TARGET PRECUE))

( ADDDB (WM PRECLE | S ?CBJECT))

(SEND- TO- MOTCR GOULAR MOVE ?CBJECT)) )

;; Put the text of the precue object into WWas the target text.
I F
((QOAL DO MENU TASK)

(STEP GET TARGET PRECUE)

(WV PRECLE | S ?CBIECT)

(V1 SUAL ?CBJECT LABEL ?PRECUE- TEXT))
THEN

((DELDB (STEP GET TARGET PRECLE))

(ADDDB ( STEP MOVE GAZE BACK TO G0 BQOX))

( ADDDB (VW TARGET- TEXT |'S ?PRECUE- TEXT))))

( MOVE- GAZE- BACK- TO GO BOX

;; Move gaze back in preparation to start the trial.
I F

(( QAL DO MENJ TASK)

(STEP MOVE GAZE BACK TO GO BOX)

(Wv G0 BOX | S ?CBJECT)

(MOTOR OCCULAR PROCESSCR FREE) )

THEN

((DELDB ( STEP MOVE GAZE BACK TO GO BOX))

(ADDDB ( STEP PRESS CR PUNCH MOUSE- BUTTON TO SHOW MENUY) )
(SEND- TO MOTCR COULAR MOVE ?CBJECT) ) )

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

THESE TWD RULES SHOULD MATCH EXCEPT FCR "PRESS PUNCH' AND "MENU STYLE'.

IR R N R R R R R N T N N R R N R N A A N A A R R NI |

( PRESS- MOUSE- BUTTON- TO- SHOW MENU
=

(( STRATEGY MENU STYLE |'S WALKI NG

(GOAL DO MENU TASK)

(STEP PRESS OR PUNCH MOUSE- BUTTON TO SHOW MENU)
(W GO BOX |'S ?CBJECT)

(MOTCR MANUAL PROCESSCR FREE)
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(MOTCR OCULAR PROCESSCR FREE) )

THEN

(( SEND- TO- MOTCR MANUAL PERFCRM PRESS MOUSE- BUTTCN)
(DELDB (STEP PRESS CR PUNCH MOUSE- BUTTON TO SHOW MENU) )
(ADDDB ( STEP FI X GAZE ON TCP MENU | TEM)

(DELDB (WV GO BOX | S ?CBJECT))))

PRI I R R R R R R R R R R N R R N R R R R N R R AR RN R R R NI |

( PUNCH MOUSE- BUTTON- TO- SHOW MENU

IF

(( STRATEGY MENU STYLE | S CLI CK- CPEN)

(QAL DO MENU TASK)

(STEP PRESS OR PUNCH MDOUSE- BUTTON TO SHOW MENU)
(W GO BOX |'S ?CBJECT)

(MOTCR MANUAL PROCESSCR FREE)

(MOTCR OCULAR PROCESSCR FREE) )

THEN

(( SEND- TO MOTCR MANUAL PERFORM PUNCH MOUSE- BUTTCN)
(DELDB ( STEP PRESS CR PUNCH MOUSE- BUTTON TO SHOW MENU))
(ADDDB ( STEP FI X GAZE ON TCP MENU | TEM))

(DELDB (WV GO BOX | S ?CBIECT))))

FRE T T T R R R R R R R I I T T R R R R N R N R N R N N A R R R R R R NI |

( PREPARE- PO NT

;; As soon as possible after press or first punch, prepare for nouse novenent.
I F

((GAL DO MENU TASK)

(STEP FI X GAZE ON TCP MENU | TEV)

(M SUAL ?CBJECT DETECTI ON ONSET)

(M SUAL ?CBIECT | S- BELON NOTH NG

(WM OQURSCR | S ?0URSCR CBJECT)

(M SUAL ?CBIECT | S- ABOVE ?PLY- PREPARE- CBJECT)

(MOTCR MANUAL PROCESSCR FREE) )

THEN

((SEND TO MOTCR MANUAL PREPARE PO NT R GHT ?CURSCR CBJIECT ?PLY- PREPARE- CBJECT) ))

LR R I I R I R R R R R R R B N R B R A R B R B N B B B BN B I I

FI X- GAZE- O\ TCP- | TEM
; Move eye to FIRST itemon list.

(GOAL DO MENU TASK)

(STEP FI X GAZE CN TCP MENU | TEM

(VI SUAL ?CBJECT DETECTI ON ONSET)

(VI SUAL ?CBJECT | S- BELOW NOTH NG
(MOTCR OCULAR PROCESSCR FREE) )

THEN

((DELDB (STEP FI X GAZE ON TGP MENU | TEM) )
(ADDDB ( STEP Ml SUAL- SEARCH) )

( SEND- TO MOTOR GOULAR MOVE ?CBJECT)
(ADDDB (WM OURRENT- | TEM | S ?CBJECT))))

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

( TARGET- | S- NOT- LOCATED- SACCADE- ONE- | TEM

;; If this is NOT the target, then continue down the |ist.
I F

((GAL DO MENU TASK)

(STEP M1 SUAL- SEARCH)

(WM CURRENT- | TEM | S ?CBJECT)

(M SUAL ?CBJECT | S- ABOVE ?NEXT- CBJECT)

(NOT (M SUAL ?CBIECT | S- ABOVE NOTH NG))

(MOTOR OCULAR PROCESSCR FREE)

(M SUAL ?CBIECT LABEL ?NT) 7y Vit for text to appear.
(NOT (WM TARGET-TEXT IS ?NT)) ;; It is not the target text.

)
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THEN
((DELDB (W CURRENT- | TEM | S ?CBJECT))

(ADDDB (WM OURRENT- | TEM | S ?NEXT- CBJECT) )
( SEND- TO MOTCR GOULAR MOVE ?NEXT- GBJECT) ) )

IR R N R R R R R N N I N A A R N R R A A N A R R R NI |

( TARCGET- | S- LOCATED- MOVE- GAZE- AND- CURSCR: TO- TARCET

;; Decides you found the itemduring the visual sweep.

I F

(( QAL DO MENJ TASK)

(STEP VI SUAL- SEARCH)

(WM QURRENT- | TEM | S ?TARCGET- GBJECT) ;; To distinguish fromthe precue.
(M SUAL ?TARGET- CBJECT LABEL ?T) ;; Wit for text to appear.

(WM TARGET- TEXT | S ?T) ;7 It 1S the target text

(WM OQURSCR | S ?AURSCR- CBJECT)

(MOTOR OCCULAR PROCESSCR FREE)

(MOTCR MANUAL PROCESSCR FREE) )

THEN

((DELDB ( STEP M SUAL- SEARCH))

(ADDDB ( STEP RELEASE CR PUNCH MOUSE BUTTQON))

(SEND- TO MOTCR COULAR MOVE ?TARGET- CBJECT)

(SEND TO MOTCR MANUAL PERFCRM PO NT R GHT ?CURSCR- CBJECT ?TARCGET- CBJECT)))

IR R N R R R R R N T N N R R N R N A A N A A R R NI |

;; THESE TWD RULES SHOULD MATCH EXCEPT FCR " RELEASE PUNCH' AND "MENU STYLE'.

FRE T T T N R R R R R R I I T B R R R R R R N R N R NN A R R R R R NI |

( RELEASE- MOUSE- BUTTON- ON- TARGET

IF

(( STRATEGY MENU STYLE |'S WALKI NG

(QOAL DO MENU TASK)

(STEP RELEASE OR PUNCH MOUSE BUTTQN)

(MOTCR MANUAL PROCESSCR FREE) )

THEN

(( SEND- TO- MOTCR MANUAL PERFCRM RELEASE MOUSE- BUTTON)
(DELDB ( STEP RELEASE CR PUNCH MOUSE BUTTON))
(ADDDB (STEP WAI T FCR GO BOX))

(ADDDB ( STEP CLEANUP))))

FRE T T T N R R R R R R I I T B R R R R R R N R N R NN A R R R R R NI |

( PUNCH MOUSE- BUTTON- ON TARGET

IF

(( STRATEGY MENU STYLE | S CLI CK- CPEN)

(QOAL DO MENU TASK)

(STEP RELEASE CR PUNCH MOUSE BUTTQN)

(MOTCR MANUAL PROCESSCR FREE) )

THEN

(( SEND- TO- MOTCR MANUAL PERFCRM PUNCH MOUSE- BUTTCN)
(DELDB ( STEP RELEASE CR PUNCH MOUSE BUTTON))
(ADDDB (STEP WAI T FCR GO BOX))

(ADDDB ( STEP CLEANUP))))

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

;these rules clean up whatever needs to be cleaned up after the response
( CLEANUP- STEP- CLEANUP

I F

((G0AL DO MENU TASK)

(STEP CLEANWP))

THEN

((DELDB (STEP CLEANUP))))

( CLEANUP- TARGET- CBJECT
I F

((GOAL DO MENU TASK)
(STEP CLEANUP)
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(W TARGET- CBJECT |'S ?CBJECT))
THEN
(( DELDB (W TARGET- CBJECT |'S ?CBJECT))))

( CLEANUP- CURRENT- | TEM

IF

((GOAL DO MENU TASK)

(STEP CLEANUP)

(W CURRENT- 1 TEM | S ?X))

THEN

((DELDB (W CURRENT-1 TEM IS ?X))))

( CLEANUP- PRECLE

=

((GOAL DO MENU TASK)

(STEP CLEANUP)

(W PRECLE 1S ?X))

THEN

((DELDB (W PRECLE 1S ?X))))

( CLEANUP- TARGET- TEXT

IF

((GOAL DO MENU TASK)

(STEP CLEANUP)

(\WV TARGET- TEXT 1S 2X))

THEN

(( DELDB (W TARGET-TEXT 1S ?X))))
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APPENDIX C
THE PARALLEL PROCESSING RANDOM SEARCH STRATEGY

R T T T R R R R R R I T T R R R R R R R N R I B B R R R R R R N R R I R R R R R R R R R R B B N R N N R R N R R R N SRR R R R R RN

;5 NLSEN 1. 2.6.PRS By Anthony Hor nof

;; Random anticipatory first saccade, next itemalways out of fovea,
- paral | el deci sion

(CHA CE-Start

| F

((GOAL DO MENU TASK)

(NOT (W MENU TASK UNDERVMY) ) )

THEN

((ADDDB (W MENU TASK UNDERVAY) )

( SEND- TO MOTCR GOULAR DI SABLE REFLEX)

( SEND- TO MOTCR OCULAR DI SABLE CENTER NG
( SEND TO MOTCR MANUAL RESET MEMCRY)

( ADDDB ( STEP | DENTI FY- OURSCR) ) ))

( START- CURSCR- TRACKI NG

IF

((GOAL DO MENU TASK)

( STEP | DENTI FY- CURSCR)

(VI SUAL ?CBJECT SHAPE CROSS))

THEN

(( DELDB ( STEP | DENTI FY- CURSCR) )

(ADDDB (STEP WAI T FCR GO BOX))

(ADDDB (WM OURSCR | S ?CBJECT) )

(DELDB (V1 SUAL ?CBJECT DETECTI ON ONSET))))

(LOK- AT- GO BOX

;5 Just looks at the visual object that appears next.
IF

((G0AL DO MENJ TASK)

(STEP WA T FCR GO BOX)

(VI SUAL ?CBIECT DETECTI ON ONSET)
(USE- O\LY- ONE ?CBJECT)

(MOTCR OCULAR PROCESSCR FREE) )

THEN

((DELDB (STEP WAIT FCR QO BCX))
(ADDDB ( STEP VER FY GO BOX TEXT))
(SEND- TO MOTCR COULAR MOVE ?CBJECT) ))

FRE T T T N R R R R R R I I T B R R R R R R N R N R NN A R R R R R NI |

(VER FY- QO BOX
;3 Verify the newthing that appeared really is the GO box.
I F
((GAL DO MENU TASK)
(STEP VER FY GO BOX TEXT)
(M SUAL ?CBJECT LABEL Q)
(MOTOR OCULAR PROCESSCR FREE) )
THEN
((DELDB (STEP VER FY GO BOX TEXT))
(ADDDB ( STEP MOVE CURSCR TO GO BOX))
(ADDDB (W GO BOX | S ?CBJECT))
( SEND- TO MOTOR OCULAR MOVE ?CBJECT) ) )

PR I R R R R R R R R R N R N R R R R N R R AN RN R R R NI |



123

( MOVE- OURSCR- TO- GO BOX
I F

((GOAL DO MENU TASK)
(STEP MOVE OURSCR TO GO BOX)
(W OURSCR | 'S ?CURSCR- CBJECT)
(W GO BOX |'S ?TARGET- CBJECT)
(MOTOR MANUAL PROCESSCR FREE)

)

THEN

(( SEND- TO- MOTCR MANUAL PERFCRM PAI NT Rl GHT ?CURSCR- CBJECT ?TARGET- CBJECT)
(DELDB ( STEP MOVE OURSCR TO GO BOX))

(ADDDB ( STEP MOVE GAZE TO TARGET PRECLE))))

( MOVE- GAZE- TO TARCGET- PRECUE

;; After the precue has appeared with its onset, nove the eyes to it.
;; But only nmove eyes to it if it is just above the GO BOX
IF

((GAL DO MENU TASK)

(STEP MOVE GAZE TO TARGET PRECUE)

(WM QO BOX | S ?G0 BOX)

(M SUAL ?CBIECT | S- ABOVE ?G0 BOX)

(MOTOR OOULAR PROCESSCR FREE) )

THEN

((DELDB ( STEP MOVE GAZE TO TARGET PRECUE))
(ADDDB (STEP GET TARGET PRECUE))

(ADDDB (WM PRECUE | S ?CBJECT))

(SEND- TO MOTCR COULAR MOVE ?CBJECT) ))

;; Put the text of the precue object into Was the target text.
I F

(( QAL DO MENJ TASK)

(STEP GET TARGET PRECUE)

(Wv PRECLUE | S ?CBJECT)

(VI SUAL ?CBIECT LABEL ?PRECUE- TEXT))

THEN

((DELDB (STEP CGET TARCET PRECLE))

(ADDDB ( STEP MOVE GAZE BACK TO QGO BOX))

(ADDDB (WM TARCGET- TEXT | S ?PRECUE- TEXT))))

( MOVE- GAZE- BACK- TO GO BOX

;; Move gaze back in preparation to start the trial.
| F

((GOAL DO MENU TASK)

(STEP MOVE GAZE BACK TO QD BOX)

(WM QO BOX | S ?CBJECT)

( MOTOR OCULAR PROCESSCR FREE) )

THEN

((DELDB ( STEP MOVE GAZE BACK TO QO BOX))

(ADDDB (STEP CLI CK GO BOX AND MOVE GAZE TO FI RST RANDOM MENU LCOCATI QN) )
(SEND- TO- MOTCR GOULAR MOVE ?CBIJECT)) )

FRE T T T N R R R R R R I I T B R R R R R R N R N R NN A R R R R R NI |

;; THESE TWD RULES SHOULD MATCH EXCEPT FCOR " PRESS PUNCH' AND "MENU STYLE'.

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

( PRESS- MOUSE- BUTTON- TO- SHOW MENU
IF

(( STRATEGY MENU STYLE | S WALKI NG

(QAL DO MENU TASK)

(STEP CLI K GO BOX AND MOVE GAZE TO FI RST RANDOM MENU LOCATI ON)
(W/ GO BOX | S ?CBIECT)
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(MOTOR MANUAL PROCESSCR FREE)

(MOTCR OCULAR PROCESSCR FREE) )

THEN

(( SEND- TO MOTCR MANUAL PERFCRM PRESS MOUSE- BUTTQN)
(ADDDB (WM OURRENT- | TEM | S START- PCSI TI ON) )
(DELDB (WM GO BOX | S ?CBIECT))))

PRI I R R R R R R R R R R N R R N R R R R N R R AR RN R R R NI |

( PUNCH MOUSE- BUTTON- TO- SHOW MENU

IF

(( STRATEGY MENU STYLE | S CLI CK- CPEN)

(QAL DO MENU TASK)

(STEP CLI K GD BOX AND MOVE GAZE TO FI RST RANDOM MENU LOCATI ON)
(W/ GO BOX | S ?CBIECT)

(MOTCR MANUAL PROCESSCR FREE)

(MOTCR OCULAR PROCESSCR FREE) )

THEN

(( SEND- TO MOTCR MANUAL PERFORM PUNCH MOUSE- BUTTCN)
( ADDDB WV OURRENT- | TEM | S START- PCSI TI OV) )
(DELDB (W GO BOX |'S ?CBIECT))))

PRI I R R R R R R R R R R N R R N R R R R N R R AR RN R R R NI |

( SACCADE- TO RANDOM LOCATI ON
;; Saccade to the randomy chosen naned | ocation of the first saccade.
| F
((GOAL DO MENU TASK)
(STEP CLI &K GO BOX AND MOVE GAZE TO FI RST RANDOM MENU LOCATI ON)
(MOTOR OCOULAR PROCESSCR FREE)
)
THEN
((DELDB (STEP QLI &K GO BOX AND MOVE GAZE TO FI RST RANDOM MENU LOCATI CN) )
( ADDDB ( STEP RANDOM SEARCH FCR TARGET) )
( SEND- TO- MOTOR OOULAR MOVE FI RST- FI XATI ON- LOCATI ON) ) )

( PREPARE- PO NT

;; As soon as possible after punch, prepare for nouse novenent.
I F

((GAL DO MENU TASK)

( STEP RANDCM SEARCH FCR TARCET)

(WY CURRENT- | TEM | S START- PCsIl Tl ON)

(M SUAL ?FI RST-1 TEM | S- BELON NOTH NG ; critical path
(M SUAL ?FI RST-1 TEM | S- ABOVE ?SECOND- | TEM) ; critical path
(WM OURSCR | S ?CURSOR)

(MOTCR MANUAL PROCESSCR FREE) )

THEN

(( SEND- TO MOTOR MANUAL PREPARE POl NT Rl GHT ?0URSCR ?SECOND- | TEV) ) )

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

( FI RST- SACCADE- TO RANDOM | TEM NOT- | N FOVEA

;; Make first saccade to randomitemnot currently in the fovea.

| F

((GOAL DO MENU TASK)

( STEP RANDOM SEARCH FCR TARGET)

(WM CURRENT- | TEM | S START- PCBI TI QN)

(M SUAL ?CBJIECT | N-MENU YES)

(M SUAL ?CBJECT FOVEA NO ;7 Next object can't be in the fovea now
( RANDOWMLY- CHOOSE- ONE ?CBJECT)

(MOTCR QCOULAR PROCESSCR FREE)

)
THEN
(( DELDB (W CURRENT- | TEM | S START- POSI TI ON))

(ADDDB (WM OURRENT- | TEM | S 2CBJECT))
( SEND- TO- MOTOR COULAR MOVE ?CBJECT)))
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FRE T T T R R R R R R R I I T T R R R R N R N R N R N N A R R R R R R NI |

( SACCADE- TO RANDOM | TEM NOT- | N FOVEA

;; Saccade to randomitemnot currently in the fovea.

I F

((GAL DO MENU TASK)

( STEP RANDCM SEARCH FCR TARCET)

(WY CURRENT- | TEM | S ?LAST- CBJECT)

o Wait until it has been established that the newitemis in the fovea.
;3 CGherwise, the foveal info of the other objects is not correct yet either.
(M SUAL ?LAST- CBJECT FOVEA YES)

(V1 SUAL ?CBIECT | N-MENU YES)

(VI SUAL ?CBIECT FO/EA NO ;; (bject can't be in the fovea now.

( RANDOMLY- CHOOSE- ONE  ?CBJECT)

(MOTCR OCULAR PROCESSCR FREE))

THEN

((DELDB (W CURRENT- | TEM | S ?LAST- CBJECT))

( ADDDB (VW OURRENT- | TEM | S ?CBJECT))

(SEND- TO MOTCR COULAR MOVE ?CBJECT) ))

( TARGET- | S- LOCATED- STCP- SCANNI NG

;; Decides you found the itemduring the visual sweep. 10/26/95 -ajh
;; This extra rule prevents two ocul ar commands bei ng sent at sane time.
IF

((GAL DO MENU TASK)

(STEP RANDCM SEARCH FCR TARGET)

(WM TARGET-TEXT IS ?T)

(M SUAL ?TARGET- CBJECT LABEL ?T)

(M SUAL ?TARCGET- CBJECT | N MENU YES) ;; Don't react to the precue!
)

THEN

((DELDB ( STEP RANDOM SEARCH FOR TARCET))

(ADDDB ( STEP MOVE- GAZE- AND- CURSCR- TO TARGET) )

(ADDDB (WM TARCGET- GBJECT | S ?TARGET- CBIECT))))

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

( SCANNI NG | S- STCPPED- MOVE- GAZE- AND- OURSCR- TO- TARGET
=
((GOAL DO MENU TASK)
(STEP MOVE- GAZE- AND- OURSCR: TO- TARGET)
(\W\ TARGET- OBJECT | S ?TARGET- CBJECT)
(W CURSCR |'S ?CURSCR- CBJECT)
(MOTCR OOULAR PROCESSCR FREE)
(MOTCR MANUAL PROCESSCR FREE) )
THEN
((DELDB ( STEP MOVE- GAZE- AND- CURSCR- TO- TARGET) )
(ADDDB ( STEP RELEASE CR PUNCH MDUSE BUTTON) )
( SEND- TO MOTCR GOULAR MOVE ?TARGET- CBJECT)
( SEND- TO MOTOR MANUAL PERFCRM POl NT Rl GHT 2CURSCR- CBJECT 2TARGET- CBJECT) ) )

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

THESE TWD RULES SHOULD MATCH EXCEPT FCR " RELEASE PUNCH' AND "MENU STYLE'.

IR R N R R R R R N T N N R R N R N A A N A A R R NI |

( RELEASE- MOUSE- BUTTON- O\ TARGET
=

(( STRATEGY MENU STYLE |'S WALKI NG

(GOAL DO MENU TASK)

(STEP RELEASE OR PUNCH MOUSE BUTTQN)

(MOTCR MANUAL PROCESSCR FREE) )

THEN

(( SEND- TO- MOTCR MANUAL PERFORM RELEASE MOUSE- BUTTCN)
(DELDB ( STEP RELEASE CR PUNCH MDUSE BUTTON))
(ADDDB (STEP WAI T FOR GO BOX))
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(ADDDB ( STEP CLEANUP))))

1111111111111111111111111111111111111111

( PUNCH MOUSE- BUTTON- ON- TARGET

IF

(( STRATEGY MENU STYLE | S CLI CK- CPEN)

(QOAL DO MENU TASK)

(STEP RELEASE CR PUNCH MOUSE BUTTQN)

(MOTCR MANUAL PROCESSCR FREE) )

THEN

(( SEND- TO- MOTCR MANUAL PERFCRMV PUNCH MOUSE- BUTTCN)
(DELDB ( STEP RELEASE CR PUNCH MOUSE BUTTON))
(ADDDB (STEP WAI T FCR GO BOX))

(ADDDB ( STEP CLEANUP))))

1111111111111111111111111111111111111111

11111111111111111111111111111111

;these rules clean up whatever needs to be cleaned up after the response
( CLEANUP- STEP- CLEANUP

I F

((G0AL DO MENU TASK)

(STEP CLEANWP))

THEN

((DELDB (STEP CLEANUP))))

( CLEANUP- TARGET- CBJECT
IF

((GOAL DO MENU TASK)

(STEP CLEANUP)

(WM TARGET- CBJECT | S ?CBIJECT))

THEN

(( DELDB (W TARGET- CBJECT |'S ?CBJECT))))

( CLEANUP- CURRENT- | TEM

IF

((GOAL DO MENU TASK)

(STEP CLEANUP)

(W] CURRENT- 1 TEM | S ?X))

THEN

((DELDB (W CURRENT-1 TEM 1S ?2X))))

( CLEANUP- PRECUE
=

((GOAL DO MENU TASK)

(STEP CLEANUP)

(W PRECLE 1S ?X))

THEN

((DELDB (W PRECLE 1S ?X))))

( CLEANUP- TARGET- TEXT
IF

((GOAL DO MENU TASK)

(STEP CLEANUP)

(W TARGET- TEXT 1S 2X))

THEN

((DELDB (W TARGET- TEXT 1S ?X))))
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APPENDIX D
THE PARALLEL PROCESSING SYSTEMATIC SEARCH STRATEGY

R T T T R R R R R R I T T R R R R R R R N R I B B R R R R R R N R R I R R R R R R R R R R B B N R N N R R N R R R N SRR R R R R RN

75 NLSEN 1.2.7.PRS By Anthony Hor nof

i 8/ 24/ 96

7, Systematic top-to-bottom fixate on each, serial decision.

Eye starts on any randomy chosen itemthat insures the first item
will fall in fovea.

IR R N R R R R R N N I N A A R N R R A A N A R R R NI |

(CHA CE-Start

I F

((GAL DO MENU TASK)

(NOT (Wv MENU TASK UNDERWMAY) ) )

THEN

((ADDDB (VW MENU TASK UNDERWAY) )
(SEND- TO MOTCR COULAR Dl SABLE REFLEX)
(SEND- TO MOTCR OOULAR DIl SABLE CENTER NG
( SEND- TO- MOTOR MANUAL RESET MEMORY)

( ADDDB ( STEP | DENTI FY- QURSCR) ) ))

IR R N R R R R R N T N N R R N R N A A N A A R R NI |

( START- CURSCR- TRACKI NG

IF

((GOAL DO MENU TASK)

( STEP | DENTI FY- CURSCR)

(VI SUAL ?CBJECT SHAPE CROSS))

THEN

(( DELDB ( STEP | DENTI FY- CURSCR) )

(ADDDB (STEP WAI T FCR GO BOX))

(ADDDB (WM OURSCR | S ?CBIECT) )

(DELDB (V1 SUAL ?CBJECT DETECTI ON ONSET))))

(LOK- AT- GO BOX

;5 Just looks at the visual object that appears next.
IF

((GAL DO MENJ TASK)

(STEP WA T FCR GO BOX)

(VI SUAL ?CBIECT DETECTI ON ONSET)
(USE- O\LY- ONE ?CBJECT)

(MOTOR OCULAR PROCESSCR FREE) )

THEN

((DELDB (STEP WAIT FCR QO BCX))
(ADDDB ( STEP VER FY GO BOX TEXT))
(SEND- TO MOTCR COULAR MOVE ?CBJECT) ))

FRE T T T N R R R R R R I I T B R R R R R R N R N R NN A R R R R R NI |

(VER FY- QO BOX
;3 Verify the newthing that appeared really is the GO box.
I F

((GAL DO MENU TASK)

(STEP VER FY GO BOX TEXT)

(M SUAL ?CBJECT LABEL Q)

(MOTOR OCULAR PROCESSCR FREE) )

THEN

((DELDB (STEP VER FY GO BOX TEXT))

(ADDDB ( STEP MOVE CURSCR TO GO BOX))

(ADDDB (W GO BOX | S ?CBJECT))
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( SEND- TO- MOTOR COULAR MOVE ?CBJECT)))

( MOVE- CURSCR- TO- GO BOX
I F
((GOAL DO MENU TASK)
(STEP MDVE OURSCR TO GO BOX)
(WV CURSCR |'S 2CURSCR- CBJECT)
(W GO BOX |'S ?TARGET- CBJECT)
(MOTCR MANUAL PROCESSCR FREE)
)
THEN
(( SEND- TO- MOTCR MANUAL PERFCRM PQI NT Rl GHT ?CURSCR- CBJECT ?TARGET- CBJECT)
(DELDB ( STEP MOVE OURSCR TO GO BOX))
(ADDDB ( STEP MOVE GAZE TO TARGET PRECLE))))

( MOVE- GAZE- TO TARCGET- PRECUE

;; After the precue has appeared with its onset, nove the eyes to it.
;; But only nmove eyes to it if it is just above the GO BOX
IF

((GAL DO MENU TASK)

(STEP MOVE GAZE TO TARGET PRECUE)

(WM QO BOX | S ?G0 BOX)

(M SUAL ?CBIECT | S- ABOVE ?G0 BOX)

(MOTOR OOULAR PROCESSCR FREE) )

THEN

((DELDB ( STEP MOVE GAZE TO TARGET PRECUE))
(ADDDB (STEP GET TARGET PRECUE))

(ADDDB (WM PRECUE | S ?CBJECT))

(SEND- TO MOTCR COULAR MOVE ?CBJECT) ))

;; Put the text of the precue object into Was the target text.
I F

(( QAL DO MENJ TASK)

(STEP GET TARGET PRECUE)

(WM PRECLUE | S ?CBJECT)

(VI SUAL ?CBIECT LABEL ?PRECUE- TEXT))

THEN

((DELDB (STEP CGET TARCET PRECLE))

(ADDDB ( STEP MOVE GAZE BACK TO QGO BOX))

(ADDDB (WM TARCGET- TEXT | S ?PRECUE- TEXT))))

( MOVE- GAZE- BACK- TO GO BOX

;; Move gaze back in preparation to start the trial.
| F

((GOAL DO MENU TASK)

(STEP MOVE GAZE BACK TO QD BOX)

(WM QO BOX | S ?CBJECT)

( MOTOR OCULAR PROCESSCR FREE) )

THEN

((DELDB ( STEP MOVE GAZE BACK TO QO BOX))

(ADDDB ( STEP CLI CK GO BOX AND MOVE GAZE TO FI RST MENU LCCATI ON))
(SEND- TO- MOTCR GOULAR MOVE ?CBIJECT)) )

FRE T T T N R R R R R R I I T B R R R R R R N R N R NN A R R R R R NI |

;; THESE TWD RULES SHOULD MATCH EXCEPT FCOR " PRESS PUNCH' AND "MENU STYLE'.

PR I R R R R R R R R R N R N R R R R N R R AN RN R R R NI |

;; Start trial. Have subject wait |ong enough for ocul ar notor
;; processor to be free, to nake sure the next rule is not del ayed
;; due to pre-trial activity. The subject can wait here anyway as
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;; they menorize the precue.

FRE T T T R R R R R R R I I T T R R R R N R N R N R N N A R R R R R R NI |

( PRESS- MOUSE- BUTTON- TO- SHOW MENU

IF

(( STRATEGY MENU STYLE |'S WALKI NG

(GOAL DO MENU TASK)

(STEP CLI CK GD BOX AND MOVE GAZE TO FI RST MENU LOCATI ON)
(W GO BOX |'S ?CBJECT)

(MOTCR MANUAL PROCESSCR FREE)

(MOTCR OCULAR PROCESSCR FREE) )

THEN

(( SEND- TO- MOTCR MANUAL PERFCRM PRESS MOUSE- BUTTCN)
(ADDDB ( STEP PREPARE PO NT TO TARGET))

(DELDB (WV GO BOX | S ?CBIECT))))

IR R N R R R R R N N I N A A R N R R A A N A R R R NI |

( PUNCH MOUSE- BUTTON- TO- SHOW MENU

=

(( STRATEGY MENU STYLE |'S CLI CK- CPEN)

(GOAL DO MENU TASK)

(STEP OLI K GD BOX AND MOVE GAZE TO FI RST MENU LOCATI ON)
(W GO BOX | S ?CBIECT)

(MOTCR MANUAL PROCESSCR FREE)

(MOTOR COULAR PROCESSCR FREE))

THEN

(( SEND- TO- MOTCR MANUAL PERFCRM PUNCH MOUSE- BUTTCN)
(ADDDB ( STEP PREPARE POl NT TO TARGET))

(DELDB (W GO BOX |'S ?2CBIECT))))

IR R N R R R R R N T N N R R N R N A A N A A R R NI |

( SACCADE- TO FI RST- LOCATI ON

;; Move eye to named | ocation of the first fixation.

IF

((Q0AL DO MENU TASK)

(STEP CLI CK GO BOX AND MOVE GAZE TO FI RST MENU LCCATI ON)
(MOTCR OCOULAR PROCESSCR FREE))

THEN

((DELDB (STEP LI &K GO BOX AND MOVE GAZE TO FI RST MENU LQCATI QV) )
(ADDDB ( STEP VI SUAL- SVEEEP) )

(SEND- TGO MOTCR OCULAR MOVE FI RST- FI XATI ONF LOCATI ON)
(ADDDB (WM CURRENT-1 TEM | S FI RST-FI XATIQN) ) ))

( PREPARE- PO NT- NEW

;; As soon as possible after press or first punch, prepare for nouse nmovenent.
IF

((GOAL DO MENU TASK)

(STEP PREPARE PO NT TO TARGET)

(WY QURSCR | S ?CURSCR- CBJECT)

( MOTCR MANUAL PROCESSCR FREE) )

THEN

((DELDB ( STEP PREPARE PO NT TO TARCET))

(SEND- TO MOTCR MANUAL PREPARE PO NT R GHT ?CURSCR- CBJECT | TEM LOCATI ON-3) ) )

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

( SACCADE- TO NEXT- SWEEP- | TEM

;; Saccade down in the list and stay in sweepi ng node.

| F

((GOAL DO MENU TASK)

( STEP M1 SUAL- SWEEP)

(WM CURRENT- | TEM | S ?CBJECT)

(NOT (M SUAL ?CBJECT |S-ABOVE NOTHNG) ;; sit on last item

(DI FFERENT ?CBJECT ?NEXT- OBJECT) ;; wait until new next is prepared
(M SUAL QLCBAL- FEATURE NEXT- SWEEP- | TEM ?NEXT- CBJECT)
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(MOTCR COULAR PROCESSCR FREE))

THEN

(( DELDB (W CURRENT- | TEM | S ?CBIECT))

( ADDDB WV OURRENT- | TEM | S ?NEXT- CBJECT) )
( SEND TO- MOTOR CCOULAR MOVE ?NEXT- CBJECT) ) )

PRI I R R R R R R R R R R N R R N R R R R N R R AR RN R R R NI |

( TARCGET- | S- LOCATED- STCP- SCANNI NG

;; Decides you found the itemduring the visual sweep. 10/26/95 -ajh

;; This extra rule prevents two ocul ar commands bei ng sent at same time.
I F

((GAL DO MENU TASK)

(STEP VI SUAL- SWEEP)

(WV TARGET- TEXT 1S ?T)

(V1 SUAL ?TARGET- CBIECT LABEL ?T)

(NOT (M SUAL ?TARGET- CBJECT | N-MENU NO)) ;; Don't react to the precue!

)
THEN

((DELDB ( STEP VI SUAL- SWEEP) )

(ADDDB ( STEP MDVE- GAZE- AND- CURSCR- TO TARGET) )
(ADDDB (WM TARGET- CBJECT | S ?TARGET- GBJECT))))

FRE T T T R R R R R R R I I T T R R R R N R N R N R N N A R R R R R R NI |

( SCANNI NG | S- STCPPED- MOVE- GAZE- AND- OURSCR- TO- TARGET
IF
((GOAL DO MENU TASK)
( STEP MOVE- GAZE- AND- OURSCR: TO- TARGET)
(W TARGET- CBJECT | S ?TARGET- CBJECT)
(W\ CURSCR |'S ?CURSCR- CBJECT)
(MOTCR OCULAR PROCESSCR FREE)
(MOTCR MANUAL PROCESSCR FREE) )
THEN
((DELDB ( STEP MOVE- GAZE- AND- CURSCR- TO- TARGET) )
(ADDDB ( STEP RELEASE CR PUNCH MDUSE BUTTON) )
( SEND- TO MOTOR GOULAR MOVE ?TARGET- CBJECT)
( SEND- TO MOTOR MANUAL PERFCRM POl NT R GHT  2CURSCR- CBJECT ?TARGET- CBJECT) ) )

FRE T T T N R R R R R R I I T B R R R R R R N R N R NN A R R R R R NI |

;; THESE TWD RULES SHOULD MATCH EXCEPT FCR " RELEASE PUNCH' AND "MENU STYLE'.

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

( RELEASE- MOUSE- BUTTON- O\ TARGET

IF

(( STRATEGY MENU STYLE |'S WALKI NG

(QAL DO MENU TASK)

(STEP RELEASE OR PUNCH MOUSE BUTTQN)

(MOTCR MANUAL PROCESSCR FREE) )

THEN

(( SEND- TO- MOTCR MANUAL PERFCRM RELEASE MOUSE- BUTTCN)
(DELDB ( STEP RELEASE CR PUNCH MDUSE BUTTON))
(ADDDB (STEP WAI T FCR GO BOX))

(ADDDB ( STEP CLEANUP))))

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

( PUNCH MOUSE- BUTTON- O\ TARGET

IF

(( STRATEGY MENU STYLE | S CLI CK- CPEN)

(QAL DO MENU TASK)

(STEP RELEASE OR PUNCH MOUSE BUTTQN)
(MOTCR MANUAL PROCESSCR FREE) )

THEN

(( SEND- TO- MOTCR MANUAL PERFCRM PUNCH MOUSE- BUTTCN)
(DELDB ( STEP RELEASE CR PUNCH MDUSE BUTTON))
(ADDDB (STEP WAI T FCR GO BOX))

(ADDDB ( STEP CLEANUP))))

PR I R R R R R R R R R N R N R R R R N R R AN RN R R R NI |
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;these rules cleans stuff up after the response
( CLEANUP

I F

((G0AL DO MENU TASK)

(STEP CLEANUP)

(WM TARCGET- CBJECT | S ?CBJECT)

(WM QURRENT- I TEM | S ?X)

(WM PRECLE | S ?Y)

(WM TARCGET-TEXT | S ?2))

THEN

((DELDB (WV CQURRENT-I TEM | S ?X))
(DELDB (WM TARCET- GBJECT | S ?CBJECT))
(DELDB ( STEP CLEANWP))

(DELDB (WM PRECLUE IS ?Y))
(DELDB (WM TARCET-TEXT 1S ?2))))



132

APPENDIX E
THE IMMEDIATE LOOK, POINT, AND CLICK STRATEGY

R T T T R R R R R R I T T R R R R R R R N R I B B R R R R R R N R R I R R R R R R R R R R B B N R N N R R N R R R N SRR R R R R RN

;5 NLSEN 1. 3.22. PRS By Anthony Hor nof
;. 5/28/98

IR R N R R R R R N N I N A A R N R R A A N A R R R NI |

(CHA CE-Start

I F

((GAL DO MENU TASK)

(NOT (Wv MENU TASK UNDERWMAY) ) )

THEN

((ADDDB (W MENU TASK UNDERWAY) )
(SEND- TO MOTCR COULAR Dl SABLE REFLEX)
(SEND- TO MOTCR OOULAR DI SABLE CENTER NG
( SEND- TO- MOTOR MANUAL RESET MEMORY)

( ADDDB ( STEP | DENTI FY- QURSCR))))

IR R N R R R R R N T N N R R N R N A A N A A R R NI |

( START- CURSCR- TRACKI NG
IF

((GOAL DO MENU TASK)

( STEP | DENTI FY- CURSCR)

(VI SUAL ?CBJECT SHAPE CROSS))

THEN

(( DELDB ( STEP | DENTI FY- CURSCR) )

(ADDDB (STEP WAI T FCR GO BOX))

(ADDDB (WM OURSCR | S ?CBJECT) )

(DELDB (V1 SUAL ?CBJECT DETECTI ON ONSET))))

(LOK- AT- GO BOX

;5 Just looks at the visual object that appears next.
IF

((G0AL DO MENJ TASK)

(STEP WA T FCR GO BOX)

(VI SUAL ?CBIECT DETECTI ON ONSET)

(M SUAL ?CBJECT | N MENU NO ;; so it does not look at a nenu item
(USE- O\LY- ONE ?CBJECT)

(MOTOR OCULAR PROCESSCR FREE) )

THEN

((DELDB (STEP WAI T FOR QO BOX))

(ADDDB ( STEP VER FY GO BOX TEXT))

(SEND- TO MOTCR COULAR MOVE ?CBJECT) ))

IR R N R R R R R N T N N R R N R N A A N A A R R NI |

(VER FY- GO BOX
;3 Verify the newthing that appeared really is the GO box.
IF

((G0AL DO MENJ TASK)

(STEP VER FY QGO BOX TEXT)

(VI SUAL ?CBIECT LABEL QO

(MOTCR OCULAR PROCESSCR FREE) )

THEN

((DELDB (STEP VER FY QO BOX TEXT))

(ADDDB ( STEP MOVE CQURSCR TO GO BOX) )

(ADDDB (Wv GO BOX | S ?CBJECT))))

PR I R R R R R R R R R N R N R R R R N R R AN RN R R R NI |
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( MOVE- OURSCR- TO- GO BOX
I F

((GOAL DO MENU TASK)
(STEP MOVE OURSCR TO GO BOX)
(W OURSCR | 'S ?CURSCR- CBJECT)
(W GO BOX |'S ?TARGET- CBJECT)
(MOTOR MANUAL PROCESSCR FREE)

)

THEN

(( SEND- TO- MOTCR MANUAL PERFCRM PAI NT Rl GHT ?CURSCR- CBJECT ?TARGET- CBJECT)
(DELDB ( STEP MOVE OURSCR TO GO BOX))

(ADDDB ( STEP MOVE GAZE TO TARGET PRECLE))))

( MOVE- GAZE- TO TARCGET- PRECUE

;; After the precue has appeared with its onset, nove the eyes to it.
;; But only nmove eyes to it if it is just above the GO BOX
IF

((GAL DO MENU TASK)

(STEP MOVE GAZE TO TARGET PRECUE)

(WM QO BOX | S ?G0 BOX)

(M SUAL ?CBIECT | S- ABOVE ?G0 BOX)

(MOTOR OOULAR PROCESSCR FREE) )

THEN

((DELDB ( STEP MOVE GAZE TO TARGET PRECUE))
(ADDDB (STEP GET TARGET PRECUE))

(ADDDB (WM PRECUE | S ?CBJECT))

(SEND- TO MOTCR COULAR MOVE ?CBJECT) ))

;; Put the text of the precue object into Was the target text.
I F

(( QAL DO MENJ TASK)

(STEP GET TARGET PRECUE)

(Wv PRECLUE | S ?CBJECT)

(VI SUAL ?CBIECT LABEL ?PRECUE- TEXT))

THEN

((DELDB (STEP CGET TARCET PRECLE))

(ADDDB ( STEP MOVE GAZE BACK TO QGO BOX))

(ADDDB (WM TARCGET- TEXT | S ?PRECUE- TEXT))))

( MOVE- GAZE- BACK- TO GO BOX

;; Move gaze back in preparation to start the trial.
| F

((GOAL DO MENU TASK)

(STEP MOVE GAZE BACK TO QD BOX)

(WM QO BOX | S ?CBJECT)

( MOTOR OCULAR PROCESSCR FREE) )

THEN

((DELDB ( STEP MOVE GAZE BACK TO QO BOX))
(ADDDB ( STEP PREPARE EXACTLY CORRECT EYE MOVEMENT))
(DELDB (Wv QO BOX | S ?CBJECT))

(SEND- TO MOTCR GOULAR MOVE ?CBIJECT)) )

( PREPARE- EXACTL Y- OCRRECT- EVE- MOVEMENT
;; Prepare the eye nmoverment to the exactly correct |ocation.
I F
(( QAL DO MENJ TASK)
( STEP PREPARE EXACTLY CCORRECT EYE MOVEMENT)
(MOTCOR OCULAR PROCESSCR FREE) )
THEN
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((DELDB ( STEP PREPARE EXACTLY CORRECT EYE MOVEMENT))
(ADDDB ( STEP GET SET))
( SEND- TO MOTCR OCULAR PREPARE  TARGET- LOCATI ON- OCRRECT) ) )

(CEeT-SET

;; Make sure both processors are free.
I F

((GAL DO MENU TASK)

(STEP CGET SET)

(MOTCR OCOULAR PROCESSCR FREE)
(MOTCR MANUAL PROCESSCR FREE) )

THEN

((DELDB (STEP GET SET))

(ADDDB (STEP CLI K ON GO BX))
(ADDDB (STEP MOVE GAZE DI RECTLY TO TARGET))))

IR R N R R R R R N N I N A A R N R R A A N A R R R NI |

;; THESE TWD RULES SHOULD MATCH EXCEPT FCOR " PRESS PUNCH' AND "MENU STYLE'.

FRE T T T R R R R R R R I I T T R R R R N R N R N R N N A R R R R R R NI |

( PRESS- MOUSE- BUTTON- TO- SHOW MENU

IF

(( STRATEGY MENU STYLE |'S WALKI NG

(QOAL DO MENU TASK)

(STEP CLI K ON GO BOX)

(MOTCR MANUAL PROCESSCR FREE) )

THEN

(( SEND- TO- MOTCR MANUAL PERFCRM PRESS MOUSE- BUTTCN)
(DELDB (STEP OLI K ON GO BOX))

(ADDDB ( STEP MOVE CURSCR TO TARGET))))

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

( PUNCH MOUSE- BUTTON- TO- SHOW MENU
IF

(( STRATEGY MENU STYLE | S CLI CK- CPEN)

(QAL DO MENU TASK)

(STEP CLI CK ON GO BOX)

(MOTCR MANUAL PROCESSCR FREE) )

THEN

(( SEND- TO- MOTCR MANUAL PERFCRM PUNCH MOUSE- BUTTCN)
(DELDB (STEP CLI OK ON GO BOX))

(ADDDB ( STEP MOVE OURSCR TO TARGET))))

’(”Hl-gq’zifl-i:]’i?:E&i_’Yiil"O,ll"””H””H”’
I F

((GOAL DO MENU TASK)
(STEP MOVE GAZE DI RECTLY TO TARGET)

(MOTCR OCULAR PROCESSCR FREE) )

THEN

((DELDB (STEP MOVE GAZE DI RECTLY TO TARGET))

( SEND- TO- MOTOR COULAR MOVE TARGET- LOCATI O\ CCRRECT) ) )

IR R N R R R R R N T N N R R N R N A A N A A R R NI |

( MOVE- CURSCR: DI RECTLY- TO- TARGET
IF
((GOAL DO MENU TASK)
(STEP MDVE OURSCR TO TARGET)
(WM OURSCR | S ?0URSOR- CBIECT)
(MOTOR MANUAL PROCESSCR FREE) )
THEN
((DELDB (STEP MOVE CURSCR TO TARGET))
( ADDDB ( STEP CLI CK ON TARGET))
( SEND- TO MOTCR MANUAL PERFCRM POl NT R GHT ?CURSCR- CBJECT  TARGET- LOCATI ON- CORRECT) ) )
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FRE T T T R R R R R R R I I T T R R R R N R N R N R N N A R R R R R R NI |

;; THESE TWD RULES SHOULD MATCH EXCEPT FCR " RELEASE PUNCH' AND "MENU STYLE'.

PRI R R R R R R R R R R N R N N R R R R N R R AN RN R R R NI |

( RELEASE- MOUSE- BUTTON- O\ TARGET
IF

(( STRATEGY MENU STYLE | S WALKI NG

(QAL DO MENU TASK)

(STEP CLI K ON TARGET)

(MOTCR MANUAL PROCESSCR FREE) )

THEN

(( SEND- TO- MOTCR MANUAL PERFCRM RELEASE MOUSE- BUTTCN)
(DELDB (STEP CLI K ON TARGET))

(ADDDB (STEP WAI T FCR GO BOX))

(ADDDB ( STEP CLEANUP))))

PRI I R R R R R R R R R R N R R N R R R R N R R AR RN R R R NI |

( PUNCH MOUSE- BUTTON- O\ TARGET
IF

(( STRATEGY MENU STYLE | S CLI CK- CPEN)

(QAL DO MENU TASK)

(STEP CLI K ON TARGET)

(MOTCR MANUAL PROCESSCR FREE) )

THEN

(( SEND- TO- MOTCR MANUAL PERFCRM PUNCH MOUSE- BUTTCN)
(DELDB (STEP CLI CK ON TARGET))

(ADDDB (STEP WAI T FCR GO BOX) )

(ADDDB ( STEP CLEANUP))))

;these rules clean up whatever needs to be cleaned up after the response
( CLEANUP- STEP

I F

((G0AL DO MENU TASK)

(STEP CLEANUP))

THEN

((DELDB (STEP CLEANUP))))

( CLEANUP- PRECUE

IF

((GOAL DO MENU TASK)

(STEP CLEANUP)

(W PRECLE |'S ?X))

THEN

((DELDB (W/ PRECLE 1S ?X))))

( CLEANUP- TARGET- TEXT

IF

((GOAL DO MENU TASK)

(STEP CLEANUP)

(W TARGET- TEXT 1S 2X))

THEN

((DELDB (W TARGET- TEXT 1S ?X))))
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APPENDIX F

THE IMMEDIATE LOOK, POINT, AND CLICK STRATEGY
WITH SPECIAL CASE FOR POSITION 1

11111111111111111111111111111111111111111111111111111111111111111111111111111111

9/ 9/ 98

11111111111111111111111111111111111111111111111111111111111111111111111111111111

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

(CHA CE-Start

I F

((GAL DO MENU TASK)

(NOT (Wv MENU TASK UNDERWMAY) ) )

THEN

((ADDDB (VW MENU TASK UNDERWAY) )
(SEND- TO MOTCR COULAR Dl SABLE REFLEX)
(SEND- TO MOTCR OOULAR DI SABLE CENTER NG
( SEND- TO- MOTOR MANUAL RESET MEMORY)

( ADDDB ( STEP | DENTI FY- QURSCR) ) ))

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

( START- CURSCR- TRACKI NG

IF

((GOAL DO MENU TASK)

( STEP | DENTI FY- CURSCR)

(VI SUAL ?CBJECT SHAPE CROSS))

THEN

(( DELDB ( STEP | DENTI FY- CURSCR) )

(ADDDB (STEP WAI T FCR GO BOX))

(ADDDB (WM OURSCR | S ?CBIECT) )

(DELDB (V1 SUAL ?CBJECT DETECTI ON ONSET))))

(LOK- AT- GO BOX

;5 Just looks at the visual object that appears next.
IF
((G0AL DO MENJ TASK)

(STEP WA T FCR GO BOX)

(VI SUAL ?CBIECT DETECTI ON ONSET)

(M SUAL ?CBJECT | N MENU NO ;; so it does not look at a nenu item
(USE- O\LY- ONE ?CBJECT)

(MOTOR OCULAR PROCESSCR FREE) )

THEN

((DELDB (STEP WAI T FOR QO BOX))

(ADDDB ( STEP VER FY GO BOX TEXT))

(SEND- TO MOTCR COULAR MOVE ?CBJECT) ))

(VER FY- GO BOX
; Verify the new thing that appeared really is the GO box.
IF
((G0AL DO MENJ TASK)
(STEP VER FY QGO BOX TEXT)
(VI SUAL ?CBIECT LABEL QO
(MOTCR OCULAR PROCESSCR FREE) )
THEN
((DELDB (STEP VER FY QO BOX TEXT))
(ADDDB ( STEP MOVE CQURSCR TO GO BOX) )
(ADDDB (Wv GO BOX | S ?CBJECT))))
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PRI R R R R R R R R R R N R N N R R R R N R R AN RN R R R NI |

( MOVE- OURSCR- TO- GO BOX
I F
((GOAL DO MENU TASK)
(STEP MOVE OURSCR TO GO BOX)
(W OURSCR |'S ?CURSCR- CBJECT)
(W GO BOX |'S ?TARGET- CBJECT)
(MOTOR MANUAL PROCESSCR FREE)
)
THEN
(( SEND- TO MOTCR MANUAL PERFCRM PO NT R GHT ?CURSCR- CBJECT ?TARGET- CBJECT)
(DELDB ( STEP MOVE CURSCR TO GO BOX))
(ADDDB ( STEP MOVE GAZE TO TARGET PRECLE))))

( MOVE- GAZE- TO TARCET- PRECLE
;; After the precue has appeared with its onset, nove the eyes to it.
;; But only nmove eyes to it if it is just above the GO BOX
I F

((G0AL DO MENU TASK)

(STEP MOVE GAZE TO TARGET PRECUE)

(W GO BOX | S ?G0 BOX)

(VI SUAL ?CBIECT | S- ABOVE ?G0 BOX)

(MOTOR OCULAR PROCESSCR FREE) )

THEN

((DELDB ( STEP MOVE GAZE TO TARGET PRECUE))
(ADDDB ( STEP GET TARGET PRECUE))

(ADDDB (WM PRECUE | S ?CBJECT))

(SEND- TO MOTCR COULAR MOVE ?CBJECT) ) )

( GET- TARCGET- PRECLE
;; Put the text of the precue object into WWas the target text.
| F
((GOAL DO MENU TASK)
(STEP GET TARGET PRECLE)
(WM PRECLE | S ?CBJECT)
(M SUAL ?CBJECT LABEL ?PRECUE- TEXT))
THEN
((DELDB (STEP GET TARCGET PREQLE))
( ADDDB ( STEP MOVE GAZE BACK TO GO BOX))
( ADDDB (W TARGET- TEXT |'S ?PRECUE- TEXT))))

( MOVE- GAZE- BACK- TO GO BOX

;; Move gaze back in preparation to start the trial.

I F

((GAL DO MENU TASK)
(STEP MOVE GAZE BACK TO GO BOX)
(Wv GO BOX |'S ?CBIECT)
(MOTCR OCULAR PROCESSCR FREE))

THEN

((DELDB (STEP MOVE GAZE BACK TO GO BOX))
( ADDDB ( STEP DECI DE | F SPECI AL CASE))
(DELDB (WM QO BOX | S ?CBJECT))
( SEND- TO MOTOR OOULAR MOVE ?CBIECT) ) )

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

( DEC! DE- YES- SPEQ AL- CASE
IF

((GOAL DO MENU TASK)

(STEP DECI DE | F SPECI AL CASE)
(\W\ TARGET- TEXT 1S 1))

THEN
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((DELDB ( STEP DEQ DE | F SPECI AL CASE))
ON GO BOX - SPEQI AL CASE))))

f
%
2
Q

PRI R R R R R R R R R R N R N N R R R R N R R AN RN R R R NI |

( DECI DE- NO- SPECI AL- CASE
IF
((GOAL DO MENU TASK)
(STEP DECI DE | F SPECI AL CASE)
(NOT (W TARGET- TEXT 1S 1)))
THEN
((DELDB (STEP DECI DE | F SPECI AL CASE))
( ADDDB ( STEP PREPARE EXACTLY CORRECT EYE MOVEMENT))))

T T T T T O T T T T T T R R T T T T T T R T T T I A R R R R R R R T T I T R R R R R R N N I R N N N A R R R RN RN

;; RULES FCR *YES* SPEQ AL CASE - TARCGET PCsI TION 1.

IR R N R R R R R N N I N A A R N R R A A N A R R R NI |

;; THESE TWD RULES SHOULD MATCH EXCEPT FCOR " PRESS PUNCH' AND "MENU STYLE'.

FRE T T T R R R R R R R I I T T R R R R N R N R N R N N A R R R R R R NI |

( PUNCH MOUSE- BUTTON- TO- SHOW MENU- - TARGET- | S- FI RST- MENU- | TEM
IF
((GOAL DO MENU TASK)
( STRATEGY MENU STYLE |'S QLI CK- CPEN)
(STEP OLI K ON GD BOX - SPECI AL CASE)
(MOTCR MANUAL PROCESSCR FREE) )
THEN
((DELDB (STEP CLICK ON GD BOX - SPEQI AL CASE))
(ADDDB ( STEP PREPARE TO CLI OK ON TARGET - SPEQI AL CASE))
( SEND- TO MOTCR MANUAL  PERFCRM PUNCH MOUSE- BUTTQN) ) )

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

( PRESS- MOUSE- BUTTON TO- SHOW MENU- - TARGET- | S FI RST- MENU- | TEM
=
((GOAL DO MENU TASK)
( STRATEGY MENU STYLE |'S WALKI NG
(STEP CLICK ON GO BOX - SPECI AL CASE)
(MOTOR MANUAL PROCESSCR FREE))
THEN
((DELDB (STEP CLICK ON GD BOX - SPEQI AL CASE))
(ADDDB ( STEP PREPARE TO CLI OK ON TARGET - SPECI AL CASE))
( SEND- TO MOTOR MANUAL PERFCRM PRESS MOUSE- BUTTQN) ) )

FRE T T T N R R R R R R I I T B R R R R R R N R N R NN A R R R R R NI |

;; THESE TWD RULES SHOULD MATCH EXCEPT FOR " PRESS PUNCH' AND "MENU STYLE'.

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

( PREPARE- TO- PUNCH MOUSE- BUTTON- ON- FI RST- MENU- | TEM
IF
((GOAL DO MENU TASK)
( STRATEGY MENU STYLE |'S QLI CK- CPEN)
(STEP PREPARE TO CLI OK ON TARGET - SPECI AL CASE)
(MOTCR MANUAL PROCESSCR FREE) )
THEN
((DELDB ( STEP PREPARE TO CLI CK ON TARGET - SPECI AL CASE))
(ADDDB ( STEP CLI K ON TARGET - SPECI AL CASE))
( SEND- TO MOTCR MANUAL PREPARE PUNCH MOUSE- BUTTQN) ) )

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

( PREPARE- TO- RELEASE- MOUSE- BUTTON- ON- FI RST- MENU- | TEM
IF

((GOAL DO MENU TASK)

( STRATEGY MENU STYLE |'S WALKI NG

(STEP PREPARE TO CLI OK ON TARGET - SPECI AL CASE)
(MOTOR MANUAL PROCESSCR FREE))
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THEN
((DELDB ( STEP PREPARE TO CLI CK ON TARGET - SPECI AL CASE))
(ADDDB ( STEP CLI K ON TARGET - SPECI AL CASE))

( SEND- TO MOTCR MANUAL PREPARE RELEASE MOUSE- BUTTON) ) )

PRI I R R R R R R R R R R N R R N R R R R N R R AR RN R R R NI |

;; THESE TWD RULES SHOULD MATCH EXCEPT FCR "PRESY PUNCH' AND "MENU STYLE'.

IR R N R R R R R N N I N A A R N R R A A N A R R R NI |

( PUNCH MOUSE- BUTTON- ON- FI RST- MENU- | TEM
=
((GOAL DO MENU TASK)
( STRATEGY MENU STYLE |'S CLI CK- CPEN)
(STEP QLI K ON TARGET - SPECI AL CASE)
(VI SUAL ?CBJECT | N- MENU YES)
(VI SUAL ?0BJECT LABEL 1)
(MOTOR MANUAL PROCESSCR FREE))
THEN
((DELDB (STEP CLI OK ON TARGET - SPECI AL CASE))
(ADDDB (STEP WAI T FOR GO BOX))
(ADDDB ( STEP CLEANUP))
( SEND TO- MOTOR MANUAL PERFCRM PUNCH MOUSE- BUTTQN) ) )

IR R N R R R R R N T N N R R N R N A A N A A R R NI |

( RELEASE- MOUSE- BUTTCN- ON- FI RST- MENU- | TEM
=
((GOAL DO MENU TASK)
( STRATEGY MENU STYLE |'S WALKI NG
(STEP OLI OK ON TARGET - SPECI AL CASE)
(VI SUAL ?CBJECT | N MENU YES)
(VI SUAL ?CBJECT LABEL 1)
(MOTOR MANUAL PROCESSCR FREE))
THEN
((DELDB (STEP CLICK ON TARGET - SPECI AL CASE))
(ADDDB (STEP WAI T FOR GO BOX))
(ADDDB ( STEP CLEANUP))
( SEND- TO MOTCR MANUAL  PERFORM RELEASE MOUSE- BUTTON) ) )

R T T T R R R R R R I T T R R R R R R R N R I B B R R R R R R N R R I R R R R R R R R R R B B N R N N R R N R R R N SRR R R R R RN

;5 RULES FOR *NO° SPECI AL CASE - TARCGET PCSI TIONS 2 THROUGH 9.

( PREPARE- EXACTLY- OORRECT- EYE-
;; Prepare the eye novenment to the exactly correct |ocation.
I F
((GAL DO MENU TASK)
(STEP PREPARE EXACTLY CCORRECT EYE MOVEMENT)
( MOTOR OCULAR PROCESSCR FREE) )
THEN
((DELDB ( STEP PREPARE EXACTLY CORRECT EYE MOVEMENT))
(ADDDB (STEP GET SET))
( SEND- TO- MOTCR OCULAR PREPARE TARGET- LOCATI ON- CORRECT) ) )

(CEeT-SET

;; Make sure both processors are free.
I F

((GAL DO MENU TASK)

(STEP CGET SET)

(MOTCR QCOULAR PROCESSCR FREE)
(MOTCR MANUAL PROCESSCR FREE) )

THEN
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((DELDB (STEP GET SET))
(ADDDB ( STEP CLI K ON GO BOX))
(ADDDB ( STEP MOVE GAZE DI RECTLY TO TARGET))))

FRE T T T R R R R R R R I I T T R R R R N R N R N R N N A R R R R R R NI |

;; THESE TWD RULES SHOULD MATCH EXCEPT FOR " PRESS PUNCH' AND "MENU STYLE'.

PRI I R R R R R R R R R R N R R N R R R R N R R AR RN R R R NI |

( PRESS- MOUSE- BUTTON- TO- SHOW MENU
=

(( STRATEGY MENU STYLE |'S WALKI NG

(QAL DO MENU TASK)

(STEP CLI CK ON GO BOX)

(MOTCR MANUAL PROCESSCR FREE) )

THEN

(( SEND- TO- MOTCR MANUAL PERFCRM PRESS MOUSE- BUTTCN)
(DELDB (STEP CLI OK ON GO BOX))

(ADDDB ( STEP MOVE OURSCR TO TARGET))))

IR R N R R R R R N N I N A A R N R R A A N A R R R NI |

( PUNCH MOUSE- BUTTON TO- SHON VENU
=
(( STRATEGY MENU STYLE | S CLI CK- CPEN)
(GOAL DO MENU TASK)
(STEP CLI K ON GO BOX)
(MOTCR MANUAL PROCESSCR FREE) )
THEN
(( SEND- TO- MOTCR MANUAL PERFORM PUNCH MOUSE- BUTTCN)
(DELDB (STEP CLI OK CN GO BOX))
( ADDDB ( STEP MOVE CURSCR TO TARGET))))

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

( MOVE- GAZE- DI RECTLY- TO- TARGET
IF
((GOAL DO MENU TASK)
(STEP MOVE GAZE DI RECTLY TO TARGET)
(MOTCR OCULAR PROCESSCR FREE) )
THEN
((DELDB (STEP MOVE GAZE DI RECTLY TO TARGET))
( SEND- TO MOTCR OCULAR MOVE TARGET- LOCATI ON- GORRECT) ) )

FRE T T T N R R R R R R I I T B R R R R R R N R N R NN A R R R R R NI |

( MOVE- CURSCR- DI RECTLY- TO- TARGET
IF
((GOAL DO MENU TASK)
(STEP MOVE OURSCR TO TARGET)
(WM CURSCR |'S ?CURSCR- CBJECT)
(MOTCR MANUAL PROCESSCR FREE) )
THEN
((DELDB ( STEP MOVE CURSCR TO TARGET))
(ADDDB ( STEP CLI OK CN TARGET))
( SEND- TO MOTOR MANUAL PERFCRM POl NT Rl GHT 2CURSCR- OBJECT  TARGET- LOCATI ON- CORRECT) ) )

FRE T T T N R R R R R R I I T B R R R R R R N R N R NN A R R R R R NI |

;; THESE TWD RULES SHOULD MATCH EXCEPT FCR " RELEASE PUNCH' AND "MENU STYLE'.

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

( RELEASE- MOUSE- BUTTON- O\ TARGET
IF

(( STRATEGY MENU STYLE | S WALKI NG

(QAL DO MENU TASK)

(STEP CLI K ON TARGET)

(MOTOR MANUAL PROCESSCR FREE))

THEN

(( SEND- TO- MOTCR MANUAL PERFCRM RELEASE MOUSE- BUTTCN)
(DELDB (STEP CLI CK ON TARGET))
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(ADDDB (STEP WAI T FOR GO BOX))
(ADDDB ( STEP CLEANUP))))

IR R N R R R R R N N I N A A R N R R A A N A R R R NI |

( PUNCH MOUSE- BUTTON- ON- TARGET
=

(( STRATEGY MENU STYLE | S CLI CK- CPEN)

(GOAL DO MENU TASK)

(STEP CLI K ON TARGET)

(MOTCR MANUAL PROCESSCR FREE) )

THEN

(( SEND- TO- MOTCR MANUAL PERFORM PUNCH MOUSE- BUTTCN)
(DELDB (STEP CLI OK CN TARGET))

(ADDDB ( STEP WAI T FCR GO BOX) )

(ADDDB ( STEP CLEANUP))))

T T T T T O T T T T T T R R T T T T T T R T T T I A R R R R R R R T T I T R R R R R R N N I R N N N A R R R RN RN

;these rul es clean up whatever needs to be cl eaned up after the response
( CLEANUP- STEP

I F

((GAL DO MENU TASK)

(STEP CLEANUP))

THEN

((DELDB (STEP CLEANUP))))

( CLEANUP- PRECUE
=

((GOAL DO MENU TASK)

(STEP CLEANUP)

(W PRECLE 1S ?X))

THEN

((DELDB (W PRECLE 1S ?X))))

( CLEANUP- TARGET- TEXT
IF

((GOAL DO MENU TASK)

(STEP CLEANUP)

(W TARGET- TEXT 1S 2X))

THEN

((DELDB (W TARGET- TEXT 1S ?X))))
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APPENDIX G

THE IMMEDIATE LOOK, POINT, CHECK AND CORRECT STRATEGY
WITH SPECIAL CASE FOR POSITION 1

R T T T R R R R R R I T T R R R R R R R N R I B B R R R R R R N R R I R R R R R R R R R R B B N R N N R R N R R R N SRR R R R R RN

;5 NLSEN 1. 3. 34. PRS By Anthony Hor nof
i 9/1/98

IR R N R R R R R N N I N A A R N R R A A N A R R R NI |

(CHA CE-Start

I F

((GAL DO MENU TASK)

(NOT (Wv MENU TASK UNDERWMAY) ) )

THEN

((ADDDB (VW MENU TASK UNDERWAY) )
(SEND- TO MOTCR COULAR Dl SABLE REFLEX)
(SEND- TO MOTCR OOULAR DI SABLE CENTER NG
( SEND- TO- MOTOR MANUAL RESET MEMORY)

( ADDDB ( STEP | DENTI FY- QURSCR) ) ))

IR R N R R R R R N T N N R R N R N A A N A A R R NI |

( START- OURSCR- TRACKI NG
IF

((GOAL DO MENU TASK)

( STEP | DENTI FY- CURSCR)

(VI SUAL ?CBJECT SHAPE CROSS))
THEN

(( DELDB ( STEP | DENTI FY- CURSCR) )
(ADDDB (STEP WAI T FCR GO BOX))
(ADDDB (WM OURSCR | S ?CBIECT))))

(LOK- AT- GO BOX

;5 Just looks at the visual object that appears next.

I F

((GAL DO MENU TASK)

(STEP WVAI T FCR QO BOX)

(M SUAL ?CBJECT DETECTI ON ONSET)

(M SUAL ?CBJECT | N-MENU NO ;; so it does not look at a previous nenu item
(USE- O\LY- ON\E ?CBJECT) ;7 If cursor is in G box, the precue is already there.
( MOTOR OCULAR PROCESSCR FREE) )

THEN

((DELDB (STEP WAIT FCR QO BOX))

(ADDDB (STEP VER FY GO BOX TEXT))

(SEND- TO MOTCR COULAR MOVE ?CBJECT)))

FRE T T T N R R R R R R I I T B R R R R R R N R N R NN A R R R R R NI |

(VER FY- QO BOX
;3 Verify the newthing that appeared really is the GO box.
I F
((GAL DO MENU TASK)
(STEP VER FY GO BOX TEXT)
(M SUAL ?CBJECT LABEL Q)
(MOTOR OCULAR PROCESSCR FREE) )
THEN
((DELDB (STEP VER FY GO BOX TEXT))
(ADDDB ( STEP MOVE CURSCR TO GO BOX))
(ADDDB (W GO BOX | S ?CBJECT))
( SEND- TO MOTOR OCULAR MOVE ?CBJECT) ) )



143

PRI R R R R R R R R R R N R N N R R R R N R R AN RN R R R NI |

( MOVE- OURSCR- TO- GO BOX
I F
((GOAL DO MENU TASK)
(STEP MOVE OURSCR TO GO BOX)
(W OURSCR |'S ?CURSCR- CBJECT)
(W GO BOX |'S ?TARGET- CBJECT)
(MOTOR MANUAL PROCESSCR FREE)
)
THEN
(( SEND- TO MOTCR MANUAL PERFCRM PO NT R GHT ?CURSCR- CBJECT ?TARGET- CBJECT)
(DELDB ( STEP MOVE CURSCR TO GO BOX))
(ADDDB ( STEP MOVE GAZE TO TARGET PRECLE))))

( MOVE- GAZE- TO TARCET- PRECLE
;; After the precue has appeared with its onset, nove the eyes to it.
;; But only nmove eyes to it if it is just above the GO BOX
I F

((G0AL DO MENU TASK)

(STEP MOVE GAZE TO TARGET PRECUE)

(W GO BOX | S ?G0 BOX)

(VI SUAL ?CBIECT | S- ABOVE ?G0 BOX)

(MOTOR OCULAR PROCESSCR FREE) )

THEN

((DELDB ( STEP MOVE GAZE TO TARGET PRECUE))
(ADDDB ( STEP GET TARGET PRECUE))

(ADDDB (WM PRECUE | S ?CBJECT))

(SEND- TO MOTCR COULAR MOVE ?CBJECT) ) )

( GET- TARCGET- PRECLE
;; Put the text of the precue object into WWas the target text.
| F
((GOAL DO MENU TASK)
(STEP GET TARGET PRECLE)
(WM PRECLE | S ?CBJECT)
(M SUAL ?CBJECT LABEL ?PRECUE- TEXT))
THEN
((DELDB (STEP GET TARCGET PREQLE))
( ADDDB ( STEP MOVE GAZE BACK TO GO BOX))
( ADDDB (W TARGET- TEXT |'S ?PRECUE- TEXT))))

( MOVE- GAZE- BACK- TO GO BOX

;; Move gaze back in preparation to start the trial.

I F

((GAL DO MENU TASK)
(STEP MOVE GAZE BACK TO GO BOX)
(Wv GO BOX |'S ?CBIECT)
(MOTCR OCULAR PROCESSCR FREE))

THEN

((DELDB (STEP MOVE GAZE BACK TO GO BOX))
( ADDDB ( STEP DECI DE | F SPECI AL CASE))
(DELDB (WM QO BOX | S ?CBJECT))
( SEND- TO MOTOR OOULAR MOVE ?CBIECT) ) )

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

(DECI DE- YES- TH S- | S- A- SPEQI AL- CASE
IF

((GOAL DO MENU TASK)

(STEP DECI DE | F SPECI AL CASE)

(\W\ TARGET- TEXT 1S 1))

THEN
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((DELDB ( STEP DEQ DE | F SPECI AL CASE))
ON GO BOX - SPEQI AL CASE))))

f
%
2
Q

PRI R R R R R R R R R R N R N N R R R R N R R AN RN R R R NI |

(DECI DE- NO TH S- | S NOT- A- SPECI AL- CASE
IF

((GOAL DO MENU TASK)

(STEP DECI DE | F SPECI AL CASE)

(NOT (W TARGET- TEXT 1S 1)))

THEN

((DELDB (STEP DECI DE | F SPECI AL CASE))

( ADDDB ( STEP PREPARE EYE MOVEMENT TO LOCATI ON WTH ERROR))))

T T T T T O T T T T T T R R T T T T T T R T T T I A R R R R R R R T T I T R R R R R R N N I R N N N A R R R RN RN

;; RULES FCR *YES* SPEQ AL CASE - TARCGET PCsI TION 1.

IR R N R R R R R N N I N A A R N R R A A N A R R R NI |

;; THESE TWD RULES SHOULD MATCH EXCEPT FCOR " PRESS PUNCH' AND "MENU STYLE'.

FRE T T T R R R R R R R I I T T R R R R N R N R N R N N A R R R R R R NI |

( PUNCH MOUSE- BUTTON- TO- SHOW MENU- - TARGET- | S- FI RST- MENU- | TEM
IF
((GOAL DO MENU TASK)
( STRATEGY MENU STYLE |'S QLI CK- CPEN)
(STEP OLI K ON GD BOX - SPECI AL CASE)
(MOTCR MANUAL PROCESSCR FREE) )
THEN
((DELDB (STEP CLICK ON GD BOX - SPEQI AL CASE))
(ADDDB ( STEP PREPARE TO CLI OK ON TARGET - SPEQI AL CASE))
( SEND- TO MOTCR MANUAL  PERFCRM PUNCH MOUSE- BUTTQN) ) )

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

( PRESS- MOUSE- BUTTON TO- SHOW MENU- - TARGET- | S FI RST- MENU- | TEM
=
((GOAL DO MENU TASK)
( STRATEGY MENU STYLE |'S WALKI NG
(STEP CLICK ON GO BOX - SPECI AL CASE)
(MOTOR MANUAL PROCESSCR FREE))
THEN
((DELDB (STEP CLICK ON GD BOX - SPEQI AL CASE))
(ADDDB ( STEP PREPARE TO CLI OK ON TARGET - SPECI AL CASE))
( SEND- TO MOTOR MANUAL PERFCRM PRESS MOUSE- BUTTQN) ) )

FRE T T T N R R R R R R I I T B R R R R R R N R N R NN A R R R R R NI |

;; THESE TWD RULES SHOULD MATCH EXCEPT FOR " PRESS PUNCH' AND "MENU STYLE'.

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

( PREPARE- TO- PUNCH MOUSE- BUTTON- ON- FIl RST- MENU- | TEM
=
((GOAL DO MENU TASK)
( STRATEGY MENU STYLE |'S CLI OK- CPEN)
(STEP PREPARE TO CLI OK ON TARGET - SPECI AL CASE)
(MOTCR MANUAL PROCESSCR FREE) )
THEN
((DELDB ( STEP PREPARE TO CLI CK ON TARGET - SPECI AL CASE))
(ADDDB ( STEP CLI OK ON TARGET - SPECI AL CASE))
( SEND- TO MOTOR MANUAL PREPARE PUNCH MOUSE- BUTTQN) ) )

IR R N R R R R R N T N N R R N R N A A N A A R R NI |

( PREPARE- TO- RELEASE- MOUSE- BUTTON- ON- FI RST- MENU- | TEM
IF

((GOAL DO MENU TASK)

( STRATEGY MENU STYLE |'S WALKI NG

( STEP PREPARE TO CLI CK ON TARGET - SPECI AL CASE)
(MOTOR MANUAL PROCESSCR FREE) )

THEN
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((DELDB ( STEP PREPARE TO CLI CK ON TARGET - SPECI AL CASE))
( ADDDB ( STEP CLI CK ON TARGET - SPECI AL CASE))
( SEND- TO MOTCR MANUAL PREPARE RELEASE MOUSE- BUTTQN) ) )

IR R N R R R R R N N I N A A R N R R A A N A R R R NI |

;; THESE TWD RULES SHOULD MATCH EXCEPT FCOR " PRESS PUNCH' AND "MENU STYLE'.

FRE T T T R R R R R R R I I T T R R R R N R N R N R N N A R R R R R R NI |

( PUNCH MOUSE- BUTTON- ON- FI RST- MENU- | TEM
IF
((GOAL DO MENU TASK)
( STRATEGY MENU STYLE |'S CLI OK- CPEN)
(STEP CLI CK ON TARGET - SPECI AL CASE)
(VI SUAL ?CBIECT | N- MENU YES)
(VI SUAL ?CBJECT LABEL 1)
(MOTCR MANUAL PROCESSCR FREE) )
THEN
((DELDB (STEP CLICK ON TARGET - SPEQI AL CASE))
(ADDDB (STEP WAI T FCR GO BOX))
(ADDDB ( STEP CLEANUP))
( SEND- TO MOTOR MANUAL  PERFCRM PUNCH MOUSE- BUTTQN) ) )

PRI I R R R R R R R R R R N R R N R R R R N R R AR RN R R R NI |

( RELEASE- MOUSE- BUTTON- ON- FI RST- MENU- | TEM
=
((GOAL DO MENU TASK)
( STRATEGY MENU STYLE |'S WALKI NG
(STEP QLI K ON TARGET - SPECI AL CASE)
(VI SUAL ?CBJECT | N- MENU YES)
(VI SUAL ?0BJECT LABEL 1)
(MOTOR MANUAL PROCESSCR FREE))
THEN
((DELDB (STEP CLI OK ON TARGET - SPECQI AL CASE))
(ADDDB (STEP WAI T FOR GO BOX))
(ADDDB ( STEP CLEANUP))
( SEND- TO- MOTOR MANUAL  PERFCRM RELEASE MOUSE- BUTTQN) ) )

I T T T R T T T T T R R T T T T T I R R I T T I I I R R R R R R R R T T I T R R R R R R N N N R N N N R R R R RN RN ]

;7 RULES FCR *NO* SPECI AL CASE - TARGET PCSI TIONS 2 THROUGH 9.

IR R N R R R R R N T N N R R N R N A A N A A R R NI |

( PREPARE- EYE- MOVEMENT- TO- LOCATI ON- W TH ERRCR
=
((GOAL DO MENU TASK)
(STEP PREPARE EYE MOVEMENT TO LOCATI ON W TH ERRCR)
(MOTOR COULAR PROCESSCR FREE))
THEN
((DELDB ( STEP PREPARE EYE MOVEMENT TO LOCATI ON W TH ERRCR))
(ADDDB (STEP GET SET))
( SEND TO- MOTOR COULAR PREPARE TARGET- LOCATI ON-W TH- ERRCR) ) )

( GET- SET

;; Make sure both processors are free. Note that TWD steps are added here.
I F

((GAL DO MENU TASK)

(STEP CET SET)

(MOTCR QCOULAR PROCESSCR FREE)

(MOTCR MANUAL PROCESSOR FREE) )

THEN

((DELDB (STEP GET SET))

(ADDDB (STEP CLI K ON GO BOX))
(ADDDB ( STEP MOVE GAZE TO LOCATION WTH ERROR))) )



146

FRE T T T R R R R R R R I I T T R R R R N R N R N R N N A R R R R R R NI |

;; THESE TWD RULES SHOULD MATCH EXCEPT FOR " PRESS PUNCH' AND "MENU STYLE'.

PRI R R R R R R R R R R N R N N R R R R N R R AN RN R R R NI |

( PRESS- MOUSE- BUTTON- TO- SHOW MENU
=
(( STRATEGY MENU STYLE |'S WALKI NG
(QAL DO MENU TASK)
(STEP CLI CK ON GO BOX)
(MOTCR MANUAL PROCESSCR FREE) )
THEN
((DELDB (STEP CLI CK ON GD BOX))
(ADDDB ( STEP ATTEMPT TO PO NT TO TARGET))
( SEND- TO MOTOR MANUAL PERFCRM PRESS MOUSE- BUTTQN) ) )

IR R N R R R R R N N I N A A R N R R A A N A R R R NI |

( PUNCH MOUSE- BUTTON- TO- SHOW MENU
=
(( STRATEGY MENU STYLE | S CLI CK- CPEN)
(GOAL DO MENU TASK)
(STEP CLI K ON GO BOX)
(MOTCR MANUAL PROCESSCR FREE) )
THEN
((DELDB (STEP CLICK ON GD BOX))
(ADDDB ( STEP ATTEMPT TO PO NT TO TARGET))
( SEND- TO MOTCR MANUAL  PERFCRM PUNCH MOUSE- BUTTQN) ) )

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

( MOVE- GAZE- TO- LOCATI ON- W TH ERROR
IF
((GOAL DO MENU TASK)
(STEP MOVE GAZE TO LOCATI ON W TH ERROR)
(MOTCR OCULAR PROCESSCR FREE) )
THEN
((DELDB ( STEP MOVE GAZE TO LOCATI ON W TH
( SEND- TO MOTCR OCULAR MOVE TARGET- LOCATI ON- W TH ERRCR) ) )

FRE T T T N R R R R R R I I T B R R R R R R N R N R NN A R R R R R NI |

(PA NT- TO TARGET- LOCATI ON W TH ERRCR

;; Note that TWD steps are added here.

I F

((GAL DO MENU TASK)

(STEP ATTEMPT TO PQ NT TO TARGET)

(WY QURSCR | S ?CURSCR- CBJECT)

(MOTCR MANUAL PROCESSCR FREE) )

THEN

((DELDB (STEP ATTEMPT TO PO NT TO TARGET))

( ADDDB ( STEP PREPARE RELEASE CR PUNCH))

(ADDDB ( STEP FI GURE QUT WHERE FI RST PQA NT LANDED AND WHAT TO DO NEXT))
(SEND- TO MOTCR MANUAL PERFCRM PA NT R GHT ?0URSCR- BJECT TARGET- LOCATI ONW TH

ERRR)))

FRE T T T N R R R R R R I I T B R R R R R R N R N R NN A R R R R R NI |

;; THESE TWD RULES SHOULD MATCH EXCEPT FCR " RELEASE PUNCH' AND "MENU STYLE'.

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

( PREPARE- TO- RELEASE- MOUSE- BUTTON- O\ TARGET
IF
(( STRATEGY MENU STYLE | S WALKI NG

(QAL DO MENU TASK)

( STEP PREPARE RELEASE CR PUNCH)

(MOTCR MANUAL PROCESSCR FREE) )
THEN

(( SEND- TO- MOTCR MANUAL PREPARE RELEASE MOUSE- BUTTCN)
(DELDB ( STEP PREPARE RELEASE CR PUNCH))))
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PRI R R R R R R R R R R N R N N R R R R N R R AN RN R R R NI |

( PREPARE- TO- PUNCH MOUSE- BUTTON- ONF TARGET
=

(( STRATEGY MENU STYLE | S CLI CK- CPEN)

(QAL DO MENU TASK)

( STEP PREPARE RELEASE CR PUNCH)

(MOTCR MANUAL PROCESSCR FREE) )

THEN

(( SEND- TO- MOTCR MANUAL PREPARE PUNCH MOUSE- BUTTCN)
(DELDB ( STEP PREPARE RELEASE CR PUNCH))))

PRI I R R R R R R R R R R N R R N R R R R N R R AR RN R R R NI |

(FI RST- PO NT- M SSES- MENU- ENTI RELY- SO MAKE- A- SECOND- SACCADE- AND- POI NT
IF

((GOAL DO MENU TASK)

(STEP FI GURE OUT WHERE FI RST PA NT LANDED AND WHAT TO DO NEXT)

(W CURSCR |'S ?CURSCR- CBJECT)

(VI SUAL ?0URSCR- OBJECT PA NTS- TO NOTH NG

(MOTCR OOULAR PROCESSCR FREE)

(MOTCR MANUAL PROCESSCR FREE) )

THEN

((DELDB (STEP FI GURE QUT WHERE FI RST PO NT LANDED AND WHAT TO DO NEXT))

(ADDDB ( STEP CLI OK ON TARGET AFTER SECOND P NI))

( SEND- TO MOTCR OOULAR MOVE TARGET- LOCATI ON- CORRECT)

( SEND- TO MOTOR MANUAL PERFCRM POl NT Rl GHT 2CURSCR- CBJECT  TARGET- LOCATI ON- CORRECT) ) )

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

(FI RST- POl NT- M SSES- TARGET- SO MAKE- A- SEOCND- SACCADE- AND- POl NT
IF

((GOAL DO MENU TASK)

(STEP FI GURE OJT WHERE FI RST POl NT LANDED AND WHAT TO DO NEXT)

(WM TARGET- TEXT |'S ?TEXT)

(W CURSCR |' S ?CURSCR- CBJECT)

(VI SUAL ?CQURSCR- CBJECT PA NTS- TO ?SOVETH NG

(VI SUAL ?SOMETH NG LABEL ?OTHER TEXT)

(DI FFERENT ?TEXT ?0THER TEXT)

(MOTOR OOULAR PROCESSCR FREE)

(MOTOR MANUAL PROCESSCR FREE) )

THEN

((DELDB (STEP FI GURE QUT WHERE FI RST PO NT LANDED AND WHAT TO DO NEXT))
(ADDDB ( STEP CLI CK ON TARGET AFTER SECOND PO NT))

( SEND- TO MOTCR OOULAR MOVE TARGET- LOCATI ON- CORRECT)

( SEND- TO MOTCR MANUAL PERFCRM PQINT Rl GHT ?CURSCR- OBJECT TARGET- LOCATI ON- CORRECT) ) )

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

;; THESE TWD RULES SHOULD MATCH EXCEPT FCR "RELEASE PUNCH' AND "MENU STYLE'.

IR R N R R R R R N T N N R R N R N A A N A A R R NI |

(FI RST- POl NT- LANDS- ON- TARGET- SO- RELEASE- MOUSE- BUTTON
=

(( STRATEGY MENU STYLE |'S WALKI NG

(GOAL DO MENU TASK)

(STEP FI GURE OUT WHERE FI RST PA NT LANDED AND WHAT TO DO NEXT)

(VI SUAL ?TARGET- CBJECT LABEL ?TEXT)

(VI SUAL ?0URSCR- CBJECT PQ NTS- TO ?TARGET- CBJECT)

(\W\ TARGET- TEXT | S ?TEXT)

(W CURSCR |'S ?CURSCR- CBJECT)

(MOTCR MANUAL PROCESSCR FREE) )

THEN

(( SEND- TO- MOTCR MANUAL PERFCRM RELEASE MOUSE- BUTTCN)

(DELDB ( STEP FI GURE OUT WHERE FI RST PO NT LANDED AND WHAT TO DO NEXT))
(ADDDB (STEP WAI T FCR GO BOX))

(ADDDB ( STEP CLEANUP))))

PR I R R R R R R R R R N R N R R R R N R R AN RN R R R NI |
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(FI RST- PO NT- LANDS- ON- TARGET- SO PUNCH MOUSE- BUTTON
=

(( STRATEGY MENU STYLE | S CLI CK- CPEN)

(GOAL DO MENU TASK)

(STEP FI GURE OUT WHERE FI RST PA NT LANDED AND WHAT TO DO NEXT)

(VI SUAL ?TARGET- CBJECT LABEL ?TEXT)

(VI SUAL ?0URSCR- OBJECT PQ NTS- TO ?TARGET- CBJECT)

(\W\ TARGET- TEXT | S ?TEXT)

(W\ CURSCR |'S ?CURSCR- CBJECT)

(MOTCR MANUAL PROCESSCR FREE) )

THEN

(( SEND- TO- MOTCR MANUAL PERFCRM PUNCH MOUSE- BUTTCN)

(DELDB ( STEP FI GURE OUT WHERE FI RST PO NT LANDED AND WHAT TO DO NEXT))
(ADDDB (STEP WAI T FCR GO BOX))

(ADDDB ( STEP CLEANUP))))

IR R N R R R R R N N I N A A R N R R A A N A R R R NI |

;; THESE TWD RULES SHOULD MATCH EXCEPT FCR " RELEASE PUNCH' AND "MENU STYLE'.

FRE T T T R R R R R R R I I T T R R R R N R N R N R N N A R R R R R R NI |

( SECCND- POl NT- LANDS- O\ TARGET- SO REL EASE- MOUSE- BUTTON
IF

(( STRATEGY MENU STYLE |'S WALKI NG

(QOAL DO MENU TASK)

(STEP CLI K ON TARGET AFTER SECOND POl NT)

(MOTCR MANUAL PROCESSCR FREE) )

THEN

(( SEND- TO- MOTCR MANUAL PERFCRM RELEASE MOUSE- BUTTCN)
(DELDB ( STEP CLI K ON TARGET AFTER SECOND P NI))
(ADDDB (STEP WAI T FCR GO BOX))

(ADDDB ( STEP CLEANUP))))

FRE T T T N R R R R R R I I T B R R R R R R N R N R NN A R R R R R NI |

( SECOND- POl NT- LANDS- O\ TARGET- SO PUNCH MOUSE- BUTTON
IF

(( STRATEGY MENU STYLE | S CLI CK- CPEN)

(QOAL DO MENU TASK)

(STEP CLI K ON TARGET AFTER SECOND POl NT)

(MOTCR MANUAL PROCESSCR FREE) )

THEN

(( SEND- TO MOTCR MANUAL  PERFCRM PUNCH MOUSE- BUTTQN)
(DELDB ( STEP CLI K ON TARGET AFTER SECOND P NI))
(ADDDB (STEP WAI T FCR GO BOX))

(ADDDB ( STEP CLEANUP))))

PR I R R R R R R R R R R N N N R R R R R R RN AR R R R R NI |

; These rul es clean up what ever needs to be cleaned up after the response
( CLEANUP- STEP
I F
((G0AL DO MENU TASK)
(STEP CLEANWP))
THEN
((DELDB (STEP CLEANUP))))

( CLEANUP- PRECLE

=

((GOAL DO MENU TASK)

(STEP CLEANUP)

(W PRECLE 1S ?X))

THEN

((DELDB (W PRECLE 1S ?X))))

( CLEANUP- TARCET- TEXT
I F
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((GOAL DO MENU TASK)

(STEP CLEANUP)

(WM TARGET- TEXT 1S 2X))

THEN

((DELDB (W TARGET- TEXT 1S ?X))))
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