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Abstract - In target positioning and tracking, most 
sensors provide measurements either as range or bearing 
or both. The measurements are used to update an a priori 
estimate either via a linearized least squares method or an 
extended Kalman filter. In either case, the resulting 
solution has two components, one is related to the 
measurement prediction errors and the other is an 
observation matrix obtained from linearizing the 
nonlinear measurement equations around the a priori 
estimate. This paper studies the geometric factors 
explicitly and relates the observation matrix to the line of 
sight (LOS) vector for a ranging sensor and the direction 
perpendicular to the LOS vector of a bearing-only sensor. 
As a result, the updating of estimation error covariance 
with range and bearing measurements can be intuitively 
assessed via the shaping of estimation error ellipse along 
LOS directions. It provides a valuable means for target 
positioning and tracking performance modeling and 
prediction and can thus be used in active management of 
distributed sensor resources and sensor path planning. 

Keywords: Ranging & Bearing-Only Sensors, Geometry, LOS, GDOP. 

1 Introduction 
Passive and active sensors are widely used in target 
position location and tracking [1, 2, 3, 7, 10]. Passive 
sensors include (1) acoustic sensors that detect ground 
vehicle motion and vibration and (2) imaging sensors that 
capture reflected visible lights or radiated thermal energy 
from a target. In addition to signatures characteristic to 
targets for possible identification, these passive sensors 
also measure the direction of arrival of the mechanic or 
electromagnetic signals of the targets in terms of their 
bearing angles relative to the sensor platforms for 
positioning and tracking. Additional examples include 
passive sonar sensors for underwater applications and 
passive radar sensors for space observations [8].  

Active sensors include radar, laser radar, and active sonar. 
By measuring the round trip time of flight of an energy 
pulse, active sensors provide range measurements to targets. 
Time difference of arrival (TDOA) is a common technique 
for differential range calculations. Some active sensors also 
measure the angles of arrival (AOA) of returned pulse or 
the direction in which the transmit beam is pointed. 
Monopulse and antenna array techniques provide more 
accurate angular measurements than mechanically scanned 
antennas. Other active sensors are capable of extracting the 
Doppler frequency shifts impacted by target motion, thus 
measuring the range rate. 

According to the type of measurements, most sensors used 
in target positioning and tracking can be viewed as 
measuring either range or bearing or both (without 
considering range rate and target signature measurements) 
[10]. A target’s position is determined using multilateration 
with ranging sensors or triangulation with angular sensors 
or their mixture. Multilateration or triangulation can be 
done when a target is viewed by multiple distributed 
sensors or by a single sensor moving along (multiple 
views). A batch processing mode may use the conventional 
least squares (LS) method whereas a sequential processing 
mode calls for the Kalman filter [1, 2, 3, 7, 10]. 

Indeed, the sensor measurements are used to update an a 
priori estimate either via a linearized least squares method 
or an extended Kalman filter. In either case, the resulting 
solution has two components, one is related to the 
measurement prediction errors and the other is an 
observation matrix obtained from linearizing the nonlinear 
measurement equations around the a priori estimate. The 
observation matrix, which determines the estimation error 
covariance, has a distinct structure containing the 
geometric information for a given target positioning and 
tracking setting. 

It is well known that the observation matrix is related to the 
sensing geometry. However, this paper elucidates the 
geometric factors for both active and passive sensors [4, 14, 
15] and explicitly relates the observation matrix to the line 
of sight (LOS) vector for a ranging sensor and the direction 
perpendicular to the LOS vector of a bearing-only sensor. 
The geometric expression provides a mathematical basis 
for the well-known fact that the error ellipses for co-located 
passive and ranging sensors are perpendicular. 

Furthermore, the updating of estimation error covariance 
(i.e., the eigen structure) with range and bearing 
measurements can be intuitively assessed via the shaping of 
estimation error ellipse along LOS directions. For an 
anticipated tracking scenario, this provides an efficient 
means for target positioning and tracking performance 
modeling and prediction and can thus be used in active 
management of distributed sensor resources and sensor 
path planning [5, 6, 9, 16]. 

The rest of the paper is organized as follows. In Section 2, 
the least squares method is used to relate the position 
solution to the observation matrix and to the LOS vectors. 
In Section 3, the updating of error covariance by LOS 
vectors is characterized with simulation examples. Finally, 
the paper is concluded in Section 4. 
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2 Geometric Scaling via LOS Vectors 
In this section, we first present the position solution via the 
least squares method. We then relate it to the observation 
matrix via linearization. Next we express the observation 
matrix in terms of LOS vector for active and passive 
sensors. 

2.1 Least Squares Solutions 

Consider a target at x and the i-th sensor at xi. The i-th 
sensor’s measurement is given by: 

iiii vfz += ),( xx  (1) 

where fi(⋅, ⋅) is a nonlinear measurement equation and vi is 
the sensor measurement error being zero-mean Gaussian 
N(0, σi

2). 

Denote an initial estimate of the target state by x0. The 
nonlinear measurement, be a range or a bearing, can be 
linearized around the estimate: 

i
T
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In terms of measurement prediction error, the equation can 
be further written as: 

i
T
i

T
iiiii vfzz +=+−= xhxhxx 00 ),(~  (3) 

For m sensors, the linearized measurements can be put into 
a vector format as: 

vHxz +=~  (4a) 
[ ]m

T zzz ~~~~
21=z  (4b) 

[ ]m
T vvv 21=v  (4c) 

[ ]m
T hhH 1=  (4d) 

An estimate of the target state given the measurements can 
be obtained as the least squares (LS) solution to the 
following performance index as: 

)~()~(minargˆ 1 HxzRHxzx
x

−−= −T  (5a) 

where R is the measurement noise covariance matrix 
defined as: 

}{ TE vvR =  (5b) 

The least square solution is given by: 

zTT ~)(ˆ 111 −−−= RHHRHx  (6a) 
11 )()}ˆ()ˆ{( −−=−−= HRHxxxxP TTE  (6b) 

Assume that, in addition to the initial estimate of the target 
state x0, the estimation error covariance, denoted by P0, is 
also known. Then, given the target measurements as in (4a), 
we can obtain the weighted least square (WLS) solution 
that minimizes the following performance index as: 
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The least squares solution is given by: 
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Alternatively, we can treat the a priori knowledge x0 and 
P0 as an additional measurement and obtain the augmented 
measurement equations as: 

vHxz +=~  (9a) 
εxx +=0  (9b) 

v ~ N(0, R), ε ~ N(0, P0), E{vεT} = 0 (9c) 

Now apply the Kalman filter’s measurement updating step 
to the augmented measurement [ ]TTT

0
~ xz  as: 
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The terms in front of [ ]TTT
0

~ xz in (10) constitute the 
Kalman filter gain. Expanding the matrices in terms of their 
elements leads to the solution (8a). Similarly, the Kalman 
filter’s covariance updating step can be written up for the 
augmented equations, leading to the updated covariance 
(8b). Note that the inverse of the covariance matrix in (8b) 
is also called the information matrix, denoted by Λ: 

1
0

11 −−− +== PHRHPΛ T  (11) 

2.2 Active Ranging Sensors 

First consider the case with active sensors (ranging 
measurements) in a two dimensional setting. The nonlinear 
range equation (1) is spelled out as (ignore the noise term): 

22 )()(),( iiiii yyxxfr −+−== xx  (12a) 

The corresponding linearized equation around an initial 
estimate x0 of x is: 
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It is clear from (12b) that hi is the line of sight (LOS) 
vector from the i-th sensor to the target, denoted by ei, as 
shown in Fig. 1.  

2.3 Passive Bearing-Only Sensors 

Referring to Fig. 1, we now consider the case with passive 
sensors (bearing measurements) still in a two dimensional 
setting. 
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Fig. 1 Ranging and Bearing-Only Sensors 
 
The nonlinear angular equation is: 
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which can be linearized around an initial estimate x0 of x 
as: 
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Comparing (13c) to (12c), it shows that the measurement 
matrix hi for the bearing-only sensor is range-dependent. 
More importantly, it is perpendicular to the line of sight 
vector from sensor to target. When the range-dependence 
and angular errors are combined, it provides a position 
error of riσi along the direction perpendicular to the LOS 
(i.e., along ei

⊥).  

2.4 Geometric Dilution of Precision (GDOP) 

A scalar value that characterizes the position solution is the 
geometrical dilution of precision (GDOP) defined as [4, 
13]: 

))((traceGDOP 11 −−= HRHT  (14a)  

 ))((trace 1−= HHT  when R = I  (14b) 

For the case with two ranging sensors, the GDOP can be 
written as: 
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For the case with two bearing-only sensors, the GDOP can 
be written as: 
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Eqs. (15) and (16) are consistent with our intuition that two 
perpendicular sensors can produce the best estimate and 
two collinear sensors cannot produce a solution. Different 
from ranging sensors, however, bearing-only sensors have 
range terms explicitly as in (13c). In fact, the error ellipses 
for passive and ranging sensors are perpendicular are well 
known. It is meaningful to explicitly show it from the 
observation matrix in terms of LOS vectors.  

As shown next, the line of sight vectors and measurement 
error covariance matrices are related to the eignevalues and 
eigenvector directions of the estimation error ellipses. 
When used to update a position solution, they shape the 
error ellipses by adjusting its size and orientation via the 
eigenstructure. 

3 LOS Updating and Characterization 
As shown in the last section, the linearized measurement 
equation for an active ranging sensor or a passive bearing-
only sensor is characterized by (1) the line of sight (LOS) 
vector or its perpendicular and (2) the measurement error 
variance. A position solution is also determined by these 
two factors as is evident from the following equation of 
estimation error covariance: 
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where P0 is the a priori covariance matrix, P is the a 
posteriori covariance matrix, H is the measurement matrix, 
and R is the measurement error covariance. 

To simplify the analysis, first consider the case where P0 = 
I, H = aT = [cosθ, sinθ], which is a row vector with θ being 
the angle relative to the x-axis, and R = σ2. This represents 
the case where the a priori estimate is updated by a single 
measurement. The updated covariance is given by: 
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It is easy to verify that a is an eigenvector of the matrix (I – 
γaaT) with the corresponding eigenvalue (1 – γaTa) = 1 – γ. 
For the 2D case, the other eigenvector is perpendicular to a, 
denoted by a⊥, with the corresponding eigenvalue being 
unity.  
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In terms of geometry interpretation, the unity circle is 
shaped into an ellipse with the following eigenvalues and 
eigenvectors: 
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The following simulation is used to illustrate the 
characteristics of LOS updating. Let the initial covariance 
be a unit matrix, P0 = diag([1, 1]), which represents a 
circular error as shown in Fig. 2. We vary the LOS vector’s 
orientation θ relative to the x-axis and the measurement 
error covariance R = σ2. Fig. 2 shows two updates at (θ, σ) 
= (30o, 1) and (70o, 0.5), respectively. Each LOS update 
squeezes the circle into an ellipse with different orientation 
and different eccentricity. The orientation is such that the 
eigenvector corresponding to the small eigenvalue points 
along the LOS direction. 

Fig. 3 shows eigenvector constriction where the major and 
minor eigenvectors are off by 90o as expected and the 
minor eigenvector’s angle φ changes linearly as the LOS 
angle θ. 

The major eigenvalue remains constant but the minor 
eigenvalue changes inversely with σ (according to (15b)) 
as shown in Fig. 4. The better the sensor performance (the 
smaller σ), the smaller is the minor eigenvalue after update 
and vice versa.  

If a sensor stares at a target in the same direction, the error 
ellipse is updated repeatedly by the same LOS vector 
(assume the target is not moving). Then the reduction of the 
minor eigenvalue over time (i.e., the number of updates) is 
shown in Fig. 5 for different sensor quality (i.e., R). This is 
equivalent to time averaging. 

For a single sensor, another way to reduce the errors in 
target positioning is to circle the target as in a spot 
synthetic aperture radar (SAR) operation. Update in one 
direction squeezes the error in that direction. When it is 
done in all directions, it makes a smaller error circle as 
shown Fig. 6 where the errors at 5 discrete angles are 
shown together with the initial large circle. 

Fig. 7 shows the reduction of the eigenvalues as a function 
of LOS angle θ. As shown, the major eigenvalue decreases 
rather quickly over the first 90o and then much slowly for 
next 90o and does not change much for the remaining 180o. 
This indicates that a single ranging sensor can significantly 
reduce positioning error by circling the target by 90o or so, 
which is consistent with our intuition and can be used as a 
practical guideline in sensor placement and scheduling. 

Consider the case with two LOS updates simultaneously. 
The two sensors have their LOS vectors a1

T = [cosθ1, sinθ1] 
and a2

T = [cosθ2, sinθ2] with σ1
2 and σ2

2, respectively. The 
updated covariance is given by [8]: 
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Now consider two special cases. In the first special case, a1 
= a2 but there is unequal variance σ1

2 ≠ σ2
2. That is, a target 

is detected in the same direction but at different ranges. It is 
easy to verify that (20a) becomes: 
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If σ1
2 = σ2

2, then 2/2
1

2 σσ =  for an additional update. This 
is equivalent to reducing the measurement error variance 
by n with n additional updates. The corresponding eigen 
value decreases according to 1/(n+1) for unity variance (σ1

2 
= 1). The evaluation of continuously updated covariance is 
similar to running the covariance update equation of a 
Kalman filter (i.e., the Riccatti equation). 

In the second special case, a1 ⊥ a2, that is, they are 
perpendicular to each other. Then ρ = 0 in (20b) and γ = 1 
in (20e) and (20a) becomes: 

TTTT
222111

1
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2 )( 21 aaaaIaaaaI γγσσ −−=++ −−−  (22) 

It is easy to verify that (22) has the following eigenvalues 
and eigenvectors: 

])11([ 21 γγ −−= diagΛ  (23a) 
]21 aa[V =  (23b) 

This indicates that for two orthogonal LOS vectors, 
simultaneous update with two orthogonal sensors is 
equivalent to two independent updates in terms of the final 
error ellipse and their eigen-structure. 

For the general case with two simultaneous LOS updates, 
the updated covariance is given by (20). The calculation of 
its eigenvalues and eigenvectors is rather involved except 
for the two special cases given in (21) and (22). The 
following simulation is used to analyze the general 
eigenvalues and eigenvectors. 

Again let the initial covariance be a unit matrix, P0 = 
diag([1, 1]). We fix the first LOS vector at θ1 = 30o with R1 
= 1. We then vary the second LOS vector θ2 from 0o to  
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180o and R2 from 0.1 to 10. The major and minor 
eigenvalues as a function of θ2 for different R2 are showed 
in Figs. 8 and 9, respectively. Since θ1 = 30o, the max and 
min values for both major and minor eigenvalues appear at 
θ2 = 30o and θ2 = 120o, respectively, which represent the 
two special cases given in (18) for ∆θ = θ2 - θ1 = 0o and in 
(19) for ∆θ = θ2 - θ1 = 90o.  

Again with the first LOS vector fixed at θ1 = 30o with R1 = 
1, Figs. 10 and 11 show the major and minor eigenvector 
angles as the second LOS vector θ2 varies from 0o to 180o 
and R2 from 0.1 to 10. The two eigenvector angles have the 
same shapes except that they are off by 90o. For small R2, 
the second update dominates. As a result, the minor 
eigenvector points in this LOS direction and the major 
eigenvector is perpendicular to it.  

For large R2, the second update becomes inconsequential 
and the first update dominates. That is why the curves 
remain close to θ1 as θ2 varies its value. 

It is interesting to note the curves for R2 = R1 seemly have 
a jump of 90o at θ2 = 120o or θ2 -θ1 = 90o. This is actually 
due to the switch of labeling of major and minor for the 
same eigenvectors. This is best illustrated in Fig. 12 for 
eigenvalues and Fig. 13 for eigenvectors for R2 = R1 as a 
function of θ2. 

As shown in Figs. 10 and 11, when R2 and R1 are 
comparable, the minor eigenvector angle lies between θ1 
and θ2. As the second LOS vector θ2 moves away from the 
first LOS vector θ1, the minor eigenvector also moves away 
from θ1. But the eigenvector angular displacement lags that 
of θ2 and stays somewhere between θ1 and θ2. 

Based on the simulation results, heuristic curves are shown 
in Fig. 14 for analysis and design. Fig 14(a) shows the 
approximate eigenvalues as a function of angular 
separation between the two LOS vectors. Fig 14(b) shows 
the approximate eigenvector angles as a function of angular 
separation between the two LOS vectors. Linear 
interpolation can be used to find the eigenvalues and 
eigenvector angles. In the figures, the effects of R1 and R2 
are ignored but could be added with different curves in the 
same plot. 

For an arbitrary covariance matrix A and its inverse A-1, the 
eigen-decomposition is written as: 

TUUA Λ=  (24a) 
TUUA 11 −− Λ=  (24b) 

where 

[ ]nuuU 1=  (24c) 

[ ])( 1 ndiag λλ=Λ  (24d) 

[ ])( 11
1

1 −−− =Λ ndiag λλ  (24e) 

are the eigenvectors, eigenvalues, and inverse eigenvalues, 
respectively. 

The matrix A and its inverse A-1 can be further written as: 

∑
=

=
n

i

T
iii

1

uuA λ  (25a) 

∑
=

−− =
n

i

T
iii

1

11 uuA λ  (25b) 

Since the eigenvectors are orthonormal, they can be 
considered as the LOS vectors as in (22). As a result, the 
update of a unity circle with a covariance matrix (or a full 
rank observation matrix) can be readily obtained from (23), 
leading to the updated ellipse, which is re-oriented by the 
original eigenvectors (23b) but re-sized by the updated 
eigenvalues (23a). This thus provides a theoretical 
justification of our intuition about LOS updates, a 
geometrical interpretation of combining two ellipses, and a 
computational procedure for fusing them. 

Since the trace of a matrix is the sum of its eigenvalues, we 
can evaluate the geometric dilution of precision (GDOP) 
directly from eigenvalues. For the case of updating with 
two LOS vectors where θ1 = 30o and R1 = 1, Figure 15 
shows the traces as a function of θ2 for different R2. When 
θ2 = θ1, the trace is γ−2 , which is the largest value. The 
smallest value occurs at θ2 - θ1 = 90o, which is 2 - γ1 - γ2. At 
other θ2, the trace lies in between following a sinusoidal 
curve. Fig. 16 is a linear approximation. For large R, the 
trace does not change much with θ. But it is significant for 
small R. As shown in Fig. 15, the change in trace over ∆θ = 
90o is about the same for R2 = 0.1 to 10 with R1 = 1. This is 
a tradeoff between assigning sensors with good quality vs. 
with good geometry over different time horizons. 

The above analysis has been applied to the general case 
with an arbitrary initial error covariance [11]. Its 
relationship with GDOP [13] as well as geometric measure 
of merits (GMOM) [4] is presented in the context of sensor 
resource management for layered sensing [12]. 

4 Conclusions 
In this paper, the use of range and bearing measurements 
for target positioning and tracking was investigated from 
the geometric point of view. As a scaling factor to the 
measurement prediction error vector, the observation 
matrix was shown to be made of line of sight (LOS) vectors 
from ranging sensors to target and unit vectors 
perpendicular to the LOS scaled by range from bearing-
only sensors. As shown, the LOS vectors together with the 
sensor measurement error covariance determine the 
eigenstructure of position estimation error covariance, 
shaping the error ellipses. This geometric insight into target 
positioning and tracking with range and bearing 
measurements is helpful in designing an efficient resource 
management strategy for distributed sensors. 
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Fig. 8 Max Eigen over ∆θ for Different σ 
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Fig. 9 Min Eigen over ∆θ for Different σ 
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Fig. 10 Max Eigenvector over ∆θ for Different σ 
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Fig. 11Min Eigenvector over ∆θ for Different σ 
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Fig. 12 Max and Min Eigenvalues over ∆θ 
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Fig. 13 Max and Min Eigenvectors over ∆θ 
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(a) Approximation for Eigenvalues 

 

 

 

 

 

 

 

 

 

 

(b) Approximation for Eigenvector 

Figure 14 Linear Interpolation for Eigenvalues and Eigenvector as a Function of ∆θ 
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Fig. 15 Trace vs. ∆θ for Different σ 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16 Approximation for Trace 
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