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Abstract – Current research on acoustic vehicle classifi-

cation has been generally aimed at utilizing various fea-

ture extraction methods and pattern recognition techniques.

Previous research in gait biometrics has shown that domain

knowledge or semantic enrichment can assist in improving

the classification accuracy. In this paper, we address the

problem of semantic enrichment by learning the semantic

attributes from the training set, and then formalize the

domain knowledge by using ontologies. We first consider

a simple data ontology, and discuss how to use it for

classification. Next we propose a scheme, which uses a se-

mantic attribute to mediate information fusion for acoustic

vehicle classification. To assess the proposed approaches,

experiments are carried out based on a data set containing

acoustic signals from five types of vehicles. Results indicate

that whether the above semantic enrichment can lead to im-

provement depends on the accuracy of semantic annotation.

Among the two enrichment schemes, semantically mediated

information fusion achieves less significant improvement,

but is insensitive to the annotation error.

Keywords: Acoustic vehicle classification, semantic en-

richment, information fusion.

1 Introduction
Acoustic sensors, such as a microphone array, can collect

an aeroacoustic signal (i.e., passive acoustic signal) to

identify the type and localize the position of a working

ground vehicle. Acoustic sensors can be used in sensor

networks for applications such as traffic monitoring and

battlefield surveillance [1, 2]. They become more and more

attractive because they can be rapidly deployed and have

low cost [3, 4]. One of the research areas in acoustic sensor

processing is to identify the type of vehicle [1,5], which can

help improve the performance of tracking [6].

Previous approaches on acoustic vehicle classification

mainly focus on signal processing and pattern recognition

techniques. Many acoustic features can be extracted to

classify working ground vehicles. The commonly-used

features include moment measurements [1], eigenvectors
[7], linear prediction coefficients [8], Mel frequency cepstral

coefficients [9], the levels of various harmonics [5, 10].

Among them, harmonic features have achieved good clas-

sification performance [5,10,11], with a stable and compact

feature representation.

Apart from the above typical features that extract a

vehicle’s information at the signal level, domain experts may

use human descriptions of what has been heard. These se-

mantic words can connect with some high level descriptions

regarding the studied vehicles, such as the engine volume,

the tracked or wheeled vehicle, the size of the vehicle, etc,

which suggests the possibility of exploiting this domain

knowledge or semantic representation for classification.

Moreover due to cheap cost and low energy consumption,

acoustic sensors can be easily deployed in multiple places

to collect signals of interest from different locations. There-

fore, the requirements of integration and communication

among different sensor nodes become overwhelming. In

this case, semantic enrichment is an appealing approach to

alleviate the glut of too much data which lacks compact

information.

Previous research in gait biometrics [12] used human

labeled semantic attributes regarding descriptions of human

appearance for classification purposes. In this research,

we seek to automatically extract the vehicles’ semantic

attributes to enhance decision making processes, rather than

simply augmenting the semantic information with existing

acoustic features. The framework of our approach is shown

in Fig. 1. Here, we classify the vehicle that generated

the sound recorded by microphones. In a conventional

pattern recognition framework (the left side of the dotted

line), features are extracted from the sensor data and these

features are filtered according to perceived information

content, prior to use in classification. We can enrich this

process by semantic data (the right side of the dotted line),

which we shall represent using ontologies. These processes,

embedded with the vehicles’ domain knowledge elicited by

experts in the form of ontologies, will contribute to the

data fusion processes which can lead to the combined and

enriched decision.

In web technologies, the use of ontologies is usual, but

in acoustic vehicle classification a problem arises because
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Figure 1: Illustration of semantic enrichment scheme for

acoustic vehicle classification

the received signal is not at the same level as the se-

mantic interpretation. It is therefore necessary to find the

correspondence between low-level features which can be

automatically extracted from the acoustic signal and the

semantic concepts used in the ontology. In this research, we

refer to this task as semantic annotation (more specifically,

relate to the received acoustic signals to certain semantic

descriptions, such as size, engine volume, wheel informa-

tion etc.) and implement it in a supervised manner learning

the semantic annotations from the data, thus automatically

labeling the data. Then we consider using an ontology for

acoustic vehicle classification, as well as applying semantic

attributes to mediate information fusion.

The rest of this paper is organized as follows. In Section

2, we discuss semantic representation and reasoning within

the acoustic data. Next in Section 3, we discuss how to

use the semantic attribute to mediate the fusion proportion

for acoustic vehicle classification. Experimental results are

presented in Section 4. Finally, we end this paper with

conclusions and future proposals.

2 Vehicle classification by semantic

enrichment
The semantic enrichment for the acoustic vehicle classifi-

cation can be carried out by identifying semantic concepts

and their relations appearing in the studied acoustic data

set. This procedure has a large coverage of different

ontologies, such as sensor ontology (semantic description

of the sensors;), sequence ontology (semantic description of

events detected), data ontology (semantic description of data

received), and supporting ontology (semantic description of

concepts that would effect all three mentioned ontologies.)

[13]. All these ontologies can have a potential to make

contributions to the vehicle classification. For example,

sensor ontologies can help focus more on reliable data,

such as when the event “Condition A met, and sensor B

is likely to receive corrupted signals” is detected. Based

on the current acoustic data available, the data ontology is

the most feasible option to implement, because it totally

depends on the features extracted and how wide the semantic

description will cover. So in this research we focus mainly

on the vehicle related classes and properties, such as “wheel

information”, “weight” and “size”, whereas other relevant

properties, such as environmental factors will be studied in

the future.

In detail, we initially consider the simplest data ontol-

ogy, which involves only one semantic description, i.e. a

vehicle’s wheel information (i.e., the transport mechanism,

whether it is tire, track, runner, etc). This attribute is

relatively easy to be detected from the signal received by

the sensor. This toy example might appear to be naive, but

it makes the whole demonstration complete and allows us

to determine if any improvement on classification accuracy

can be achieved after adopting semantic enrichment.

Although study in semantics has made explicit claims

concerning the representation of each meaning regarding

the studied domain by different words, the relation between

signal and semantic attributes and its structures are often

left implicit. So when we are considering how to represent

acoustical data semantically, two fundamental questions

may arise, namely:

1. How is the semantic representation related to the actual

signal?

2. How are the meanings of different concepts related to

one another?

Since we have training data from each type of vehicle that

can be labeled by a specific semantic concept, we can model

the first problem as supervised learning. For example, for

the semantic concept “a vehicle’s wheel information”, we

can separate the training data into two groups: the air tire

vehicles and the tracked vehicles. Then a binary classifier

can be trained to detect this concept, and be applied to

the test signals, which will be annotated to the presence or

absence of the concept.

For the second question, we can consider an ontology,

which defines a set of concepts, their characteristics and

their relations to each other. These definitions allow us to

describe and to use reasoning on the studied domain. A

naive vehicle ontology for this particular acoustic data set

is illustrated as in Fig. 2. This simple ontology has a

three level structure, and uses one semantic attribute (i.e.,

the vehicle’s wheel information). The acoustic data can

then be enriched by this semantic meaning as it includes

certain vehicle domain knowledge. In this way, the acoustic

features are likely to be better separated thereby improving

classification capability.

This simple scheme uses semantic attributes and ontology

in a straightforward manner. However, there is a risk regard-

ing this methodology to improve the classification accuracy.

Based on our previous discussion, the classification in Fig.

2 actually involves three classifiers, where the first binary

classifier annotates the semantic attribute (the tracked or tire

label) to each data sample, and the second and the third

classifier further separate each individual vehicle from the
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Figure 2: Illustration of a simple ontology for the acoustic

vehicle data set

tire and tracked vehicle group. It can be found that the use

of this ontology can improve classification accuracy. This

can be interpreted by an intuitive understanding of “divide

and conquer”, or more specifically by an assumption that

the classifier separating less numbers of classes will give

more accurate result than those separating more numbers

of classes. Apart from the fact that there is no rigorous

proof of this claim, it is apparent that the annotation error

in the first level will pass on to both of the second and the

third classifier, which may, on the other hand, deteriorates

rather than improves the classification accuracy. Therefore,

in this research we are not only using ontology directly but

also exploiting the semantic attributes in another way, i.e.,

to mediate the process of data fusion, which is presented in

the next section.

3 Acoustic information fusion medi-

ated by semantic attributions
In previous research such as in [12], the relevant semantic

attributes have been labeled manually to augment the ex-

isting features. In order to improve this scheme, we need

to exploit the semantic meaning regarding the acoustic data

automatically, and then enable reasoning about it in a frame-

work that can be aligned with data fusion. In this section,

we discuss using multiple feature sets for acoustic vehicle

classification, and give a simple example showing how the

semantic attributes can be used to mediate a probabilistic

based fusion.

3.1 Multiple feature sets for acoustic vehicle

classification

The acoustic signal of a working vehicle is complicated.

It is well known that the vehicle’s sound may come from

multiple sources, not exclusively from the engine, but also

from exhaust, tires, gears, etc [14–16]. Classification based

on one extracted feature set is therefore likely to be confined

by its assumed sound production model, and can only

efficiently capture one of the many aspects of the acoustic

signature. Although it could be argued that this model

can target the major attributes and makes the extracted

features represent the most important acoustic knowledge,

given the intricate nature of the vehicles’ sounds it is still

likely to lose information, especially when the assumed

model is not comprehensive. For example, in a harmonic

oscillator model it is difficult to represent the non-harmonic

elements, which can also contribute significantly to the

desired acoustic signature [15].

To handle the above problem, multiple feature sets may

be used to classify the vehicle. For example, in our previous

research [15], we address this problem from the perspec-

tives of joint “generative-discriminative” feature extraction

and information fusion. In detail, we first categorize the

multiple vehicle noises into two groups based on their reso-

nant properties, which leads to the subsequent “generative-

discriminative” feature extraction and a probabilistic fusion

framework.

The applied feature extraction methods, where global

and detailed spectrum information can be obtained together,

produce two feature sets respectively. The first set of

features we used is the amplitudes of a series of harmonics

components. This feature-set, characterizing the acoustic

factors related to the fundamental frequency of resonance,

has a clear physical origin and can be represented effectively

by a “generative” Gaussian model. The second set of

features are named as key frequency components, designated

to reflect other minor (in the sense of sound loudness or

energy in some circumstances) but also important (in the

sense of discriminatory capability) acoustic characters, such

as tires’ friction noise, aerodynamic noise, etc. Because

of the compound origins of these features (e.g., involved

with the multiple sound production sources), they are better

extracted by a discriminative analysis to avoid modeling

each source of sound production separately. To search for

the key frequency components, mutual information (MI),

a metric based on the statistical dependence between two

random variables, is applied. Selection of the key acous-

tic features by the mutual information can help to retain

those frequency components (in this research, we mainly

consider the frequency domain representation of a vehicle’s

acoustic signal) that contribute most to the discriminatory

information, meeting our goal of fusing information for

classification.

In associated with this feature extraction, information

fusion is introduced to combine the acoustic knowledge

represented by the above two sets of features, as well as

their different underlying sound production. In this sense,

information fusion can be achieved not only by combining

different sources of data, such as in the traditional sensor

fusion, but also by different feature extraction or “experts”,

which can compensate for the deficiency in model assump-

tions or knowledge acquisitions. A typical Bayesian fusion

rule (for two feature sets) can be represented as:

p (y|x1,x2) ∝ p (y)

2
∏

i=1

p (xi|y) . (1)

Assuming the same prior probability and applying log to

(1), we get a sum fusion rule as follows:

log p (y|x1,x2) ∝ log p (x1|y) + log p (x2|y) . (2)
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3.2 Fusion driven by semantic attributions

In information fusion, an ideal combination rule should

be adaptive to the factors that can affect the final fusion

performance. In acoustic data fusion, the following factors

should be taken into account:

1. Feature set’s capability to capture the desired acoustic

signature

Information fusion involves multiple data sources or

feature sets naturally. In our application, many acoustic

factors can represent various aspects of an acoustic

signature, and each feature set, either based on different

sensors or different model assumptions, can be used to

characterize these factors. Meanwhile, each of these

feature sets has different capability or functionality to

represent the desired acoustic signature, as well as has

different contribution to the classification accuracy of

working ground vehicles. For example in our case, the

first set of features aims to represent internal sound

production (e.g., the engine noise), and the second

set of features is extracted to account for the sound

production from the vehicle’s exterior parts (i.e., the

tire friction noise and air turbulence noise). Here, the

engine noise is the dominant constituent of the overall

vehicular loudness during the majority of time. On the

contrary, the tire friction noise and air turbulence noise

are more volatile. For example, changes of velocity

will severely affect air turbulence noise, and change of

the road condition is very likely to influence the tire

friction noise. Therefore for this specific application,

the amount of information extracted by the second

feature-set is unstable. If this difference of feature

set’s capability is taken into account in the designing of

the specific fusion rule, a better performance could be

expected, e.g., by increasing the weights of the reliable

feature sets and reducing the contribution of the weaker

feature sets.

2. The quality of the feature extraction

Before the fusion of information, each feature set has to

be extracted from the data by a specific algorithm. The

feature extraction algorithm usually involves some pa-

rameters estimation and parameters choice problems,

which will affect the quality of the features extracted.

For example, in this research the first set of features

is a group of harmonic components, extracted by the

fundamental frequency and the peak detection algo-

rithms. Here, how to choose the optimal number of

the harmonics to correctly characterize the engine’s

formants is not straightforward. This is because the

variability of engine types and their resonance char-

acteristics. To include more harmonics may introduce

redundancy and cause some problems for the following

classification algorithm (e.g., to calculate the inverse

of the covariance matrix in the multivariate Gaussian

classifier). On the other hand, a smaller number of

harmonics may risk the classification accuracy due to

insufficient representation of the engine noise.

The second set of features is extracted based on a

computationally effective discriminatory analysis, and

a group of key frequency components is selected by

Mutual Information (MI). The MI based feature extrac-

tion also needs to estimate the statistical properties of

the training data, and the accuracy of this learning will

directly affect the capability of the selected features.

These two examples show that the quality of feature

extraction may be different based on different sets of

parameters. Therefore, how to reflect the quality of the

extracted feature sets is another problem, which should

be considered in the fusion rule.

3. Application scenarios and other factors

In acoustic vehicle classification, the received acoustic

signal will be affected by many ambient factors such

as temperature, wind speed, humidity, etc, as well as

some operating conditions such as vehicle distance to

the sensors, vehicle load, surround buildings, etc. All

these factors can change the accuracy of the assumed

sound production models, and then the quality of the

extracted feature sets. So considering these factors into

the fusion procedure may also lead to improvement of

performance. For example the air turbulence noise will

become quite trivial if the vehicle is far away from the

sensors, but the harmonic feature could keep almost

the same effectiveness in this case. Therefore, if the

distance information can be correctly used in the fusion

processing, e.g, to put more emphasis on the harmonic

features in the above scenario, it is likely to improve

the classification performance.

We have discussed some factors that can affect the infor-

mation fusion performance. Now we argue that the semantic

attributes, i.e., high level domain knowledge, can help to

describe some of the factors. To describe a vehicle, we

can use different levels of concepts. For example, at the

signal level, we can use the frequency representation of the

received acoustic signal to characterize a vehicle; at the

information level, we can induce the statistics of the features

for this vehicle; and at the knowledge level, we may describe

this vehicle using some human understandable concepts

such as size, carriage, weight, etc. Conventional techniques

are mainly focusing on the signal and the information

level descriptions, but to information fusion, the knowledge

level description, i.e., the semantic attributes, can provide

valuable clues to improve performance.

As we discussed before, fusion performance can be

improved if the fusion rule can correctly address the ca-

pability of each source of information, e.g., to give the

more powerful feature set a bigger weight in the fusion

formulation. In this research, suppose we know the vehicle’s

wheel information (i.e, the tire or track), we can then use this

semantic attribute to improve the fusion rule. Intuitively,

if the vehicle has tires, we can conjecture that its friction
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Figure 3: Semantically mediated acoustic information fu-

sion

noise with the road would be much less influential than a

tracked vehicle. Therefore, in the fusion procedure, we

should reduce the contribution of the feature set representing

the tire friction noise. Moreover, if we know that the size of

this vehicle is big and its weight is heavy, then we may figure

out the engine type of this vehicle roughly. This may tell us

how accurate to use the harmonic oscillator to model this

type of engine, and then give the fusion rule an indication

what kind of confidence should be assigned to the harmonic

features.

A typical weighted sum decision rule can be described as

follows [17]:

Csum (x1,x2, α) = αC1 (x1) + (1 − α)C2 (x2) (3)

where x1 and x2 are two feature sets, α the fusion weight

(or fusion proportion), and C(·) the classification functions.

If we can link the semantic attributes with the fusion weight

α, the high level domain knowledge will be embedded in

this fusion procedure implicitly.

Based on the above discussion, the high level domain

knowledge, e.g., semantic attributes, can be found useful to

mediate the data fusion. A diagram of exploiting semantic

attributes in this research is illustrated in Fig. 3, where a new

module of semantic annotation is added and its result, i.e., a

detected semantic attribute, will be used to adjust the fusion

weight in the fusion rule, e.g., α in (3).

To implement the scheme described in Fig. 3, we first

need to automatically extract semantic descriptors from

acoustic signals. This semantic annotation can be posed as

a problem of either supervised or unsupervised learning. In

the case of the supervised learning, we can collect a set of

training signals with and without the concept of interest, and

train a binary classifier to detect this concept. The classifier

was then applied to the unseen testing signals, which were

annotated with respect to the presence or absence of this

concept.

To demonstrate how to implement this semantically me-

diated data fusion, we give a simple example based on one

semantic attribute related with this research. Given a binary

classifier

C(x) =

{

1 if x is a tracked vehicle
−1 if x is a vehicle withairtires

(4)

which is trained by the training data to detect the wheel

information of the vehicle. Let L(x) be the number of the

components of the feature vector x, we can use the semantic

attribute detected by C(x) to control the fusion proportion

of each information source, such as:

L(x1) =

{

m if C(x) = 1
n if C(x) = −1

(5)

and

L(x2) =

{

N − m if C(x) = 1
N − n if C(x) = −1

(6)

where N stands for the total number of features, which is

constrained by some application factors, such as compu-

tational load of the sensor network, communication band-

width, etc. This scheme, i.e., adjusting the components

number of each feature set according to the detected se-

mantic attribute, can be found consistent with the traditional

fusion rule, such as (3).

Given x = (x1, x2, . . . , xk) and x
′ =

(x1, x2, . . . , xk, x(k+1), . . . , x(k+l)), we have

p(x) =

∫

x(k+1)

· · ·

∫

x(k+l)

p(x′)dx(k+1) · · ·dx(k+l)

≥ p(x′) (7)

Therefore, (7) shows that changing the dimensionality

of the feature vector will lead to a different probability

and then finally change the fusion proportion in the fusion

rules, such as in (2). This is also similar to the traditional

weighted fusion rule in (3). In (5) and (6), we indicate that

dimensionality of each feature set may change according to

their different semantic label. However, the detailed relation

between the semantic label and the dimensionality, i.e., the

value of m and n, is left implicit. Currently there are no

methods available to deduce these numbers theoretically, so

we consider using the training data to learn these parameters

empirically.

4 Simulation results
To assess the proposed approaches, simulations are car-

ried out based on a multi-category vehicles acoustic data set

from US ARL [6]. The ARL data set consists of recoded

acoustic signals from five types of ground vehicles, named

as V1t, V2t, V3w, V4w, and V5w (the subscript ‘t’ or

‘w’ denotes the tracked or wheeled vehicles, respectively).

These vehicles cover 6 running-cycles around a prearranged

track separately, and the corresponding acoustic signals are

recorded by a microphone array for the assessment (see

examples of acoustic signals in Fig. 4).

To obtain a frequency domain representation, the Fourier

transform (FFT) is first applied to each second of the
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(b) Time-Frequency response for a vehicle with tire

Figure 5: Examples of training data

Table 2: Annotation accuracy (%) for the carriage attribute

based on two classifiers
Classifiers Strong classifier Weaker classifier

Annotation accuracy 96.5 87.4

(a) Microphone #1

(b) Microphone #3

(c) Microphone #5

Figure 4: Examples of acoustic signals (20 sec) from a

microphone array

Table 1: The number of runs and the total sample numbers

for five types of vehicles: tracked vehicles V1t and V2t;

wheeled vehicles V3w, V4w and V5w.
Vehicle Class Number of Runs Total Number of Samples

V1t 6 1734

V2t 6 4230

V3w 6 5154

V4w 6 2358

V5w 6 2698

acoustic data with a Hamming window, and the output

of the spectral data (a 351 dimensional frequency domain

vector x) is considered as one of the samples for these five

vehicles. Fig. 5 shows time-frequency response for two

different kinds of vehicles, which are used as training data.

The type label and the total number of the (spectral) data

vectors for each vehicle are summarized in Table 1. A “run”

corresponds to a vehicle moving a 360◦ circle around the

track and the sensors array, and a sample means the FFT

result at one second signal.

In the simulations, half of the runs from each vehicle

(i.e., 3 runs from all 6 runs) were randomly chosen as the

training data, and the remaining half forms the test set. In

this data set, each run consists of about 290 to 860 seconds

of acoustic data depending on vehicles’ different running

speeds. Tests are carried out based on each second of the

acoustic data (i.e., to classify the vehicles in each second

interval, which is useful for vehicle tracking) from the 3 test

runs, and the overall accuracies are summarized from the

above results for all 5 types of vehicles.

As discussed previously, for semantically enrichment the

first step is to apply classifiers to automatically extract

the semantic attributes from the acoustic data. In this

research to observe the influence of annotation accuracy,
we test two annotation classifiers: the first one is a SVM

(Support Vector Machine) with the polynomial kernel order

2 and penalty coefficient C = 0.1 (these parameters were

chosen by a validation using the training data), and the

second one is a multivariate Gaussian classifier (MGC) [6].

Because SVMs are less affected by the dimensionality of

input, 121 dimensional FFT acoustic data is directly input

to this classifier to achieve higher accuracy. On the other

hand, the multivariate Gaussian classifier uses the lower

21 dimensional harmonic features as the input. Here the

SVM is considered as a “stronger” classifier (i.e., expected

higher classification accuracy) than the MGC (a “weaker

classifier”) in that it uses much higher dimensionality input

and more complex learning. Based on the training set, we

use the above two classifiers to annotate the vehicle’s wheel

attribute (i.e, the air tire or the track information), and then

calculate the annotation accuracy, listed in Table 2. It is

seen that the stronger SVM classifier indeed achieves much

higher annotation accuracy (96.5%) than the weaker MGC

classifier (87.4%), at the cost of higher dimension input and

prolonged training and parameters selection.

After using these two classifiers to annotate the acoustic

data, we test the classification accuracy through the semantic

enrichment described in Fig. 2. Based on this scheme, three

individual classifiers are applied: the first is the annotation

classifier to detect the vehicle wheel information, the second

classifier separates the tracked vehicles into two detailed

categories: V1t and V2t, and the third classifier separates

the vehicles with air tires into three types: V3w, V4w

and V5w. The features fed into the second and the third
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Table 3: Classification accuracy (%) based on semantic

enrichment for the carriage attribute

Methods Direct Ontology-based Ontology-based

classification weaker classifier stronger classifier

Accuracy 73.4 71.9 79.1

Table 4: Classification accuracy (%) based on semantically

mediated fusion
Methods Direct Semantically Ontology

fusion mediated fusion based fusion

Stronger classifier 83.3 84.18 85.3

Weaker classifier 83.3 84.23 77.4

classifiers are the 21 dimensional harmonic features.

Test results are listed in Table 3, where we can see that us-

ing the stronger classifier (with 96.5% annotation accuracy),

the classification accuracy is improved significantly from

73.4% to 79.1%, but using the weaker classifier (with 87.4%

annotation accuracy), the classification accuracy is deterio-

rated from 73.4% to 71.9%. This simple scheme exploits

the data structure from the point view of an ontology, but it

is actually equivalent to the standard “divide and conquer”

strategy. If this separation, in other words the semantic

annotation in this case, is accurate, less class confusion will

occur in the next stage classification because a small number

of classes is involved at the third level of Fig. 2. This

leads to the improvement of the classification accuracy, as

evidenced in Table 3. But if the first step of separation is

not accurate, all the annotation misclassification will pass

on to the classifiers in the next stage. When these errors

offset all the benefits brought by the less class confusion,

the classification accuracy will be degraded.

The motivation of applying semantic enrichment is to

use domain knowledge, and one of the key issues is how

to exploit this domain knowledge. Possible approaches

are either relying on other information sources, such as

new sensors or human intelligence, or based on exploring

the existing training data, such as the above example of

semantic annotation. The ontology used in this example

is actually like a clustering pre-processing in the name of

the semantic annotation. The results in Table 3 show that

whether improvement can be achieved depends on how

accurate the semantic attributes can be obtained.

To test the semantically mediated data fusion, the second

feature set, i.e., the key frequency component feature, are

extracted based on the method introduced in [15]. Both

the dimensionality of the harmonic feature set and the key

frequency component feature set are chosen as 21, i.e.,

they have initially the same contributions in the fusion

processing. In the test, the parameters that decide the fusion

proportions of the two feature sets, i.e., the numbers m and

n in (5) and (6), are estimated as m = 6 and n = 4 using

the training data, respectively.

Three methods are compared in Table 4. The first

method directly uses the fusion method introduced in [15],

the second method uses the simple semantically mediated

fusion described in (5) and (6), and the third method uses

the ontology described in Fig 2. The difference between

the second and the third method is that the former one uses

the semantic attribute to control the fusion proportions of

the two feature sets but the latter one uses the semantic

attribute to separate the data in the first place. From Table

4, it is seen that when the semantic annotation is accurate

(using the stronger classifier), the best classification result is

achieved by the ontology based method. Meanwhile, if the

semantic annotation is not very accurate (using the weaker

classifier), the worst classification result is also achieved

by the ontology based method. On the other hand, the

semantically mediated fusion achieves slight improvement

in both of the cases. One possible explanation is that in this
case the annotation misclassification error is passed on to the

fusion proportions rather than next stage classifiers that are

more sensitive to such errors.

Although the improvement of the semantically mediated

fusion is found consistently in every random tests, the

increase of classification accuracy is trivial. This result can

also be predicted by observing the trained two parameters

m and n. There is no big difference between m = 6
and n = 4, which means less necessity to adjust fusion

proportion based on this semantic attribute (i.e. carriage

information). However the result of this initial test should

not be extended to other semantic attributes, which are

still very likely to give useful indication on how to control

the fusion proportions, such as the use of semantic human

description in gait biometric [12]. Future research to test

other semantic attributes will be carried out when more

suitable data set and descriptions are available.

5 Conclusions
In this paper, we have discussed how to automatically

extract the vehicle semantic attribute and formalized it as

an ontology for vehicle classification. We considered two

implementation schemes: 1) ontology based classification

that explicitly use semantic attribute, and 2) semantically

mediated data fusion that implicitly use semantic attributes.

The simulation results have shown that the ontology-based

vehicle classification can improve classification accuracy

given the semantic attributes were accurately annotated. If

the semantic attributes are not accurately annotated, the er-

ror will propagate to the next level of classification, and then

finally leads to deteriorate results. The Semantic-mediated

fusion achieved slight improvement with weak dependence

on the accuracy of semantic annotation. However, these

conclusions are based on a single semantic attribute and

a naive data-driven ontology. This research represents an

initial study in this new area. We have shown that semantic

annotations can be learned from the data, and enrich the

classification and the fusion process. Future research will

consider more vehicle attributes and more realistic ontolo-

gies. In this research, we use “semantic” to describe the

meaning attached with the high level domain knowledge
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(vehicle category) for classification. However, one may

argue that only humans or minds are the appropriate entities,

which can define these attributes. Therefore, this research

was exploring an alternative way to “automatically” extract

the semantic attributes by machines, which may not exactly

match the definition used in other research areas.
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