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Motivation

Develop probabilistic modeling methods predicting location dependent
microstructure and properties in nickel-based superalloy turbine disks.

Issues: Property variability of turbine disk due to high-dimensional multiscale
sources

Rolls-Royce RB211-

535 turbofan

Nickel-base superalloy

turbine disk

Superalloy

microstructure

Sheared γ’ precipitates

•Multiscale material modeling

DoDDoD STTR Project:STTR Project:

N10AN10A--T028,T028,

Probabilistic Prediction of LocationProbabilistic Prediction of Location--Specific Specific 

Microstructure in Turbine DisksMicrostructure in Turbine Disks

microstructure

Pairs of edge dislocations 

interacting with γ’ precipitates

•Multiscale material modeling

• Two-phase superalloy

•Multiscale sources of uncertainties

Figures courtesy of Rolls Royce, R. Mitchell, and E. Nembach, etc.
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The Big Picture of Multiscale Modeling

Modeling Methodologies:

Microscale: Dislocation dynamics

Mesoscale: Crystal plasticity

Macroscale: Finite element analysis based multiscale forging

Microscale

Dislocation Dynamics

Mecroscale

Polycrystal Plasticity

Macroscale

Disk Forging
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The Big Picture of Multiscale Modeling

Linking Strategy:

Microscale

Dislocation Dynamics

Mecroscale

Polycrystal Plasticity

Macroscale

Disk Forging
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Micro-Mesoscale: Regression model that passes constitutive parameters from
microscale to mesoscale.

Meso-Macroscale: Homogenization methods exchanging information between
both scales. Working with discrete polycrystal aggregates.

Uncertainties propagate within each scale and across scales (e.g. processing and

microstructure uncertainties)

Materials Process Design and Control Laboratory Cornell University
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Uncertainties in Microscale DD Simulation of Precipitation
Hardened Nickel-based Superalloys

The properties of high performance superalloys are controlled by the γ′ precipitates
coherently embedded in the γ matrix. A force is exerted on a dislocation when it is
creating or recovering an anti-phase boundary (APB). The force per unit length on
dislocation is

F = χAPB

Dislocation dynamics (DD) simulation is adopted to investigate the hardening
mechanism in microscale.
Primary factors determining strength of superalloys

Volume fraction of γ′ precipitates

Precipitate size and spatial distribution

Anti-phase boundary energy density (χAPB ) distribution

(a) Sheared particles in NIMONIC PE16; (b) TEM image of dislocations in NIMONIC PE16 (E. Nembach, 1997)Materials Process Design and Control Laboratory Cornell University
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Precipitate Size Distribution in Aged Alloys

Aging of precipitation hardened alloys leads to particle coarsening. In
order to match the case of an Ostwald ripened crystal, the particles
are chosen to be spherical with a radius distribution following a WLS
distribution.

The distribution of normalized particle radius
ρ (ρ = r

rm
, rm is the mean radius) follows

g(ρ) =
4

9
ρ2

(

3

3 + ρ

) 7
3

(

1.5

1.5 − ρ

) 11
3

exp
(

ρ

ρ − 1.5

)

,

for 0 ≤ ρ < 1.5,

g(ρ) = 0, for ρ > 1.5

The spatial distribution is totally random
without overlap.
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Linking Between Mesoscale and Microscale

Hardening law in mesoscale crystal plasticity constitutive model

ŝ(τ) = ŝ(t) + θ0

(

ŝs − ŝ(t)

ŝs − ŝ0

)

∑

β∈Active

|∆γβ |

When constant strain rate is applied,
∑

β∈Active |∆γβ | is also a constant C. Integrating
the hardening law with respect to time, we can modify it as

ŝ(t) = ŝs − (ŝs − ŝ0) exp(−
θ0

ŝs − ŝ0
Ct)

Extracting the slip resistance ŝ relationship with time t from DD simulations, we can
coarse grain and compute the parameters ŝ0, ŝs, and θ0 needed in the mesoscale.
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Maximum Entropy Principle to Estimate Material Parameters

Given a specific configuration, we can fit the three parameters by conducting an
one time simulation. However, the parameters obtained are different in DD
simulations that started from distinct configurations (different precipitate
realization, APB energy densities, volume fraction of γ′ phase, ...).

These material parameters are treated as random variables inducing variability
of the mechanical properties of the microstructure at meso-scale.

Conduct N DD simulations with different configurations. Then compute the first n
moments of these parameters using Monte Carlo methods.

E(xk ) =
N

∑

i=1

xk
i = Mk , k = 1, 2, . . . , n

Use MaxEnt to compute the distribution of the parameters satisfying the
constraints.

p(x) =
exp(−

∑n
k=1 λk xk )

Z
, Z =

∫

exp(−
n

∑

k=1

λk xk )dx

These distributions are our stochastic input model on the mesoscale.

Materials Process Design and Control Laboratory Cornell University



Property Variability

Multiscale Stochastic Modeling
Modeling and Linking Strategy in Stochastic Multiscale Simulation
Property Variability Due to Microscale Uncertainties
Stochastic Forging Design
Stochastic Forging Design

Representation of Two-phase Polycrystalline Superalloy
Microstructures

Two-phase polycrystalline microstructures are random fields in nature.

The representation of the microstructure needs to combine both
polycrystal and two-phase alloy features.

The complete representation of two-phase polycrystalline
microstructure is high-dimensional.

Optical micrographs of RR1000 superalloy: sub-solvus heat-treated for 4h at 1130C. (Courtesy of Rob Mitchell)

Materials Process Design and Control Laboratory Cornell University
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Uncertainties in Mesoscale Polycrystalline Microstructures

Topological Feature Space

Grain size distribution

Two-phase microstructure variation

Descriptor:

Histogram of grain sizes (or "grain size vector")

Correlation functions n-point correlation function

Sijk...t
(rij , rjk , rki , . . . , rst ) =

1

V

∫

V
I i (x)I j (x + rij )I

k
(x + rik ) . . . dx

Linear path function

Li
(r ) =

1

V

∫

V
I i (x)I i (x + n)I i (x + 2n)...I i(x + r )dx

Orientational (texture) Feature Space

Orientation distribution of grains

Descriptor:

Discrete representation: Vector of Rodrigues
parameters r i = ni tan φi /2

Continuum representation: Orientation distribution
function (ODF)
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Linking Between Mesoscale and Macroscale

Homogenization theory

Deformation of a microstructure is controlled by the deformation gradient at the
corresponding point on the macroscale. The response and properties of the
microstructure are computed using crystal plasticity constitutive models. Their
homogenized values are passed to the macroscale.

Response/properties are random fields that are quantified by the microstructure
uncertainties in lower scales.

Solve Micro 
SBVP

Microstructure

SRVE

Macro FE Analysis

Integration Point

Volume Average 

the Stochastic 

quantities

I

II

IIIMacro, FE

Pass th
e Macro 
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Obtaining Homogenized Stochastic Quantities from Mesoscale

Goal: evaluating mechanical response/properties variability of microstructures (and
further, of the entire turbine disk).
Steps:

1 Model Reduction: Given a set of microstructure snapshots, perform model
reduction techniques to obtain low-dimensional representations to reduce the
complexity of the stochastic input space.

2 Direct Computation: Interrogate each of the microstructures using direct models
to obtain its mechanical response and properties.

3 Statistical Learning: Estimate mechanical response/properties variability of
microstructures using stochastic methods.

4 Prediction: Given a new microstructure, first reduce its representation to
low-dimensional space. Then, predict its response/properties with quantified
uncertainties.

Materials Process Design and Control Laboratory Cornell University
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Model Reduction Techniques

Nonlinear model reduction (manifold Learning) on grain size

Isometric mapping.

The geometry of the manifold is reflected in the geodesic distance between point.

Algorithm

Compute the low-dimensional representations of given high-dimensional points.

3D 

data

Pt A

Pt B

unraveling the curve

Reconstruct high-dimensional representation of an arbitrary point in
low-dimensional space.

Materials Process Design and Control Laboratory Cornell University
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Karhunen-Loève Expansion on texture

Construct covariance matrix of given samples

C̃ =
1

N − 1

N
∑

i=1

(τ i − τ̄)T (τ i − τ̄), τ̄ =
1

N

N
∑

i=1

τ i

Solve eigenvalue problem and obtain eigenvalues φi and eigenfunctions λi of
the matrix.
The truncated K-L Expansion of the random vector τ is then written as

τ(r,ω) = τ̄(r,ω) +

d2
∑

i=1

√

λiφi(r)ηi (ω)

{ηi (ω)} is a set of uncorrelated random variables whose distribution can be
estimated using the Maximum Entropy Principle.
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Uncertainty Quantification: Propagating microstructure
uncertainty to material properties

Usually, a set of microstructure snapshots are given, whose
properties can be computed beforehand (microstructure
interrogation). We are interested to build a hypersurface of the
material properties in the space of all allowable microstructures. The
response/properties of a new microstructure (with complete
probabilistic information, error bars) can then be estimated without
any need to run the corresponding direct simulation.

Maximum Entropy Principle

Sparse Grid Collocation, HDMR

Bayesian Regression

Materials Process Design and Control Laboratory Cornell University
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Method 1: Maximum Entropy Principle

Sampling from low-dimensional representation space

Performing a number of direct simulations and computing
moments of response/properties using Monte Carlo simulation

Using Maximum Entropy Principle to estimate
response/properties distributions
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Equivalent stress distribution of nickel microstructures under simple compression when ǫ = 0.2.
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Method 2: Adaptive Sparse Grid Collocation (ASGC)

Mapping the low-dimensional stochastic (microstructure
topology) input space to a unit hypercube

Solving stochastic partial differential equations (SPDEs) using
ASGC (based on sampling on the hypercube)

ûd,q(t , ξ) =
∑

‖i‖≤d+q

∑

j∈Bi

ωi
j (t) · ai

j(ξ)

High dimension model representation (HDMR) integrated with
ASGC can also be easily applied.

Materials Process Design and Control Laboratory Cornell University
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Example: Mechanical Response Variability of Nickel Due to
Microstructural Uncertainties

Discrete microstructure features representation:

Grain size representation: "sorted grain size vector"

Texture representation: vector of Rodrigues parameters
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Microstructure snapshots satisfying certain constraints are provided

Grain sizes of microstructure have the same mean size, standard deviation,
and/or third order moment. Reconstruction techniques are used to produce
microstructure realizations.

Textures are generated by the same (deformation) process controlled by several
random (process) variables (e.g. forging rate).

Materials Process Design and Control Laboratory Cornell University
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Get grain size and 

texture snapshots

Nonlinear 

Model reduction

Karhunen-Loeve

Expansion

Grain size
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Adaptive sparse 
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Reduced features
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Flow chart
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Effects of microstructural feature uncertainties on macroscopic effective stress distributions at ǫ = 0.2 (N. Zabaras

et al., 2010)
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Example: Mechanical Property Variability of Copper due to
Microstructural Uncertainties: Convex Hull of all Possible
Properties and Affiliated Probabilities

Continuum microstructure features representation:

Orientation distribution function (ODF) in Rodrigues fundamental zone.
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Method 3: Bayesian Regression

Build an adaptive and sparse Bayesian Regression Model
(Relevance Kernel Machines, Sparse Representations)

y =

M
∑

i=1

βiφ(xi) + ǫ

where φ(xi) denotes the basis functions (polynomial, Gaussian,
radial, kernels, etc.) of the low-dimensional representation of the
microstructures, and y denotes the corresponding
response/property.

Based on observed data, use SMC method to estimate the
distribution of coefficients in the model

Predict the property and error bars of new microstructures.

Materials Process Design and Control Laboratory Cornell University
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An Adaptive Bayesian Prediction Model

A dynamic method that combines direct simulation and Bayesian regression learning
can be introduced.

Perform model reduction of given
microstructure snapshots and compute their
response/properties using direct simulation.

Construct a Bayesian regression model
(sparse kernel interpolation) using the given
data.

Adaptivity is built to allow new data
(microstructure and the corresponding
properties) to be used for updating the
response hypersurface. The variance
predicted from the predictive distribution for a
given input microstructure is used as an error
criterion for adaptivity.

Sequential Monte Carlo is used in building the
hypersurface and predictive distribution.
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Multiscale Model Reduction of Microstructure Random Field

The microstructure varies at each point in the (forged) workpiece at different
realizations of the forging process.

The microstructure also varies from point to point within the same workpiece.

One can construct a reduced-order stochastic model for each point. But how do
you account for microstructure correlation to avoid the curse of dimensionality?

Techniques to capture the correlation of microstructures in the continuum.

Most of the computational methods are intractable unless we can find the
correlation between all the microstructures and construct a reduced order model.

Use a bi-orthogonal KLE decomposition

Turbine disk
Materials Process Design and Control Laboratory Cornell University
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Bi-Orthogonal Decomposition (for Texture Multiscale Reduction)

Start from realizations of the texture random field varies in both meso (s) and
macroscale (x)

A i (x, s, ω)

Transform snapshots and construct covariance matrix at the meso-scale using all
data in the macroscale.

C(s, s′) =
1

nr

nr
∑

j=1

nelm
∑

in=1

nint
∑

im=1

âi(x im , s, ξj)â
T
j (x im , s′, ξj )η̂im |Jin |

Solve the eigenvalue problem to obtain the eigenvalues and eigenvectors:
ρi ,ψi (s)

The spatial modes are obtained by integrating over mesoscale variables

Φi(x, ω) =
1

√

(ρi )

∫

R

â(x, s, ω)ds

Materials Process Design and Control Laboratory Cornell University
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Effects of Uncertainty in Initial Texture

Comparison between the original microstructure 
and the reduced order one
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Effects of Uncertainty in Initial Texture

(N. Zabaras et al., 2010)
Materials Process Design and Control Laboratory Cornell University
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Computational design of deformation processes for desired
microstructure-sensitive properties in the presence of uncertainty

Design Objectives:

Variability in disk properties (tensile and fatigue strength,
stiffness, etc.)

Geometric variability, Variability in obtained microstructures, etc.
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Computational design of deformation processes for desired
microstructure-sensitive properties in the presence of uncertainty

Design variables (random):

Process sequence considered (multi-stage design)

Process conditions (e.g. variabilities in preforms, dies, operating
temperature, strain rates, etc.) and initial microstructures.
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Challenges

Complex multistage, multiscale and stochastic framework

High dimensional random input/output

Large variabilities require new thinking of modeling of SPDEs
(e.g. Bayesian predictive modeling with sparse sampling vs
sparse grids and HDMR). Sparse grids were shown recently to
fail when used with data-driven non-linear stochastic input
models (KPCA, IsoMap, etc.).

Need for scalable exascale computing algorithms

Materials Process Design and Control Laboratory Cornell University
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