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Foreword 
 
 The goal of our research, which has been supported by multidisciplinary 
university research initiative (MURI) grant W911NF-05-1-0153 from the Army Research 
Office, has been to construct a theoretical and empirical framework that can account for 
and make accurate predictions about the effectiveness of different training methods over 
the full range of militarily relevant tasks. The ability to predict the outcomes of different 
training methods on particular tasks will, as a natural by-product, point to ways to 
optimize training. The work performed in our project falls into three interrelated 
categories: First, empirical studies have been conducted on (a) the development and 
testing of training principles, (b) the acquisition and retention of basic components of 
skill, and (c) levels of automation, individual differences, and team performance. Second, 
a taxonomic analysis of training and task types was developed and extended to include 
training principles and performance measures. Third, based on the first two efforts, 
predictive cognitive models of training effects were formulated and tested for 
applicability to performance by military personnel. 
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A. Empirical Studies of Training 

 
1. Development and Testing of Training Principles 
 
 a. Problem studied.  Research was aimed at identifying and empirically 
supporting training principles for procedural and declarative memory skills.  These 
principles can provide guidelines to trainers that will enhance the effectiveness of the 
training they perform.  The principles investigated in experiments on the development 
and testing of training principles were conducted on a range of issues, including (a) 
generality across tasks of individual principles, (b) tests of multiple principles in a single 
task, (c) tests of principles in complex, dynamic environments, and (d) development and 
testing of new principles. 
 
 b. Important results.  The following 20 principles (in abbreviated form) have been 
among those investigated in this experimental research using a variety of tasks and 
paradigms: 
 
Bilateral Transfer: For spatial motor skills, there is more transfer from the dominant to 
the non-dominant hand than in the opposite direction (Lohse, Healy, & Sherwood, 2009). 
 
Cognitive Antidote: Adding cognitive complications to a routine task overcomes the 
decline in accuracy due to fatigue (Kole, Healy, & Bourne, 2008). 
 
Depth of Processing: Activities during training that promote deep and elaborate 
processing enhance durability of training (Healy, Kole, Wohldmann, Buck-Gengler, & 
Bourne, in press). 
 
Dual Coding: Retention is best for items encoded both verbally and spatially (Bonk & 
Healy, 2010). 
 
List Length: Retention of a given item in a list is better for short lists than for long lists 
(Bonk & Healy, 2010). 
 
Memory Constriction: The time span from which memories can be retrieved shrinks as 
stress increases (Staal, Bolton, Yaroush, & Bourne, 2008). 
 
Mental Practice: Mental practice promotes task-level representations but not effector-
level representations of motor skill (Lohse et al., 2009). 
 
Mental Rehearsal: Mental rehearsal can retard forgetting and promote transfer of training 
to a larger extent than can physical rehearsal, which suffers from motoric interference 
(Wohldmann, Healy, & Bourne, 2007, 2008a). 
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Optimal Modality Use: Learning is better when information is seen than when it is read, 
and it is best when the information is both read and seen (Schneider, Healy, Buck-
Gengler, Barshi, & Bourne, 2008). 
 
Positive Focusing: Regularities obeying complex rules can sometimes be best appreciated 
with only positive exemplars, rather than both positive and negative exemplars (Young, 
2010). 
 
Procedural Reinstatement: Specificity (limited transfer) occurs for tasks based primarily 
on procedural information, or skill, whereas generality (robust transfer) occurs for tasks 
based primarily on declarative information, or facts. Alternatively, duplicating procedures 
required during learning facilitates later retention and transfer (Healy, Wohldmann, Kole, 
Schneider, Shea, & Bourne, in press; Kole, Healy, Fierman, & Bourne, 2010). 
 
Retrieval Distraction: Retention is best when tested with minimal distraction (Bonk & 
Healy, 2010). 
 
Retrieval Induced Forgetting: Retrieval of information from memory can cause forgetting 
of related information not retrieved (Kole & Healy, 2008). 
 
Serial Position: Retention is best for items at the start of a list (primacy advantage) and at  
the end of a list (recency advantage) (Bonk & Healy, 2010; Ketels, Healy, Wickens, 
Buck-Gengler, & Bourne, 2010; Wickens, Ketels, Healy, Buck-Gengler, & Bourne, in 
press). 
 
Specificity of Training: Retention and transfer are depressed when conditions of learning 
differ from those during subsequent testing (Wohldmann & Healy, 2010; Wohldmann, 
Healy, & Bourne, 2010). 
 
Strategic Use of Knowledge: Learning and memory are facilitated whenever pre-existing 
knowledge can be employed, possibly as a mediator, in the process of acquisition (Kole 
& Healy, 2007, 2010). 
 
Testing: A test can strengthen a person’s knowledge of material as much as, or possibly 
even more than, can further study (Anderson, Healy, Kole, & Bourne, 2010). 
 
Training Compression: Training can be truncated by eliminating practice on known facts 
(Anderson et al., 2010). 
 
Training Difficulty: Any condition that causes difficulty during learning may facilitate 
later retention and transfer (Young, Healy, Gonzalez, Dutt, & Bourne, in press). 
 
Variability of Practice: Variable practice conditions typically yield larger transfer effects 
compared with constant practice conditions (Wohldmann & Healy, 2010; Wohldmann, 
Healy, & Bourne, 2008b). 
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 The literature documenting the full set of training principles is summarized in a 
technical report (Healy, Schneider, & Bourne, 2010).  A quantitative version of selected 
training principles is provided in a second technical report (Bourne, Raymond, & Healy, 
2010).  The publications and presentations resulting from the MURI research providing 
the empirical validation of the training principles are summarized in a third technical 
report (Healy & Bourne, 2010). 
 
2. Acquisition and Retention of Basic Components of Skill 
 
 a. Problem studied. The goal of this part of the Training MURI was to isolate the 
perceptual, cognitive, and motor components of skills and examine factors that affect 
acquisition and transfer of these skills. Much of this work focused on response selection, 
the processes involved in deciding which responses to make to stimuli in particular 
situations. Examining skill acquisition in tasks that stress response selection is important 
because it is the aspect of skill that benefits the most from training and practice (Welford, 
1976). Our work focused on three domains of basic skills: (a) transfer of newly acquired 
associations, (b) training with mixed mappings and tasks, and (c) performance in settings 
that require multitasking.   
 
 b. Important results. Perhaps the most striking outcome of our transfer studies is 
how easy it is to overcome or counteract effects of pre-existing performance biases. The 
benefit for spatial correspondence is eliminated by less than 100 trials of practice with an 
incompatible spatial mapping. With larger amounts of practice, the transfer task shows 
reversal of the Simon effect (faster responding for stimuli and responses compatible in 
location when location is irrelevant to the task at hand) to favor the practiced 
incompatible stimulus-response (S-R) relation. Nevertheless, another important aspect of 
transfer of learning is its limitations. In our transfer studies, we found that the transfer 
effect is larger when the practice and transfer contexts are similar than when they are not, 
with respect to stimulus modalities (visual or auditory), the types of stimulus mode, the 
response mode, and spatial dimensions of stimuli and responses. The results are 
consistent with the specificity of training principle.  At the same time, the results of our 
transfer studies are largely consistent with the MURI framework (performance shaping 
function), in which amount of transfer is determined by number of practice trials, 
learning rate, contextual similarity in training and transfer contexts, and time passage. 
 
 For the mixed mappings/tasks domain, the sets (or readiness) to perform each 
component task are active concurrently, unlike in the practice/transfer domain. When two 
or more tasks or mappings of stimuli to responses are mixed, such that performers are 
uncertain about which one will be in effect on a particular trial, responding is slower 
overall and the stimulus-response mappings in effect for one task intrude on performance 
of the other task.  We found considerable evidence for context similarity in this case as 
well: When each task had distinct responses, the costs associated with mixing were much 
less than when the tasks shared responses.  Performance suffers even more when there is 
uncertainty about both which task to perform (should I respond to color or location?) and 
which mapping to use (if I am to respond to location, do I respond compatibly or 
incompatibly?), and sequential effects as a function of whether the task/mapping switches 
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from that of the preceding trial are prominent.  For this situation, we found that the 
practice and sequential effects could be fit well by an ACT-R model based on the idea 
that responses come to be based on retrieval of previous instances (Gonzalez, Lerch, & 
Lebiere, 2003).   
 
 Often, not only does one have to be prepared to perform one of two or more tasks, 
but multitasking demands require that the tasks be performed concurrently. Using a dual-
task environment to investigate practice and transfer of a primary task, we obtained 
additional evidence consistent with the instance-based learning theory: Attention was 
required for acquisition of new spatial associations of stimuli and responses, but not for 
transfer of this learning, implying that the transfer effect reflects “automatic retrieval” of 
the learned skills.  In other dual-task studies we found that even with very highly 
compatible individual tasks, practice is not sufficient to overcome interference associated 
with having to perform the two tasks in close temporal proximity. Using practice and 
transfer in a synthetic work environment involving four distinct tasks, we found that 
participants were sensitive to changes in payoffs in allocating their efforts among the 
tasks but continued to show residual effects of the prior payoff schedule.   
 
 Our research has shown that there are benefits of applying individual principles in 
the training of specific tasks.  However, this training is not isolated and can suffer from 
interference from components within a task or between tasks.  We have identified 
specific factors that influence the learning and transfer of S-R associations and how they 
are impacted by task switching and multitasking. 
 
 The details of the experimental research in the MURI on acquisition and retention 
of basic components of skill are summarized in a technical report (see Proctor, 
Yamaguchi, & Miles, 2010). 
 
3. Levels of Automation, Individual Differences, and Team Performance 
 
 a. Problem studied.  Although the scientific knowledge on what automation is and 
how it can aid human operators is flourishing, there is still much to learn about the role of 
automation in training. We found no previous research that has looked at how operator 
individual differences might relate successful incorporation of automation into training 
programs. 
 
 Given the importance of interactions between individual differences in cognitive 
ability and forms of training on training outcomes, one imperative question within our 
research was to examine how aptitude and training type interact, with training type 
defined by levels of automation. 
 
 Specifically, the key goals and objectives guiding our research were: (a) to 
examine the role of automation in skill learning and (b) to determine whether the aptitude 
of the learner interacts with presence of automation to influence the effectiveness of 
training. 
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 b. Important results.  Across a series of experiments, our data consistently show 
no benefits for learning from the presence of automation during training and frequent 
situations in which the presence of automation can impair learning. Although automation 
does assist novice operators early in training, it apparently often does so at a cost to the 
degree of learning that occurs during training. When automation support was removed, 
costs were seen for those trained with automatically-initiated automation.  
 
 An aptitude-automation interaction was observed, such that automation reduced 
the relationship between trainee intelligence and training performance. This presence of 
an aptitude-automation interaction, shown in this project for the first time, suggests the 
effects of automation on training are greater for lower aptitude individuals. Although 
supplying greater support to such users, the presence of automation may be masking 
differences between individuals and at the same time impairing their ability to acquire 
fundamental knowledge about the operation of the system. These are clearly matters of 
potential practical importance within numerous training situations. Our results suggest 
that the effectiveness of automation in training will vary not only by the type of 
automation and the task, but also by the aptitude of the operator. 
 
 Within the context of the current MURI effort is the specificity of training 
principle, in which learning and transfer are reduced when conditions within training 
differ from those encountered within a test (e.g., Healy & Bourne, 1995; Healy et al., 
1993).  Such a principle would suggest that changes to the nature of the task induced 
through the use of automation provide sufficient differences to impact performance when 
automation is withdrawn.  
 
 One simple solution to reducing reliance on automation, gradually withdrawing 
such support, proved ineffective in our research. Although there may be other approaches 
that serve to inoculate individuals against over-reliance on automation, these remain 
topics for future research. 
 
 The details of the experimental research in the MURI on automation and effective 
training are summarized in a technical report (see Clegg & Heggestad, 2010). 
 

B. Taxonomy 
 
1. Problem Studied   
 
 The goal of the Training MURI was to quantify the effects on performance of 
different training methods for complex military tasks. The extensive range of variables 
that can affect training efficacy and the multiplicity of tasks that may require training 
prevent an exhaustive quantification of training outcomes for specific tasks and training 
scenarios. In order to render the study of training effects tractable and to guide research, 
we developed a multi-dimensional taxonomy, which provides a framework by which 
training effects can be assessed and predicted for any task. The taxonomy we have 
developed involves a four-dimensional decomposition of the training space. It includes 
separate dimensions of classification for task description, training procedure, and the 
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context and assessment of task performance. The training principles are considered the 
fourth dimension. The first three dimensions are structured as hierarchical feature 
decompositions. 
 
2. Important Results 
 
 The task decomposition adopted for the MURI builds on taxonomies like the Roth 
(1992) taxonomy of abilities, introducing a finer classification of abilities, while keeping 
the number of taxa tractable. Taxa were selected to capture the cognitive processing of 
stimuli, which was considered to be central, both because of the military’s primary desire 
to optimize training for the networked battlefield and because most empirical studies 
conducted for the MURI have largely been designed to explore cognitive processing, 
with concomitant perceptual and psychomotor processes. In information processing tasks 
inputs are initially processed using perceptual and attentional abilities. Information is 
further synthesized with higher-order cognitive processes and memory, and output 
responding is planned. Finally, a psychomotor response in produced. This sequential 
processing cycle is reflected in the taxonomy. 
 
 The training dimension covers variables that capture the method of instruction 
and the types of activities performed during learning. The two major pieces in the 
decomposition of task learning in the MURI taxonomy are pedagogy and practice. 
Pedagogy captures the method of task instruction. The practice taxa are used to describe 
the nature of practice performed during training. Although the set of parameter values 
selected for inclusion in the MURI taxonomy are intended to allow an analysis of most 
training scenarios, additional pedagogy and practice parameters may be added to the 
taxonomy when they become necessary. 
 
 The performance dimension of the MURI taxonomy incorporates the two 
components of performance context and performance assessment. Performance context 
covers the conditions of and delay to post-training performance, relative to training. 
Performance assessment specifies measures of performance. The Kraiger, Ford, and Salas 
(1993) classification of learning outcomes forms the basis for the MURI performance 
assessment taxonomy, which includes separate taxa for assessing the acquisition of 
knowledge and skills, as well as attitudinal changes. Having quantified the outcome of a 
particular training scenario, the effectiveness of training can be measured by comparing 
post-training performance with performance before or at the beginning of training, using 
an accepted measure of training, such as the training effectiveness ratio (Wickens & 
Holland, 2000). Performance results can then feed back to further training design. 
 
 The details of the MURI training taxonomy are summarized in a technical report 
(see Raymond, Healy, & Bourne, 2010). 
 

C. Cognitive Models of Training 
 
1. ACT-R Models 
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 a. Problem studied.  We studied the cognitive functions involved in different 
training principles and in a variety of tasks.  We relied on the ACT-R cognitive 
architecture (Anderson & Lebiere, 1998).  The main models developed include: 
 1) Models of fatigue effects in a data entry task; 
 2) Models of stimulus-response compatibility (SRC) and Simon effects; 
 3) Models of dynamic visual detection in the RADAR task. 
Review of these models demonstrates the benefits of using computational modeling to 
develop an understanding of the learning process in a variety of tasks, how they are 
linked to various training principles, and the utility of the models in predicting learning 
effects. 
 
 b. Important results.  We relied on the ACT-R cognitive architecture (Anderson & 
Lebiere, 1998) to develop computational models in three different projects and tasks.  
The first project investigated fatigue effects in a data entry task (Gonzalez, Best, Healy, 
Bourne, & Kole, 2010).  The empirical studies examined training principles such as 
specificity of training, procedural reinstatement, and depth of processing (Kole et al., 
2008).  The data entry task required subjects to see a four-digit number and then type it 
on the computer.  Experiments involved long sessions with several blocks of many of 
these numbers.  Typing accuracy and speed were the main measures of performance.  The 
ACT-R cognitive model developed for the data entry task proposed a theory of fatigue 
that explained the effects found in several empirical data sets:  Both affective and 
cognitive processes decay with extended time spent on the task, producing faster 
performance but increased errors in the task (Fu, Gonzalez, Healy, Kole, & Bourne, 
2006; Gonzalez et al., 2010; Gonzalez, Fu, Healy, Kole, & Bourne, 2006;). 
 
 A major conclusion from the work in the MURI was the robustness of the 
Instance-Based Learning Theory (IBLT; Gonzalez et al., 2003).  The IBLT, which relies 
on some ACT-R mechanisms, provides an approach to modeling learning based on 
experience and exploration.  The IBLT characterizes learning as storing a sequence of 
action-outcome links produced by experienced events through a feedback-loop process of 
human and environment interactions in memory. This process increases knowledge and 
allows decisions to improve as experience accumulates in memory. A demonstration of 
the development of IBLT models of training involved the SRC and Simon effects (Dutt, 
Gonzalez, Yamaguchi, & Proctor, 2010; Yamaguchi, Dutt, Gonzalez, & Proctor, 2010).  
The SRC effect is the faster response when both stimulus and response locations 
correspond than when they do not.  The effect is so robust that it is found even when 
stimulus location is irrelevant to the task, a variation known as the Simon Effect (Simon, 
1990). Thus, a distinction between the SRC and Simon effects is made on the basis of 
whether the stimulus locations are relevant or irrelevant to the task. Both the SRC and 
Simon effects occur for visual and tactile stimuli, verbal and nonverbal symbols that 
convey location information (e.g., location words; Proctor, Yamaguchi, Zhang, & Vu, 
2009), a variety of response modes (e.g., a steering wheel), and in more complex task 
environments such as flight operations (Yamaguchi & Proctor, 2006). We provided an 
explanation of the observed SRC/Simon effects using an IBLT model (Dutt et al., 2010; 
Dutt, Yamaguchi, Gonzalez, & Proctor, 2009). The model predicts learning and 
performance from experiments where human participants performed mixed Simon and 
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SRC tasks. In this endeavor, the IBLT helps to explain how the cognitive processes are 
used, how the SRC task and Simon task become automatic, how the effects are attenuated 
when the two tasks are intermixed, and the effects for novel mixing situations. We 
compared the IBLT model predictions and fits to the human data for sequential effects as 
a function of whether the spatial mapping was compatible or incompatible, mapping 
repeats or switches, and when Simon or SRC task repeats or switches in the mixed Simon 
and SRC tasks.  
 
 A third project reported in Gonzalez, Dutt, Healy, Young, and Bourne (2009) 
presents a comparison of an IBLT model to a Strategy-Based Learning (SBL) model in a 
common task: dynamic visual detection. The SBL approach, when implemented in ACT-
R, provides an account of human learning due to the use of a finite set of strategies (as 
opposed to the IBLT approach, which uses retrieval from memory and declarative 
knowledge from memory).  We compared the two models based on (a) how well each 
model fits human learning data in the task; and (b) how well each model is able to 
reproduce the way humans, having learned in one scenario of the task, behave in a testing 
condition, where the scenarios are similar to or different from the training condition. 
 
 Taken together, these studies suggest that the IBLT presents an accurate and 
robust representation of the learning process in several diverse tasks. Because the IBLT 
has also shown accurate representations in many other tasks (Gonzalez et al., 2003; 
Gonzalez & Lebiere, 2005; Lejarraga, Dutt, & Gonzalez, 2010), we conclude that the 
theory is more general than it was initially conceived to be.  The results generalize the 
IBLT's domain and application and show that it is well suited for other non-decision 
making tasks, such as the simple visual attention and search tasks summarized here.  This 
ability is illustrated by the precision of the model’s predictions in several of the projects 
we have described.  
 
 The IBLT modeling tool, which was used in the MURI, is summarized in a 
technical report (Gonzalez, 2010). 
 
2. IMPRINT Models 
 
 a. Problem studied.  The human performance modeling tool used for this project 
is the Improved Performance Research Integration Tool (IMPRINT). IMPRINT has 
before now been mainly used for large-scale modeling. In the present project, the goal 
was to begin to develop the relationship between training variables and Soldier 
performance based on smaller-scale cognitive tasks, which before this project had not 
been done due to a lack of empirical data. In the present project, we used the data 
gathered in several cognitive experiments from our laboratory to help in understanding 
the use of IMPRINT for cognitive-level modeling, we collected information that could be 
used to inform the creation of a task taxonomy, and we learned how various aspects of 
training seen in the experimental setting could be implemented in IMPRINT. 
Specifically, three very different tasks--one a simple cognitive task, the second a task not 
only more complex and army-relevant but also involving a secondary or distractor task, 
and the third simulating part of a networked battlefield--were chosen to be modeled. The 
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goal of the modeling was to predict performance that reflected underlying cognitive 
processes as revealed by the experimental data in these three tasks. 
 
 b. Important results.  The IMPRINT modeling part of the project simulated the 
experimental results from three very different cognitive experiments conducted in our 
laboratory. The three tasks were (a) digit data entry, a simple number typing task (Healy, 
Kole, Buck-Gengler, & Bourne, 2004); (b) the RADAR task developed at Carnegie 
Mellon University, which involved visual search and detection of targets among 
distractors (Young et al., in press); and (c) the information integration (fusion) task, 
developed to test memory for serially presented targets used to make firing decisions 
maximizing target damage (Ketels et al., 2010). 
 
 For digit data entry, we modeled Experiments 1 and 2 of Healy et al. (2004). 
Some of the specific aspects that were modeled were the contrast between repeated 
(Experiment 1) and non-repeated (Experiment 2) stimuli; the effects of changing hands in 
Experiment 2 (and what it means to use one’s non-preferred hand); the common finding 
of chunking, in which the response times (RTs) for the third digit are longer than those 
for the second and fourth digits of the four-digit numbers; and improvement in RT along 
with deterioration in accuracy across trials. In the process of conducting this modeling, 
we broke down the responses of the subjects into their component parts and were able to 
determine differences for cognitive and motoric processing. Even more importantly, this 
was the first time any digit data entry responses had been examined so thoroughly at the 
individual subject level.  Thus, we learned that chunking was in fact not universal across 
subjects, but rather represented a strategy choice. This choice was then successfully built 
into the model. 
 
 For RADAR, we modeled Experiment 1 of Young et al. (in press). The RADAR 
task was a more difficult task to model, as it had a simultaneous secondary task in some 
conditions. Specifically modeled were the secondary task’s effect on the primary task 
performance at the time of the task and also the effect of the secondary task at training on 
performance at test, as well as the impact on performance (RT, hit rate, and false alarm 
rate) of the complex interaction between two variables that affected task difficulty--
mapping type and processing load. For the purpose of modeling, the data needed to be 
reanalyzed at the most basic frame level, and in that reanalysis, interesting and complex 
patterns of learning (improvement), at least for the false alarm rate, were discovered.  
Specifically, there was an underlying low-level improvement throughout the session, but 
higher levels of improvement occurred when the task was most difficult in some way: 
either in the first block of each session, where the task was (relatively) new, or in the 
most difficult blocks, where the load was high and there was varied mapping (foils and 
targets of the same type). 
 
 Finally, the fusion task, developed relatively recently in our laboratory, was 
intended to be closer to a task that might occur in real army situations: where a number of 
targets are shown sequentially and then the subject must choose the best location that will 
damage the most targets according to various algorithms. Experiments 2 and 3 of Ketels 
et al. (2010) were chosen for modeling. The only difference between these two 
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experiments was the order of recalling the seven target locations and the firing decision. 
The observed firing decision did not differ very much between the two experiments, but 
the observed recall rate in Experiment 3, in which recall was done first, was far better 
than that of Experiment 2, in which recall followed the decision. Also, the observed firing 
location, in relation to the seven target locations, bore some resemblance to the serial 
recall curves. Thus, Experiment 3 was taken as the base experiment, with the idea that the 
amount recalled in both experiments should inform the firing decision but that the firing 
decision in Experiment 2 hurt memory for the seven locations, thus depressing the recall 
accuracy in Experiment 2 relative to Experiment 3. The Start-End Model (Henson, 1998) 
was found to be most useful as a starting point for understanding serial recall curves. 
Using an abbreviated form of that model, the recall and firing decision results were both 
modeled successfully in IMPRINT. 
 
 The codes for these models are available on compact disk upon request from 
Alice Healy. 
 
3. Model Comparison and Evaluation 
 
 a. Problem studied.  In the original proposal, the last of the three "Technical 
Approach" items was "III. Explication of two different modeling approaches," in turn 
separated in three parts: A. Modeling with IMPRINT, B. Modeling with ACT-R, and C. 
Mathematical soundness and computational feasibility of modeling efforts. This last item 
was investigated as a team effort led by co-PI Bengt Fornberg. The effort started as 
planned by comparing the effectiveness and computational speeds of separately 
developed IMPRINT and ACT-R models of laboratory experiments involving two 
different tasks. However, the discovery of major unexpected opportunities in terms of 
speedup and scalability when translating the IMPRINT models to a language optimized 
for scientific computing (Matlab) caused us to extend the scope of the model evaluation 
task to also include an extensive study of the additional opportunities this translation 
provided, especially in terms of parameter optimization.    
 
 b. Important results.  Several comparisons and evaluations of IMPRINT and 
ACT-R models of two laboratory tasks (keystroke data entry and RADAR visual search) 
were conducted during the MURI. The first step in our MURI effort on this issue was to 
critically assess the relative performance (in terms of accuracy, speed, and coding 
complexity) of the IMPRINT and the ACT-R models that were developed by two 
different specialized expert teams, one for each platform. A critical issue that was 
explored was the issue of scalability: the feasibility of efficiently scaling up models 
towards much larger future problem sizes and complexities. Although large models on 
these platforms had previously been implemented and run for extended times on giant 
computer systems, this fact was as likely to raise concerns as it was to alleviate concerns 
about future possibilities of scaling models upward.  
 
 After the IMPRINT and ACT-R teams had produced well-fit models for the two 
tasks, it become clear that, in spite of the great conceptual differences between the 
modeling platforms, both accuracy and computational cost were comparable (when using 
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similar hardware). From a military perspective, key distinguishing factors between the 
two platforms would rather be other capabilities, such as the ability to interface to other 
systems.  
 
 Performance comparisons between altogether different computational systems 
were missing in the previous literature, but are necessary in order to get an independent 
objective point of reference. Much of our effort, therefore, became directed towards 
exploring whether the equation-based approach in our IMPRINT models could be 
substantially speeded up by being reprogrammed in Matlab (one of many highly effective 
scientific languages in very widespread use, with C++ and Fortran being two other 
options). Matlab was selected here mainly for its great ease of use, and its very effective 
and convenient capabilities for porting from standard PC-based platforms to parallel and 
distributed processing environments. The result of this language translation was so 
encouraging that the original direction of the Model Evaluation effort was promptly 
supplemented by an additional effort of exploring how the speedup using Matlab of the 
order of 10,000 (on comparable hardware) could best be utilized to provide additional 
modeling capabilities. A particularly promising opportunity that was pursued concerned 
automated optimization of model parameters through the use of global optimization 
algorithms, such as simulated annealing and genetic algorithms. It was also discovered 
that Radial basis functions (RBFs) offer major additional opportunities for speeding up 
the evaluation of models and for interactive visualization of multivariate data sets, 
including the optimized parameter spaces of the models. 
 
 Because further speedup factors of several orders of magnitude can readily be 
achieved by using parallel or distributed computing, the scalability is no longer as 
uncertain as it was perceived to be when the present MURI was initiated. 
 
 The details of the model comparison component of the MURI are summarized in 
a technical report (see Fornberg, Raymond, Buck-Gengler, Healy, & Bourne, 2010). 
 

D. Summary 
 
 During the five years of the Training MURI (5/1/05-9/30/10), significant progress 
was made on all three components of the project: experiments, taxonomy, and models.  
New experiments were conducted on (a) the development and testing of training 
principles, (b) the acquisition and retention of basic components of skill, and (c) training 
effects associated with levels of automation, individual differences, and team 
performance. To render the study of training effects tractable and to guide research, we 
developed a multi-dimensional taxonomy, which provides a framework by which training 
effects can be assessed and predicted for any task. The taxonomy involves a four-
dimensional decomposition of the training space and includes separate dimensions of 
classification for task description, training procedure, and the context and assessment of 
task performance. The training principles are considered the fourth dimension. The 
component of the project devoted to models consists of three parts.  The work on ACT-R 
developed models of the simple data entry task, of the more complex RADAR task, and 
of stimulus-response compatibility effects.  It also involved development of a Visual 
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Basic modeling tool.  The work on IMPRINT developed a model of data entry, a model 
of the RADAR task, and a model of information integration (fusion).  The part on model 
assessment focused on model optimization.  The Matlab platform and the algorithms 
included in the IMPRINT models were used for this purpose.  These various efforts 
yielded many submitted manuscripts, peer-reviewed journal publications, chapters 
published in books or conference proceedings, presentations at professional meetings, 
master’s theses, and doctoral dissertations.  We also pursued numerous points of 
transition between the results of basic research in this project and the eventual applied 
needs of Army trainers, including the specification of performance shaping functions, 
which are quantitative versions of training principles that can be incorporated into 
IMPRINT. 
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 Training principles that we have identified and supported empirically can be expressed as 
equations, and these equations, in turn, can be incorporated into IMPRINT for purposes of 
predicting post-training performance. 
 
 There are two fundamental principles of training that derive from the work of others and 
that were confirmed in our research: 

 
(A) Practice improves performance (power law of practice) 
 
(1) p = a + bN-c 
 
where p is performance (e.g., RT or errors), N is number of practice trials, a is asymptotic 
performance, c is rate of learning, and b is a scaling parameter. 
 
Applicable to the following IMPRINT task taxons: numerical analysis, information processing, 
fine motor discrete, fine motor continuous, gross motor – light 
 
(B) Power law of forgetting 
 
(2) p = d + eT-f 
 
where p is performance, T is time since learning (retention interval), d is the degree of learning, f 
is the rate of forgetting, and e is a scaling parameter. 
 
Applicable to the following IMPRINT task taxons: numerical analysis, information processing, 
fine motor discrete, fine motor continuous, gross motor – light  
 
 There are additional, more specific training principles that were formulated during the 
course of the MURI research.  The following are four examples: 
 
(C) Deep processing (levels of processing) 
 
Deep processing during training improves performance after training  
 
(3)  pi = gipn 
 
where pi is performance (RT or errors) after training following a deep processing condition i 
during training, pn is performance after training following the most shallow processing 
requirement during training, and gi (< 1) is the benefit from a deep processing condition i 
 
Applicable to the following IMPRINT task taxons: numerical analysis, information processing 
 



(D) Generation (the generation effect) 
 
Subject generation of items (as opposed to item reading) during training improves performance 
after training. 
 
(4)  pi = hipn 
 
where pi is performance (RT or errors) after training following a deep processing condition i 
during training, pn is performance after training following the most shallow processing 
requirement during training, and hi (< 1) is the benefit from a deep processing condition i 
 
Applicable to the following IMPRINT task taxons: numerical analysis, information processing 
 
(E) Difficulty  
 
Difficulty (e.g., contextual interference) during learning lowers accuracy (increases errors) 
during training but improves long-term retention.   
 
After training, 
 
(5) p1 = (1+k)pn 
 
where p1 is performance (proportion of errors) during training under contextual interference, pn is 
performance during training under no interference conditions, and k (-1<k< 0) is the magnitude 
of the interference effect at training.   
 
After a delay, 
 
(6) p2 = (1+q)pm 
 
where p2 is performance after a delay following contextual interference during training, pm is 
performance after a delay under no interference conditions during training, and q (0<q<1) is the 
magnitude of the interference effect after a delay. 
 
Applicable to the following IMPRINT task taxons: numerical analysis, information processing, 
fine motor discrete, fine motor continuous 
 
(F) Mnemonic procedures  
 
One type of effective mnemonic procedure that involves relating facts to be learned to already 
well-known facts during training improves performance after training as well as after a delay 
(i.e., strategic use of knowledge principle).   
 
At the end of training, 
 
(7) p1 = (1+r)pn 



 
where p1 is performance (in this case, proportion of correct responses) at the end of training 
following a mnemonic procedure condition during training, pn is performance after training 
following no mnemonic processing requirement during training, and r (> 0) is the benefit from 
strategic use of knowledge.   
 
After a delay following training, 
 
(8) p2 = (1+s)pm 
 
where p2 is performance after a retention interval following training with a mnemonic procedure 
condition, pm is performance after a retention interval following training with no mnemonic 
processing requirement, and s (> 0) is the benefit from strategic use of knowledge. 
 
Applicable to the following IMPRINT task taxons: numerical analysis, information processing 
but not fine motor discrete 
 

Illustrative Applications 

We looked at two manipulations, one involving training difficulty and the second involving 
mnemonic procedures.  We chose the first because of its striking, unintuitive results.  
Specifically, training under difficult conditions led to worse performance at the end of training 
but better performance after a 1-week delay.  We chose the second because of its massive 
positive effects both immediately after training and after a 1-week delay. 
 

(E) Difficulty 
 

The difficulty manipulation is based on an assessment involving the direction of associations 
(i.e., for a translation task, the easier French-to-English translation direction is compared to the 
harder English-to-French direction).  Data from Schneider, Healy, and Bourne (2002) were used 
to derive the following table: 
 

 Effect of Translation Direction on Accuracy 

Training type End of Training  
(3 repetitions) 

Retention  
(in both directions across 

participants) 
Easy (French to English) 0% 0% 

   
Hard (English to French) -37% +23% 

 
Note that the difficulty manipulation used here hurt performance at the end of training but, 
despite the lower amount learned during training, aided performance at the retention test.  These 
numbers, based on proportion of correct translation responses, were derived from tests given 
immediately after training and then again after a 1-week delay.  The tests given at the end of 
training were restricted to the translation direction used during training, whereas the retention 



tests given 1 week later occurred in both directions (across participants).  The easy translation 
direction is used as a baseline (i.e., set to 0% separately for both the training and the retention 
test) to assess the magnitude and direction of the effect of translation direction on both training 
and retention.  There was no intermediate level of training difficulty in this experiment, although 
we might make the reasonable guess that performance with an intermediate difficulty could be 
derived by interpolation.  There was only a single retention interval in the present study (1 
week), but we assume that the forgetting function would not interact with the delay.  In any 
event, because of the procedure used to set the baseline separately for both training and retention, 
the percentages do not reflect the forgetting that occurred over the 1-week retention interval. 
 
Recalling the relevant equations: 
 
(5) p1 = (1+k)pn 
 
(6) p2 = (1+q)pm 
 
Thus, for Equations 5 and 6, we estimate that k = -.37 and q = .23. 
 
(F) Mnemonic procedures 
 
The mnemonic manipulation is based on a comparison of a situation in which new information is 
learned about items for which there is high prior knowledge (i.e., friends or relatives) with a 
situation in which the same new information is learned instead about items for which there is no 
prior knowledge (i.e., unfamiliar individuals).  Recently collected data, following up the 
published reference by Kole and Healy (2007), were used to derive the following table: 
 
In the second 

 Effect of Strategic Use of Prior Knowledge on Accuracy 
Training type End of Training Retention 
Low Knowledge 0% 0% 

   
High Knowledge +337% +184% 

 
 
These numbers, based on proportion of correct associative recall responses, were derived from 
tests given immediately after training and then again after a 1-week retention interval.  
Equivalent tests were given at the two times.  The low-knowledge training condition is used as a 
baseline (i.e., set to 0 separately for both the immediate test and the delayed test) to assess the 
magnitude and direction of the effect of using a mnemonic procedure based on prior knowledge 
on both training and retention.  There was no intermediate level of degree of prior knowledge in 
this experiment, although we might make the reasonable guess that performance with an 
intermediate difficulty could be derived by interpolation.  There was only a single retention 
interval in the present study (1 week), but we assume that the forgetting function would not 
interact with the delay.  In any event, because of the procedure used to set the baseline separately 
for both the immediate and delayed test, the percentages do not reflect the forgetting that 
occurred over the 1-week retention interval. 



 
Recalling the relevant equations: 
 
(7) p1 = (1+r)pn 

 
(8) p2 = (1+s)pm 
 
Thus, for Equations 7 and 8, we estimate that r = 3.37 and s = 1.84. 
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EXECUTIVE SUMMARY 
 
Automation may seem like it is helping you, especially if you need more help, but it is not 
helping you learn. 
 
Our research on the role of automation in training offers the following core findings: 
 

! Automation frequently has a negative impact on training 
o Find negative effects of automation in both a microworld simulation situation and 

in an operationally relevant Predator UAV simulator 
o Not all levels of automation have equivalent costs for learning 
o The costs of automation for learning merits examination in other tasks and 

environments 
 

! Slowly taking away the availability of automation over time was insufficient to avoid the 
negative consequences on learning 

o Training strategies to effectively overcome the costs of automation need to be 
developed 
 

! There were specific situations where automation was beneficial, but these benefits did not 
extend to the underlying learning 

o There was a benefit to performance early in training, particularly for lower 
aptitude trainees 

 
! The pattern of results most closely matches the Specificity of Training Principle, one of 

the core learning and training principles within this MURI. The findings suggest a new 
range of domains to which this principle might productively be applied.  

 



Colorado State University MURI Project 
Benjamin Clegg & Eric Heggestad 

-2- 

 
AUTOMATION AND TRAINING 

 
The increasing presence of automation is changing the nature of a wide variety of tasks. Tele-operations 
and robotic systems are likely to play an increasingly important role within the future networked 
battlefield. Automation offers the potential to make tasks easier. This might allow a single operator to 
control more systems, and be more productive; or might allow individuals without highly specialized 
training to accomplish complex tasks. This begs the question of how best to train operators to run such 
systems. Additionally, automation can function as a training aid – supporting novice operators, and 
perhaps even making the task more manageable, allowing them to focus on learning. 
  
Although the scientific knowledge on what automation is and how it can aid human operators is 
flourishing, there is still much to learn about the role of automation in training. We found no previous 
research that has looked at how operator individual differences might relate successful incorporation of 
automation into training programs. Our research has sought to address this important issue.  
 
Specifically, the key goals and objectives guiding our research were: 

• To examine the role of automation in skill learning 
• To determine whether the aptitude of the learner interacts with presence of automation to influence 

the effectiveness of training 
 
Levels of Automation 
Instead of regarding automation as a binary option (“automation” vs. “no automation”), Sheridan and 
Verplank (1978; see also Endsley & Kaber, 1999; Kaber & Endsley, 2004; Kaber, Onal, & Endsley, 
2000; Parasuraman, Sheridan, & Wickens, 2000) proposed that allocation of function between human and 
machine spans a series of different possible levels of automation. Such advances offer a significant degree 
of flexibility in developing varieties of automation across a broad spectrum of tasks. One critical 
transition within these taxonomies occurs for the change in how automation is initiated. For example, the 
human operator can actively engage automation or he or she can veto power over automation that is 
automatically initiated. This distinction is sometimes referred to as “management by consent” versus 
“management by exception” (Billings, 1997). 
 
While such developments in understanding levels of automation offer important insights into the different 
forms and types available, they also raise the question of how to instantiate automation during training to 
maximize efficiency, durability, and flexibility of learning. Training with highly automated systems is 
becoming increasingly common. However, operators might not even develop all the appropriate 
underlying skills and knowledge if they are only trained while relying on automated aides that support 
their performance (Moray, 1986). 
 
Interactions Between Individual Differences and Training Effectiveness 
Clamann, Wright, and Kaber (2002) highlight that problems adapting to automation seem more 
pronounced for cognitive tasks (analysis and decision aids) versus automation applied to lower level 
components (information acquisition and action implementation). Findings such as these raise the 
possibility that determining the effectiveness of training with these more demanding forms of automation 
will be influenced by individual differences between operators. Individual differences in cognitive 
abilities are related to variations in learning, retention, and transfer performance in training contexts. 
Ackerman (1988) showed that as learning progresses, the rate of skill acquisition relates to individual 
variation in different cognitive components. Those higher in general cognitive ability (‘g’) show superior 
performance during the initial, declarative knowledge phase of learning; then perceptual speed abilities 
are related to performance in the next phase, knowledge compilation; and, later in learning, psychomotor 
abilities are related to performance in the procedural phase.  
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Research from an aptitude treatment interaction (ATI) perspective (Cronbach, 1957) has indicated that 
relationships between cognitive abilities and training outcomes differ as a function of the nature of 
training. Variations in training have also been shown to interact with cognitive ability to influence 
performance in a transfer of training environment (Goska & Ackerman, 1996). Thus, it is clear that the 
effectiveness of a training intervention depends in part on the characteristics of the trainees.  
 
Given the importance of interactions between individual differences in cognitive ability and forms of 
training on training outcomes, one imperative question within our research was to examine how aptitude 
and training type interact, with training type defined by levels of automation. While other research 
implies that intermediate levels of automation may prove most effective during training (e.g., Clamann, 
Wright, & Kaber, 2002; Clegg, Blalock, Rodriguez, & Moray, 2010) thus far such work has not 
systematically explored individual differences in performance, and in particular conducted an 
examination of potential aptitude-treatment interactions. That is to say, the effects of various types of 
automation on learner performance are likely to vary as a function of the traits of the individual.  
 
Research Platforms 
Our initial studies were conducted using a simulated process control task, “Pasteuriser”, developed from 
an earlier micro-world simulation used by Moray and others (e.g., Lee 1992; Lee & Moray, 1992; Muir, 
1987; Muir & Moray, 1996; see also Reising & Sanderson, 2002). The properties of Pasteuriser are 
comparatively well known, including established knowledge about the amount of practice required on the 
task, the shape of the learning curves, etc. Complexity in the operator’s task arises from the interaction of 
three subsystems, plus the presence of competing goals, and also the dynamics that incorporate time lags 
(for more details on the simulation see Lee, 1992). The version developed by Moray, Rodriguez and 
Clegg (2000) allows a choice of level of automation under which the operator will run the system. In the 
higher levels of automation, three subsystems can be controlled either manually or automatically. This 
platform provided the foundational data for Colorado State’s contribution to the MURI project. 
 
Subsequent studies were carried out using alternative platforms to extend the research into operational 
relevant domains and into team performance. Our approach was to look for a military-task simulation 
with which to examine the applicability of our findings. In seeking a dynamic task with a relative rapid 
initial learning curve, we were granted access to the Predator unmanned aerial vehicle (UAV) synthetic 
task environment (STE), developed at the Air Force Research Laboratory’s Warfighter Training Research 
Division (Martin, Lyon, & Schreiber, 1998). The platform was developed to assess the acquisition of key 
skills required of UAV pilots, and thus has value for us in terms of both its relation to this real military 
task and its close correspondence to a wide variety of current and future military tasks. A further 
advantage of the use of this platform was the presence of structured training, in contrast to the trial-and-
error training in the Pasteuriser task, adding further scope for generalization of our previous findings 
 
The UAV STE program was not originally conceived as a platform to assess the role of automation in 
training. However, the design of the basic maneuvering modules, intended to teach control of the 
Predator, incorporated automation to allow for part-task training (of a type very similar to that which we 
included in the study reported below). By changing the structure of the modules, we were therefore able 
to assess whether the ability to use automation to focus learning on specific aspects of the task improves 
learning, or whether, as in our previous studies, the result is impoverished learning of the system 
compared to individuals learning with no such automation-based support. 
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FINDINGS 

 
Taken together the results across our experiments illustrate the impact of automation on training and serve 
to highlight the possible deleterious effects of the inclusion of automation within training. Our data offer 
unique insights, such as providing the first evidence of an aptitude-automation interaction in training 
effectiveness.  
 
In the initial experiment (Clegg, Heggestad, & Blalock, 2010), training was conducted with operators 
either performing with no automation present (manual control), with short-term assistance from 
automation that required active engagement by the user (user-initiated automation), or with short-term 
assistance engaged by the automation unless vetoed by the user (automatically-initiated automation). Data 
were collected from more than 350 participants, each of who completed a cognitive ability battery and 2! 
hours of training on the Pasteuriser task. 
 
Figures 1 and 2 present the results for two performance metrics for each training condition over trials of 
learning. As shown, there was a benefit of training with automation early in training. More specifically, 
individuals in the manual control (no automation) group performed less well than participants in the two 
automation conditions in the first learning trial. These benefits, however, rapidly diminished and 
ultimately even reversed with an advantage for operators trained solely through manual control (see 
Figure 2). 
 
Our results also offer evidence consistent with the notion that an automation by consent approach is 
generally preferable to one of management by exception (see Liu, Wasson & Vincenzi, 2009; Ruff, 
Nayarana, & Draper, 2002; but see Olson & Sarter, 2001). Within our initial experiment, decrements in 
the development of underlying knowledge (seen when automation was removed) were only apparent in 
the case of automatically-initiated automation (see Figure 3).  
 
Figure 1 
Good juice production across training for Manual Control (MC), User-initiated automation (UIA), and 
Automatically-initiated automation (AIA) groups in the Pasteuriser task. Good juice results from operator 
putting simulation in the desired state, and these data show initial benefits from automation (block 1), but 
no differences across groups with increased training. 
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Figure 2 
Spoiled juice across training for Manual Control (MC), User-initiated automation (UIA), and 
Automatically-initiated automation (AIA) groups in the Pasteuriser task. These data show initial benefits 
from automation (block 1), but superior performance from the group trained without automation by the 
end of training (block 4). 

 
 
 
Figure 3 
Overall juice production (good juice production minus bad juice production) in the Pasteuriser task with 
automation removed, as a function of type of prior training. Prior training comprised Manual Control 
(MC), User-initiated automation (UIA), and Automatically-initiated automation (AIA) groups.  
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Individual difference measures were collected using Educational Test Service’s Kit of Factor-Referenced 
Cognitive tests.  The correlations between the specific abilities measured and early and late performance 
are presented in Tables 1 and 2 for each of the experimental conditions. As shown, stronger correlations 
were observed within the MC condition than in conditions involving performance with automation.  
 
Table 1 
Correlations between abilities and Block 1 performance in Pasteuriser as a function of type of automation. 
 
  Manual Control User Activated Auto. Activated 
Reasoning  .21 -.13 .25 
Quantitative  .44 .01 .16 
Verbal  .02 -.11 .09 
Spatial  .21 .13 .14 
Perceptual Speed  -.03 -.15 -.16 
g  .40 .03 .24 
Note: Values shown in boldface are statistically significantly different from zero. 
 
 
 
 
Table 2 
Correlations between abilities and Block 4 performance in Pasteuriser as a function of type of automation. 
 
  Manual Control User Activated Auto. Activated 
Reasoning  .19 -.04 .10 
Quantitative  .29 .12 .20 
Verbal  .07 -.09 .17 
Spatial  .18 .06 .05 
Perceptual Speed  -.06 .00 -.04 
g  .30 .05 .18 
Note: Values shown in boldface are statistically significantly different from zero. 
 
 
 
A moderated regression analysis with good juice production in Block 1 as the dependent variable was 
conducted. Predictors for the model comprised g, two dummy variables representing training condition 
(with MC representing the base group), and two interaction terms. g was expected to be a significant 
predictor, indicating a general relationship between g and good juice production across the three 
conditions. More importantly, we expected that the interaction terms would also be statistically 
significant, with negative betas. Given that the MC condition was chosen as the base group, negative beta 
coefficients would indicate the relationship between g and performance is less strong in the two 
automation groups than in the MC group.  
 
The results of the regression analysis are presented in Table 3. Significant positive coefficients for UIA 
and AIA indicate superior performance to MC. The beta coefficient for g was significant and positive, and 
the beta coefficients for the two interaction terms were significant and negative. A graphic representation 
of these results is presented in Figure 4. The figure reveals that higher g trainees perform equivalently 
across types of training. However, a pronounced difference was seen among lower g trainees; lower g 
trainees in the two automation conditions performed better than lower g trainees in the MC condition.  
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Table 3. 
Moderated Regression Analyses on good juice production scores in Pasteuriser. 
 

Predictor  Block 1  Block 4 
User Activated Automation (dummy)  0.33**  0.03 
Computer Activated Automation (dummy)  0.40**  0.01 
g  0.42**  0.35** 
Interaction for User Activated  -0.22**  -0.20** 
Interaction for User Activated  -0.11  -0.11 

Note. Values in the table are standardized beta coefficients. * p < .05; ** p < .01. 

 
 
Figure 4  
Automation type by g interaction in the prediction of Good Juice production in the Pasteuriser task. 
Training comprised Manual Control (MC), User-initiated automation (UIA), and Automatically-initiated 
automation (AIA) groups.  

 

 
 

 
 
Although effects of variations in automation on training in this particular task were generally small, and 
tended to decrease with ongoing practice, the presence of an interaction with aptitude suggests an 
important set of considerations for designing and instituting training with automation. Selecting levels of 
automation for use within systems clearly has implications for what operators will learn from their 
training, but these implications will vary with the aptitude of individuals. 
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Our second experiment began to explore ways in which the negative consequences of automation in 
training might be removed. Once again employing the Pasteuriser platform, we examined two different 
approaches: gradually reducing the number of subsystems controlled by automation (Decreasing 
Automation), and varying which subsystem the operator controlled to induce part-task training (Random 
Automation). 
 
The data once again show negative effects on learning from the presence of automation in training (see 
Figure 5). Neither gradually removing automation, nor using automation to impose the need for an 
operator to learn the functioning of specific subsystems was effective. 
 
Our final experiment in this series (Blitch & Clegg, 2010) examined the impact of automation during 
training on learning within the STE Predator UAV platform. After some basic familiarization, participants 
were trained either with manual control over all the flight systems or with automation assisting with pitch 
and throttle. Participants then completed a series of manual control trials, and then were required to 
perform a novel landing task. The data (see Figure 6) are consistent with the findings from the previous 
project experiments. The use of automation in training led to poorer acquisition of knowledge of how to 
control the UAV.  
 
These data offer evidence that the type of effects observed in the previous microworld simulations, 
selected because they contain properties relevant to many operational tasks, can also be observed directly 
within the setting of military tasks. 
 
 
Figure 5 
Good juice production at the end of training for Manual Control, Decreasing Automation, and Random 
Automation in the Pasteuriser task. These data show that withdrawing automation or utilizing automation 
for part-task training resulted in significantly worse learning than found for operators trained with manual 
control over the system. 
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Figure 6 
Root Mean Square Error for flightpath of UAV simulator as a function of prior type of training (manual 
control versus automation supported). Variability from the designated approach to the airstrip (GndTrk 
Apprch), course for final approach (GndTrk Final), and the angle of descent (Glide Slope) were recorded. 
These data show greater error on the glide slope for individuals trained previously with automation 
supporting aspects of their performance. 
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CONCLUSIONS 
 
Across a series of experiments, our data consistently show no benefits for learning from the presence of 
automation during training, and frequent situations in which the presence of automation can impair 
learning. While automation does assist novice operators early in training, it apparently often does so at a 
cost to the degree of learning that occurs during training.  
 
Moreover, the presence of an aptitude-automation interaction, shown in this project for the first time, 
suggests the effects of automation on training are greater for lower aptitude individuals. While supplying 
greater support to such users, the presence of automation may be masking differences between individuals 
and at the same time impairing their ability to acquire fundamental knowledge about the operation of the 
system. These are clearly matters of potential practical importance within numerous training situations. 
 
Within the context of the current MURI effort specificity of training principle – in which learning and 
transfer are reduced when conditions within training differ from those encountered within a test (e.g., 
Healy & Bourne, 1995; Healy et al., 1993).  Such a principle would suggest that changes to the nature of 
the task induced through the use of automation provide sufficient differences to impact performance when 
automation is withdrawn.  
 
One possibility is that deficits in learning from automation are a direct product of increased reliance on 
automation during training. Researchers in the past (Bainbridge 1983; Endsley & Kiris, 1995; Moray, 
1986) have suggested automation can impair acquisition and maintenance of operators’ skill and the 
development of accurate mental models of the controlled system. One of the main consequences of 
reduced direct contact with the system is what has been termed the “out-of-the-loop performance 
problem” (Endsley & Kiris, 1995). This effect has been previously documented in other settings (e.g., 
Billings, 1991; Moray, 1986; Wiener & Curry, 1980). After prolonged interaction with automation, 
operators have diminished ability to detect system failures and subsequently take over manual control. 
 
One simple solution to reducing reliance on automation, gradually withdrawing such support, proved 
ineffective in our research. While there may be other approaches that serve to inoculate individuals 
against over-reliance on automation, these remain topics for future research. 
 
Our findings might be taken to suggest that individuals are best trained without automation. However, 
given the interaction of automation with aptitude, we suggest a future course in which the use and level of 
automation in training any individual is matched to the nature of training and the type of task. For 
example, given the reduced impact of automation on high aptitude individuals, there may be advantages 
to maintaining the availability of automation within some training contexts. For highly complex systems, 
use of automation may be a fundamental skill to be acquired, or errors that might otherwise occur as part 
of learning (and may be in some sense beneficial to learning) may have catastrophic consequences. 
Within systems where automation is available to support lower aptitude individuals, it may be that 
systems need to be designed with the intent of maintaining automatic support even as individuals 
apparently improve in their performance. 
 
Overall we offer this very general, one line summary of our findings: Automation may seem like it is 
helping you, especially if you need more help, but it is not helping you learn. 
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Model evaluation: ACT-R, IMPRINT, and Matlab: Relative performances and new 
opportunities 

 
Bengt Fornberg1, William D. Raymond2, Carolyn J. Buck-Gengler2, Alice F. Healy2, and 

Lyle E. Bourne, Jr.2 
1Department of Applied Mathematics, University of Colorado, Boulder 

2Department of Psychology and Neuroscience, University of Colorado, Boulder 
 
1. Introduction and short summary of results. 
 
Model comparison and model evaluation were issues of active interst prior to 2005 and the 
initiation of the present MURI (see, e.g., Gluck & Pew, 2001; Pitt & Myung, 2002; Young, 
2003), but progress was at best limited. Thus, one goal of the present MURI was to attempt 
to develop the techniques and procedures needed for model comparison and evaluation and 
to demonstrate their utility with a set of new models designed specifically to predict 
training effects. This goal has, at least in part, been achieved, and the present report 
summarizes the significant advances that have resulted from the MURI effort. 
 This report summarizes the model evaluation effort within the present MURI. Our 
focus has been on evaluation of models of two tasks, a simple keystroke data entry task 
and a more complex visual search task (RADAR). Across both tasks, three different 
computational systems have been applied, ACT-R, IMPRINT, and Matlab, and the models 
in those systems compared. 
 Model evaluation has included model fits as well as timing comparisons of the three 
models. Model fits have been measured by comparing model simulations of the tasks 
against experimental data. Timing comparisons of the model simulations have been carried 
out on comparable computer systems (typically standard desktop and notebook PCs, using 
a single processor with clock speeds around 2-3 GHz).  
 The most striking outcome of the present model evaluation effort was the very large 
speed gains that proved possible when using the Matlab environment to model the tasks. 
Speed increases at factors around 10,000 were accomplished using Matlab. Equivalent, or 
perhaps larger, gains are likely if other scientific/engineering computer environments are 
employed, such as Fortran or C++. As a result of the speed increases using Matlab, the 
present model evaluation effort was extended to also explore the new opportunities 
increased model execution speed afforded in terms of: (1) performing “automated” 
parameter optimization; and (2) using radial basis functions (RBFs) to build 
computationally even faster approximations of the previously mentioned Matlab models’ 
parameter spaces. 
 The model evaluation effort throughout the first half of the MURI has been described 
earlier (Fornberg, Raymond, & Best, 2007). The present report summarizes the complete 
model evaluation effort, although with a strong focus on the new opportunities that the 
previous work has opened up. It should be noted that these opportunities have a very direct 
impact on one of the main original questions, namely, the scalability of the present kinds 
of models. The major opportunities shown here to be available algorithmically (e.g., with a 
present Matlab RBF model (see Section 6) running some 5,000,000 times faster than a 
direct simulation in IMPRINT), together with additional factors in the hundreds or more 
readily available through the use of parallel computing (see Section 7), suggest that the 
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issue of scalability has been found to be not nearly the concern that it was perceived to be 
at the beginning of our MURI effort. Our main conclusion, however, is that different 
computational systems have different strengths and weaknesses, and each system should 
be left to handle what it excels in. In particular, scientific programming environments 
(such as Matlab, Fortran, or C++) can handle equation-based tasks with vastly greater 
efficiency than systems with other primary goals. On the other hand, IMPRINT is more 
appropriate for other military applications and ACT-R for modeling cognitive processes. 
With the ability of most systems to communicate data and  
interchange computational requests, hybrid solutions will be needed to achieve the best 
results.  
 
2. Modeling tasks. 
 
Keystroke data entry and RADAR were chosen as the tasks for model evaluation for 
several reasons. Both tasks had been explored in multiple empirical studies. The many data 
entry studies, in particular, provided a rich source of data for modeling. The two tasks also 
differ in complexity; data entry is a cognitively simple task, and RADAR is a more 
cognitively challenging, complex task. In addition, these two tasks had both been modeled 
in ACT-R and IMPRINT. The models were developed by experts in the two platforms, 
which eliminated any potential concerns about non-optimal code implementations that 
might cause inappropriate biases in the comparisons. The ACT-R models were developed 
by the Carnegie Mellon team, with Brad Best as the primary programmer. For IMPRINT, 
the primary programmers were Carolyn Buck-Gengler and Bill Raymond at the University 
of Colorado, Boulder. The (equation-based) IMPRINT models were subsequently 
converted to Matlab by Bengt Fornberg and Bill Raymond. Both of the models focused on 
cognitive phenomena of the data entry and RADAR tasks, which are directly relevant to 
the effects of training on performance. The models were developed not only to give us 
descriptive and predictive capabilities, but also to deepen our understanding of the genuine 
nature of the processes that are modeled.  
 
2.1. The keystroke data entry task. 
 
The first model comparison problem involved the keystroke data entry task in experiments 
described in Healy, Kole, Buck-Gengler, and Bourne (2004). ACT-R and IMPRINT 
models of this task are described in Gonzalez, Fu, Healy, Kole, and Bourne (2006) and in 
Buck-Gengler, Raymond, Healy, and Bourne (2007). The experiments required subjects to 
type 4-digit numbers that were displayed to them on a computer screen. They were 
instructed to type the numbers as quickly and as accurately as possible. Numbers were 
presented one at a time and were typed on the keypad to the right of the keyboard. Subjects 
did not see their typed numbers, and they terminated each trial by pressing the “Enter” key. 
The stimuli consisted of 10 blocks of 64 numbers each, which were divided by a short 
break into 2 session halves of 5 blocks each. In both experiments there were 32 subjects. In 
Experiment 1, a set of 64 numbers were repeated in each of the 5 blocks of the first half in 
different random orders, and a second set of 64 numbers were repeated in different random 
orders in each of the 5 blocks of the second half. All subjects typed using their left (non-
dominant) hand. In Experiment 2, all numbers were unique, and the hand used for typing 
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(Left, Right) was crossed with session half to create 4 conditions of hand use (LL, LR, RL, 
and RR).  
 
2.2. The RADAR task. 
 
This second model comparison problem, and its ACT-R and IMPRINT implementations, 
are described in Best, Gonzalez, Young, Healy, and Bourne (2007), in Young, Gonzalez, 
Dutt, and Bourne (in press), and in Buck-Gengler, Raymond, Healy, and Bourne (2010). 
We will not repeat the description of the task in any detail here (or address its conceptual 
significance), apart from noting that it combines mapping type (targets and foils from same 
or different character sets), load level (number of items in target set; number of items to 
look at to see if a target), and tone counting (concurrent secondary task using auditory 
modality). In the experiment, 12 subjects performed two sessions of eight blocks, each 
with 20 shifts of 7 frames. 
 
3. Modeling principles and platforms . 
 
3.1. Modeling principles. 
 
As noted in Fornberg et al. (2007), there are two fundamentally different modeling 
methodologies that one can apply to a modeling problem, which we in short (and grossly 
oversimplified) denote by first principles and brute force data fitting. A first principles 
approach begins with a theory of the principles that underlie the phenomena to be modeled, 
in this instance human performance on a task. This approach was pursued in developing 
both the ACT-R and the IMPRINT/Matlab models. A first principles approach is highly 
desirable when it works well, that is, when the principles are known, which is the case for 
the cognitive tasks presently being modeled. However, its successful application depends 
on the nontrivial task of developing a theory for a situation of intrinsically very high 
complexity. Brute force data fitting is closely related to the process of data mining. This 
approach is a fairly new and very active general research area. The strength of the data 
fitting approach is its ability to bring out entirely unanticipated, but nevertheless 
significant, relations in the data. Such relations frequently lie deeply hidden in most large 
data sets, and virtually always escape attention when using conventional visualization or 
similar inspection methods. Novel approaches to data fitting include the use of neural 
networks and radial basis functions (RBFs). Once such a model has been created, another 
advantage to it is that it can be evaluated extremely rapidly. 
 In the last year, we have followed up on brute force data fitting by creating an RBF 
approximation of the Matlab model’s parameter space for the keystroke data entry task. 
We carried out this exercise by evaluating the first principles model quite a large number 
of times and then used the resulting data to obtain the second model, which we therefore 
can describe as a “model of a model.” As will be described later (§6.1), this procedure 
allows the elimination of stochastic noise and, more importantly, allows for very much 
faster model evaluations. As one application, we describe in Section 6.2 how this exercise 
can be used for interactive visualization of functions that depend on many parameters. 
 



                                 5 

3.2. The modeling platforms. 
 
Although the details of the ACT-R and the IMPRINT/Matlab first principles models differ 
fundamentally, implementations in all the three programming environments share a 
number of underlying general principles, including the facts that (1) the tasks are 
decomposed into simple conceptual components; (2) the components are combined to 
create a simulation with a (relatively) user-friendly interface; and (3) the generated data 
simulate variable human behavior on the tasks. However, the modeling platforms differ 
significantly in several respects. The focus of intended use is different for the platforms: 
ACT-R was designed for cognitive modeling; IMPRINT was designed for assessing 
human performance in military tasks; and Matlab was designed for science and 
engineering applications. The platforms also differ in raw computational speed, with 
Matlab faster than the other two platforms. In addition because Matlab was intended for 
general engineering and scientific use, it has available within it a number of tools for 
carrying out parameter optimization, graphics, and interfacing to parallel computing 
hardware, which the other platforms lack. On the other hand, because of their intended 
uses, both the ACT-R and the IMPRINT platforms have large amounts of human 
performance-specific information built in, whereas Matlab does not (although appropriate 
libraries could be added). This difference will inevitably make the former two platforms 
slower on some simple tasks, but gradually more powerful as this type of information is 
increasingly called for in more complex tasks or scenarios. Moreover, the specific 
embedded information differs in ACT-R and IMPRINT: ACT-R embodies a theory of 
general cognitive mechanisms; IMPRINT can call on information regarding the skills and 
abilities of army personnel engaged in military tasks. 
 The next three subsections give brief comments on the three modeling platforms, 
following the description given earlier in Fornberg et al. (2007). The Appendix in this 
earlier work contained illustrations of code for the three systems. 
 
3.2.1. The ACT-R modeling platform. 
 
ACT-R (Anderson, Bothell, Byrne, Douglass, Lebiere, & Qin, 2004; Anderson & Lebiere, 
1998) is a unified theory of cognition developed through over 30 years of cumulative 
improvement.  At a fine-grained scale it has accounted for hundreds of phenomena from 
the cognitive psychology and human factors literature. The version employed here, ACT-R 
6.0, is a modular architecture composed of interacting modules for declarative memory, 
perceptual systems such as vision and audition modules, and motor systems such as a 
manual module, all synchronized through a central production system.  
 ACT-R is a hybrid system combining a tractable symbolic level, implemented as a 
production system that enables the specification of complex cognitive functions, with a 
subsymbolic level that tunes itself to the statistical structure of the environment. The 
combination of these aspects provides both the broad structure of cognitive processes and 
the graded characteristics of cognition such as adaptivity, robustness, and stochasticity. 
 The central part of the architecture is the production module. A production can 
match the contents of any combination of buffers. Buffers include the goal buffer, which 
holds the current context and intentions, the retrieval buffer, which holds the most recent 
chunk retrieved from declarative memory, visual and auditory buffers, which hold the 
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current sensory information, and the manual buffer, which holds the current state of the 
motor module. During the matching phase, production rules whose conditions match to the 
current state of various information buffers (goal, memory retrieval, perceptual, etc.) 
qualify to enter the conflict set. Because ACT-R specifies that only one production can fire 
at a time, the rule with the highest expected utility from among those that match is selected 
as the one to fire. Utility is graded both by the expected value of information, driven by 
activation, and the quality or exactness of the match itself. 
 The general structure of the ACT-R models used in the following data entry 
experiments includes two main steps: 1) noticing and encoding of the stimulus from the 
computer screen, and 2) entry of the encoded stimulus using the keypad. The first step 
further unpacks to include reading of individual numbers, whereas the second step includes 
preparing the proper motor program to press the desired keys. These steps say little about 
whether numbers are encoded more than one at a time, and whether any key presses occur 
before all of the numbers are encoded. As is described below, human participants actually 
use multiple strategies to approach even this simple task, and tend to vary between 
individuals in a preference to either encode all four digits before entering any, or to encode 
a pair of digits at a time, entering a pair after it is encoded. Thus, the model was 
constructed to support both of these strategies.  Again, though the task is quite simple, it 
still requires maintenance of encoded stimuli in working memory, potentially decomposing 
a task into subgoals (working on entering one pair at a time), and the interaction with 
skilled actions (keyboard entry), which is simulated through the application of individual 
ACT-R productions (e.g., typing the “9” key on the keypad). 
 
3.2.2. The IMPRINT modeling platform. 
 
The versions of IMPRINT used for MURI modeling, IMPRINT 7 and IMPRINT Pro, are 
primarily used to create simulations of military personnel and equipment engaged in 
military tasks. The simulations can be used to evaluate planning efficiency, given 
constraints on time, accuracy, and equipment functionality, as well as human skills, 
abilities, and capacities. Simulations can also take into account variables in the external 
environment that may affect personnel or equipment. IMPRINT was not specifically 
designed for modeling cognitive tasks; however, the current modeling effort shows that 
cognitive models can be implemented on the IMPRINT platform. 
 The IMPRINT model of the keystroke data entry task was based on a cognitive 
model of the task that involves three subprocesses: 
 

(1) Read and represent a number: Read each number and create an ordered mental 
representation of the digits, one digit at a time; 

(2) Create motor plan: Access each of the represented digits in sequence to create a 
motor plan for typing it; and 

(3) Execute motor plan: Utilize the motor plan to type each digit, followed by the enter 
key. 

 
The subprocesses were assumed to occur sequentially for each number. However, 
accommodation was made in the simulation for a phenomenon observed in the 
experimental data in which some subjects tended to group, or chunk, the first two digits of 
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a number and the last two digits of a number, as evidenced in these subjects by longer 
response times for the third keystroke than for the second and fourth. The chunking 
phenomenon presumably entails some additional cognitive processing between the two 
chunks, which was simulated in the model. 
 The IMPRINT model consisted of a main network and a goal network. In the main 
network, parameters can be set to duplicate the conditions of Experiment 1 of Healy et al. 
(2004) (all left hand typing and number repetition in each half) or of Experiment 2 (typing 
hand crossed with session half and no repeated numbers). The goal network was called 
repeatedly until the stimuli were exhausted. Each run of the model represented the output 
from one statistical subject. 
 A number of human performance parameters in the model were assigned values 
stochastically to simulate human variability of performance. Values for stochastic variables 
were taken from a variety of probability distributions (viz., normal, uniform, and gamma), 
which were chosen, together with their parameters, to capture distributions observed in the 
experimental data. Other model parameters were predetermined through data inspection 
and do not vary in the model. 
 
3.2.3. The Matlab modeling platform. 
 
Matlab evolved from FORTRAN in the late 1970's, and has since become one of the most 
widely used programming environments in science and engineering. The language is 
technically an interpreted one, but its statements are in effect compiled on their first 
execution, and then reused in this latter form. The language is built around matrix (or 
vector) operations and, when used in such way (as opposed to in scalar form with many 
nested loops and conditional statements), its speeds normally come quite close to what the 
computer hardware is theoretically capable of.  
 The hardware of modern PCs often allows many computational threads to execute 
simultaneously. Not only are computers typically equipped with one or several dual-core 
(or multiple-core) processors, each of these cores may furthermore be hyper-threaded 
(doubling again the number of independent simultaneous threads). The resulting 
opportunities of parallel processing are automatically utilized in Matlab's matrix 
operations, with no special user attention needed. Matlab's parallel computing toolbox can 
be used to utilize parallel processing also for other types of operations with (in most cases) 
only a few lines of extra programming. This feature is discussed further in Section 7. 
 In the present project, the Matlab model was a direct translation of the algorithms 
used in the IMPRINT code. We have found several advantages in porting the numerical 
parts of IMPRINT codes to Matlab. Importantly, Matlab has very much higher execution 
speeds than IMPRINT. Matlab code is also short and easy to write. It can also be 
comprehensively viewed as a single program, unlike IMPRINT code. As mentioned, 
Matlab also has available within it some powerful tools for graphics, optimization, 
debugging, and profiling (i.e., code timing). Modeling in IMPRINT also provided us the 
ability to compare environments specific to modeling human cognition and performance 
(ACT-R and IMPRINT) against one with no such specialization, but instead focused on 
high speed computing. 
 We want to stress again that the choice of Matlab (as opposed to, say, FORTRAN, 
C++, or Python) was made for obtaining outside benchmark assessments on the evaluation 
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speeds of ACT-R and IMPRINT in the most flexible and convenient way possible, and not 
because we expect this particular language (Matlab) to be adopted on a large scale by the 
military for cognitive modeling. Matlab simply allowed our focus to be strongly 
concentrated on obtaining timing and scalability comparisons with the least possible 
attention diverted to implementation technicalities. 
 
4. Model comparisons. 
 
Model comparisons were performed in two ways. First, for a model to be useful, it must be 
fast to run. Thus, we collected performance timing information for execution of each 
model on each test problem. Second, the model should be capable of accurately simulating 
the empirically derived human data. To measure the models’ reliability in this regard, we 
obtained correlations among the model outputs and the experimental data, for each 
experiment. In addition, Root Mean Square Errors (RMSEs) were calculated between 
models and the experimental data. 
 Given that the relative timing was similar for the two (quite different) modeling 
tasks (in terms of relative performance between the three computational systems), it 
suffices to focus here on one of the tasks, keystroke data entry.  
 At the time of working with this first test problem, we were concerned that this 
problem might be misleadingly favorable to Matlab, because its logical structure was such 
that all the arithmetic operations of the IMPRINT model could be recast into Matlab's 
matrix syntax (in which case Matlab is particularly computationally efficient). This 
opportunity of using matrix syntax was not available for the RADAR task, but we 
nevertheless found equivalent relative speed differences, assuring us that the general 
observations we are making are not due to any such special circumstances.  
 Accuracy comparisons between the ACT-R and IMPRINT models have been 
reported separately (Fornberg et al., 2007) and will not be repeated here, apart from noting 
that generally, there were no significant differences. The Matlab code for the keystroke 
task was a quite direct translations of the IMPRINT one, whereas the Matlab code for the 
RADAR task was structured differently as nested loops, rather than as many separate 
modules interacting with each other. In both cases, the mathematical algorithms and 
parameter choices were identical, and hence, there were again no differences in modeling 
accuracy between the IMPRINT and Matlab versions. Since all models of the present kind 
rely heavily on random samplings, no two runs will give identical outputs. The differences 
between IMPRINT and Matlab runs were no larger than between two different IMPRINT 
runs or between two different Matlab runs.  
 
4.1. ACT-R performance timing on the keystroke task. 
 
The ACT-R model was run on a Dell laptop running Windows XP with a 2.0 GHz mobile 
Intel CPU and 1 GB RAM.  ACT-R requires a Lisp environment as well; the current model 
runs used Allegro Common Lisp version 6.1 and ACT-R version 6.0.  It is worth noting in 
a section on timing that Lisp is an interpreted programming language, and, as a result, 
optimization techniques (which have not been used here) can produce significant speedup 
through allowing code to be partially compiled.  It is also worth noting that, in addition to 
the small amount of data that are collected and collated for the individual model runs, the 
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ACT-R system processes and records a large amount of information that was not used in 
the current study, but is nonetheless readily accessible (e.g., activations of every chunk, 
previous instantiations of productions, a record of every goal the system attempts to 
achieve, etc.).  Stated differently, the performance data produced by the model are derived 
from its behavior rather than produced as a primary product. 
 
The following is a summary of the time requirements to run a batch of 32 simulated 
participants on the system described at the start of this section (as printed out by the ACT-
R system) 
 

cpu time (non-gc) 605,045 msec (00:10:05.045) user, 392 msec system 
cpu time (gc)     251,940 msec (00:04:11.940) user,  77 msec system 
cpu time (total)  856,985 msec (00:14:16.985) user, 469 msec system 
real time  859,952 msec (00:14:19.952) 

 
The time is broken up into 'garbage collection' (gc: a Lisp system activity) and actual 
program execution (non-gc), and then summed into a total time for the processing.  This 
sum places an upper bound of approximately 30 seconds on the processing time required to 
simulate an individual participant (as well as accomplish the file I/O to write out detailed 
data files containing individual trial results for each participant and their summaries and 
handle the memory management necessary for the Lisp interpreter). 
 
4.2. IMPRINT performance timing on the keystroke task. 
 
The IMPRINT model writes output data to a Microsoft Excel spreadsheet. For the timing 
comparisons that are reported here, we have not included that overhead, but only the time 
needed for producing the means for each of the 10 blocks, when averaged over all 
statistical subjects (in each condition) and over all non-error items, for both experiments. 
 The IMPRINT code (running version r7.30 on a Dell computer under Microsoft 
Windows XP Professional with a 2.8 GHz processor and 2 GB memory) required 24 
minutes for each experiment. This total amounts to approximately 45 seconds for each of 
the 32 subjects. Writing all the generated data to an Excel spreadsheet file takes an 
additional 10 minutes. IMPRINT does not include any profiler option that details how 
much time each line of code takes. The times quoted are “wall clock times”. 
 
4.3. Matlab performance timing on the keystroke task. 
 
The code for the Matlab implementation of the data entry required no more than about 70 
lines of code (not counting comment lines). Execution of the code with parameters set for 
simulation of Experiment 1 (all 32 subjects) took approximately 0.085 seconds on a Dell 
GX-270 PC single processor operating at 3.2 GHz, with 2 GB RAM, running under 
Windows XP. The time thus becomes about 0.0027 seconds (2.7 ms) per subject. The 
profiler of Matlab allows for very convenient and detailed timing of codes, showing in 
particular how much time is spent on each line of code. A condensed output (listing only 
the lines taking the most time) is seen below: 
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The timing for Experiment 2 was equivalent, resulting in a typical computer time of 0.17 
seconds for running both cases.  
 The ratio between the Matlab and IMPRINT execution times is thus similar to 
6/100,000. Because the speeds of the computers are roughly similar, this ratio suggests that 
porting specific subtasks to Matlab can offer gains that are much larger than, say, porting 
from a PC to a giant supercomputer system. We wish to stress that using different 
computer languages/systems for different tasks within a single project is a much more 
appropriate approach for large tasks than to rely on a single language only. Most 
languages/systems have interface options to run sub-tasks in other languages. For example, 
IMPRINT and Matlab have built-in facilities to execute modules in C++ or Fortran. 
 
4.4. IMPRINT and Matlab performance timing on the RADAR task. 
 
With regard to the conversion of IMPRINT to Matlab, the RADAR task differed from the 
data entry task in two primary ways: (2) stochastic features enter in the RADAR task in 
such a way that Matlab's array processing features are no longer practical to apply; and (2) 
the general programming style of Matlab (shared with Fortran, C/C++) allows for 
particularly simple and effective code structure with nested loops instead of many 
interacting modules. The two issues led to roughly offsetting advantages and 
disadvantages. The Matlab model turned again out to be about 10,000 times faster than 
IMPRINT on equivalent hardware. The Matlab code was again extraordinarily compact 
and readable - this time about 100 lines only of executable code (plus about 30 lines for 
entering parameters). A typical output of a Matlab RADAR simulation run (with the 
timing displayed) is given in the context of parameter optimization in Section 5.2. 
 
5. Parameter optimization. 
 
The model evaluation requirement in the original proposal was mainly limited to accuracy 
and performance comparisons and to assessment of scalability for future larger modeling 
tasks. However, the extreme speed advantages of the Matlab implementations pointed 
immediately to several opportunities that were not originally anticipated. The first of these 
concerns parameter optimization. 
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 There are several approaches available for parameter optimization, some of which 
are yet to reach their full potential in cognitive modeling environments. Although finding 
the global optimum of a function of 1 or 2 variables usually can be handled efficiently, and 
finding local optima of functions of many variables is also relatively straightforward 
(meaning that effective algorithms and software is available in optimization “toolboxes”), 
the issue of finding global optima of functions of many variables is a daunting one. In 
Gluck, Scheutz, Gunzelmann, Harris, & Kershner (2007), a calculation based on ACT-R, 
exploring a 4-variable parameter space by means of 21, 26, 105 and 31 increments in 
respective parameters, is reported to have consumed 96,000 processor hours on a cluster at 
Wright-Patterson's High Performance Computing Center. For each additional variable 
sampled in a similar manner, times would be expected to rise by another factor of around 
20. Clearly, it is critically needed both to use faster general optimization algorithms and to 
increase the computational speed as far as possible.   
 In a famous review in 2000 of the 10 most influential algorithms developed during 
the 20th century (Cipra, 2000; Dongarra & Sullivan, 2000), simulated annealing appeared 
in first place. Genetic algorithms is a second approach, whose full impact is yet to be fully 
experienced. In many cases, optimization even over dozens or tens of dozens of variables 
can be entirely feasible. Both simulated annealing and genetic algorithms are available 
within the Matlab environment, and adding either of these optimizers 'on top of' an existing 
model requires less than 10 extra lines of code. 
 
5.1. Two illustrations of displaying multivariate functions. 
 
Figure 1 illustrates in generic form, with a 3-D function not related to  the concept of  
cognitive modeling, an intrinsic problem with displaying functions with more than two 
independent variables.  
 In Figure 2 we consider the data entry test problem, with the following five key 
parameters in Table 1 as independent variables and display the RMSE (root mean square 
error) between the IMPRINT/Matlab model as the dependent variable (objective function 
value). In a 5-D space, we can make 10 2-D slices if we lock in three variables at a time at 
their “hand derived values” and let the two remaining parameters vary over their respective 
“reasonable ranges.” Figure 2 displays these 10 slices in two different ways: as contour 
plots and as surface plots. To a much larger extent than for the 3-D function in Figure 1, 
these slices give an extremely incomplete picture of the full 5-D functional dependence of 
the RMSE. The optimization task we are addressing is to carry out a complete 5-D space 
minimization of the RMSE (i.e., not limited to these “slices”). 



                                 12 

 

 
 
 
Figure 1. Schematic illustration of a function of three independent variables. In contrast to 
a function of two variables (Figure 6), we cannot display a function of three variables on a 
flat paper or computer screen throughout its full domain, but need to limit ourselves to 
showing only “slices” of it, omitting potentially critically important areas.   
 
Table 1. Five key parameters of the data entry model selected for optimization, along with 
reasonable ranges for each parameter and the original IMPRINT model’s hand-derived 
values. 
 

Parameters selected:   Reasonable ranges  Hand derived values 
 
Cognitive learning (cognitive) [-0.20,  0.00]   -0.045 
Motoric learning (physical)  [-0.10,  0.00]   -0.015 
Repetition priming (rep learn) [  0.00,  0.30]    0.050 
Left-hand penalty (left penalty) [ 1.00,  1.50]    1.125 
Cognitive slowdown (fatigue) [ 0.00,  0.10]    0.0125 
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Figure 2. Displays of RMSE errors for the Matlab keystroke model when any pair of 2 out 
of the 5 parameters was left to freely vary over their 'reasonable range', while the 
remaining 3 parameters were held at their 'assumed best' positions. The same data are 
displayed in the top right and the bottom left subplots; as surface plots and as contour 
plots, respectively. The solid dots in the latter figures mark the  'assumed best' values. The 
fact that these dots are seen to be located at low spots of the different functions indicates 
that the (time consuming) manual parameter determination was successful. However, the 
10 different parameter space slices shown here explore only a minute fraction of the full 5-
D parameter space, leaving completely open the possibilities of much better parameter 
combinations in other parts of that space. 
` 
5.2. Parameter optimization using genetic algorithms (GA) and simulated annealing 

(SA) on the data entry task. 

A large number of optional Toolboxes are available with Matlab, including one that 
provides both Genetic Algorithms (GA) and Simulated Annealing (SA) capabilities. As 
noted above, these are two very successful strategies for searching through high- 
dimensional parameter spaces for locating global optima more effectively than an 
exhaustive parameter space search. Both search methodologies borrow their key ideas from 
processes in nature: biological evolution (for GA), and crystal formation through slow 
cooling (for SA). For the results shown in Figure 3, GA and SA optimizations were each 
run 20 times. These runs executed both Experiments 1 and 2. A GA optimization consisted 
of letting a population of size 30 evolve through 60 generations, for a total of 1800 
evaluations of the RMSE objective function. The typical time for each GA optimization 
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was about 5 minutes. The SA optimizations were stopped after about equally many 
objective function evaluations, thus again taking around 5 minutes each full run.  
 The 20 GA and 20 SA runs give results comparable to what an exhaustive search 
would have provided (but in a fraction of the approximately 10 days the latter would have 
required). 
 For each of the 5 selected variables, we see displayed two horizontal lines with 
short vertical lines between them. The extent of each of the horizontal lines corresponds to 
the "reasonable range" for the respective variable, as shown at the left edge. Along the top 
line for each variable, we see the outcome for that variable of 20 separate global GA 
optimizations, and along the bottom line, the same for 20 SA optimizations. Due to the 
very flat character of the function that is optimized, together with its large noise level, the 
results are very satisfactory in showing 
 

• The manually found values indeed are consistent with global optimization results. 
• Thorough manual optimization (feasible here, but not always practical) can be 

confirmed (or replaced) by merely minutes of computing using a global optimizer.  
• The variation between different optimization runs can provide good information 

about different model parameters' uncertainty ranges. 
• The presence of even large amounts of statistical noise in a model does not cause 

major difficulties for fully automated parameter determination with either GA or 
SA.  

Since scaling issues form a critical aspect of the present model evaluation task, we can note 
that having 10 parameters instead of 5 in the optimization would only increase the GA or 
SA times by a factor in the 20-100 range, whereas the cost for an exhaustive search would 
increase times by a further factor of 215, that is, to completely unrealistic computer times 
of the order of 500,000 years. 
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Cognitive learning   GA 

[-0.20, 0.00] SA 

 

Motoric learning GA 

[-0.10, 0.00] SA 

 

Repetition priming GA 

[0.00, 0.30] SA 

 

Left-hand penalty GA 

[1.00, 1.50] SA 

 

Cognitive slowdown GA 

[0.00, 0.10] SA 

 

 

Figure 3. Outcomes of 20 GA and 20 SA optimizations of 5 model parameters. The 
horizontal lines represent the search ranges. Short vertical lines indicate the outcomes of 
individual optimizations, with small triangles pointing at those yielding particularly low 
values of RMSE (<.06; averaged over the 2 experiments). The vertical line segments with 
triangle pointers at each end show the average GA and SA results based on the low-RMSE 
results. We can see that these optimal values mostly are in fine agreement with the hand-
derived parameter values (vertical lines with no end markers). 

 
5.3. Parameter optimization by genetic algorithms (GA) on the RADAR task. 
 
The lines below show a typical output of one single run of the Matlab RADAR modeling 
code based on the IMPRINT model (here executed on a Dell D430 notebook computer, 
with a 1.33 GHz processor): 
 

Model_RT = 
  0.6130  0.9242  0.6261  1.1041  1.1854  0.6123  0.9189  0.6116 
  0.6310  0.9213  0.6348  1.1569  1.1446  0.5989  0.9293  0.6036 
 
Experiment_RT = 
  0.6169  0.9293  0.6188  1.1830  1.1181  0.6187  0.9775  0.6622 
  0.6176  0.9039  0.6318  1.1249  1.0735  0.6271  0.8511  0.6164 
 
RMSE_RT = 
  0.0437 
 
Model_hits = 
  0.9944  0.9778  0.9244  0.7379  0.8290  0.9313  0.9885  0.9944 
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  0.9889  0.9889  0.8762  0.7873  0.7828  0.8873  0.9778  0.9889   
 
Experiment_hits = 
  0.9667  0.9663  0.9761  0.7515  0.7762  1.0000  0.9885  0.9944 
  0.9944  0.9833  0.9833  0.7901  0.7955  0.9829  0.9889  1.0000 
 
RMSE_hits = 
  0.0450 
 
Model_FA = 
  0.1750  0.1226  0.1470  0.1780  0.1364  0.0972  0.1009  0.0544 
  0.1198  0.0286  0.1428  0.0952  0.1114   .0966   .0591  0.0119 
 
Experiment_FA = 
  0.1663  0.0278  0.1210  0.2142  0.1012  0.1472  0.0821  0.0556 
  0.1000  0.0544  0.1444  0.0694  0.1040  0.1000  0.0306  0.0472 
 
RMSE_FA = 
    0.0345 
Elapsed time is 0.154991 seconds. 

 
The details of what the numbers in the computer output above stand for is not the essential 
point here, but rather: 
 

i. The only experimental data that is provided to compare the model against is given 
under the headings Experiment_RT , Experiment_hits , and Experiment_FA 
(scores for the quantities response times (for hits), proportion of hits, and 
proportion of false alarms, respectively, averaged over subjects, shifts, and frames). 
The two rows for each variable represent the two sessions, and the eight columns 
represent the eight blocks. In all, the supplied experimental data amounts only to 48 
numbers. 

 
ii. The RADAR model, for each run, produces a different set of matching 48 

numbers, shown in the output above under the headings Model_RT, Model_hits, 
and Model_FA, respectively.  

 
For each run of the model, we can trivially calculate the RMSE error in each of the three 
categories and then form an overall RMSE as the average of these three. In the single 
instance listed above, this gives  
 
 RMSE = (RMSE_RT + RMSE_hits + RMSE_FA) / 3 = 0.0410.   
 
There is a quite high level of stochastic fluctuations in the model and, when averaging over 
100 runs, the average RMSE turns out to become significantly larger:  RMSE = 0.0434. 
 The RADAR model contains about 30 nontrivial parameters. Rather than 
attempting a global optimization simultaneously over all of these (if so, needlessly making 
a very challenging problem nearly impossible), we can select out groups of parameters that 
logically belong together, and for which the hand-derived values are particularly uncertain 
(or particularly interesting). As an example, we select here 16 parameters in four groups: 
 

1. Four parameters for DecisionTimeDist  
2. Four parameters for   ResponseProb 
3. Five parameters for   FABlockTypeRate 
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4. Three parameters for   FALearningRate 
 
 Continuing to omit technical details in this summary in order to convey the key 
concepts more clearly, we do not here describe just what these groups and their parameters 
represent from a motoric/cognitive perspective, but proceed instead with describing the 
outcomes of our GA optimizations in these four cases. In each case, we ran 20 GA 
optimizations with population sizes of 40 that evolved through between 10 and 30 
generations (with less needed when the parameters were fewer). The result is illustrated in 
Figure 4. In each of the four subplots, we see one horizontal line for each parameter. To the 
left is given a 'reasonable range' and below each line a small vertical tick mark shows the 
hand-derived value. Above each line, we see similarly the outcomes of the 20 GA 
simulations. In most cases, the agreement is fully satisfactory, but we see also instances of 
exceptions (e.g. the third case in the top right subplot and the last two cases in the bottom 
right subplot). In some cases, the parameters turn out to be well determined by the GA data 
whereas, in other cases, the uncertainties are large.  
 Adjusting the model parameters to agree better with the GA results, for example 
replacing each value with the average for the GA runs, reduced the typical RMSE by about 
15% (to around 0.0373 when averaged over 100 simulations, compared to the value 0.0434 
quoted above). The level of reduction is not so much the issue as the fact that we, in a 
totally automated way and in spite of all the random fluctuations, can get information 
separately on a large number of parameters, although these contribute only in combined 
form towards the (measurable) model fit, as represented by the RMSE.    
 

 
Figure 4. Comparison between hand-derived and GA obtained values for 16 model 
parameters, distributed over four different parameter categories. For each parameter, a 
'reasonable range' is displayed, with the hand-derived value marked below each line and 
the results of 20 GA optimizations marked above it.  
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6. Radial Basis Function (RBF) models of Matlab models. 
 
6.1. Concept and computational speed of RBF models 
 
The methodology of Radial Basis Functions (RBFs) was first proposed about 40 years ago 
(Hardy, 1971) in a context related to that for which we will be using it here: multivariate 
interpolation. Its generality and power has only been fully recognized much more recently. 
It is nowadays successfully employed in numerous other areas of application, such as 
within neural networks, for the numerical solution of partial differential equations, and for 
graphical surface rendering. For a very good recent survey of the concept of RBFs, their 
mathematical background and approximation properties, as well as their efficient 
implementation in Matlab, see Fasshauer (2007). Note that multivariate interpolation 
allows the creation of very fast-to-evaluate RBF approximations of functions. In our case, 
we creatd an RBF model of the previous model’s objective function used to optimize 
model parameters. We thus evaluated the previously developed Matlab model of they 
keystroke task at some (i.e., a few thousand) suitably chosen parameter locations and then, 
with about 20 lines of additional code, created an RBF model of the Matlab model’s 
parameter space that reproduces the process of parameter space evaluation, but with 
stochastic noise suppressed to whatever degree we desire. Applied to the 5-parameter 
keystroke model, with the same 10 “slices” through its 5-parameter space illustrated in 
Figure 2, the RBF model will give the result shown in Figure 5. We immediately recognize 
the identical trends (which will hold throughout the full parameter space, and not just on 
the shown slices). The big advantages include: 
 

1. Computational speed. Although each evaluation of the original Matlab model (both 
Experiment 1 and 2) required 0.17 seconds, the RBF model evaluates in 0.00030 
seconds, i.e. over 500 times faster than the already fast original Matlab version. 
 

2. Elimination of the stochastic noise. The GA (and SA) algorithms were highly 
effective for parameter optimization, even in the presence of the noise, so the gain 
achieved by working instead with smoother (and deterministic) functions proved to 
be minor. However, the speed gain of about 500 will make optimizations faster by 
about that same amount. 

 
 The computation behind Figure 2 required a total of 4410 evaluations of the Matlab 
model for each of “Experiment 1” and “Experiment 2.” The total time for producing Figure 
2 was 12.5 minutes (which would have been 147 days in IMPRINT). In contrast, the 
computing time for producing the data for Figure 5 (once the RBF model had been created) 
was 1.3 seconds. 
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Figure 5. The counterpart to Figure 2, with the difference that the original 
IMPRINT/Matlab First Principles model has been replaced by a RBF-type Brute force 
data fitting model. We visually recognize all the trends from the display in Figure 1, but 
the stochastic 'noise' has been successfully eliminated. Each functional evaluation in this 
model of a model is about 500 times faster than for the original model. 
 
6.2. Opportunity provided by RBFs for multivariate visualization. 
 
The ability to evaluate an RBF model very rapidly opens up an opportunity - not yet 
utilized in the literature - to interactively move through different dimensions and thereby 
display multivariate functions without the customary limitation of 2-D paper or equally flat 
computer screens. The left part of Figure 5 displays a standard 2-D surface plot, conveying 
very clearly the character of a function of 2 variables. A dashed frame shows how one can 
“slice” out a 1-D function of x only (with its y-value fixed as a certain value y0). This slice 
can be displayed as a curve shown to the right, together with a “slider” that can be moved 
by a mouse, causing the curve above it to dynamically update. By this method, we can 
visualize a 2-D function as a 1-D curve together with one slider. The opportunity that fast 
RBF models offer in this regard is that the function to be displayed can be in d-D. If we 
display a surface (2-D) and use d-2 sliders, moving these sliders allows immediate visual 
inspection of d-D functions. This is an entirely novel opportunity offered by the present d-
D RBF models due to their very high computational speeds (effective up to d = 5 or 6, i.e. 
very well past the usual d = 2 or 3 limitation).  
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Figure 6. Schematic illustration of the opportunity offered by fast RBF models to visualize 
functions of several variables. We see here the concept in the case of a 2-D function 
visualized by means of 1-D functions.  The generalization of d-D functions visualized as 2-
D functions is explained in Section 6.2. 
 
7. Parallel computing. 
 
Massively large supercomputers have received significant attention in recent years, with 
frequent listings published of the largest computer systems in the world. At the other end 
of the scale in computing - low-cost PC-type systems - there are present developments that 
potentially are even more interesting in terms of increased hardware performance, and 
which are far easier to fully utilize by individual researchers (as well as by teams).  
 From typically having one single processor, even notebook PCs nowadays usually 
have two independent processing cores on their main processor chip (then described as a 
dual core chip), often for desktop PCs going up to two quad core processors (8 cores in 
all), and soon well beyond this. For example, Intel's recent Nehalem-EX processor features 
up to eight complete cores on each processor chip, and a PC can have several of these 
chips. Furthermore, each core can be multithreaded, effectively doubling the core number. 
In a separate project, a 48-core chip is at present undergoing testing at Intel.  
 Only one single (not multi-threaded) processing core was used for the comparisons 
described in this report. However, extensions to use several cores/threads simultaneously 
are immediate in typical scientific languages (such as Matlab). By changing only a few 
lines of code, one trivially speeds up any of the here described Matlab code by the same 
factor as there are processing cores/threads in the computer. We have confirmed this 
prediction by running the Matlab code described above (for both of the present test 
problems, Keystroke Data Entry, and RADAR) on a dual quad core PC, in both cases then 
running 8 times faster than the numbers we reported above. 



                                 21 

 Another recent multi-core development that also has received much attention is 
provided by GPUs (Graphics Processor Units), exemplified for instance by the Tesla and 
Fermi systems manufactured by NVIDIA. For example, a single Fermi plug-in board for a 
standard PC costs around $6,000, and features 512 independent cores, accessible through 
convenient Fortran, C++, and Matlab interfaces (in the case of Matlab known as Jacket). 
Although GPUs offer tremendous opportunities in many areas of scientific computing, 
their applicability to cognitive modeling is at present very uncertain. Just like for most 
large parallel supercomputing systems, very high performances tend to be linked to the 
computational tasks being possible to structure in the form of large matrix operations and 
only very few conditional or sequential statements. GPUs operate in a data-parallel mode, 
and do not have nearly as much flexibility as CPUs (Central Processing Units) to run with 
complete independence from each other. Hence, for the foreseeable future (i.e. the next 
few years), multicore CPUs (rather than GPUs) will be an interesting option for cheaply 
and easily further speed up equation-based cognitive modeling codes.  
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Chapter 1: Overview 
 
 
 
 
This report contains information on how to use the Instance-based Learning tool 
(IBLtool). The document is written to explain the IBLtool to beginners in modeling 
techniques as well as to advanced users of modeling and instance-based learning. 
 
Chapter 2 serves as a short introduction to the tool, the theory behind it, and the 

goals of this tool. 
 
Chapter 3 contains an overview of the tool and its interface. 
 
Chapter 4 takes the Modeler through the steps necessary to create a working 

model from the beginning to end. 
 
Chapter 5 describes the protocol necessary to connect a task to the tool. 
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Chapter 2: Introduction 
 
 
 
 

2.1    What is the Instance-based Learning Theory? 
 
 
The Instance-based Learning Theory (IBLT) was initially proposed to demonstrate 
how learning occurs in dynamic decision-making tasks (Gonzalez et al., 2003). An 
IBLT model was implemented within the ACT-R architecture (Anderson and 
Lebiere, 1998), and we demonstrated how IBLT parameters were needed to 
account for human decision making in a dynamic and complex task. IBLT has more 
recently been used in other tasks in addition to dynamic decision making. These 
include simple binary choice tasks and two-person game-theory learning 
(Gonzalez & Lebiere, 2005). 
 
Under the IBLT (See Figure 2.1), modelers determine the representation of 
declarative knowledge (chunks or instances) in a task. In IBLT, an instance is a 
triple containing the cues that define a situation (S), the actions that define a 
decision (D), and the expected or experienced value resulting from an action in 
such a situation (U). Simply put, an instance is a concrete representation of the 
experience that a human acquires in terms of the decision-making situation 
encountered by the human, the decision the human makes, and the outcome 
(feedback) the human obtains. 
 
A modeler following the IBLT approach must define the structure of an SDU 
instance. Then, an ACT-R modeler following the IBLT approach should define 
productions that represent the generic decision-making and problem-solving 
process proposed by IBLT. This process involves the following steps: 

• Recognition, the comparison of cues from the environment or task to cues 
from memory; 

• Judgment, the calculation of the possible utility of a decision in a situation, 
either from past memory of from heuristics; 

• Choice, the selection of the instance containing the highest utility; and 
• Feedback, the modification of the expected utility defined in the judgment 

process with the experienced utility after receiving the outcome from a 
decision made. 

 
The IBLT mechanisms involve a set of functions and thresholds, including a 
similarity function used in the recognition step to determine what instances from 
memory are similar to the current situation; the decision threshold used in the 
choice step to determine whether more “evidence” or alternative search is needed 
before a selection is made; and the feedback threshold used to determine “how 
much” of the outcome provided from the environment is accounted for in the utility 
of the instances. 
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Instance An instance is the smallest unit of an experience. It is a set of values that 
represent a specific state, which is expressed in a triplet consisting of the 
Situation, Decision, and Utility slots, or SDU. 

 
Instance Type An instance type is a collection of instances with the same structure 

of the triplet. An instance type may contain more than one of each: situation, 
decision, and utility slots. 

 
 
 

 
Figure 2.1:  Instance-based Learning Theory 

 
 
 

2.2    What is the Instance-based Learning tool? 
 
The Instance-based Learning tool (IBLtool) is an effort by the Dynamic Decision 
Making Laboratory to formalize the theoretical approach to modeling. The goals 
are to have the Instance-based Learning Theory be: 
 
Shareable: by bringing the theory closer to the users, and making it more 

accessible; 
 
Generalizable: by making it possible to use the theory on different and a diverse 

set of tasks; 
 
Understandable: by making the theory easier to implement and use; 
 
Robust: by abstracting the specifics of the implementation of the theory away from 

any specific programming language; 
 
Communicable: by making the tool interact more easily and in a more standard 

way with tasks; and 
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Usable: by making the theory more transparent to users. 
 

The tool is a graphical interface written in Visual Basic that uses sockets to 
communicate with various tasks. 
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Chapter 3: Getting Acquainted 
with the Tool 
 
 
 
In this chapter, we will get acquainted with the user interface of the IBLtool, and get 
started with the basic concepts that will help you as you move through the 
modeling process. 
 

3.1    Installing 
 
To use the IBLtool on your computer, you will need a few things: 
 

1. a Windows XP or Windows Vista machine, with the latest software updates; 

and  
 

2. the installer package for the tool. There are separate installers for Windows 
XP and Windows Vista, so ensure you have the correct installer; the files 
should be named iblt-#.#-xp.exe for Windows XP and iblt-#.#-vista.exe for 
Windows Vista, where #.# is the version number of the IBLtool.   

To install the tool, simply double-click the installer and follow the instructions.  
When upgrading the tool, it is recommended that you uninstall previous 

versions of the software before installing the new version. 
 

3.2    User Interface 
 
The tool is presented as a graphical user interface. It is arranged into successive 
screens. One such screen can be seen in Figure 3.1. 
 
Each screen is divided into three areas: 
 
Instructions Each screen shows a short set of instructions for actions pertinent to 

the screen. Instructions appear at the top of the screen. 
 
Content The bulk of a screen’s functionality, or content, appears in the middle of the 

screen. Most screens have a tabbed interface, in which each tab in the tabbed 
interface represents an instance type. The tabbed interface aims to separate 
each instance type and reduce confusion as to which instance type is currently 
being worked on. 

 
Buttons At the bottom of every screen is a collection of buttons. The left-most and 

right-most buttons are navigation buttons and can be used to move to the 
previous and next screens, respectively. 
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Figure 3.1:  An example of a screen in the tool. 
 
 
 

3.3    Database 
 
All your instance types, instances, model parameters, and formulas are 
automatically saved into a database file named instances.mdb. 

The tool will create a new, empty database for you when you first start it. To 
move your model between computers, copy the database file to another computer. 
Be sure to install the tool on both computers. 

The database file can be opened using a copy of Microsoft Access, which can be 
useful when post-processing data collected during simulation. While it is also possible 
to modify tool parameters directly from Microsoft Access, we strongly recommend 
doing so through the tool instead, to prevent the possibility of corrupting any 
configuration parameters. 
 

3.4    Formulas 
 
Formulas and formula editors are a large part of the tool, because they allow users 
to write their own formulas using simple arithmetical operations. Formula editors 
are divided into three sections: 
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Formula Entry The Formula Entry box is where the users will enter their formula. 
 
Variable List The Variable List box shows a list of variables available for use in 

that formula. Clicking a variable in the Variable List will insert that variable in 
the Formula Entry box. 

 
Formula Status The Formula Status box shows whether there are any errors in 

the formula, if the tool expects the formula to define a certain variable, or if 
the formula was accepted without any errors. 

 
One important point to note is that formulas written in the formula editor will be 
automatically checked for errors, and automatically saved. 
 

 
Figure 3.2: Formula Editor, consisting of Formula Entry (top left), Variable List (top right), 
and Formula Status (bottom). In this example, the formula has been successfully accepted 
by the tool, i.e. the formula has no errors and all the variables are correctly defined. 
 
 

3.4.1    Formula Components 
 
Formulas and all their contents—including variables—are case insensitive, i.e. abc 
is equivalent to ABC. This case-insensitivity will prevent many errors.  
Formula A formula consists of one or more Statements. Each Statement must 

appear on its own line. 
 
Statement A statement can be: (a) an Assignment, or (b) an IF Conditional. 
 
Assignment An assignment is used to assign a value—or another variable— to a 

variable. Variable names must start with a letter, but may be followed by any 
alpha-numeric character (A-Z and 0-9) or a period. For example, these are valid 
variable names: A, A6, MEMORY, MEMORY.GOAL.  
Example formula: 

 
A = 5 
B = A 

 
The formula above consists of two statements, both of which are 
assignments. When the formula is run, as expected, both A and B will 
carry the value 5. 

 
IF Conditional An IF conditional is used to perform different tasks depending 

on a set of conditions. 
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The syntax for IF conditional is: 

 
IF condition THEN 

statement1 
ELSE 

statement2 
ENDIF 

 
The condition above is an Expression. Both statement1 and statement2 are 
regular statements, which would allow the user to have complex rules and 
nested conditionals. 

 
Expression An expression may be: 
 

1. a variable or value, e.g. TIME or 5;   
2. a function call, e.g. ABS(CUE.GOAL);   
3. a mathematical computation, e.g. TIME + 5, which uses a 

mathematical operator (see Mathematical Operators);  
4. a comparison, e.g. TIME + 5 > 10, which uses a comparison 

operator (see Comparison Operators); or  
5. a logical expression, e.g. (TIME + 5 > 10) AND (GOAL < 6), which 

uses a logical operator (see Logical Operators), and connects other 

expressions together.  

 
Operator Description Example 

   

+ Addition 5  +  2 
! Subtraction CUE.GOAL  -  MEMORY.GOAL 
" Multiplication A  *  B 
/ Division A  /  B 
\ Division  with  rounding A  \  B 

 down  

"" Exponentiation 2  **  B 
 

Table 3.1:   Mathematical operators and their examples. 
 

 
Operator Description Example 

    

== Equality  MEMORY.TIME  ==  CUE.TIME 
<> or ! = Inequality  MEMORY.TIME  <>  CUE.TIME 

> Greater than A  >  -5 
>= Greater than or equal to A  >=  -5 
< Less than  A  +  B  <  2  *  A 

<= Less than or equal to A  +  B  <=  2  *  A 
  

 
Table 3.2:   Comparison operators and their examples. 

 
 

 
 
Function call A function call is used to invoke one of the predefined functions in 
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the tool; it uses the function call operator (), and takes arguments. Each 
argument is separated by a comma, and an argument is simply any valid 
expression. For example: 

 
Q = ABS(NOISE) 

 
 

calculates the absolute value of the variable NOISE and saves the result 
into variable Q. The function name in this case is ABS, and it has one 
argument, denoted by (NOISE). 

 
 

3.4.2    Function Calls 
 
The IBLtool has various function calls available for use: 
 
ABS(expr1) This function expects one argument, and computes the absolute 

value of that argument. 
 
AVG(expr1, expr2, ..., exprN) This function expects at least one argument, and 

computes the mean value of all arguments. 
 
IIF(expr, exprT, exprF) 

The “Immediate IF” function, which is the function-call equivalent of the IF 
conditional expression, expects three arguments: 

 
expr:  the expression to test; 
exprT: the expression to use when expr evaluates to TRUE; and 
exprF: the expression to use when expr evaluates to FALSE. 

 
Although functionally equivalent to the IF conditional expression, the IIF 
function has a limitation that comes from the fact that it can only process 
expressions, and not statements.  
Compare the IF conditional: 

 
IF MEMORY.GOAL < CUE.GOAL THEN 

DECISION = 0 
ELSE 

DECISION = MEMORY.GOAL - CUE.GOAL 
ENDIF 

 
 

to the IIF function-call (formula broken into two lines due to length): 
 

DECISION = IIF(MEMORY.GOAL < CUE.GOAL, 0,  
MEMORY.GOAL - CUE.GOAL) 

 
In this case, the above two examples are equivalent:  they will set DECISION to 
0 if MEMORY.GOAL is less than CUE.GOAL, and set DECISION to the 
difference otherwise. 
 
To illustrate the limitation of IIF, consider the conditional: 
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IF MEMORY.GOAL < CUE.GOAL THEN 

LEFT = 1 
RIGHT = 0 

ELSE 
LEFT = 0 
RIGHT = 1 

ENDIF 
 
 

In this case, the IF conditional cannot be expressed as an IIF function 
call. 

 
LOG(expr, exprBase) This function expects two arguments, and computes the 

base exprBase logarithm of expr. 
 
LN(expr) This function expects one argument, and computes the natural 

logarithm of expr. 
 
MAX(expr1, expr2, ..., exprN) This function expects at least one argument, and 

computes the maximum of all arguments. 
 
MIN(expr1, expr2, ..., exprN) This function expects at least one argument, and 

computes the minimum of all arguments. 
 
POWER(exprBase, exprExponent) This function expects two arguments: the base 

number (exprBase) and the exponent number (exprExponent). 
 
RAND() or RAND(expMax) or RAND(expMin, expMax)  

This function expects no, one, or two arguments, and returns a randomly-
generated number. 

 
• When called with no argument, it returns a number between 0 and 1.   
• When called with one argument, it returns a number between 0 and 

expMax.   
• When called with two arguments, it returns a number between 

expMin and expMax.  
 
RANDITEM(expr1, expr2, ..., exprN) 

This function expects at least one argument, and randomly chooses one of 
the supplied arguments. Each argument has equal probability of being selected. 
For example, the following formula randomly chooses between the value of 
MEMORY.GOAL and the value of CUE.GOAL: 

 
DECISION = RANDITEM(MEMORY.GOAL, CUE.GOAL) 

 
ROUND(expr) 

This function expects one argument, and returns the Gaussian rounding of 
the value passed to it; i.e. fractional values are rounded to the nearest even 
integer. For example: both 15.5 and 16.5 are both rounded to 16. Gaussian 
rounding is the rounding implementation used by Visual Basic. 

 
SQRT(expr) This function expects one argument, and computes the square-root of 

the argument. It is essentially equivalent to expr ** 0.5. 
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SUM(expr1, expr2, ..., exprN) This function expects at least one argument, and 
computes the sum of all arguments. 
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Chapter 4: Steps to Modeling 
with Simon Task Example 
 
 
 
 
This chapter will cover the steps needed to model a task using the IBLtool.  

Before starting, there are a few points to remember: 
 

1. You do not need to have the task running to begin modeling.  
 

2. You need both the task program and the tool installed to perform simulations.   
They may be installed on the same or different computers. If they are on 
different computers, it is highly suggested that both computers be on the 
same local computer network to reduce the possibility of network latency 
issues. Network latency issues may cause the task or the tool to fall behind 
from one or the other, and cause problems with your simulations.   

3. The task to which you are using must be modified—if not already— to be able 
to connect to the tool. Your developer—or the person who originally wrote the 
task program you are using—can refer to  Protocol  Definition for information 
on what changes are needed.   

This is both a guide and tutorial, so each step will relate back to an example 
task, the Simon Task, which will be reviewed in the next section. 
 

4.1    Simon Task 
 
First, let us run through a brief overview of the task we will be using: the Simon 
Task.  

The Simon task is a location-irrelevant choice-reaction task. In the task, subjects 
are shown stimuli in the form of five-millimeter red or green circles on the screen. 
Responses are made by pressing one of two keys: a left key, or a right key. When a red 
circle is shown, one response key must be pressed, while when a green circle is shown, the 
other response key must be pressed. 

Because the Simon task is location irrelevant, the same key must be pressed 
every time the same-colored circle appears, regardless of where the circles 
appear on the screen. 

Each trial starts with a white fixation cross at the center of the screen for 500 
milliseconds, followed by a blank screen for 500 milliseconds, and finally a red or 
green circle is shown on the left- or right-side of the screen. Subjects have up to 
1,500 milliseconds to provide a response—correctly or incorrectly. Incorrect 
responses produce an error tone, while no feedback is given for a correct 
response. 
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4.2    Defining Instance Types 
 
The first step is to define the structure of one or more instance types. Most tasks 
will have one instance type, but the tool supports having multiple instance types.  

From the description of the task above, we can construct the following 
instance type: 
 

 Situation (S)   Decision (D)  Utility (U) 
          

Time Color Orientation Position  Left Right  Utility 
          

· · · · · · ·  
 

All the situation and decision slots are integer value, while the utility slot is a 
floating or real value. In the above example, all slots are empty (·).  

Because the color, orientation, and position situation slots are categorical but 
stored as integers, it is recommended that a coding table that maps the integer values 
to actual value is kept for your reference. For example: 
 

Slot Code Actual Value 
 

    

0 Green 
 

   

 

Color 
1 Red 

 

    

0 Horizontal 
 

   

 

Orientation 
1 Vertical 

 

    

0 Left 
 

   

 
Position 

1 Right 
 

 
You can construct and modify instance types on the first screen of the tool. 
 
To add a new slot on the instance: 
 

1. Click the Add New Row button.  
 

2. Double-click the slot which you would like to add.  
 

3. Type the slot name, followed by a comma, followed by the type of slot.  
 

4. Press enter to add the slot, or escape to cancel the addition.  
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For example, to add the Time situation slot as an integer, we would type Time, 
Integer.  

The tool currently supports three types of values: Integer, Real, and String. To 
store categorical values, it is recommended to assign each possible value to a 
numerical value and use Integer fields instead of String fields. 
 
 

4.3    Pre-populating Instances into the Memory 
 
Next, we can start pre-populating the tool’s memory with instances. This step is 
completely optional, and can be safely skipped.  

When a simulation starts, pre-populated instances will be treated as if they 
were added at the very start of the simulation. 
 



 17 

 
 
 
 
To add a new instance to the memory: 
 

1. Click the Add New Row button.  
 

2. Double click the first cell on the new row, and start entering the value.  
 

3. Press enter to save a value, or esc to cancel adding the value. When you 
press enter, the next cell—if any—will be automatically editable. This allows 
you to quickly add instances without having to use the mouse.   

To delete an instance from the memory: 
 

1. Click on any cell on the row which you would like to delete.  
 

2. Click the Delete Row button.  
 
To edit an existing instance: 
 

1. Click on the cell of the instance you would like to edit.  
 

2. Enter the new value.  
 

3. Press enter to save, or esc to cancel the edit. 
 

For the purposes of our example, we have added the following pre-populated 
instances into memory, which is every possible combination of color, position, and 
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answer: 
 

S  D  U 
         

Time Color Orientation Position  Left Right  Utility 
         

0 0 0 0 1 0 1 
0 0 0 1 0 1 0 
0 1 0 0 0 1 1 
0 1 0 1 1 0 0 
0 0 0 0 1 0 1 
0 0 0 1 0 1 0 
0 1 0 0 0 1 1 
0 1 0 1 1 0 0 

 
 

4.4    Defining Similarity Formulas 
 
In this screen, you will see your first formula editor (see  Formulas for an 
introduction to formulas), in which you will be able to specify one or more similarity 
formulas. Similarity formulas can only be defined on situation slots. 
 
There are currently two ways of specifying similarity functions: 
 

• Define one similarity formula for all slots   
When this option is selected, you will be able to enter a formula for calculating 
similarity into the formula editor, which will then be used to calculate similarity for 
every situation slot within that instance type.   

• Define a separate similarity formula for each slot   
When this option is selected, the sidebar will activate and allow you to select 
a situation slot for which to define a similarity formula. To start adding a 
similarity formula, click on a slot name and start writing the formula.   

The formula editors on this screen expect you to define the variable M (mismatch 
penalty). 
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For the purposes of our example, we have defined separate similarity formulas 

for each slot: 
 

Slot Formula 
    

Time M  = 0  
Color M  = -1 *  ABS(CUE  -  MEMORY) 
Orientation M = -1 *  ABS(CUE  -  MEMORY) 
Position M = -1 *  ABS(CUE  -  MEMORY) 

 
 

4.5    Specifying a Match Request 
  

Currently, during the retrieval process, all instances in memory are candidates 
for retrieval. 

In some tasks however, this may not be the desirable course of action. As 
such, in this screen, you have the opportunity to limit retrieval only to instances in 
memory that satisfy certain criteria. 

For the purposes of our example, we have selected to only take into account 
instances of the same color as the cue, regardless of the utility of said instance or 
any other slot value: 
 

IF  CUE.COLOR  ==  MEMORY.COLOR  THEN 
USES  =  TRUE 

ELSE 
USES  =  FALSE 

ENDIF 
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4.6    Choosing a Retrieval Method 
 
In this screen, you can choose the retrieval method you would like to use. There 
are currently two options: 
 

• Regular retrieval   
In regular retrieval, instances are first marked as candidate for retrieval if they 
fulfill the Match Request. Of those instances that are candidates, the 
instances with the best activation score that satisfy the Request Threshold 
and Utility Threshold—if any such instances exist—will be retrieved; 
otherwise, retrieval will fail.   

• Retrieval with blended instances   
In retrieval with blended instances, instances are also first marked as 
candidate for retrieval if they fulfill the Match Request. If there is at least one 
candidate instance, the retrieval process will create a new chunk of the same 
instance type, whose slots are the blended values of all the candidate 
instances. If there are no candidate instances, retrieval will fail.  

 
 

For the purposes of our example, we have selected to use blended instances. 
 

4.7    Setting Judgment Heuristics 
 
In this screen, you will have the chance to define judgment heuristics. After 
retrieval is performed, the tool will either succeed in retrieval, in which case an 
instance was retrieved, or fail, in which case no instance was retrieved.  

When retrieval fails, the tool expects you to define a formula to calculate the 
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utility value. The formula expects you to define the variable U (expected utility 
value). 

When retrieval succeeds, there are two choices: 
 

• Copy utility   
The utility value can be copied from the instance that was retrieved.  

 
• Utility formula   

The utility value can be calculated based on a formula. The formula expects 
you to define the variable U (expected utility value). The formula will have 
access to all the slot values of the cue that triggered the retrieval, and the 
instance that was retrieved.  

 
For our example, we will simply copy the utility value upon successful retrieval. We 
will also define the following formula to calculate the utility value upon failed 
retrieval, essentially assigning the utility a random value between 0 and 1: 
 

U = RAND(0, 1) 
 

4.8    Defining Decision-Calculation Formulas 
 
In this screen, you can define how a decision value is calculated, and sent back.  

There are two options when defining decision calculation formulas: 
• Define one decision formula for all decision slots   

When this option is selected, you will be able to enter a formula into the 
formula editor, which will then be used to calculate similarity for every 
decision slot within that instance type.   
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• Define a separate decision formula for each decision slot   
When this option is selected, the sidebar will activate and allow you to select a 
decision slot for which to define a formula. To start adding a similarity formula, 
click on a slot name and start writing the formula.  

 
Each decision formula expects you to define the variable D (decision value). 
Furthermore, the tool allows you to define a separate decision formula depending 
on whether retrieval succeeded or failed. 

 
 

For the purposes of our example, we have defined separate decision formulas 
for each slot: 
 

Retrieval Slot Formula 
 

    

Left D  =  IIF(U  >  0,  MEMORY.LEFT,  MEMORY.RIGHT) 
 Succeed 
 

 Right D  =  IIF(U  >  0,  MEMORY.RIGHT,  MEMORY.LEFT) 
 

    

Left D  =  IIF(U  >  0.5,  0,  1) 
 Failed 
 

 Right D  =  IIF(U  >  0.5,  1,  0) 
 

 
 

4.9    Defining Feedback Formulas 
 

In this screen, you can define how the tool will process incoming feedback from 
the task. There are two options available to you:  

• Single feedback value 
When this option is selected, the tool will expect the task to send a single 
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value as its feedback. This single value will be used as the value of O (the 
outcome).  

• Multiple feedback values   
When this option is selected, the tool will expect the task to send multiple 
values in one feedback. You will be able to define a formula to calculate the 
value of O (the outcome) based on the fields in the feedback.   

 
For our example, we will select a single feedback value. 
 
 

4.10    Selecting a Utility Update Method 
 
In this screen, we will use the O (outcome), G (goal, which is a model parameter), 
and U (expected utility value) to calculate U’ (experimental utility value). 

There are three options available:  
• Increase the utility by the outcome   

When  this  option  is  selected,  the  experimental  utility  value  will  be 
increased based on the outcome value, scaled by the goal value. In other 
words:  

U’ = U + (O / G) 
 
 

• Set the utility to the outcome   
When this option is selected, the experimental utility value will be set to the 
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outcome value, scaled by the goal value. In other words:  
    

U’ = O / G 
 
 

• Define a custom formula   
When this option is selected, you will have the opportunity to enter a custom 

formula to calculate the experimental utility value.  

 
For the purposes of our example, we will define a custom formula: 
 

IF O / G == 1 THEN 
U’ = 1 

ELSE 
U’ = 0 

ENDIF 

 

 

4.11    Setting Model Parameters 
  

In this screen, you will have the opportunity to specify various model 
parameters. The model parameters are divided into three areas: 
 
Stopping Rules  

All the stopping rule parameters are grouped to the left-hand side of the 
screen. These parameters include: 

 
• RT (Retrieval Threshold);   
• UT (Utility Threshold);  
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• IBLT Cycle Threshold, for which there is the ability to specify a time-

based threshold or a number-of-retrieval threshold;   
• CT (Choice Threshold); and   
• G (Goal).  

 
Activation-Calculation Parameters  

All the parameters that are used when calculating instance activation are 
grouped to the right-hand side of the screen. These parameters include: 

 
• d, which is the Base-Level Learning Exponent;   
• s, which is the Noise Factor;   
• LE (Latency Exponent);   
• LF (Latency Factor); and   
• Alpha, or .  

 
Socket Parameters  

The tool interacts with tasks through a network programming—or socket—
interface. To control this interface, the tool also comes with additional 
parameters: 

 
• Server IP, which is the IP address to which the task should connect, and 

is not a configurable parameter;   
• Server Port, which is the port number to which the task should connect; 

and  
• HELO String, which is an optional and configurable string that the tool 

sends to the task when the first connection is made.  
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For the purposes of our example, we will use the following parameters: 
 

Parameter Setting 
  

RT >= !10 
UT >= 0 
Cycle Rule Number of Retrievals: 1 
CT >= 0 
G 1 

  

d 0.5 
s 0.25 
LE 1 
LF 0.1 
Alpha 1 

  

Port 4258 
HELO String 1|VERSION|00 

 
 

4.12   Executing the Model 
 

In this screen, you will finally have the chance to run the simulation. When you 
first arrive at this screen, the tool should show a message that it is listening for a 
connection, and ready to perform a simulation. When this happens, you can start a 
simulation. 
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To start a simulation: 
 

1. Start up your task.  
 

2. Connect your task to the tool, and the simulation should commence shortly 
thereafter.  

3. If your task has a batch mode and is running in batch mode, then the next 

simulation will begin as soon as the current one ends.  

To reset a simulation when your task is in batch mode, click the Reset Simulation 
button.  

To reset a simulation when your task is in regular mode or if your task does 
not have a batch mode: 
 

1. Stop your task in order to stop the simulation in the tool.  
 

2. Click the Reset Simulation button.  
 

3. Start your task back up.  
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Chapter 5: Protocol Definition 
 
 
 
 
This chapter documents the protocol used by the IBLtool to communicate with a 
task. You may skip this chapter if:  

• the task to which you are connecting has already been modified to connect to 
the tool; or  

• you are only using the tool to create models, and someone else is in charge 

of modifying your task to connect to the tool.  
 

5.1 Protocol Format  
 
The IBLtool uses a line-based protocol, i.e. each message appears on its own line, 
and each line is always terminated by \r\n (a carriage return and a new-line 
character).  

There are nine types of messages, each of which will be described in detail in 
this chapter.  

message " cue | cue-size | decision | error 
| feedback | feedback-ok | state | start | stop  

crlf " “\r\n” 
A message consists of one or more fields. Each field is separated by | (the 

vertical bar, or pipe character).  
sep " “|” 

 
Numerical values are either integers or reals, both signed and unsigned.  

sign " “+” | “-” 
digits " digit | digit digits  
integer " digits | sign digits 
real " digits “.” digits | sign digits “.” digits 
 

String values for our purpose are the list of all printable characters except the 
terminator and separator. 
 

string-char = printable - sep – crlf 
string-chars " string-char | string-char string-chars 
string " string-chars 

 
An instance type is occasionally used to denote the instance with which the 

command is associated. The instance type is simply a string that always starts with 
“I” followed by numbers. 
 

instance-type " “I” digits 
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Slot values are conveyed using the concept of slot pairs. A slot pair consists of 

a slot name and a slot value. 
 

slot-name " string 
slot-value " real | integer | string  
slot-pair " slot-name sep slot-value 
slot-pairs " slot-pair | slot-pair sep slot-pairs 

 
 

5.2    CUE Message 
 
The CUE message is used by the task to convey a set of cue values to the tool. A 
cue is denoted by the “CUE” command followed by the instance type and one or 
more slot pairs. 
 

cue " “CUE” sep instance-type sep slot-pairs crlf 
 
 

The tool expects the number of slot pairs to coincide with the number returned 
by CUESIZE Message. 
 

5.3    CUESIZE Message 
 
The CUESIZE message is used to convey the length of cues to expect. It allows 
the tool to declare a predetermined number of cues to the task. 
 

size " integer 
cue-size " “CUESIZE” sep instance-type sep size crlf 

 
 

5.4    DECISION Message 
 
The DECISION message is used by the tool to convey one or more decisions back 
to the task. A decision may either be one single un-annotated value in the event 
that the task only produces a numerical value, or a list of slot pairs. 
 

single-decision " “DECISION” sep instance-type sep real crlf  

multi-decision " “DECISION” sep instance-type sep slot-pairs crlf  

decision " single-decision | multi-decision 

 

5.5    ERROR Message 
 
The ERROR message is used to convey arbitrary error messages from the tool to 
the task (but not the other way around). 
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error-message " string  
error " “ERROR” sep error-message crlf 

 
 

5.6    FEEDBACK Message 
 
The FEEDBACK message is used by the task to send a feedback value into the 
tool. 
 

feedback-value " integer | real  
feedback " “FEEDBACK” sep instance-type sep feedback-value crlf | 

“FEEDBACK” sep instance-type sep slot-pairs crlf 
 

Note: Because feedbacks are processed asynchronously, the task can either wait 
for the FEEDBACKOK message, or ignore FEEDBACKOK altogether if the task 
doesn’t need to know when feedbacks are processed. 
 

5.7    FEEDBACKOK Message 
 
The FEEDBACKOK message is used by the tool to signal to the task that a 
feedback has been processed. The acknowledgment also includes the goodness 
value (goodness-value) applied, and the number of instances to which the 
feedback was applied (apply-size). 
 

apply-size " integer  
goodness-value " integer | real  
feedback-ok " “FEEDBACKOK” sep goodness-value sep apply-size crlf 

 
 

5.8    START Message 
 
The START message is used by the task to initiate a new simulation on the tool. 
 

start " “START” sep instance-type crlf 
 
 
 

5.9    STOP Message 
 
The STOP message is sent by the task to clean up after a simulation. 
 

stop " “STOP” sep instance-type crlf 
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5.10    STATE Message 
 
The STATE message is used by the task to insert a cue and feedback at the same 
time. The feedback portion will be executed before the cue portion will. 
 

state " “STATE” sep slot-pairs crlf 
 
 
 

5.11    Message Flow 
 
When starting up, data streams are initiated by the task, not the tool. The general 
message flow is: 
 

1. Task connects to the tool.  
 

2. Task sends START.  
 

3. Tool sends CUESIZE to the task.  
 

4. Tool starts simulation for the instance type. 
 

5. Task sends CUES or FEEDBACK; tool sends DECISION or FEEDBACKOK. 
 

6. Task sends STOP when it is done.  
 

7. Tool stops simulation for the instance type.  
 

8. Task disconnects.  
 
During simulation, the following events may come in any order: 

1. A set of cues (CUES) may come from the task, to which the server will 
respond with a DECISION.  

 
2. A feedback value (FEEDBACK) may come from the task, to which the server 

will respond with an acknowledgment (FEEDBACKOK).  
  

5.12    Example Message Flow 
 
Let us assume a simulation is performed on an instance type I2 with 4 situation 
slots. The C lines denote the task commands sent by the task, while S lines denote 
the server responses sent by the tool.  

The task opens a connection to the tool, and indicates that it wants to perform a 
simulation on instance type I2. The tool informs the task that it will expect four cue 
(situation) slots. 

C: START|I2 
S: CUESIZE|I2|4 

 
The task sends a feedback—even though no cue has been sent—and the tool 

replies with the feedback value and the number of instances to which the feedback 
was applied (in this case, none). 
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C: FEEDBACK|I2|60 
S: FEEDBACKOK|60|0 

 
The task sends a cue to the tool, and the tool sends back a decision value. 

 
C: CUES|I2|TIME|1|COLOR|0|POSITION|1|ORIENTATION|1  
S: DECISION|85  

The task sends a feedback to the tool, and this time the tool applies the 
feedback to one executed instance. 
 

C: FEEDBACK|I2|90 
S: FEEDBACKOK|90|1 

 
The task stops the simulation and disconnects from the tool. 

 
C: STOP 

 
 

5.13    Planned Changes to the Protocol 
 

5.13.1    BATCH Message 
 
The BATCH message is used by the task to perform a batch of simulations on the 
tool, running one simulation after another until the number of requested simulations 
is performed. The message must be the first message sent to the tool when the 
task connects. 
 

batch " “BATCH” sep number-of-simulations crlf 
 
 

5.13.2    RESET Message 
 
The RESET message forcefully resets the simulation. 
 

reset " “RESET” crlf
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Experiment 1, cognitive and motoric stressors were independently added to data 
entry, with the combination of stressors yielding the greatest decline in accuracy 
across blocks. Experiment 2 compared mental multiplication and simple data 
entry and manipulated the provision of feedback. Accuracy improved with both 
mental multiplication and feedback. Experiment 3 varied only the concluding 
keystroke; this extra requirement led to overall improvements in accuracy. In 
each experiment, RTs improved across trials. These results suggest that cognitive 
complications can serve as antidotes to inhibitory effects and can overcome the 
decline in accuracy due to continuous work on data entry. 
 
 
Kole, J. A., Healy, A. F., Fierman, D. M., & Bourne, L. E., Jr. (2010). Contextual 

memory and skill transfer in category search. Memory & Cognition, 38, 67-82. 
 



In three experiments, we examined transfer and contextual memory in a category 
search task. Each experiment included two phases (training and test), during 
which participants searched through category and exemplar menus for targets. 
In Experiment 1, the targets were from one of two domains during training 
(grocery store or department store); the domain was either the same or changed 
at test. Also, the categories were organized in one of two ways (alphabetically or 
semantically); the organization either remained the same or changed at test. In 
Experiments 2 and 3, domain and organization were held constant; however, 
categories or exemplars were the same, partially replaced, or entirely replaced 
across phases in order to simulate the dynamic nature of category search in 
everyday situations. Transfer occurred at test when the category organization or 
domain was maintained and when the categories or exemplars matched 
(partially or entirely) those at training. These results demonstrate that transfer is 
facilitated by overlap in training and testing contexts. 
 
Krech Thomas, H., Healy, A. F., & Greenberg, S. N. (2007). Familiarization effects 

for bilingual letter detection involving translation or exact text repetition. 
Canadian Journal of Experimental Psychology, 61, 304-315. 

 
In two experiments, English-Spanish bilinguals read passages, performing letter 
detection on some passages by circling target letters as they read. Detection 
passages were sometimes familiarized (primed) by prior reading of the same 
passage or a translation of it. Participants detected letters in English passages in 
Experiment 1 and in Spanish passages in Experiment 2. For both experiments, a 
missing letter effect occurred (depressed detection accuracy on frequent function 
words relative to less frequent content words). Familiarization promoted overall 
improvements in letter detection only for English passages, suggesting that 
reprocessing benefits depend on high language fluency. For Spanish passages, 
cognates engendered greater error rates than non-cognates; the visual similarity 
of Spanish and English cognates apparently enabled faster identification of 
Spanish cognates in a way unaffected by familiarization of the whole text 
passage. Priming by familiarized text was significantly higher when the passages 
were in the same language than when they were in different languages, 
suggesting that the reprocessing benefits are a with the GO model of reading 
(Greenberg, Healy, Koriat, & Kreiner, 2004) but require an expanded 
consideration of attention redistribution processes in that model. 
 
Lohse, K. R., Sherwood, D. E., & Healy, A. F. (2010). How changing the focus of 

attention affects performance, kinematics, and electromyography in dart 
throwing.  Human Movement Science, 29, 542-555. 
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Overstreet, M. F., & Healy, A. F. (in press). Item and order information in 

semantic memory: Students’ retention of the CU Fight Song lyrics.  Memory & 
Cognition. 

(
University of Colorado (CU) students were tested on memory for the CU Fight Song to 
examine serial position effects in semantic memory while controlling for familiarity 
across positions.  In Experiment 1, students reconstructed the order of the 9 lines of the 
song.   Students with previous exposure to the song performed better and showed a more 
bowed serial position function than students with no knowledge of the song.  Experiment 
2 added a task $##"##3,0 memory of item information.  One word was removed and 
replaced with a blank in each line, and an alternative word was offered as an option along 
with the correct word.  Students selected the word that fit into each blank and then 
reconstructed the order of the lines.  There was a bow-shaped curve for order 
reconstruction but not for item selection, which implies that the serial position function in 
semantic memory stems from order rather than item information. 
 
Raymond, W. D., Healy, A. F., McDonnel, S., & Healy, C. A. (2009). Acquisition 

of morphological variation: The case of the English definite article. Language 
and Cognitive Processes, 24, 89-119. 

 
Morphological systems have been pivotal in exploring cognitive mechanisms of 
language use and acquisition. Adult English definite article form preference 
seems to depend non-deterministically on multiple factors. A corpus study of 
adult spontaneous speech revealed similar patterns of variability. In an 
experiment, article variant preferences of three age groups were compared. 
Children were sensitive to the same phonological factors as adults, but showed 
effects of more limited experience with articulation and orthography. Preferences 
across age groups suggest developmental changes, but no evidence that children 
initially use a default form. Corpus studies of children’s and adults’ speech also 
revealed no evidence for a default. The results point to overgeneralisation of both 
article variants, resulting from extended competition between variant forms 
 
Schneider, V. I., Healy, A. F., Barshi, I., & Kole, J. A. (in press). Following 

navigation instructions presented verbally or spatially: Effects on training, 
retention, and transfer.  Applied Cognitive Psychology. 

 
Two experiments investigated participants’ ability to follow navigation 
instructions in a situation simulating communication between air traffic 
controllers and aircrews. A verbal condition, in which instructions were given 



orally, was compared with a spatial condition, in which commands were shown 
on a computer display as simulated movements, with the presentation times in 
the two conditions equated. Retention and transfer were studied a week later 
when participants performed in either the same or the other condition. In both 
sessions, participants’ initial proportion correct was much higher in the spatial 
than in the verbal condition, but after three blocks, accuracy in the two 
conditions was equivalent. Retention was perfect when training and test 
conditions matched. Training in the verbal condition transferred to the spatial 
condition but not vice versa. Thus, there is evidence that participants’ 
representations of the movements in the verbal and spatial conditions were not 
equivalent. 
 
Sumiya, H., & Healy, A. F. (2008). The Stroop effect in English-Japanese 

bilinguals: The effect of phonological similarity. Experimental Psychology, 55, 
93-101. 

 
English-Japanese bilinguals performed a Stroop color-word interference task 
with both English and Japanese stimuli and responded in both English and 
Japanese. The Japanese stimuli were either the traditional color terms (TCTs) 
written in Hiragana or loanwords (LWs) from English written in Katakana. Both 
within-language and between-language interference were found for all 
combinations of stimuli and responses. The between-language interference was 
larger for Katakana LWs (phonologically similar to English) than for Hiragana 
TCTs, especially with Japanese responses. The magnitude of this phonological 
effect increased with self-rated reading fluency in Japanese. Overall responding 
was slower and the Stroop effect larger with English than with Japanese stimuli. 
These results suggest that unintentional lexical access elicits automatic 
phonological processing even with intermediate-level reading proficiency. 
 
Wohldmann, E. L., & Healy, A. F. (2010).  Exploring specificity of speeded 

aiming movements: Examining different measures of transfer.  Memory & 
Cognition, 38, 344-355. 

 
Participants were trained and tested to move a mouse cursor from a start 
position to targets on a circular display in a perceptual–motor reversal condition, 
with horizontal, but not vertical, reversals. During training, some participants 
(experimental) moved to two targets either along a single diagonal axis (D1) or 
along both axes (D2). For D2, return movements from the targets were in the 
same direction as instructed movements to unpracticed targets. Others (control) 
trained on all targets. Testing always involved all targets. At test, movement 
times (to reach the target after leaving the start position) were shorter on trained 
than on untrained targets, especially for the D1 condition, documenting training 
specificity. However, movement times in the experimental conditions to new 
targets during testing were shorter than those in the control condition during 
training, documenting transfer of learning, with more transfer for D2 than for 
D1. Initiation times (to leave the start position after target onset) showed no 
transfer. The results provide evidence that specificity and transfer are not 
mutually exclusive and depend on the measure used to assess performance. 
 



Wohldmann, E. L., Healy, A. F., & Bourne, L. E. Jr. (2007). Pushing the limits of 
imagination:  Mental practice for learning sequences. Journal of Experimental 
Psychology:  Learning, Memory, and Cognition, 33, 254-261. 

 
In 2 experiments, the efficacy of motor imagery for learning to type number 
sequences was examined. Adults practiced typing 4-digit numbers. Then, during 
subsequent training, they either typed in the same or a different location, 
imagined typing, merely looked at each number, or performed an irrelevant task. 
Repetition priming (faster responses for old relative to new numbers) was 
observed on an immediate test and after a 3-month delay for participants who 
imagined typing. Improvement across the delay in typing old and new numbers 
was found for the imagined and actual typing conditions but not for the other 
conditions. The findings suggest that imagery can be used to acquire and retain 
representations of sequences and to improve general typing skill. 
 
Wohldmann, E. L., Healy, A. F., & Bourne, L. E., Jr. (2008). A mental practice 

superiority effect: Less retroactive interference and more transfer than 
physical practice. Journal of Experimental Psychology: Learning, Memory and 
Cognition, 34, 823-833. 

 
Two experiments explored the benefits to retention and transfer conferred by 
mental practice. During familiarization, participants typed 4-digit numbers and 
took an immediate typing test on both old and new numbers. Participants then 
typed old 4-digit numbers, either physically or mentally, with either a different 
response configuration or the opposite hand from that used during 
familiarization. On a delayed test, participants physically typed both old and 
new numbers with the same response configuration and hand used during 
familiarization. Mental practice led to less retroactive interference and more 
transfer than did physical practice, supporting the hypothesis that mental 
practice strengthens an abstract representation that does not involve specific 
effectors. 
 
Wohldmann, E. L., Healy, A. F., & Bourne, L. E., Jr. (2008). Global inhibition and 

midcourse corrections in speeded aiming. Memory & Cognition, 36, 1228-1235. 
 
When some perceptual–motor relationships are reversed, participants might 
adopt a global inhibition strategy that replaces all normal movements with 
reversed movements. In two experiments, participants practiced moving a cursor 
from a start position to target locations. In a perceptual–motor reversal condition, 
in which horizontal but not vertical movements were reversed, participants were 
trained to move only to certain locations. Testing involved moving to all 
locations under the same reversal condition. Training on a subset of locations 
yielded partial transfer to untrained locations. These results support a global 
inhibition hypothesis modified to include both midcourse corrective movements 
and training specificity. 
 
Wohldmann, E. L., Healy, A. F., & Bourne, L. E., Jr. (2010).  Task integration in 

time production.  Attention, Perception, & Psychophysics, 72, 1130-1143. 
 



Two experiments examined training on a prospective time production task.  
Participants produced intervals, expressed in fixed arbitrary units, while 
performing a concurrent secondary task.  After a 15-min filled delay, the 
participants were retrained on the same tasks.  These experiments tested whether 
the primary and secondary tasks would be integrated into a single task.  In 
Experiment 1, the secondary task requirements were manipulated, but the time 
production task was fixed.  In Experiment 2, the time production task 
requirements were manipulated, but the secondary task was fixed.  The results 
suggest that participants integrate primary- and secondary-task requirements. 
 
Young, M. D., Healy, A. F., Gonzalez, C., Dutt, V., & Bourne, L. E., Jr. (in press).  

Effects of training with added difficulties on RADAR detection.  Applied 
Cognitive Psychology. 

 
Three experiments simulating military RADAR detection addressed a training 
difficulty hypothesis (training with difficulty promotes superior later testing 
performance) and a procedural reinstatement hypothesis (test performance 
improves when training conditions match test conditions). Training and testing 
were separated by 1 week. Participants detected targets (either alphanumeric 
characters or vehicle pictures) occurring among distractors. Two secondary tasks 
were used to increase difficulty (a concurrent, irrelevant tone-counting task and a 
sequential, relevant action-firing response). In Experiment 1, involving 
alphanumeric targets with rapid displays, tone counting during training 
degraded test performance. In Experiment 2, involving vehicle targets with both 
sources of difficulty and slower presentation times, training under relevant 
difficulty aided test accuracy. In Experiment 3, involving vehicle targets and 
action firing with slow presentation times, test accuracy tended to be worst when 
neither training nor testing involved difficult conditions. These results show 
boundary conditions for the training difficulty and procedural reinstatement 
hypotheses. 
 

Publications in Book Chapters or Conference Proceedings 
 
Healy, A. F. (2007). Transfer: Specificity and generality. In H. L. Roediger, III, Y. 

Dudai, & S. M. Fitzpatrick (Eds.), Science of memory: Concepts (pp. 271-275). 
New York: Oxford University Press. 

 
Healy, A. F., & Bonk, W. J. (2008). Serial learning. In H. L. Roediger, III (Ed.), 

Cognitive psychology of memory (pp. 53-63), Vol. 2 of Learning and memory: A 
Comprehensive reference, 4 vols. (J. Byrne, Editor). Oxford: Elsevier. 

 
Healy, A. F., Kole, J. A., Wohldmann, E. L., Buck-Gengler, C. J., & Bourne, L. E., 

Jr. (in press).  Data entry: A window to principles of training. In A. S. 
Benjamin (Ed.), Successful remembering and successful forgetting: A festschrift in 
honor of Robert A. Bjork.  New York: Psychology Press. 

 
Studies reviewed are aimed to reveal principles of training, which lead to an 
understanding of what factors influence the efficiency, durability, and flexibility 
of training.  The studies involve investigations of a simple data entry task. The 



principles illustrated include principles derived from studies of word list 
learning – levels of processing and phonological processing – as well as newly 
formulated principles – procedural reinstatement, cognitive antidote, and mental 
practice. By the depth of processing principle, processing stimuli more deeply 
during training improves the skill involved in responding to those stimuli after a 
long delay.  By the phonological processing principle, disrupting phonological 
processing of stimuli hinders the skill involved in responding to those stimuli 
but only when working memory is used to store the stimuli.  By the procedural 
reinstatement principle, skill learning leads to durable retention when the required 
procedures are maintained but limited transfer when the required procedures 
are altered.  By the cognitive antidote principle, adding cognitive complications to 
an otherwise routine task mitigates the adverse effects of prolonged work.  By 
the mental practice principle, mental practice might have certain advantages over 
physical practice when it comes to slowing forgetting and promoting transfer of 
training because physical, but not mental, practice suffers from motoric 
interference when there is a change in effectors. 
 
Healy, A. F., Schneider, V. I., & Barshi, I. (2009). Cognitive processes in 

communication between pilots and air traffic control. In E. B. Hartonek (Ed.), 
Experimental psychology research trends (pp. 45-77). Hauppauge, NY: Nova 
Science Publishers. 

 
We have been probing the cognitive processes underlying communication 
between pilots and air traffic control.  To study these processes, we developed an 
experimental paradigm analogous to the natural flight situation, in which pilots 
receive navigation instructions from air traffic control, repeat them, and follow 
them.  In the experimental task, individuals typically hear navigation 
instructions, repeat them aloud, and then follow them, navigating in a space 
displayed on a computer screen.  We describe a series of studies addressing 2 
sets of relevant issues.  The first set is empirical and concerns parameters for 
optimizing the ability to comprehend and remember the instructions, 
considering the length and wordiness of the instructions, the modality in which 
the instructions are presented, and the effects of repeating the instructions on 
their correct execution.  The second set of issues is theoretical and concerns the 
mental representation of both the verbal content of the instructions and their 
spatial implications. 
 
Healy, A. F., Wohldmann, E. L., Kole, J. A., Schneider, V. I., Shea, K. M., & 

Bourne, L. E., Jr. (in press). Training for efficient, durable, and flexible 
performance in the military. In W. Arthur, Jr., E. A. Day, W. Bennett, Jr., & A. 
Portrey (Eds.), Individual and team skill decay: State of the science and implications 
for practice. New York: Taylor & Francis. 

 
Research is discussed on training, retention, and transfer of knowledge and 
skills.  Optimal learning should be efficient, durable, and flexible.  In the research 
discussed here, circumstances have been found leading to remarkable durability 
of what has been learned.  Those same conditions, however, yield very poor 
flexibility, or the ability to generalize learning to new situations or contexts.  A 
general theoretical framework is proposed that can account for the high degree 



of specificity obtained in these studies but that also enables predictions of when 
learning will be generalizable rather than specific.  The chapter is centered on 
five separate lines of research.  The first three lines demonstrate a high degree of 
specificity of learning.  These studies are presented by providing the empirical 
findings illustrating specificity and by briefly summarizing the theoretical 
explanations of them for the particular tasks investigated.  The chapter ends with 
a summary of the results from the last two lines of research, which demonstrate, 
in support of the theoretical framework, situations showing robust transfer of 
learning.  In summary, it is proposed that specificity (limited transfer) may occur 
for tasks based primarily on procedural information, or skill, whereas 
generalizability (robust transfer) may occur for tasks based primarily on 
declarative information, or facts.  Thus, for skill learning, retention is strong but 
transfer is limited, whereas for fact learning, retention is poor but transfer is 
robust. 
 
Staal, M. A., Bolton, A. E., Yaroush, R. A., & Bourne, L. E., Jr. (2008). Cognitive 

performance and resilience to stress. In B. Lukey & V. Tepe (Eds). 
Biobehavioral resilience to stress (pp. 259-300). London: Francis & Taylor. 

 
Wickens, C. D., Ketels, S. L., Healy, A. F., Buck-Gengler, C. J., & Bourne, L. E., Jr. 

(in press).  The anchoring heuristic in intelligence integration: A bias in need 
of de-biasing. Proceedings of the Human Factors and Ergonomics Society 54th 
Annual Meeting. Santa Monica, CA: Human Factors and Ergonomics Society. 

 
In information integration tasks, anchoring is a prominent heuristic, such that the 
first few arriving information sources (cues) tend to be given greater weight on 
the final integration product, than those cues following. Such a bias may be 
particularly problematic when the situation is dynamic, such that earlier arriving 
cues are more likely to have changed, and hence are less reliable for the final 
integration judgment. Such is often the case in military intelligence, when enemy 
intentions are inferred from multiple sources. We describe results of a simulation 
of such intelligence gathering in which anchoring is prominently manifest, in the 
processing of seven sequentially delivered cues bearing on enemy threat. In 
Experiment 1, an anchoring bias was present. In Experiment 2, a simple “de-
biasing” wording inserted in the instructions and emphasizing the age of 
intelligence information induced more optimal weighting of the most recent 
cues,but did not eliminate anchoring. 
 
Young, M. D., Wilson, M. L., & Healy, A. F. (2010).  Improving reading skills for 

ESL learners using SoundSpel.  In E. F. Caldwell (Ed.), Bilinguals: Cognition, 
education and language processing (215-227).  Hauppauge, NY: Nova Science 
Publishers. 

 
This study examined the effects of using a revised, transparent spelling system 
SoundSpel, a phonetic reading tool, with learners of English as a Second 
Language. During 6 training sessions, 12 participants used unaltered material 
and 12 used SoundSpel texts, in parallel with standard English, when reading 
American elementary school material. They then answered multiple-choice 
comprehension questions. Both groups were pre-tested and post-tested on 



comprehension tests of similar elementary school material without SoundSpel. 
No group differences were found across tests or training (in quiz performance or 
reading time), suggesting no beneficial or harmful effects from using SoundSpel. 
A post hoc analysis suggested that SoundSpel would be most beneficial for 
students who learn to speak English before they learn to read it. 
 

Manuscripts Submitted for Publication 
 
Barshi, I., & Healy, A. F. (2010). The effects of spatial representation on memory for 

verbal navigation instructions. Manuscript submitted for publication. 
 
Three experiments investigated effects of mental spatial representation on 
memory for verbal navigation instructions.  The navigation instructions referred 
to a grid of stacked matrices displayed on a computer screen or on paper, with or 
without depth cues, and presented as two-dimensional diagrams or a three-
dimensional physical model.  Experimental instructions either did or did not 
promote a three-dimensional mental representation of the space.  Subjects heard 
navigation instructions, immediately repeated them, and then followed them 
manually on the grid.  In all display and experimental instruction conditions, 
memory for the navigation instructions was reduced when the task required 
mentally representing a three-dimensional space, with movements across 
multiple matrices, as compared with a two-dimensional space, with movements 
within a single matrix, even though the words in the navigation instructions 
were identical in all cases.  The findings demonstrate that the mental 
representation of the space influences immediate verbatim memory for 
navigation instructions. 
 
Healy, A. F., & Bourne, L. E., Jr. (2010). Principles of training. Manuscript 

submitted for publication. 
 
The goal of our research has been to construct a theoretical and empirical 
framework that can account for and make accurate predictions about the 
effectiveness of different training methods for militarily relevant tasks. Towards 
this end, we have conducted basic research aimed to identify and empirically 
support training principles. We believe that the best way to transition our 
research to military applications is through these training principles. We trust 
that these principles can provide guidelines to trainers that will enhance the 
effectiveness of their training. We report four sets of experiments on the 
development and testing of training principles that illustrate the range of issues 
we have explored in our research. They include (a) tests of the generality across 
tasks of individual principles, (b) tests of multiple principles in a single task, (c) 
tests of principles in complex, dynamic environments, and (d) developing and 
testing new principles. 
 
Healy, A. F., & Cunningham, T. (2010). Detecting letters and words in prose passages. 

Manuscript submitted for publication.  
 
In 2 experiments, college students searched for either the letter h or the word the 
in prose passages in which every h occurred in the word the.  In Experiment 1, 



there were 3 passage versions, which differed only in that critical noun phrases 
were either the alone, “the word the,” or “the definite article.”  More detection 
errors occurred for letter than for word targets, especially with “the definite 
article.”  In Experiment 2, there were 2 passage versions, which differed only in 
that a given noun phrase containing the occurred as a subject in one version and 
an object in the other.  Again more detection errors occurred for letter than for 
letter sequence targets.  Also, with letter targets but not with letter sequence 
targets, more detection errors occurred for object than for subject noun phrases.  
These findings suggest that both unitization and processing time contribute to 
detection errors in reading text. 
 
Healy, A. F., & Greenberg, S. N. (2007). Letter detection errors occur at two 

processing stages: Test of the GO Model. Manuscript submitted for publication. 
 
Students read prose passages and circled instances of the target letter n when the 
passages were printed normally or with 1-character-wide vertical stripes.  More 
detection errors were made in the normal than in the striped condition. Detection 
errors were more frequent on the sequence –ing when it occurred as a word 
suffix than when it was embedded in a word stem.  Passage format did not 
interact with word part (suffix, stem), and the effect of passage format was 
significant even in the striped condition, which hindered unitization processes.  
These results suggest that letter detection errors reflect processing occurring both 
during and after lexical access, in accordance with the GO model proposed by 
Greenberg, Healy, Koriat and Kreiner (2004). 
 
Healy, A. F., Wohldmann, E. L., & Bourne, L. E., Jr. (2010). Does practice with a 

defective mouse influence subsequent speeded aiming performance? A test of global 
inhibition. Manuscript submitted for publication. 

 
In a speeded aiming task, participants were trained to move a cursor with a 
mouse from a start position to target locations when the mouse-cursor 
relationships were either normal or defective (i.e., reversed vertically, 
horizontally, or both vertically and horizontally).  Testing, which occurred after a 
5-min delay, involved either the same or a different reversal condition.  Response 
times improved across training, but no transfer occurred when reversal 
conditions were changed between training and testing.  Specificity of training 
effects extended even to performance with the highly familiar normal mouse.  
Normal mouse use was slowed down by a factor of two to three with training on 
a defective mouse although the effect was transient in that case.  Participants 
apparently adopt a global, rather than a local, inhibition strategy, suppressing all 
normal movements (and replacing them with sensorimotor remapped 
movements) but disinhibiting movements along any non-reversed dimension 
(selectively disengaging the sensorimotor remapping). 
 
Kole, J. A., & Healy, A. F. (2010). Memory for details about people: Familiarity, 

relatedness, and gender congruency. Manuscript submitted for publication. 
 
Several recent studies have demonstrated that processing information in terms of 
survival value improves retention over short delays. These findings are 



interpreted within a functionalist framework, which posits that modern cognitive 
processes reflect ancient selection pressures. The present study examines factors 
that influence memory for details about people. In 2 experiments, subjects 
learned fictitious details about familiar (friends, relatives) and/or unfamiliar 
individuals, and were tested both immediately and after a 1-week delay. To 
control for a confounding between familiarity and genetic relatedness in 
Experiment 1, in Experiment 2 specific relationships (identical twin, first cousin, 
acquaintance) were assigned to unfamiliar individuals. Across experiments, 
retention was enhanced for familiar compared to unfamiliar individuals, for 
friends/acquaintances compared to relatives, for more closely than distantly 
related individuals, and for individuals of the opposite gender as the subject. The 
results are consistent with a functionalist framework when both mate selection 
and kin are considered. 
 
Krech Thomas, H., & Healy, A. F. (2010). A comparison of rereading benefits in first- 

and second-language reading. Manuscript submitted for publication. 
 
Text comprehension models in first and second language reading research posit 
that slow word recognition inhibits reading speed and decreases comprehension.  
To investigate the role of word recognition in reading, 2 experiments examined 
rereading benefits in participants’ first and second languages using scrambled 
and normal versions of English and Spanish texts.  Native English speakers with 
intermediate (Experiment 1) or advanced (Experiment 2) Spanish skills 
demonstrated word- and text-level transfer in both English and Spanish.  
However, advanced Spanish readers did not exhibit word-level transfer when 
reading simple Spanish texts.  These results suggest that fluent reading may be 
strongly influenced not just by word recognition, but also by text difficulty 
relative to reader skill, as well as other factors. 
 
LaVoie, N. N., Healy, A. F., & Bourne, L. E., Jr. (2006). Seeding in a qualitative 

domain: Sound-spelling mappings in French. Manuscript submitted for 
publication. 

 
Two experiments examined the acquisition of sound-spelling mappings in an 
unfamiliar language (French) using a controlled seeding paradigm (LaVoie, 
Bourne, & Healy, 2002).  Participated were required to spell lists of spoken 
French words in a pretest, seeding phase, posttest, and 2-week retention test.  
The words in each list varied in the size of their phonological neighborhoods and 
in their frequencies of occurrence.  Spelling was better on the posttest than on the 
pretest, and this seeding effect was maintained across the retention interval, 
despite some forgetting of individual seed words.  Effects of neighborhood size 
and frequency were minor and evident only at the retention test, suggesting that 
a single example is sufficient to seed the sound-spelling knowledge base. 
 
Lohse, K. R., & Healy, A. F. (2009). Exploring the contributions of declarative and 

procedural information to training: A test of the procedural reinstatement principle. 
Manuscript submitted for publication. 

 
According to the procedural reinstatement principle, procedural training leads to 



strong retention but limited transfer, whereas declarative training leads to poor 
retention but robust transfer.  To test this principle in Experiment 1, participants 
were trained in one of 3 conditions (declarative, procedural, mixed) and were 
subsequently tested in either the same or another condition. The task and 
required responses were the same in the three conditions; they differed only in 
the emphasis given to declarative or procedural information. Consistent with the 
procedural reinstatement principle, in terms of response time procedural training 
was more durable than declarative training. In Experiment 2, transfer was 
assessed using procedural and declarative conditions, but participants 
transferred between tasks within those conditions. Although there was transfer 
in response time between tasks with procedural training, the greatest magnitude 
of transfer was found in one direction with declarative training, again consistent 
with the procedural reinstatement principle. 
 
Lohse, K. R., Healy, A. F., & Sherwood, D. E. (2010). Mental practice in the 

intermanual transfer of motor skills. Manuscript submitted for publication. 
 
The current study compared intermanual transfer for two different handwriting 
tasks (familiar letters and novel symbols), following both mental and physical 
practice. There was substantial transfer from practice with the dominant to the 
nondominant hand in both time to produce a character and size of the character 
produced, but no transfer in the reverse direction (even for novel symbols). Most 
importantly, there was significant transfer as a result of mental practice in 
production time comparable to physical practice. However, there was no transfer 
from mental practice when measuring character size. During mental practice, 
task-level variables still had significant effects, whereas effector-level variables 
did not. Thus, asymmetrical transfer as a result of mental practice is posited to 
result from the transfer of task-level processes but not effector-level processes. 
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shifting the focus of attention in a simple force production task. Manuscript 
submitted for publication. 

 
Research on the focus of attention has begun exploring the physiological changes 
that underlie the shift between internal and external foci of attention. However, 
previous electromyography studies have used dynamic tasks, making it difficult 
to interpret electrophysiological data. The current experiment analyzed how the 
focus of attention affects a subject’s ability to perform an isometric force 
production task (focus was directed either at the force platform or the muscles 
responsible for force production). Subjects received training without attentional 
focus instructions and then completed blocks of trials with either an internal or 
external attentional focus. An external focus led to significantly less error, 
reduced EMG activity, and lower median power frequencies in the antagonist 
muscle, but had no effect on the agonist muscle. Thus, an external focus of 
attention led to more efficient motor unit recruitment patterns (reduced 
cocontraction) and improved performance. Post-test surveys revealed subjects’ 
were aware of their improved performance with an external focus. 
 



Raymond, W. D., Healy, A. F., & McDonnel, S. J. (2010). Pairing words with 
syntactic frames: Syntax, semantics, and count-mass usage. Manuscript submitted 
for publication. 

 
Two experiments examined English speakers’ choices of count or mass 
compatible frames for nouns varying in imageability (concrete, abstract) and 
noun class (count, mass). Pairing preferences with equative (much/many) and 
non-equative (less/fewer) constructions were compared for groups of teenagers, 
young adults, and older adults.  Deviations from normative usage were, for all 
ages, larger for count than for mass nouns, for the non-equative than for the 
equative construction, and for abstract count and concrete mass words than for 
the other combinations. These results indicate that mass syntax is not a 
developmental default, support proposals that mass syntax is more flexible than 
count syntax, verify the non-prescriptive use of less with count nouns, and 
extend the interaction of syntax and semantics in noun classification to older 
ages, with older adults showing a reduced reliance on semantics. Knowledge of 
frame compatibility and knowledge of noun class are also shown to be largely 
independent. 
 
Wilson, M. L., & Healy, A. F. (2008). Effects of time pressure on mood and 

performance. Manuscript submitted for publication. 
 
This 2-part study explored the effects of time pressure on mood and cognition 
using self-reports of mood and behavioral measurements of cognitive 
performance. In both parts, participants filled out a Positive and Negative Affect 
Schedule (PANAS) form before and after taking brief spatial, verbal, and math 
intelligent quotient (IQ) tests. Of the 144 participants included in the analyses, 72 
experienced time pressure in Part 1, and 72 experienced time pressure in Part 2—
with the 2 parts separated by 1 week. Test condition influenced negative (but not 
positive) affect and performance under all three IQ tests. Under time pressure, 
negative affect increased, and the number of correct IQ test responses declined. 
Results suggest that time pressure can depress mood and hinder cognitive 
performance. These findings have important implications for assessment of 
academic ability. 
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Towards the Improvement of Astronaut Training: 
A Literature Review of Empirical Evidence for Training Principles  

Alice F. Healy, Vivian I. Schneider, and Lyle E. Bourne, Jr. 
University of Colorado, Boulder 

 
 
I.  Introduction 
 
 A. Purpose of this review 
 
 This document reviews the existing literature on theoretical and empirical research 
in experimental cognitive psychology as it pertains to training, with a particular focus on 
the training of astronauts and other military personnel.  The aim is to identify evidence-
based principles of training that are well enough established that they might be 
implemented in actual training regimens.  The principles vary to some degree in their 
empirical support, but this review includes only those for which there is convincing 
evidence and theoretical understanding.  Nevertheless, for purposes of organization, those 
principles that are strongly established are distinguished from those that are promising 
but require additional validation. 
 
 B. Some important distinctions 
 
 There are some important distinctions to keep in mind that influence the 
organization of this document and the implications that can be drawn from it.   
 
  1. Training principles, guidelines, and specifications  
 
 The most important distinction is one raised by Salas, Cannon-Bowers, and 
Blickensderfer (1999) among training principles, training guidelines, and training 
specifications. Principles, guidelines, and specifications all relate to how training is best 
accomplished.  In effect, they provide a conduit between training theory and training 
practice.  A principle, which is the level addressed in this review, is an underlying truth 
or fact about human behavior.  A guideline, in contrast, is a description of actions or 
conditions that, if correctly applied, could improve training.  A specification is a detailed, 
precise statement of how training should be designed by operationalizing training 
guidelines in the development of training programs.  This review, thus, provides an initial 
step towards designing training programs that can optimize on-the-job performance. 
Additional developmental or applied research will be required to translate these 
principles into guidelines and, subsequently, to specifications.  This review focuses 
primarily on training principles but also offers suggested guidelines that might be 
examined in further research. 
 
  2. Training vs. education 
 
 People generally think of training and education as being essentially the same.  
However, in this paper, a distinction is drawn between these processes.  Education relates 
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to general knowledge and skills identified with particular domains, such as history or 
physics.  Training, in contrast, relates to particular jobs or tasks that also require 
knowledge and skills but are more specific to the goals of those activities.  Thus, 
principles of training are tied to the improvement of performance of duties in particular 
occupations, such as electrician or computer programmer.  The principles of training are 
not necessarily the same as principles of education although there is undoubtedly a good 
deal of overlap.  Both training and education represent a transaction between teachers and 
students.  The principles of training considered here recognize that relationship and apply 
to both teachers and students. 
 
  3. Training of knowledge vs. training of skills 
 
 The principles discussed here apply to both declarative information (knowledge) 
and procedural information (skills).  Knowledge consists of facts, discriminations, and 
concepts about a domain, which are generally explicit and a part of a person’s awareness 
about a given task.  In contrast, skills consist of knowing how to use those facts, which 
might be implicit and outside of a person’s awareness or consciousness.  For example, in 
statistics, knowledge includes the fact that the standard deviation is a measure of data 
dispersion, whereas skills include executing the sequence of steps needed to compute a 
standard deviation in a data set.  Both knowledge and skills are hierarchical and are 
logically linked together; facts at every level of abstraction are associated with 
procedures for using them.  Note that training applies primarily to skill learning, whereas 
education emphasizes fact learning, although fact and skill learning are involved in both 
training and education. 
 
 C. Scope of this review  
 
 Principles of training will be reviewed for which there is at least some experimental 
evidence.  The principles will be presented in categories or clusters.  One basis of this 
organization is the degree of empirical support because some principles are strongly 
supported by the evidence, whereas the evidence for others is partial and incomplete.  
Within these broad categories, grouping relies on similarity of effects.  It should be 
recognized at the outset that both these broad and more specific categories are somewhat 
arbitrary.  A given principle might have been categorized differently or placed in more 
than one category, but only a single category choice was used here.  Where necessary, 
cross linkages between categories are referenced. 
 
II. Fundamental cognitive processes underlying training 
 
 Training implicates three fundamental underlying cognitive processes: acquisition 
(learning), retention (memory), and transfer (generalization).  There are basic principles 
that apply at the level of these fundamental processes, which are the starting point of the 
review. 
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 A. Acquisition: Power law of practice 
 
 There are two major measures of performance during the acquisition of knowledge 
and skills: accuracy and speed of responses.  With respect to response speed, Newell and 
Rosenbloom (1981) have argued that the Power Law of Practice describes the acquisition 
process for most skills.  This law formalizes the relationship between trials of practice 
and time to make a correct response as a power function, R = aN-b, where R is response 
time on trial N, a is response time on trial 1, and b is the rate of change. It follows that the 
relationship between response time and trial number is linear in log-log coordinates, log 
R = log a – b log N.  In some cases, where more than one strategy can be used in the task, 
separate power functions apply to the different strategies (Delaney, Reder, Staszewski, & 
Ritter, 1998; Rickard, 1997).  This principle affords a way of predicting performance in a 
variety of tasks as a function of degree of practice (but see Roediger, 2008).  With respect 
to response accuracy, a similar function seems to apply (e.g., Bourne, Healy, Parker, & 
Rickard, 1999) although a power function has not been proposed for such data.   
 
 In some cases, speed and accuracy might not be positively correlated (e.g., Pachella, 
1974).  People sometimes trade speed for accuracy or vice versa.  Likewise, the speed of 
executing the different steps of a complex task may not be positively correlated, with 
people slowing down on one step in order to be faster on another step (Healy, Kole, 
Buck-Gengler, & Bourne, 2004; Kole, Healy, & Bourne, 2008).  In these cases, the 
power law of practice might not be a good description for all measures.  Furthermore, for 
optimal training, instructors need to be aware of what are the various steps in any task as 
well as whether speed or accuracy is more important in each step, so that the more 
important aspect can be emphasized in training. 
 
 B. Retention: Power law of forgetting 
 
 With the passage of time and the lack of opportunity to rehearse or refresh acquired 
knowledge or skills, performance declines, reflecting forgetting of what was learned.  
This decline in performance, exhibited in increased response time (or decreased 
accuracy), has been known since the time of Ebbinghaus (1885/1913), who used a 
measure of savings (i.e., the amount of relearning required to achieve the criterion level 
of performance during original learning).  Subsequently this relationship between 
response time and retention interval was described as a power law (Wickelgren, 1974), R 
= d + fT-g, where R is response time, T is the retention interval, d is the criterion of 
original learning, f is a scaling parameter, and g is the rate of forgetting.  This Power Law 
of Forgetting (Wixted & Carpenter, 2007; see also Rubin & Wenzel, 1996) can be 
thought of as the inverse of the power law of practice (but see Roediger, 2008). 
 
 C. Transfer: Laws relating to similarity 
 
 Training on a particular task has implications for performance on other related 
tasks.  The effect of training on one task can be either positive (facilitation) or negative 
(interference) on performance of another task.   When the acquisition of one task affects 
performance on another, that effect is called transfer.  The major variable determining the 



5 

extent and direction of transfer is similarity between the two tasks.  Osgood  (1949) has 
conceptualized this relationship in the form of a transfer surface, which relates transfer 
magnitude both to response similarity and to stimulus similarity between the training and 
the transfer tasks.  When the stimuli in the two tasks are varied in their similarity and the 
responses are held constant, positive transfer is obtained, with its magnitude increasing as 
the similarity between the stimuli increases.  On the other hand, when the stimuli are held 
constant and the responses are varied in their similarity, negative transfer is obtained, 
with its magnitude decreasing as the similarity between the responses increases.  Finally, 
when both the stimuli and responses are simultaneously varied in their similarity, 
negative transfer is obtained, with its magnitude increasing as the similarity between 
stimuli increases.  Shepard (1987) has given a quantitative expression to such similarity 
functions, which he refers to as a universal law of generalization. 
 
III. Well established training principles 
 
 Well established training principles will now be reviewed, under the following 
categories: (a) resource and effort allocation, (b) context effects, (c) task parameters, and 
(d) individual differences.  Again, readers should keep in mind that the category scheme 
is arbitrary and that a given principle might be relevant to more than one category.  
 
 A. Principles relating to resource and effort allocation 
 
 Implementation of some training principles requires the learner to direct or allocate 
cognitive resources and effort to particular aspects of the knowledge or skills to be 
acquired. 
 
  1. Deliberate practice 
 
 Practice makes perfect, but not all practice is equivalent in terms of its 
effectiveness.  Deliberate (i.e., highly focused and highly motivated) practice is best in 
terms of promoting skill acquisition and expertise (Ericsson, Krampe, & Tesch-Römer, 
1993).  Indeed, learners, even those who might be highly talented or have a high aptitude 
for the training domain, will not acquire their highest level of performance if they do not 
engage in deliberate practice over a prolonged period of time with many repetitions of the 
skill to be performed.  Guideline:  By initial instructions to trainees, try to engage 
deliberate practice at the outset and throughout the training process. 
 
  2. Depth of processing 
 
 One aspect of deliberate practice relates to how deeply the material to be learned is 
processed.  Activities during training that promote deep or elaborate processing of 
materials yield superior retention (e.g., Craik & Lockhart, 1972; but see Roediger, 2008).  
The depth of processing principle can be achieved in various ways, including simply 
presenting the material in a format that requires a translation process or speech coding.  
Counter to intuition, when numerical data must be entered into some system, the numbers 
should be presented in word format (e.g., three-five-two) rather than numeral format (3-
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5-2) to maximize memory for the numbers.  Word format, but not numeral format, 
requires translation from the words to the digits represented on a keyboard and facilitates 
speech coding of the digits.  This additional process enhances long-term memory for the 
material (Buck-Gengler & Healy, 2001).  Guideline: To enhance the durability of training 
material, promote deep processing of the material to be learned either by explicit 
instructions or by incidental task demands. 
 
  3. Active versus passive learning 
 
 In general, it is better to use active learning rather than passive learning techniques.  
For example, if the task is to memorize a set of procedures for troubleshooting a piece of 
equipment, the trainees should try to generate the procedures from memory, rather than 
simply to read or reread them.  Then the trainees should check the accuracy of their 
actively generated responses against the correct list and make note of any errors.  They 
should actively generate the list again until they are able to produce it without error. This 
recommendation follows from the generation effect (the finding that people show better 
retention of learned material when it is self-produced, or generated, than when it is 
simply copied or read; e.g., Crutcher & Healy, 1989; McNamara & Healy, 1995, 2000; 
Slamecka & Graf, 1978; but see Roediger, 2008).   
 
 More generally, a trainee is typically passive, with the trainer controlling the course 
of events during training.  However, there is evidence to believe that actively involving 
the trainee in the learning process facilitates training efficiency and the level of 
achievement reached (see, e.g., Hockey & Earle, 2006; Norman, 2004; Péruch & Wilson, 
2004; Vakil, Hoffman, & Myzliek, 1998).  Active involvement entails some self-
regulation by the trainee.  There has been relatively little research focused, however, on 
the self-regulation process and on the self-regulation skill (Perels, Gürtler, & Schmitz, 
2005; Schunk, 2005).  There are, though, some basic cognitive processes related to active 
learning and self-regulation that have been studied in detail.  Among those processes are 
the aforementioned generation effect, metacognition (e.g., Mazzoni & Nelson, 1998; 
Sperling, Howard, Staley, & DuBois, 2004), and discovery learning (e.g., McDaniel & 
Schlager, 1990).  It is possible that self-regulation might enhance training efficiency, and 
it is also possible that self-regulation might have a positive impact on the durability of 
skills and their transfer to performance in new contexts although there is little relevant 
evidence presently available.  
 
 Bjork, deWinstanley, and Storm (2007) make three points about learners that are 
relevant to self-regulation: (a) Learners often are quite inaccurate when monitoring their 
level of comprehension about material they are studying.  (b) How learners rate their 
comprehension determines how they allocate resources for further study, allocating more 
resources to those aspects of the material that they do not yet understand.  (c) Learners 
can inaccurately assess their comprehension because of “illusions of comprehension,” 
which are caused by specific learning methods, such as massed practice, which might 
lead to good performance during study but to poor long-term retention or transfer (Bjork, 
1999; Simon & Bjork, 2001). 
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 Bjork et al. (2007) examined whether or not students can discover the benefits of 
using generation for learning and then put it into use as they study (deWinstanley & 
Bjork, 2004; Koriat, 1997).  Making students aware of the benefits of generation as a 
learning tool led them to adopt better strategies for encoding new information while 
studying.  However, just putting students in a condition that requires generation is not 
likely to induce students to discover and then adopt the more effective strategies in 
subsequent study times.  Students might need to experience the results of different study 
methods before they can appreciate which methods are more effective.  These self-
identified methods can then be used for later learning and study activities.  
 
 Kornell and Bjork (2007) found that students make study decisions by what is more 
urgent at the moment (usually last minute cramming) rather than by trying to maximize 
long-term learning. Students need to learn how to learn (Bjork, 2001).  They conclude 
that for students to enhance their long-term memory they need to know how learning 
works and use that knowledge to go against some of their intuitions and indices of short-
term memory. 
 
 Guideline: Trainers should use whatever methods are possible to engage trainees 
actively in the learning process, including requiring them to generate answers to 
questions periodically, instructing them directly or indirectly to maintain awareness about 
their progress in learning, and allowing them to experience the consequences of their 
study strategy. 
 
 B. Principles relating to context effects 
 
 Some training principles reflect the fact that training is often context specific, 
meaning that the knowledge and skills learned are bound, at least to some degree, to the 
circumstances in which they were acquired.  The following are the two most important, 
well-established principles of this type. 
 
  1. Procedural reinstatement 
 
 The procedural reinstatement principle implies that duplicating at test procedures 
that were required during learning facilitates subsequent retention and transfer (Clawson, 
Healy, Ericsson, & Bourne, 2001; Healy et al., 1992; Healy, Wohldmann, & Bourne, 
2005).  This principle is similar to others that had been derived primarily from studies of 
list learning, including the principles of encoding specificity (memory for information is 
best when retrieval cues elicit the original encoding operations; e.g., Tulving & Thomson, 
1973), transfer appropriate processing (memory performance will be best when test 
procedures evoke the procedures used during prior learning; e.g., Morris, Bransford, & 
Franks, 1977; Roediger, Weldon, & Challis, 1989), and context-dependent memory 
(memory for information is worse when tested in a new context than when tested in the 
original context in which it was learned; e.g., Kole, Healy, Fierman, & Bourne, 2010; 
Smith & Vela, 2001).  An important corollary to this procedural reinstatement principle is 
that specificity (limited transfer) occurs for tasks based primarily on procedural 
information, or skill, whereas generality (robust transfer) occurs for tasks based primarily 
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on declarative information, or facts (Healy, 2007; Healy et al., in press).  Thus, for skill 
learning, retention is strong but transfer is limited, whereas for fact learning, retention is 
poor but transfer is robust. 
 
 As mentioned above, an important distinction to keep in mind in any discussion of 
training is the difference between implicit and explicit learning.  Implicit learning usually 
refers to the acquisition of skill or procedures, which is often accomplished by repetition 
and practice and does not necessarily involve intention.  Furthermore, the skill that results 
from implicit learning is not necessarily conscious and can be applied automatically.  In 
contrast, explicit learning usually refers to the acquisition of facts or new associations 
(also referred to as declarative knowledge).  Explicit learning is generally accomplished 
intentionally by instruction, is applied consciously, and may not require repetition for its 
acquisition.  This distinction between explicit and implicit learning provides an 
alternative formulation for the procedural reinstatement principle:  Facts that are acquired 
explicitly may be rapidly forgotten; however, if they are available, they transfer broadly 
across new situations (e.g., Postman & Underwood, 1973).  In contrast, skills that are 
acquired implicitly are well retained but transfer minimally to new situations (Ivancic & 
Hesketh, 2000; Lee & Vakoch, 1996; Maxwell, Masters, Kerr, & Weedon, 2001).  It 
should be noted, however, that explicit learning might, with extended practice, become 
implicit, as in the proceduralization (or knowledge compilation) hypothesis of 
Anderson’s (1983) ACT-R theory. 
 
 Guideline: Trainers should reinstate the conditions of study as closely as possible 
when taking a test or performing in the field.  If trainers are able to anticipate the test or 
field conditions, then they should modify their study conditions to match them.  To make 
learning generalizable, training should be related to explicit declarative facts, whereas to 
make learning durable, training should be related to implicit procedural skills. 
 
  2. Specificity of training 
 
 Instructors often assume that teaching a primary task without extraneous secondary 
task requirements will benefit the learning process.  However, if such secondary task 
requirements exist in the field, then use of this training method will not provide optimal 
transfer to field performance.  Research has shown that to be effective, training must 
incorporate the complete set of field task requirements, including all secondary task 
requirements imposed in the field.  This effect works both ways.  That is, training with 
extraneous secondary task requirements will not be optimal if field performance does not 
include those requirements.  In general, learning is highly specific to the conditions of 
training.  This observation follows from both the specificity of training principle 
(retention and transfer are depressed when conditions of learning differ from those during 
subsequent testing; Healy & Bourne, 1995; Healy et al., 1993) and the functional task 
principle (secondary task requirements are often integrated with primary task 
requirements during learning, resulting in the acquisition of a single functional task rather 
than two separate tasks; Healy, Wohldmann, Parker, & Bourne, 2005; Hsiao & Reber, 
2001).  Guideline:  For optimal performance, the entire configuration of task 
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requirements during training, including secondary as well as primary tasks, needs to 
match those in the field as closely as feasible. 
 
 C. Principles relating to task parameters 
 
 Training can vary along a number of dimensions depending, for example, on the 
task demands and properties.  Certain training principles follow from variations in these 
task characteristics.  The most well-established of these principles are described next, 
grouped by the task parameters entailed. 
 
  1. Spacing 
 
 When training new knowledge or skills involves repeated practice trials, learning is 
more efficient when rest intervals are interpolated between trials (i.e., spaced or 
distributed practice) than when the trials are administered without rest intervals (i.e., 
massed practice) (see, e.g., Bourne & Archer, 1956; Underwood & Ekstrand, 1967).  A 
related spacing effect involves the separation of repetitions of a given item within a list of 
items (see, e.g., Glenberg, 1976; Hintzman, 1974).  Although usually some rest between 
repetitions improves performance, the rest interval cannot be increased indefinitely.  
There is an optimal rest interval for at least some tasks (Bourne, Guy, Dodd, & Justesen, 
1965), but more research needs to be done to determine the generality of this effect.  With 
respect to retention of the learned material, this spacing effect does not always hold when 
the retention interval (interval between the last repetition and the test) is very short.  
Generally, the advantage of spacing holds for pure lists with a single interval as well as 
for mixed lists including intervals varying across different items (Kahana & Howard, 
2005).  All of this work is based on single-session training paradigms with short spacing 
and retention intervals.   
 
 In a different paradigm, Bahrick (1979) used long spacing intervals separating 
learning sessions and long retention intervals between the end of learning and final 
testing to study the acquisition of English-Spanish vocabulary pairs.  Bahrick 
systematically varied the interval between practice sessions (intersession interval) during 
learning from 0 to 30 days, and he tested performance 30 days after the last learning 
session.  He found that the level of performance on the final test session depended more 
on the spacing between learning sessions than it did on the level of performance achieved 
in the final learning session.  Unlike findings from experiments with short intervals 
between practice trials or items (cited above), which generally show an advantage for 
spaced practice, performance on the final learning session of Bahrick’s study was greatest 
when the intersession intervals were shortest, but performance on the final test session 
was highest when the intersession intervals were longest (so that they resembled the 
retention interval).  Bahrick, thus, concluded that for optimal knowledge maintenance, 
practice should be spaced at intervals approximating the length of the eventual retention 
interval.  Bahrick and Phelps (1987) and Bahrick, Bahrick, Bahrick, and Bahrick (1993) 
confirmed this conclusion in studies involving retention intervals up to 50 years.  For a 
summary of this work, see Bahrick (2005; but see Roediger, 2008).   
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 More recently, Pashler, Rohrer, Cepeda, and Carpenter (2007) looked at the effects 
of varying the intersession interval (ISI).  They showed strong effects of spacing over 
long retention intervals (RIs).  In addition, test performance after a given RI was found to 
be optimal when the ISI was intermediate in value.  Making spacing longer than optimal 
was, however, less harmful to retention than making it shorter than optimal.  These 
authors suggest that it is more effective to use an ISI of several months or years than to 
use shorter intervals when retention is tested after a delay of several years.  They found 
that the same spacing principles are applicable to some forms of mathematical skill 
learning, but not to perceptual categorization tasks.  Kornell and Bjork (2008) showed 
that the induction of painter’s styles was aided by spacing exemplars of each painter as 
compared to massing the exemplars.  This result was surprising in that it had been 
thought that massed presentation would enable the subjects to more easily discover the 
similarities of the paintings by each painter.  The authors proposed a new hypothesis that 
involved differentiating the individual styles of each painter, as opposed to highlighting 
the similarities of one painter’s works.  Seeing the different painters’ paintings 
interleaved forced subjects to differentiate better among the various painters. 
 
 Arithmetic problems can often be solved either by calculation or by direct retrieval 
of the answer from memory.  Calculation usually requires several steps and thus takes 
longer.  Rickard, Lau, and Pashler (2008) found that with practice on the same problems 
direct retrieval from memory tends to replace calculation of the answer.  They also 
discovered that in the training session this transfer from the slower calculation to the 
faster direct retrieval occurred sooner when the specific problems were spaced closer to 
each other (fewer other problems in between) than they did when they were spaced 
farther away (more other problems in between).  However, in a test session days later the 
opposite result was found.  These results are also consistent with the training difficulty 
principle, which states that a condition that causes difficulty during learning is beneficial 
to later retention and transfer (see below).  
 
 Rickard, Cai, Rieth, Jones, and Ard (2008) looked at the widely believed idea that 
sleep consolidation enhances skilled performance (see Marshall & Born, 2007; Stickgold, 
2005; Walker, 2005; Walker & Stickgold, 2004, 2006).  Rickard et al. used a sequential 
finger-tapping task and did find results that fit with sleep enhancement when data were 
averaged in the usual manner, that is, when 1 min or more of task performance at the end 
of the training session was compared with performance in the test session.  This 
averaging could cause an illusory enhancement effect.  However, they identified four 
aspects of the design and analysis not related to sleep consolidation that could lead to this 
enhancement effect.  When they controlled for these factors in the data analyses or in the 
design, they did not find sleep enhancement as measured by either accuracy or reaction 
time.  Rickard et al. concluded that sleep does not enhance learning for the explicit motor 
sequence task they used.  They propose that the effects can be explained in terms of 
performance fatigue.  With a long training session substantial fatigue builds up and 
creates an apparent asymptote in learning.  This fatigue dissipates between sessions, 
which results in an apparent sleep enhancement effect on the test.  This is the same effect 
that can be observed in spaced practice (as opposed to massed practice) in which the 
fatigue buildup dissipates during the space between practices.  Rickard et al. suggest that 
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although sleep might not produce performance enhancement, it might provide a 
protection from forgetting (or a type of stabilization).  This protection could be achieved 
in either an active or a passive manner.  The active form would involve a mechanism that 
complements waking consolidation to produce stabilization.  Thus, the mechanism 
involved in sleep consolidation might have a unique role distinct from that involved in 
waking consolidation.  On the other hand, sleep might serve to protect against forgetting 
in a passive way.  Thus, sleep might allow a more efficient operation of time-based 
consolidation because no new motor learning would occur during sleep that would 
interfere with any ongoing consolidation (see Wixted, 2004, for a similar explanation for 
sleep effects involving tasks using declarative memory). 
 
 Guideline:  For optimal benefits from training, repeated practice on particular items 
or responses should be spaced in time.  The amount of spacing (length of the time 
interval between repetitions) should be related to the amount of time that is likely to pass 
between training and eventual testing.  Generally, it seems desirable to match the time 
between repetitions during training to the time between training and test. 
 
  2. Feedback 
 
 Two distinct questions have been asked about the effects of feedback: what form it 
should take and when to provide it. 
 
   a. What kind of feedback to provide 
 
 What type of feedback to provide is also a crucial issue for optimizing training and 
retention of knowledge and skills (Schmidt & Bjork, 1992).  Trial-by-trial feedback has 
been shown to facilitate rate of learning in many tasks, possibly by motivating 
participants to set increasingly higher standards of performance or by identifying errors 
and how to correct them.  But, if participants have a good sense anyway of how well they 
responded, then trial-by-trial feedback might be distracting, resulting in inferior 
performance on later acquisition trials, on retention tests, or on tests with tasks requiring 
slightly different responses.  In such circumstances, periodic summary feedback, given 
only on some proportion of training trials, is often a more effective procedure for 
promoting long-term retention than is trial-by-trial feedback (see, e.g., Schmidt, Young, 
Swinnen, & Shapiro, 1989, for illustration of this finding in a ballistic timing task).  
Indeed there is some suggestion in the literature that the amount of feedback given during 
acquisition can be gradually reduced or faded without serious or adverse effects on 
acquisition performance and at the same time produce beneficial effects on long-term 
retention (Schmidt & Bjork, 1992).  Other studies suggest, however, that any effects of 
feedback during training might not persist into later testing for retention (Bourne, Healy, 
Pauli, Parker, & Birbaumer, 2005).   
 
   b. When to provide feedback 
 
 In a declarative memory task, such as vocabulary learning, feedback is most 
effective for learning and retention when it serves to correct erroneous responses.  
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Pashler, Cepeda, Wixted, and Rohrer (2005) examined the effects of feedback to the 
learner in a foreign vocabulary-learning task.  Different groups of subjects were provided 
with (a) simple right/wrong feedback after every learning trial, (b) feedback that signaled 
the correct responses, or (c) no feedback at all.  They found that feedback had a 
facilitative effect on learning and on subsequent delayed recall of newly learned 
vocabulary but only when the feedback was provided after an incorrect response.  
Feedback had no benefit on correct response trials even when those responses were given 
with low confidence.  On the other hand, in a concept-learning task Bourne, Dodd, Guy, 
and Justesen (1968) found facilitative effects of feedback on both correct response and 
incorrect response trials.  The difference between the effects of feedback on the two types 
of tasks might relate to differing task requirements and the fact that there is an underlying 
abstraction in the concept-learning task used by Bourne et al. but not in the verbal 
associative task used by Pashler et al.  Thus, in the concept-learning task, feedback serves 
to either confirm or disconfirm on every trial the learner’s current hypothesis about the 
underlying concept, whereas in the verbal associative task, feedback on any given trial 
pertains only to a specific association, which has already been formed on the correct 
response trials.  In a task different from both vocabulary and concept learning, namely 
recall of trivia, Smith and Kimball (2010) found facilitative effects of feedback following 
correct responses as well as errors, but these effects depended on the introduction of a 
delay before feedback is presented.  Thus, the issue of task differences needs to be 
clarified in future research. 
 
 In a study of message comprehension in a navigation task, Schneider, Healy, Buck-
Gengler, Barshi, and Bourne (2007) found that training with immediate feedback led to 
worse performance at test than did training with delayed feedback.  These results suggest 
that immediate feedback, even when it provides supplemental information otherwise not 
available, might not always be desirable.  In some cases, it might interfere with memory 
because of the interruption of the processing stream that supports learning.  Further along 
those lines, Butler, Karpicke, and Roediger (2007) found not only that delayed feedback 
was better than immediate feedback for long-term retention but also that a longer delay (1 
day) was better than a shorter delay (10 min.).  An explanation for the benefit of delaying 
the presentation of feedback after a test is that feedback then serves as an additional 
spaced presentation of the information (see above).  Immediate feedback is more 
consistent with massed presentations.  Pashler et al. (2007) agree that immediate 
feedback may not be optimal and that delayed feedback may provide spaced practice 
especially after correct answers.  Likewise, Wulf, Shea, and Whitacre (1998) point out 
that, in learning a motor skill, knowledge of results (KR) given too frequently or too 
quickly after the response might improve performance at the time of practice but impair 
later performance relative to learning a motor skill with KR that is given less frequently 
or after a delay (Gable, Shea, & Wright, 1991; Schmidt et al., 1989; for a review, see 
Schmidt, 1991). 
 
 Guideline:  Informative feedback to the trainee is almost always desirable, 
especially early in the training process.  However, the frequency of feedback can be 
reduced as the trainee acquires the required knowledge and skill.  In fact, reduced 
feedback during training often facilitates long-term retention.  Feedback with respect to 
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erroneous responses is generally more effective than feedback with respect to correct 
responses, and delayed feedback is sometimes preferable to immediate feedback, 
presumably because of a spacing effect (see above).  
 
  3. Rehearsal 
 
   a. Mental versus physical rehearsal 
 
 Often a skill-based task can be practiced either physically (i.e., by making the actual 
required responses) or mentally (i.e., by merely imagining the required responses).  A 
number of studies have reported no benefits of mental practice (e.g., Shanks & Cameron, 
2000), whereas other studies have reported benefits on tasks that are largely cognitive, 
but not on tasks that are largely motoric (e.g., Driskell, Copper, & Moran, 1994; Minas, 
1978).  But other studies have shown clear benefits to performance after mental practice 
even for motoric tasks (e.g., Kohl & Roenker, 1983), and Decety, Jeannerod, and 
Preblanc (1989) reported behavioral similarities between mental and physical practice of 
walking, either blindfolded or by imagination, to specified locations at varying distances.  
Furthermore, Wohldmann, Healy, and Bourne (2007) demonstrated in the context of a 
simple perceptual-motor laboratory task that some aspects of mental and physical 
practice are similar behaviorally in that mental practice is just as effective as physical 
practice both for learning a new motor skill and for maintaining a previously learned 
motor skill across a 3-month delay.  In fact, Wohldmann, Healy, and Bourne (2008a) 
established that mental rehearsal is in some circumstances better than physical rehearsal 
in promoting the acquisition, durability, and transferability of perceptual-motor skill 
because mental rehearsal does not suffer from interference effects attributable to physical 
movements. 
 
   b. Fixed versus expanding rehearsal 
 
 The studies of spacing effects reviewed above all used fixed intertrial intervals 
during training.  Landauer and Bjork (1978) suggested that constant intervals, regardless 
of their length, might not be optimal for learning and retention.  They examined a training 
procedure in which the intervals between test trials gradually increased during learning.  
This expanding rehearsal procedure produced greater eventual performance than did a 
rehearsal procedure with uniform intervals between tests.  The positive effects of 
expanding rehearsal have been replicated by Cull, Shaughnessy and Zechmeister (1996; 
see also Morris & Fritz, 2000), but there have been some failures to replicate (Cull, 
2000).  In fact, Karpicke & Roediger (2010) suggested that the positive effects of 
expanding rehearsal might be due to the greater amount of spacing under expanded, as 
opposed to fixed, rehearsal conditions.  When the amount of spacing was controlled, the 
difference between fixed and expanding conditions disappeared in their study.  However, 
a recent study by Storm, Bjork, and Storm (2010) found conditions under which 
expanding rehearsal is effective, namely those involving material that is highly 
vulnerable to forgetting.  In any event, an interesting possible extension for future 
experimental study is to expand the intervals between training sessions following the 
work of Bahrick (1979, 2005) summarized above.  Although Bahrick found it optimal to 
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match the interval between training sessions to the retention interval separating the last 
training session and the test session, it may be instead that optimal performance occurs 
with an expanding set of intervals between training sessions, with only the last equal to 
the retention interval. 
 
 Guideline: Type and scheduling of rehearsal opportunities can have important 
impacts on the acquisition, retention, and transfer of knowledge and skill.  In general, 
mental rehearsal should be employed whenever physical practice is difficult or 
impractical.  Also, expanding rehearsal might be considered as a possible strategy, if 
there is sufficient time during training to allow for the spacing that is entailed, but the 
supporting empirical evidence is still lacking. 
 
  4. Testing 
 
 Tests are usually thought of as performance assessment tools, but there is increasing 
evidence that people learn from taking tests often as much or more than they learn from 
pure study.  This phenomenon has been referred to as a “testing effect” (Carpenter & 
DeLosh, 2005; Izawa, 1992; McDaniel & Fisher, 1991).  Specifically, the testing effect is 
the advantage in retention for material that is tested relative to material that is presented 
for additional study.  A number of theoretical explanations have been proposed for the 
testing effect (see Dempster, 1996, and Roediger, 2009, for reviews), such as those 
involving the amount of processing and retrieval practice.  This effect has been 
demonstrated for both semantic (e.g., words) and nonsemantic (e.g., unfamiliar faces) 
materials (Carpenter & DeLosh, 2006) (but see Roediger, 2008).  
 
 Marsh, Roediger, Bjork, and Bjork (2007) found that it is detrimental to students to 
be exposed to plausible wrong answers on a multiple-choice test, even if the students 
choose the right answer.  In addition, multiple-choice lures may become integrated into 
the learners’ more general knowledge and lead to erroneous reasoning about concepts. 
However, the authors believe that the overall positive effect of testing outweighs any 
negative consequences, and they show in several studies that the learning of lure answers 
was balanced by a decrease in other wrong answers on the final tests.  Marsh et al. make 
three suggestions to help prevent the problem of lures being produced on a later test.  The 
first suggestion is to give immediate feedback.  Immediate feedback should reduce the 
chance of producing on a subsequent test a previous multiple-choice lure (Butler & 
Roediger, 2006) (but see the discussion above concerning immediate vs. delayed 
feedback).  The second suggestion follows the SAT II’s practice of providing a “don’t 
know” option and giving a penalty for any wrong answer.  Being given the option of 
“don’t know” and being penalized for wrong answers should significantly reduce lure 
production on a subsequent test involving cued recall.  The third suggestion is to alter 
across exams how concepts are tested.  A change from a multiple-choice question 
requiring a definition to a cued-recall question requiring application should serve to 
reduce, although perhaps not eliminate, the negative consequences of multiple-choice 
lures. 
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 Pashler et al. (2007) point out that the testing effect has been found for various 
types of tests and materials.  Specifically, the effect is evident for free recall (e. g., Allen, 
Mahler, & Estes, 1969; Carpenter & DeLosh, 2006) and cued recall (Carrier & Pashler, 
1992) and for face-name associations (Carpenter & DeLosh, 2005), definitions (Cull, 
2000), and general knowledge facts (McDaniel & Fisher, 1991).  They also found that 
covert retrieval practice, a form of mental rehearsal, in which subjects are asked to 
retrieve without providing an observable response, enhances learning.  McDaniel, 
Roediger, and McDermott (2007) illustrated the testing effect in real life, that is, in an 
actual course at a university.  They found that providing short-answer and multiple-
choice tests initially, compared to providing no tests initially, significantly aided 
performance on a subsequent test.  They also found that short-answer tests (requiring 
production or recall) were more helpful to later test performance than were multiple-
choice tests (requiring only recognition), even when the later tests invovled multiple-
choice questions.  Finally, they found that short-answer tests were more effective than 
focused study, especially when those tests involved corrective feedback. 
 
 Note that the testing effect has been examined primarily in declarative leaning 
tasks, where it is possible to separate pure study from test performance.  In skill learning 
tasks, study and tests are usually integrated into the trial-by-trial acquisition procedure, 
with each trial necessarily including a testing component.  The testing effect is really, 
thus, not directly applicable to skill learning although mental practice (or even 
observation) might be considered an analogue of studying without testing.  
 
 Guideline:  A lot of learning occurs during test taking.  Therefore tests should be 
embedded in the training process whenever possible. 
 
  5. Overlearning 
 
 Training usually ends when the trainee reaches some predesignated performance 
criterion, such as one or more error-free training trials.  Overlearning refers to practice 
beyond the performance criterion (Pashler et al., 2007).  It has been found that 
overlearning, relative to less practice, improves later performance  (Krueger, 1929).  
Consequently, overlearning has been proposed as a useful, general strategy when long-
term retention is the goal (Driskell, Willis, & Copper, 1992).  However, overlearning 
might not be an efficient way to strengthen acquired knowledge and skill.  For example, 
in a study by Rohrer, Taylor, Pashler, Wixted, and Cepeda (2005) subjects were taught 
novel vocabulary pairs.  They saw each word pair either 5 or 10 times.  After 1 week, the 
subjects who saw the pairs 10 times showed a substantial benefit over the subjects who 
saw the pairs 5 times, but the difference had disappeared after 4 weeks.  Rohrer and 
Taylor (2006) conducted a similar study using a new math skill.  One group of subjects 
had three times the number of practice problems but no difference was found after either 
the 1-week or the 4-week retention interval.  Thus, Pashler et al. conclude that for long-
term memory, overlearning seems to be inefficient as a training technique.  They point 
out, however, that in some cases overlearning might be the only alternative when a skill 
needs to be performed with absolutely no errors at a much later time (e.g., performing 
CPR or landing a space shuttle).  They also say that, even when retrieval accuracy is at 
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ceiling, overlearning might improve speed of responding (e.g., Logan & Klapp, 1991), 
and speedup could be useful when rapid responding is a prime consideration. 
 
 A related phenomenon has been identified as “the failure of further learning effect.”  
This effect was first demonstrated by Kay (1955) and Howe (1970), and subsequently 
studied by Fritz, Morris, Bjork, Gelman, and Wickens (2000).  Repeated studying of text 
passages presented out loud to subjects yields little new learning beyond that attained in 
the initial study period, even though there is much additional information to be learned 
and the learning is spaced rather than massed.  An explanation offered by Fritz et al. for 
this effect is that the learner develops a schema (or mental summary) reflecting his or her 
comprehension of the text as a result of the first study episode and that schema creates 
some resistance to improving learning after it has been established.  They also interpret 
the findings in terms of the distinction between “given” (i.e., known) and “new” (i.e., yet 
to-be-learned) information (Haviland & Clark, 1974), with the hypothesis that learners 
neglect information that they consider to be given (because it was included previously) 
even though they have not been able to recall it. 
 
 Guideline:  Overlearning is recommended as a training technique only when 
training time is not severely limited and when it crucial to have the strongest possible 
representations of knowledge and skill.  
 
  6. Task difficulty 
 
 Interference is a source of difficulty in training that occurs when conditions allow 
incorrect answers to come to the trainee’s mind, along with the correct answer, thereby 
requiring the trainee to choose the correct answer from among several alternatives.  
Increasing interference during training has been shown to impede training speed but 
ultimately to enhance the durability and flexibility of what is learned.  For example, 
mixing material across categories during training, as opposed to grouping the material by 
category, enhances interference, which may inhibit initial acquisition, but should yield 
better retention and transfer.  In fact, it has been shown that many things that make 
learning difficult (not just interference) facilitate transfer to a new task as well as long-
term retention of the original task.  This recommendation follows from both the effects of 
contextual interference (interference during learning facilitates later retention and 
transfer; Battig, 1972, 1979; Carlson & Yaure, 1990; Lee & Magill, 1983; Schneider, 
Healy, & Bourne, 1998; Schneider, Healy, Ericsson, & Bourne, 1995; Shea & Morgan, 
1979; but see Wulf & Shea, 2002, for some exceptions) and, more generally, the training 
difficulty principle (generally, any condition that causes difficulty during learning 
facilitates later retention and transfer; Schmidt & Bjork, 1992; Schneider, Healy, & 
Bourne, 2002; but see McDaniel & Einstein, 2005, and Young, Healy, Gonzalez, Dutt, & 
Bourne, in press, for some qualifications).   
 
 Not all sources of difficulties during training are desirable, however (see Bjork, 
1994).  McDaniel and his colleagues (McDaniel & Butler, in press; McDaniel & Einstein, 
2005) argue that difficulties introduced during training are facilitative only when they 
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cause the learner to engage in task-relevant processes that otherwise would not take 
place.   
 
 Guideline:  Counter to intuition, trainers should consider introducing sources of 
interference into any training material.  If durable retention and flexible transfer are the 
goals of training, then mixing materials during training is advisable for most learners.  
Trainers might consider enhancing the difficulty of training exercises in other ways as 
well with the caveat that task-relevant cognitive processes must be engaged. 
 
  7. Stimulus-response compatibility 
 
 Cognitive skills can be divided into three stages: (a) perception of the stimulus, (b) 
decision making and response selection, and (c) response execution (Proctor & Dutta, 
1995).  The most ubiquitous phenomenon observed in the second stage of skill 
acquisition is the effect of stimulus-response compatibility (Fitts & Deininger, 1954; Fitts 
& Seeger, 1953; Proctor & Vu, 2006).  This effect reflects a difference in performance 
attributable to the mapping of individual stimuli to responses, such that performance is 
best when the stimulus set and the response set are configured in a similar way and each 
stimulus is mapped to its corresponding response (e.g., left-right stimulus locations are 
mapped to left-right responses).  Stimulus-response compatibility effects have been 
extensively studied using stimuli and responses with spatial properties, but they occur for 
any dimension of similarity between stimuli and responses. The detrimental effects of 
incompatibility are not easily overcome, even after extensive practice (e.g., Dutta & 
Proctor, 1992).  Guideline:  It is important to maintain stimulus-response compatibility 
during training to avoid the prolonged, detrimental effects that incompatibility can have 
on performance. 
 
  8. Seeding 
 
 When tasks require having a certain type of quantitative knowledge, providing a 
small number of examples, called seeds, is often sufficient knowledge to encompass an 
entire domain.  For example, for a quantitative estimation task (e.g., estimating the 
distances between geographical locations), providing a small number of specific relevant 
quantitative facts can greatly improve overall estimation ability.  A small number of 
sample distances is extremely beneficial not only to immediate estimation but to 
estimation performance after long delays.  This recommendation follows from the 
seeding effect (Brown & Siegler, 1996, 2001; Kellogg, Friedman, Johnson, & Rickard, 
2005; LaVoie, Bourne, & Healy, 2002). 
 
 However, seeding might not work in all cases.  For example, in a study simulating 
scanning by airport screeners (TSA agents) (Smith, Redford, Washburn, & Taglialatela, 
2005), when the same targets were repeated, the subjects could recognize familiar targets 
but had great difficulty generalizing to new or unfamiliar targets.  Specifically, 
performance improved as test images repeated but dropped sharply when unfamiliar 
targets from the same categories were added.  Thus, subjects relied on familiarity and had 
difficulty using category-general information.  These results suggest that seeding effects 
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might be limited to certain domains such as those involving quantitative estimates. 
 
 Guideline:  Seeding (training on a few specific examples of a selected domain) can 
be effective but should be used judiciously in non-quantitative domains, based on the 
likelihood of seeding effects in those domains. 
 
  9. Serial Position 
 
 Better memory has been found for the initial and final items in a to-be-learned list 
of items (Nipher, 1878).  This bow-shaped serial position function, with both primacy 
and recency components, is found at the start of learning but diminishes as repeated trials 
on the same material are given (Bonk & Healy, 2010).  The same effect is observed for 
short lists (as few as 4 items) and long lists (40 items or more), for tasks that require item 
learning or response-sequence learning, and for both immediate recall and serial learning.  
The relative magnitude of primacy and recency effects differs depending on many 
variables, especially the testing procedure.  In any event, the items in the middle of a list 
are at a disadvantage when it comes to both short-term memory and long-term 
acquisition.  Thus, training will require more practice on items in the middle of a list than 
on those at either end.  Guideline:  For tasks that require training on a sequence of 
informational items or responses, the trainer should place greater emphasis on items in 
the middle of the sequence than on those at the beginning or end. 
 
 D. Principles relating to individual differences 
 
 Training principles are likely to apply unequally across individuals and to the same 
individual in different circumstances.  There are some systematic inter- (between) and 
intra- (within) individual differences that should be considered in the design of training 
routines. 
 
  1. Zone of learnability 
 
 As an example of an important individual difference that applies both among 
different individuals and within the same individual at different times is the “zone-of-
learnability.”  The zone-of-learnability refers to material that contains information that is 
a little beyond what a particular student already knows, neither too close to nor too far 
away from what is already known (Wolfe, Schreiner, Rehder, Laham, Foltz, Kintsch, & 
Landauer, 1998).  People learn most efficiently when the material to be learned is within 
their zone of learnability.  This principle has also been referred to as the “Goldilocks 
hypothesis” (implying that the material to learn is just right, neither too simple nor too 
difficult).  Related to this principle is the established finding that learning from text is 
better if the learner has appropriate background knowledge (e.g., Means & Voss, 1985; 
Moravcsik & Kintsch, 1993), so that a central feature of learning from text is linking up 
the information in the text to the reader’s pre-existing knowledge.  That is, new 
information in a text needs to be integrated with the reader’s pre-existing knowledge.  If 
there is no relevant information base, then the integration cannot take place, and no 
learning will occur.  For optimal learning, text difficulty should be matched to the 
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student’s level of background knowledge, so that easier texts should be used for students 
with a lower level of prior knowledge.  According to the zone-of-learnability principle, 
optimal learning occurs when the text provides some, but not too much, new information. 
 
 One way to establish the zone of learnability in a group of students is to use the 
newly developed clicker technology, which is based on periodic multiple-choice testing 
within an ongoing lecture.  The technique makes use of a personal response system 
provided to each student with which the student responds to the multiple-choice probe 
questions.  When most students respond correctly, the trainer can assume that the 
material presented is well within the students’ zone of learnability and can move forward.  
If most students respond incorrectly, the trainer has reason to assume the material is not 
yet within the zone of learnability so that clarification or repetition is necessary.  
Evidence to date on the clicker technology is limited but promising (Anderson, Healy, 
Kole, & Bourne, 2010; Mayer et al., 2008). 
 
 When training involves learning information from text (e.g., from written 
instructions), it is also important to consider the type of text to be used.  In general, 
coherent text (which is harmonious and logically consistent) is advisable.  However, the 
readers’ existing domain knowledge determines whether they will benefit from a 
coherent text (McNamara & Kintsch, 1996; McNamara, Kintsch, Songer, & Kintsch, 
1996).  Readers with low knowledge learned more effectively with high-coherence text, 
whereas, counter to intuition, readers with high knowledge benefited from a low-
coherence text according to some measures.  Specifically, text coherence had little effect 
for high-knowledge readers’ memory in terms of their recall and accuracy on 
comprehension questions that were derived from a single idea in a text (rather than those 
derived from a relation between several ideas expressed in the text).  But there was a 
clear benefit to high-knowledge readers for low-coherence text in terms of measures 
reflecting the readers’ understanding of the concepts conveyed in the text.  In summary, 
only low-knowledge readers show a benefit from reading a high-coherence text.  High-
knowledge readers actually show more understanding of the relevant concepts after 
reading a low-coherence text (McNamara, 2001), which is consistent with the concept of 
zone-of-learnability. 
 
 Guideline:  It is important for the trainer to be sensitive to the trainee’s current level 
of knowledge in the relevant domain and to attempt to find learning materials that are 
appropriate to that level of knowledge.  To establish the level of knowledge of a group of 
trainees, the newly developed clicker technology should be considered.  
 
  2. Strategy variation 
 
 Trainers need to be sensitive to the fact that different strategies might be optimal for 
different learners, at different stages of skill or knowledge acquisition, and with different 
learning material.  For example, some materials might be best mastered by rote learning 
or memorizing specific instances, whereas other materials might benefit from a more 
abstract rule-learning approach.  Instance-based strategies are preferred and lead to more 
efficient performance in simple tasks, whereas rule-based strategies are optimal in more 
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complex tasks (Bourne et al., 1999; Bourne, Healy, Kole, & Raymond, 2004).  Rules 
might be particularly important to formulate and use when the number of instances to be 
dealt with challenges or exceeds available memory and when the individuals lack 
confidence in their ability to remember instances (Touron, Hoyer, & Cerella, 2004).  
Further, rules tend to be more durably represented in memory than are instances.  When 
performance after a delay is of crucial concern, then training procedures need to 
emphasize rule-based strategies, rather than instance-based strategies, because the rule 
will be better retained than instances across a delay (Bourne, Healy, Kole, & Graham, 
2006; Bourne, Parker, Healy, & Graham, 2000).  Although these effects hold in the 
aggregate, individuals vary in the extent to which they rely on instance memory versus a 
rule-based strategy, some individuals persisting in a rule strategy long after others have 
switched to memory-based responses (Bourne, Raymond, & Healy, 2010; Rickard, 
2004).  Guideline:  When the most effective strategies for a given task are known, 
instructors would be advised to adopt procedures that can bring these strategies forward 
earlier than usual in the training process.   
 
  3. Chunking 
 
 When a series of items (e.g., a list of words) is presented, subjects can usually recall 
about seven of them, which is called the immediate memory span.  Classic research has 
shown that it does not matter much what the items are; they can be digits, letters, words, 
or even phrases.  The limit is always about seven.  This finding gives rise to the idea that 
people can combine presented material into units of different sizes, which are called 
“chunks” (Miller, 1956), and that they can recall about seven chunks, regardless of what 
is in them.  This result suggests that a good memory strategy is to try to find ways to 
chunk material that needs to be remembered.  Indeed it is possible, with deliberate 
practice that builds on existing chunks of digits such as dates and running times, to 
increase the digit span to a very large number (Ericsson, Chase, & Faloon, 1980).  This 
expansion of memory is not without limits.  As the size of the unit to be remembered 
increases, the number of chunks that can be recalled shrinks.  Some people have 
suggested that, at least with very large chunks, the immediate memory span is closer to 
three (Broadbent, 1975; Cowan, 2001, 2010).  For example, in experiments simulating 
communication between pilots and air traffic controllers as to navigation in space, Barshi 
and Healy (1998, 2002) found that subjects could recall up to three commands with very 
little error.  Beyond that number, however, recall performance fell off dramatically, 
although practice was able to offset the decline to some extent.  Guideline:  Trainers 
should encourage a chunking strategy wherever possible for acquiring and recalling large 
amounts of material.  Furthermore, when providing a sequence of information to be 
recalled, trainers should divide the material into segments that include no more than three 
units or steps at a time. 
 
IV. Partially established training principles 
 
 Some training principles are not fully established at the present time and require 
additional supportive research.  Important partially established training principles will 
now be reviewed, under the same four categories as used above for the well established 
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principles: (a) resource and effort allocation, (b) context effects, (c) task parameters, and 
(d) individual differences.   
 
 A. Resource and effort allocation 
 
  1. Focus of attention 
 
 It is possible for a learner to deploy or focus attention in various ways during 
training.  Furthermore, a learner might be instructed effectively about how to focus 
attention.  Some studies have compared an external focus of attention (i.e., attention to 
the results of a movement) of learned motor skills to an internal focus of attention (i.e., 
attention to the body movements themselves).  That research has consistently found, at 
least after some initial training, that there is an advantage for the external focus of 
attention with respect to learning, retention, and transfer of motor skills (McNevin, Shea, 
& Wulf, 2003; Shea & Wulf, 1999; Wulf, McNevin, & Shea, 2001).  This result is 
explained by the constrained action hypothesis, according to which well developed motor 
skills are represented by automatic mechanisms within the body that are impaired by 
conscious attention to them (Beilock, Bertenthal, McCoy, & Carr, 2004).  Guideline:  
Trainers should encourage learners to adopt an external focus of attention on the target of 
their movements rather than on the bodily movements themselves. 
 
  2. Strategic use of knowledge 
 
 When trainees need to learn a large amount of new information, that information 
should be related to their existing knowledge.  Previously acquired knowledge can be 
used as a structure for organizing otherwise unrelated facts even when the facts 
themselves fall outside the domain of existing knowledge.  For example, if trainees know 
a lot about baseball, they can use that knowledge to organize and, thus, quickly learn a 
large set of facts about members of their crew.  The idea is to associate each member of 
the crew with a famous individual from the baseball domain.  Although additional 
associations might seem to complicate the task at hand, connections to existing 
knowledge will enhance performance both in terms of accuracy and speed of responding 
with the new information, following the strategic-use-of-knowledge principle (learning 
and memory are facilitated whenever pre-existing knowledge can be employed as a 
mediator in the process of acquisition; Healy, Shea, Kole, & Cunningham, 2008; Kole & 
Healy, 2007; Van Overschelde & Healy, 2001).  Chunking is a special case of the 
strategic use of existing knowledge (see above).  Guideline:  Trainees should be 
instructed to use their previously acquired knowledge when learning a new set of facts, 
even if the existing knowledge seems irrelevant to the new facts.  
 
  3. Cognitive antidote to fatigue and boredom 
 
 Prolonged work on a given task often results in deterioration of performance, 
despite ongoing skill acquisition.  It has been found that prolonged work sometimes 
produces an increasing speed-accuracy tradeoff in performance, such that accuracy 
declines over trials while at the same time response speed improves (Healy et al., 2004; 
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see the discussion of speed-accuracy tradeoffs above).  The deterioration is attributable to 
fatigue, task disengagement, or boredom on the part of subjects.  This deterioration can 
be counteracted by the introduction of a simple cognitive requirement on each response.  
For example, subjects might be required to make a simple computation before each 
response or to alternate terminating keystrokes after each response (Kole et al., 2008).  
Under these conditions, the speed-accuracy tradeoff is eliminated; that is, the decline in 
accuracy disappears although responses continue to speed up across practice trials.  These 
results have led to a cognitive antidote training principle (the introduction of cognitive 
activities can counteract fatigue, task disengagement, and boredom effects, resulting in 
performance maintenance or even improvement during sessions of prolonged work).  
Guideline: Instructors should consider adding a cognitive component to a routine task on 
a trial-by-trial basis to avoid disengagement and boredom.  This added cognitive 
component is likely to be most effective when it is relevant to the ongoing training task or 
simple in nature. 
 
 B. Context effects 
 
  1. Part-task training 
 
 Under certain conditions part training (training only a part of a task before training 
the whole task) is more effective than whole training (training the whole task from the 
beginning).  Part training can either involve forward chaining (when the initial segment 
of a task is trained first) or backward chaining (when the final segment of the task is 
trained first).  For complex tasks that can be divided into components, the conditions for 
part-training superiority appear to be a function of the organization of subtasks.  Complex 
tasks can be organized in at least two different ways:  A segmented task contains parts 
that are performed sequentially, whereas a fractionated task contains parts that are 
performed simultaneously.  Part-task training is most beneficial when performing a 
backward-chaining procedure in a segmented task (but see Peck & Detweiler, 2000, for a 
demonstration of the effectiveness of a forward-chaining technique).  Wightman and 
Lintern (1985) argue that the backward-chaining method is superior because there is a 
strong association between performance level on the terminal task and knowledge of 
results (i.e., the feedback resulting from task completion).  The results of Marmie and 
Healy (1995) with part training using backward-chaining on a segmented task add 
support to this argument.  In contrast, for a fractionated task, Adams and Hufford (1962) 
found that training first on only one procedure initially disrupted performance on the 
whole procedure.  Marmie and Healy (1995) offer the following explanation:  In both 
types of tasks, during the initial part-training phase, the trainee constructs independent 
procedural representations for each part of the whole task.  When transfer to the whole 
task occurs, there is only a single interruption between the two parts in a segmented task 
but multiple interruptions in a fractionated task.  Thus, the procedural representations can 
remain intact and independent only in a segmented task; in a fractionated task a new 
procedural representation must be established, which requires integration of the two 
parts, because the parts in that case are performed as an interlocking unit.  In addition, 
findings described below suggest that segment difficulty as well as segment position in 
the sequence must be considered when designing a part-task training method. 
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 Naylor and Briggs (1963) found support for the hypothesis that the relative 
efficiency of part-task and whole-task training is related to an interaction between task 
complexity and task organization.  For an unorganized, complex task, they found that part 
practice surpassed whole practice in efficiency, but on all other combinations of task 
complexity and task organization, groups trained by the whole method were superior to 
progressive-part groups during transfer.  Brydges, Carnahan, Backstein, and Dubrowski 
(2007) supported the view that a motor skill involving high organization and high 
complexity needs to be practiced under whole practice conditions, probably because 
moving from one skill to another in part practice changes the kinematic characteristics of 
each component.  On the other hand, Anderson (1968) found that for first graders trained 
to solve concept-attainment problems, a whole-task group did not perform as well as a 
part-task group either on problems occurring at the end of training or on related problems 
presented subsequently in a retention test, but the two groups were equivalent on more 
dissimilar transfer problems. Newell, Carlton, Fisher, and Rutter (1989) suggest that the 
benefits of part-task training depend on the nature of the part task trained in prior 
practice.  Only when the part-task training involves smaller subtasks with natural 
interconnected units will part-task training enhance whole-task skill acquisition.  In 
agreement with this idea is Holding’s (1965) suggestion that practice subtasks should 
represent “small wholes” rather than isolated parts. 
 
 Guideline:  Whether or not initial training of a complex task should involve only 
parts of that task depends on a number of task characteristics.  Trainers need to be 
sensitive to these characteristics before deciding to use part-task training.  Among the 
important factors are (a) forward versus backward chaining of the parts, (b) segmented 
versus fractioned nature of the whole task, and (c) dependency among the task 
components.  
 
  2. Easy-difficult ordering 
 
 Tasks can be divided into parts based on aspects of the stimuli involved, such as 
their difficulty.  This division raises the question in part-task training as to which parts of 
a stimulus set should be trained first.  When a task involving a stimulus set is trained 
incrementally, the question arises as to whether the easier or the more difficult stimuli in 
the set should be trained first.  Pellegrino, Doane, Fischer, and Alderton (1991) found that 
initial training on a difficult subset of stimuli was beneficial relative to initial training on 
an easy subset of the stimuli in a visual discrimination task.  (Related results in the 
training of motor skills have been reviewed by Schmidt and Lee, 1999.)  According to 
Pellegrino et al. (1991; see also Doane, Alderton, Sohn, & Pellegrino, 1996; Doane, 
Sohn, & Schreiber, 1999), incremental training should begin with the part of the stimulus 
set that yields the most effective strategic skills.  However it is not always the more 
difficult part that yields the optimal strategic skills.  For example, Clawson et al. (2001) 
found that initial training on easy stimuli in a Morse Code reception task led participants 
to adopt an effective unitization strategy for representing codes, whereas initial training 
on difficult stimuli led to a less effective strategy in which individual elements were 
separately represented and then integrated.   
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 Spiering and Ashby (2008), on a difficult perceptual categorization task, found that 
the effect of different training orders depended on the type of categories used.  In rule-
based category learning, processing through explicit reasoning is used.  In this type of 
learning the rule is often easy to describe (Ashby, Alfonso-Reese, Turken, & Waldron, 
1998).  For category learning involving information integration, information from 
multiple stimulus components must be integrated before a decision is made.  In that case, 
the optimal strategy is hard to describe (Ashby et al., 1998).  When explicit reasoning can 
be used to learn the categories (rule-based task), the order in which training is presented 
does not matter.  However, when the rule for categorization is hard to describe 
(information-integration task), difficult training first is the most effective method for 
learning.  
 
 A related issue that has been explored by Maxwell et al. (2001) is what they call 
errorless learning (see also Terrace, 1963, for earlier work with animals).  For a motor 
skill, subjects should begin with the easiest task, where few if any errors are made, and 
progress to increasingly harder tasks to minimize the overall number of errors made.  In 
golf putting, for example, learners should begin with a short-distance putt and progress to 
longer and longer putts.  Maxwell et al. equate errorless learning with implicit learning 
and error-prone learning with explicit learning.  It has been shown that skills that have 
been learned in an error-prone manner require more explicit, attentional resources than do 
skills learned in an errorless manner.  Because there is less attention needed to perform 
the skill learned in errorless training, which seems to be more like implicit learning, 
distractions, such as a secondary task, cause less disruption.  Hardy, Mullen, and Jones 
(1996) and Masters (1992) also found that skills learned implicitly are more immune to 
the negative effects of psychological stress (see the discussion above concerning the 
distinction between implicit and explicit learning).   
 
 Kern, Green, Mintz and Liberman (2003) found that errorless learning can be used 
to compensate for neurocognitive deficits relating to new skill acquisition and to 
rehabilitate persons with schizophrenia so that they can work effectively.  In contrast, in 
other clinical research, in this case involving patients with phonological disorders, Gierut 
(2001) reported that training on the more difficult aspects of the phonological system 
yielded the greatest amount of generalization.  This effect has also been shown with 
aphasic patients (e.g., Kiran & Thompson, 2003; Thompson, Shapiro, Tait, Jacobs, & 
Schneider, 1996) and in normal language development (e.g., Au, 1990; Eckman, 1977).  
These results indicate that there are limits on the benefits of errorless learning, at least in 
some domains, so that additional research is required to determine what order of 
components to use in training of a specific task.  
 
 Guideline: Whether or not training should begin with the easiest or most difficult 
components of a fractionated task depends once again on a number of task characteristics.  
Trainers need to be sensitive to these characteristics before deciding on the order of the 
subtasks.  Among the important factors are (a) the parts that yield the best strategic skills, 
(b) explicit or implicit category definition in categorization task, (c) explicit or implicit 
learning in motor skills, and (d) the domain of knowledge and skill to be trained.  
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 C. Task parameters 
 
  1. Variability of practice 
 
 Variable practice conditions (in which individuals train on a number of different 
tasks) typically yield better performance at transfer testing than do constant practice 
conditions (in which individuals train on a single task), even when testing is conducted 
on the same task as trained under constant practice.  The benefits of variable practice 
were first recognized by Schmidt (1975) for discrete motor tasks and explained by him in 
terms of a schema theory, according to which variability promotes effective and general 
use of rules (schemata) relating external task requirements to internal movement 
commands.  Wulf and Schmidt (1997) extended these findings to a continuous, feedback-
regulated tracking task, and Schmidt and Bjork (1992) extended them further to tasks that 
do not involve motor learning, such as concept formation and text processing.  Recently, 
Goode, Geraci, and Roediger (2008) also found that variable practice yielded superior 
transfer over repeated practice on anagram solutions.  Specifically subjects practiced 
solving anagrams in one of three ways:  (a) They repeatedly solved the exact anagram to 
be tested subsequently.  (b) They repeatedly solved an anagram different from the one 
tested subsequently.  (c) They solved different versions of the anagram tested 
subsequently.  The third group, which used variable practice involving different anagram 
variations, performed better at test relative to the other two groups, even the group that 
practiced the exact same anagram included on the test.   
 
 Contrary to these findings, in a feedback-regulated non-tracking perceptual-motor 
task, Healy, Wohldmann, Sutton, and Bourne (2006) found that performance was worse 
for variable practice conditions relative to constant practice conditions involving the 
same task used during transfer testing.  However, in a subsequent study involving the 
same perceptual-motor task, Wohldmann, Healy, and Bourne (2008b) found benefits of 
variable practice when subjects were given multiple targets under the same perceptual-
motor reversal conditions, as opposed to being given the same targets in multiple 
perceptual-motor reversal conditions (Healy et al., 2006).  Wohldmann et al. explained 
their findings by pointing out that if each reversal condition is assumed to involve a 
distinct configuration of responses (i.e., a distinct generalized motor program), practicing 
with multiple reversal conditions might not strengthen any one configuration, but 
practicing with multiple target locations within a single reversal condition should 
strengthen that configuration.  In any event, an examination is warranted of the generality 
and boundary conditions of the variability of practice principle across task environments. 
 
 Guideline:  Trainers should vary the conditions of practice to facilitate 
generalization of the trained skill.  There are some limits, however, which involve how 
variability is introduced into the task.  Current evidence suggests that variability is most 
effective when a single motor program is being learned so that variability applies to the 
context rather than the core program itself.   
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  2. Modality effects 
 
 Presenting verbal information in the auditory modality generally aids memory for 
that information relative to presenting it in the visual modality (i.e., memory for verbal 
information is improved when it is heard rather than seen) (see, e.g., Gardiner, Gardiner, 
& Gregg, 1983).  Explanations for this modality effect have included both the proposal 
by Penney (1989) that auditory and visual items are represented using different 
processing streams and the proposal by Mayer (2001) that there are two parallel channels 
for multimedia learning, the first including material that is visual/pictorial and the second 
including material that is auditory/verbal.  By Penney’s account, auditory presentation is 
superior because auditory material is automatically represented in an acoustic code that 
has a relatively long durability and large capacity, and that code is not available for visual 
material.  Both auditory material and visual material are represented in a phonological 
code.  In addition, visual material is represented in a visual code that has short durability 
and small capacity.  By Mayer’s account, spoken words are processed directly in the 
auditory/verbal channel, but written words are not processed directly in either channel 
even though written words are processed indirectly in both channels.  Future research is 
needed both to verify that the auditory modality is superior in other domains (see 
Schneider, Healy, & Barshi, 2004, for one such recent verification in the domain of 
message comprehension), to clarify which of the alternative explanations is most 
consistent with the observed results, and to determine whether the same modality effects 
that apply to acquiring information also apply to the long-term retention and transfer of 
that information.  Guideline: When the information to be learned is verbal (i.e., textual), 
then trainers should use auditory presentation rather than visual presentation to facilitate 
acquisition. 
 
 D. Individual differences 
 
 There are individual differences in abilities, performance, and preferences on any 
task.  In fact, selection of trainees in the military and in industrial settings is generally 
based on tests of individual differences.  The existence of individual differences suggest 
the possibility that people differ in their style or approach to performing particular tasks.  
Moreover, individual differences might change as a function of training.  Both of these 
possibilities are considered in this section. 
 
  1. Learning styles  
 
 The idea that individuals differ in learning style is intuitive and popular (for a 
review see Kozhevnikov, 2007), but the evidence supporting these differences is weak.  
Pashler, McDaniel, Rohrer, and Bjork (2009) reviewed the evidence and concluded that it 
was not substantial enough to warrant any accommodations to training based on learning 
style.  For example, studies comparing “visualizers” (individuals who prefer to work with 
pictorial materials) and “verbalizers” (individuals who prefer text-based materials) did 
not show convincingly that matching materials to purported learning styles resulted in 
any significant benefit, or in any aptitude-treatment interaction (ATI) (Massa & Mayer, 
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2006).  Guideline: Until additional evidence is available, trainers should not attempt to 
tailor training to trainee preferences or alleged styles.  
 
  2. Effects of practice on individual differences 
 
 In addition to the amount of practice on a skill, individual abilities play a big part in 
the level of performance trainees achieve.  Whether or not practice in a skill makes 
individuals more similar or more different depends on the task (Ackerman, 2007).  For 
tasks that can be performed by most people, such as driving a car, consistent practice 
reduces the differences among people.  Novices may start off with big individual 
differences in performance ability but have much smaller individual differences with 
practice.  On more complex tasks, especially those that allow for successful performance 
by the use of differentially effective strategies that are beyond the capabilities of many, 
some people become very fast and accurate, whereas others remain at the novice level, 
leading to enhanced individual differences.  Thus, for these complex tasks, the individual 
differences become larger with practice.  After some level of automaticity is reached, two 
abilities are good predictors of performance following extensive practice: perceptual 
speed and psychomotor function.   
 
 For tasks that require declarative knowledge, performance levels depend on whether 
the tasks are “open” or “closed.”  Closed tasks are limited to a finite domain of 
knowledge, whereas open tasks increase with complexity.  For open tasks (but not for 
closed tasks) there is an increasing difference between the levels of the highest- and 
lowest-performing people.  For tasks building on existing knowledge, individual 
differences in the extent of that knowledge are more important for acquiring new 
information than are individual differences in the capacity of working memory 
(Baddeley, 2007), or memory for recently presented material and actions (e.g., see Beier 
& Ackerman, 2005).  It is also more important for learners to have a high level of 
knowledge in the relevant domain along with a high level of general, crystallized 
intelligence than to have a high level of fluid intelligence (reasoning ability) and 
working-memory capacity.  Thus, the knowledge that an individual brings to the task is 
more important for determining what additional knowledge that individual can acquire 
later than is the individual’s working memory capacity, especially in areas such as health 
literacy or financial planning, but less so in areas such as math and physical sciences (see 
the discussion above on the strategic use of existing knowledge in learning new facts). 
 
 Guideline:  Trainers should keep in mind that individual differences in performance 
might increase or decrease with practice depending on the complexity of the task to be 
learned and the relevant domain of knowledge.  This fact suggests that the amount of 
training required to reach a criterion will differ across individuals, especially in complex 
tasks and in open tasks building on declarative knowledge. 
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V. Other considerations 
 
 There are other, miscellaneous factors, beyond those reviewed above, that need to 
be considered when developing a training program although they do not directly suggest 
specific training principles. 
 
 A. Global versus local processing 
 
 Under normal conditions the processing of global features dominates, or has 
precedence over, the processing of local features (Navon, 1977, 1991).  In experiments 
involving large letters made up of small letters, individuals were usually faster to identify 
the large letter (global feature) than to identify the small letter (local features).  An 
asymmetrical interference was also found in which there is interference in processing 
local features by global features but not the other way around (see, e.g., Kimchi, 1992; 
Kinchla, 1974).  This asymmetrical effect has been shown to be sensitive to 
manipulations of various perceptual factors (see, e.g., Martin, 1979; Navon & Norman, 
1983).  The asymmetrical nature of global and local processing also depends on 
attentional factors, including, for example, whether attention needs to be divided between 
global and local targets (see, e.g., Robertson, Egly, Lamb, & Kerth, 1993; Ward, 1982).  
In fact, research has shown that global information affects the processing of local 
information even when the global information occurs in a stimulus that is unattended 
(e.g., Paquet, 1992).  There is some evidence, however, that global information can be 
inhibited in cases requiring that local information be processed (e.g., Briand, 1994; 
Shedden & Reid, 2001).  Furthermore, Dulaney and Marks (2007) showed that such 
global dominance can be eliminated.  They found that extensive training at local 
identification eliminated interference from the global forms in the compound stimuli.  
Also, local interference was found after extensive training on local features.  Thus, the 
usual nature of global/local processing can be modified by attentional manipulations. 
However, it took over 10,000 training trials to achieve this modification. 
 
 The global and local letter task (Navon, 1977) has also been used to prime global 
and local processing in other tasks.  For example, it has been shown that priming subjects 
with global processing improved face recognition accuracy whereas priming with local 
processing impaired face recognition accuracy (Macrae & Lewis, 2002).  On the other 
hand, a local superiority effect was demonstrated when subjects who had prior local 
processing were faster at face recognition in a facial composite task than were subjects 
who had prior global processing (Weston & Perfect, 2005). 
 
 The implication of these findings is that trainers need to keep in mind the degree to 
which local processing is required in a given task.  When local processing is necessary, 
extensive training might need to be provided.   
 
 B. Stress conditions 
 
 Performance changes with level of stress on the trainee.  At low levels of stress, 
performance might be poor, but as stress increases gradually, performance improves.  At 
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a certain point, stress level is optimal for performance in any given task.  Beyond the 
optimum, additional stress might degrade performance, and when stress becomes extreme 
the trainee might choke or panic (Staal, Bolton, Yaroush, & Bourne, 2008).  However, 
stress has been shown to affect speed and accuracy of response differently.  For example, 
the stress that comes from fatigue developed as a result of continuous work on a task 
leads to faster but less accurate performance (see the discussion above of speed-accuracy 
tradeoffs; Healy et al., 2004).  Similarly, Wolfe, Horowitz, Cade, and Czeisler (2000) 
found that sleep deprivation led to an increase in errors on a visual search task for a target 
among varying numbers of distractors as well as to a reduction in the slope of the 
function relating response time to the number of distractors (see also Horowitz, Cade, 
Wolfe, & Czeisler, 2003).  Thus, sleepy observers responded quickly but carelessly.  
Consequently, adding stressors to a training regime could be harmful (e.g., in the case of 
accuracy) or beneficial (e.g., when speed is the primary requirement) depending on what 
aspects of the task are most crucial and on the ambient level of stress.  The implication of 
these findings for trainers is that they need to be aware of both trainee stress level and 
whether response speed or accuracy needs to be maximized. 
 
 C. Situational awareness 
 
 As automation has increased in many areas of life, the issue of how to maintain 
situational awareness (SA) has become crucial.  SA is specific to dynamic systems in 
human-system interactions.  High SA is generally required, but is not enough on its own, 
for high performance.  SA involves not only an awareness of what is happening but also 
the implications for possible future outcomes (Endsley, 1995).  Two things are necessary 
for maintaining SA: selective attention and long-term memory.  Selective attention is 
needed to perceive or notice the important events in the situation, and long-term memory 
is needed to update knowledge of the situation.  Most important is the trade-off between 
workload and SA (Wickens, 2002).  As automation increases, workload decreases, but 
SA also decreases.  The decrease in SA is due to both less monitoring of automated 
processes and less memory for the system state because changes in that state were not 
made by the human operator but by another agent (automation) (Endsley, 1995).  The 
best way to mitigate this problem is still being researched (Wickens, 2008) (also see 
Dekker & Hollnagel, 2004; Dekker & Woods, 2002, for some criticisms of the concept of 
SA).  In general, little is known at present concerning how to enhance SA through 
training, especially when automated systems are involved. 
 
 D. Just-in-time training 
 
 Learners need relevant task-specific information and skills to perform learning tasks 
and to learn from them.  This necessary information must be active in working memory 
when performing the task.  One way to reach this goal is to present the necessary 
information and skill training before the learners start working on the task, so that the 
knowledge and skills are encoded in schemas in long-term memory and subsequently 
activated in working memory if or when needed for the task (“just-in-case” training).  
Another way is to present the necessary information or skill training precisely when the 
learners need them during task performance.  In this case, information and skill are 
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activated in working memory when they are necessary to perform the learning task.  This 
method of training is called “just-in-time training” (JIT, JITT or JiT, also called “on-the-
spot-training,” “on-call experts,” “real-time support,” “point-of-use information,” and 
“on-the-job” training).  There is not an unequivocal answer to the question of which of 
the two ways (training before or just in time) is better.  For tasks with a high-intrinsic 
complexity, it seems advisable to present the relevant information or skill training before 
the learners start on the learning tasks.  Because learners have little cognitive capacity left 
for additional processing while working on the tasks, the simultaneous processing of 
intrinsically complex information or skills can easily lead to cognitive overload.  If the 
information or skills are studied beforehand, a cognitive schema may be constructed in 
long-term memory that can subsequently be activated in working memory during task 
performance.  Low-complexity information or skills, however, may better be presented 
precisely when learners need them during their work on the learning tasks.  Because of 
their low-complexity, there is little or no chance of cognitive overload (Kester, Kirschner, 
& van Merriënboer, 2006; Kester, Kirschner, van Merriënboer, & Bäumer, 2001).  
Further research is necessary to confirm this speculation with unequivocal evidence as to 
when just-in-time training is desirable and superior to alternative training regimens.  
 
VI. Summary and conclusions 
 
 This paper has reviewed the empirical and theoretical literature on training.  This 
review strongly supports some training principles and more weakly supports other 
principles.  These principles, even those that are strongly supported, do not necessarily 
apply for all tasks under all circumstances.  Thus, it is important for a trainer to keep in 
mind certain distinctions that qualify these principles.  Possibly the most critical of these 
distinctions is the difference between skill and knowledge (sometimes equated with the 
distinction between procedural and declarative information or the difference between 
implicit and explicit learning).  Optimal training will differ depending on whether 
developing skill or acquiring knowledge is the primary goal. 
 
 The review also acknowledges the three fundamental cognitive processes 
underlying training, namely acquisition, retention, and transfer.  Training principles in 
some cases apply differentially across those processes, such that some manipulations 
might facilitate acquisition but impede retention and/or transfer.  Likewise, some training 
principles might impact particular performance measures but not others, especially under 
conditions involving a speed-accuracy tradeoff.  Trainers need to be alert to the primary 
goal of training, which in some cases might be training efficiency but in other cases 
might be durability or generalizability.  Similarly, trainers need to recognize the aspects 
of behavior that are most important to be optimized by training, which in some cases will 
be accuracy and in other cases speed of response.   
 
 Beyond the training principles that have been described, there are certain 
miscellaneous considerations about training that might impact how and when those 
principles are utilized.  Among these is an assessment of the degree to which the task 
involves local versus global processing, keeping in mind that typically global processing 
takes precedence.  Another consideration is the stress level induced by the training 
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context or brought to training by the trainee because it is well known that performance in 
general varies from poor to optimal as a function of stress level.  Situational awareness is 
necessary for good performance in any training task or context, and so it should be 
promoted by the trainer.  These last two considerations are related:  Supra-optimal stress 
is known to shrink the perceptual field, thereby causing reduced situational awareness 
and the possibility of ignoring relevant information (Staal et al., 2008).  The final 
consideration relates to when to provide task-relevant training.  Typically, training is 
given well in advance of performance in the field.  It is possible, however, that training of 
a part of a complex task might be effectively given only right before that part of the task 
is needed.  The conditions under which such just-in-time training is effective are yet to be 
determined. 
 
 The training principles outlined here should be applicable in a variety of real-world 
training contexts including the training of astronauts and other military personnel. 
However, these are training principles, not training guidelines and certainly not training 
specifications (Salas et al., 1999).  This review provides the first step in the design of 
optimal training programs.  Additional developmental or applied research needs to be 
undertaken to translate these principles into guidelines and, subsequently, to 
specifications.  Although this review focuses on training principles, it also offers brief 
suggested guidelines that might be examined and elaborated in the future.  Particular 
applications must be based on research that refines the guidelines and translates them into 
usable training specifications. 
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Acquisition and Transfer of Basic Skill Components 
 

Robert W. Proctor, Motonori Yamaguchi, James D. Miles 
Purdue University 

 
The goal of our part of the Training MURI was to study in detail basic 
tasks that isolate the perceptual, cognitive, and motor components of skill, 
examining factors that influence acquisition and transfer of these 
components.  Speed and accuracy of response selection is a fundamental 
skill underlying performance of most tasks that is acquired rapidly with 
practice and can be studied effectively in the laboratory.  Consequently, 
we focused on a detailed analysis of skill components in tasks that 
emphasize speeded response selection.  The results of these studies 
support several fundamental principles of training, which we summarize in 
this report.   

 
1. Introduction. Our research had the goal of examining factors that influence the 
acquisition and transfer of fundamental components of skill.  For much of this research, 
we utilized the power of basic choice reaction tasks to isolate fundamental cognitive 
processes and allow rapid acquisition of skill within a single experimental session.  The 
methods we used relied heavily, though not exclusively, on variants of spatial stimulus-
response compatibility (SRC) tasks.  The concept of SRC and the first investigations of 
compatibility effects are attributed to Paul M. Fitts (Fitts & Deininger, 1954; Fitts & 
Seeger, 1953), who founded the Psychology Branch of the Aero Medical Laboratory of 
the U.S. Army at Wright Field at the end of World War II.  Perhaps more than anyone, he 
recognized the value of basic laboratory tasks for understanding processes involved in 
much more complex military tasks.  This value has also been appreciated by other 
researchers associated with the military who have used SRC tasks in the investigation of 
human performance issues, including Earl A. Alluisi (Alluisi & Warm, 1990), Chief 
Scientist at the Air Force Human Resources Laboratory at Brooks Air Force Base in the 
first half of the 1980s and then Assistant for Training and Personnel Systems Technology 
in the Office of the Secretary of Defense in the last half of the 1980s.  Thus, our work 
follows in a long tradition of exploiting the properties of SRC tasks to investigate a range 
of issues in human skilled performance, in this case, ones concerning practice and 
transfer effects. 

For much of our research, we used two-choice reaction tasks.  In the prototypical 
task, a stimulus can appear in a left or right location, and the performer is to press an 
assigned left or right response key as quickly as possible.  Responses are on average 
about 50 ms faster when the task is performed with a compatible mapping of “press the 
left key to the left light and right key to the right light” than with an incompatible 
mapping of “press the left key to the right light and the right key to the left light.”  
Although performance improves with practice, this SRC effect remains evident even after 
relatively large amounts of practice (Dutta & Proctor, 1992; Fitts & Seeger, 1953).   

We also used a variant of the task that has come to be known as the Simon task, 
after J. R. Simon (1990).  For a Simon task, the relevant stimulus dimension is not the 
location of the stimulus but some non-spatial feature such as its color (often, red or 
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green).  The Simon effect refers to the fact that responses are still faster, and often more 
accurate, when stimulus and response locations correspond than when they do not, even 
though stimulus location is defined as irrelevant to the task.  The Simon effect has 
attracted considerable research interest in recent years because it enables investigation of 
how response selection is affected by features of a task that are not an explicit part of the 
instructed task goals.  The Simon effect is typically attributed to long-term associations, 
or links, between particular stimuli and responses (e.g., left stimulus locations and left 
responses) that have been acquired through years of practice.  Activation of the 
corresponding response is often described as occurring automatically by way of these 
long-term links when the appropriate stimulus occurs. 

The research that we performed for the MURI had three parts: (a) transfer of 
newly acquired associations, (b) training with mixed mappings and tasks, and (c) 
performance of multiple tasks.  In the following sections, we describe our main findings 
in these areas and implications of those findings for skills training. 

 
2. Factors affecting transfer of learning.  Our studies of transfer of learning used the 
following basic paradigm: In a practice session, subjects performed a two-choice spatial 
SRC task with an incompatible mapping (e.g., press “left” key to a stimulus that appears 
on the “right”; incompatible-mapping task). Then, in a transfer session, the subjects 
performed a Simon task in which they responded to a nonspatial stimulus attribute (e.g., 
color). Thus, the spatial relation between stimulus and response in the practice task was 
task-relevant, but it became task-irrelevant in the transfer task.  The logic behind the 
research is that practice establishes new links between the stimuli and their assigned 
responses (sometimes called short-term links) that, in the case of an incompatible 
mapping, are counter to the long-term links that produce the typical Simon effect.  After 
performing the incompatible-mapping task, the advantage for the spatially corresponding 
responses in the Simon task is eliminated and in some cases reversed (Proctor & Lu, 
1999). This outcome implies that the incompatible stimulus-response (S-R) links 
acquired for the practice task are transferred to a subsequent task even though they are no 
longer relevant.  This experimental paradigm is particularly well suited to investigating 
factors that affect transfer of learning because of the many manipulations of sensory 
modalities, modes for presenting location information, response modes, and so on, that 
can be made for the practice and transfer tasks. 
 Perhaps the most striking outcome of the practice/transfer tasks is how easy it is 
to overcome or counteract effects of long-term associations between stimuli and 
responses.  The benefit for spatial correspondence is eliminated by less than 100 trials of 
practice with an incompatible spatial mapping, and this elimination is equally apparent 5 
minutes later, one day later, and a week later (Vu, Proctor, & Urcuioli, 2003; Tagliabue, 
Zorzi, Umiltà, & Bassignani, 2000).  In other words, this small amount of training is 
sufficient to produce durable new S-R links that will override the pre-existing habitual 
response tendencies.  With larger amounts of practice, the transfer task shows reversal of 
the Simon effect to favor the practiced incompatible S-R relation (Proctor & Lu, 1999), 
and shows a broader range of transfer (e.g., Proctor, Yamaguchi, & Vu, 2007).  Transfer 
of the practice mapping occurs for auditory stimuli as well as visual stimuli, for arrow 
directions and spatial words, as well as physical locations, for various response modes 
(e.g., unimanual joystick movements, keypresses, as well as vocal utterances), and for 
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vertically oriented S-R sets as well as for horizontally oriented ones.  Reversal of the 
Simon effect also occurs when trials with a task using a spatially incompatible mapping 
are intermixed with trials of the Simon task (e.g., Proctor, Vu, & Marble, 2003; see next 
section), a result also thought to reflect transfer of the task-defined S-R location links to 
the Simon trials, for which stimulus location is not relevant.  Finally, the typical 
advantage for the corresponding location can also be offset simply by giving 
implementation instructions, in which instructions describe a specific goal of making a 
particular response quickly whenever a specific stimulus condition occurs (e.g., if a red 
stimulus appears in the left location, press the right key; Cohen, Bayer, Jaudas, & 
Gollwitzer, 2008; Miles & Proctor, 2008). 
 Many of the findings we have obtained with the practice/transfer paradigm can be 
accommodated within the quantitative framework developed by the MURI team, in 
which the strength of learned knowledge is represented by an activation function: 

,   (1) 

where an represents the activation of target knowledge after n practice trials. Provided ti, 
!i > 0, an increases as n increases. The equation embraces a kind of strength theory that 
states that remembering is a function of the strength of the memory trace (representation) 
[but see Logan (1988) for a possible interpretation of the equation based on an instance 
theory]. Though the strength theory was originally proposed for learning of “declarative 
knowledge” (memory of facts), our experiments suggest that the model is also applicable 
to “procedural memory” (memory of acts). Furthermore, the experimental results imply 
that the strength of procedural memory is a function of practice amount so that extended 
practice can overcome the pre-existing habitual response tendencies to the environment. 
The fact that a greater amount of practice is needed in some conditions (e.g., for word 
stimuli) can be modeled in the framework by the learning rate !i. 

  
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Simon effect (a) with no prior practice and after < 100 trials of practice with an 
incompatible spatial mapping and (b) as a function of practice (Proctor, Yamaguchi, 
Zhang, & Vu, 2009). 
 

In the framework, efficiency of training is determined by number of trials (N), 
learning rate (!), contextual similarity (S), and time passage (t and !).  As noted, practice 
with an incompatible mapping increases the associative strength for the incompatible S-R 
link through increase in N. The strength of the incompatible S-R link is reflected in 
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reduction of the Simon effect, as in Figure 1a which shows that the Simon effect became 
smaller (or eliminated) after practice with the incompatible mapping.  The relation 
between strength of S-R link and the amount of practice follows a power function. 
Consequently, when plotted against the number of practice trials (Figure 1b), the Simon 
effect initially decreases rapidly, but the amount of change deaccelerates over trials, 
eventually reaching an asymptote.  

The learning rate " may be dependent on several factors such as learners’ 
motivation and comprehensive capability, the effectiveness of instructions, time 
scheduling of training, and the difficulty of learning materials. In our experiments, we 
examined the transfer effect for different types of spatial stimuli (physical location of a 
circle, pointing direction of an arrow, the meaning of spatial words) and observed that the 
learning rate depended on this factor (Proctor et al., 2009). In particular, the transfer 
effect was evident after less than 100 trials of practice when the spatial information was 
conveyed by the physical location or the pointing direction of arrows. Although the 
Simon effect tended to be larger for the arrow stimuli than for the location stimuli, the 
size of the transfer effect was equivalent for the two types of stimuli. In contrast, after 
practice with the word stimuli for less than 100 trials, there was little indication of the 
transfer effect. Nevertheless, when the number of practice trials was increased to 300 
trials, the transfer effect was observed (as shown in Figure 1b), which was as large as that 
for the location and arrow stimuli. Because responses were made by pressing the left and 
right keys, set-level compatibility (cf., Proctor & Wang, 1997) was higher for the location 
and arrow stimuli than for the word stimuli. Therefore, we conducted a similar 
experiment with vocal responses (i.e., saying “left” or “right”), for which set-level 
compatibility should be higher for the word stimuli than for the location and arrow 
stimuli. However, we found that the transfer effect was evident for the location stimuli 
after less than 100 practice trials, but it appeared for the word stimuli only after the 
number of trials was doubled, suggesting that the learning rate is not dependent on set-
level compatibility but is determined by the stimulus type. 

Another important aspect of transfer of learning is its limitations. According to 
the framework, learning is utilized better in a context that is similar to the original context 
in which the learning has taken place, the principle of transfer specificity (see Healy, 
Schneider, & Bourne’s report). The influence of contextual similarity of the current trial 
to past trials is expressed by the exponential component of Equation 1, where Si is the 
similarity of the ith practice trial to the current trial.  

A well-known non-metric theory of similarity judgment is Tversky’s (1977) 
contrast model in which an object or event is considered to be a set of unique features. 
Then, the similarity between two objects Xi and Xj is expressed by 

.   (3) 

A special case of the contrast model is the feature overlap account of contextual 
similarity (see Figure 2) in which the similarity between two task contexts (practice 
context Cp and test context Ct) is considered to be a function of the number of 
overlapping features between the contexts 

,    (4a) 

or more specifically, 
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    ,    (4b) 

where  and  with M being a matching function defined by M(xi, yj) = 1 if 
xi = yj and M(xi, yj) = 0 if xi # yj. 

 
In our transfer studies, we examined boundary conditions of transfer of newly 

acquired associations by varying contextual features of the practice and transfer tasks. 
The results were consistent with the feature overlap account. For instance, the transfer 
effect is larger when the stimulus modalities (visual or auditory) match between the 
practice and transfer conditions than when they mismatch (Proctor et al., 2007; Vu et al., 
2003); when the types of stimulus mode (location word, arrow direction, or physical 
location) match than when they mismatch (Proctor et al., 2009); when the response 
modes match than when they mismatch (Yamaguchi & Proctor, 2009); and when the 
stimuli and responses are oriented along the same spatial dimension (e.g., both 
horizontal) than along orthogonal dimensions (one vertical, the other horizontal; Vu, 
2007; Proctor et al., 2007).   Hence, transfer of newly acquired associations depends on 
overlap of contextual features present during practice and test. 

According to the framework, influence of time passage (t and !) is thought to be 
loss of learning; that is, learned skills dissipate over time if the skills are not used. 
However, there is a long debate in psychology as to whether dissipation of learning (or 
memory) is due to passive decay or interference. Depending on the theoretical position in 
this debate, one can formulate different models of skill dissipation. In our previous 
studies (Proctor et al., 2003), the transfer effect was as large a week after the practice 
session took place as 5 min. after the session. This finding suggests that learned S-R links 
did not decay even if participants did not perform the incompatible-mapping task for a 
week. On the contrary, we found that the transfer effect was essentially eliminated if 
there were intervening trials for which participants performed the incompatible-mapping 
task but with a different type of stimuli. In particular, participants were first provided 
with a practice session with word stimuli. Then, they performed another practice session 
with arrow stimuli. Finally, they transferred to the Simon task with the word stimuli. The 
Simon effect was larger than the effect observed for the group who was provided only 
with the first practice session (no intervening session) but as large as the control group 
who were not provided with the practice sessions. These results imply that the 

Cp / Ct 

Ct / Cp 
 

Cp  !  Ct 

Study Context (Cp) 

Test Context (Ct) 

S(Cp, Ct) 

Figure 2. A feature overlap account of contextual similarity. 
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intervening task “cut off” the learned incompatible S-R links. Hence, our results support 
interference as the cause of skill dissipation. Given that the MURI framework currently 
lacks specification of the mechanism that underlying skill dissipation, the framework can 
be further elaborated by incorporating a component that expresses interference of 
learning by intervening tasks. 

 
3. Training with mixed mappings and tasks.  People often have to be prepared to 
perform multiple tasks, any one of which must be performed when an appropriate event 
occurs, rather than performing a single task in isolation. Thus, it is important to know 
how performance of one task is influenced by the presence of other tasks to perform. We 
have investigated the influence of mixing compatible and incompatible mappings on 
choice-reaction tasks (Vu & Proctor, 2004; Yamaguchi & Proctor, 2006) and found that 
the performance advantage of the compatible mapping over the incompatible mapping is 
reduced or eliminated under mixed conditions. This finding can be attributed to subjects’ 
having to be prepared to perform the incompatible-mapping task at any moment during 
the session, so that they suppress the natural tendency to respond with a spatially 
compatible response to a stimulus. The advantage for the compatible spatial mapping is 
also lost when trials for which stimulus location is relevant (with only a single mapping) 
are mixed with Simon-task trials for which stimulus location is irrelevant (Proctor & Vu, 
2002; Proctor et al., 2003). Also, the Simon effect increases somewhat when the spatial 
mapping for the location-relevant trials is compatible but reverses to favor the non-
corresponding response when that mapping is incompatible.  

We have examined the specificity of these mixing effects on performance in 
recent studies. Proctor and Vu (2009c) showed that the effects of task mixing on the 
spatial compatibility and Simon effects were reduced when the location information was 
presented in different modes (physical locations vs. location words) for the two tasks. In 
contrast, the mode distinction had little influence on the effects of mixing compatible and 
incompatible location mappings. These results imply that when location is relevant for 
one task and color for the other, the task-defined associations of locations to responses 
are mode specific, but when location is relevant for both tasks, the associations are mode 
independent. Proctor and Vu (2010) showed that the effects of mixing were reduced 
considerably when each mapping or task used distinct key presses on the left and right 
hands. The relative lack of influence of mixing on the SRC and Simon effects when the 
tasks have unique responses implies that suppression of direct activation of the 
corresponding response occurs primarily when tasks share responses.  

We have conducted experiments with members of the MURI team from Carnegie 
Mellon University using an expanded mixing paradigm that includes situations in which 
both tasks and mappings are mixed and in which payoffs and proportions of different trial 
types are manipulated. The purpose of the project is to model two major aspects of task 
performance, practice and sequential effects, by using an ACT-R modeling environment 
(Dutt, Gonzalez, Yamaguchi, & Proctor, 2010). For the experiments, two types of tasks 
could occur on any trial, an SRC task where subjects responded to the locations of visual 
stimuli and a Simon task where subjects responded to the color of visual stimuli while 
ignoring the stimulus location. Furthermore, for the SRC task, subjects were required to 
respond by pressing a response key whose location was compatible with the stimulus 
location on some trials, and by pressing a response key whose location was incompatible 
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on other trials. The basic findings in the mixed-task experiment were (1) responses are 
faster for the Simon task than for the SRC task; (2) the practice effect is larger for the 
SRC task than for the Simon task; (3) overall, the SRC and Simon effects are eliminated 
(more specifically, they are eliminated when the spatial correspondence on the current 
trial is different from that on the preceding trial, but they are present when the spatial 
correspondence on the current trial is the same as that on the preceding trial); (4) the cost 
of switching the compatibility relationship is larger for the SRC task than for the Simon 
task; (5) the cost of switching task is larger for the Simon task than for the SRC task. 

The first outcome can be attributed to the number of processing steps required for 
the SRC task being greater than that for the Simon task (see Figure 3): For the Simon 
task, subjects must identify the stimulus color and select a correct response, whereas for 
the SRC task, they have to identify the stimulus location, determine an appropriate S-R 
mapping rule, and then select a correct response. The second outcome can be attributed to 
improvement of the mapping determination process. The third outcome is consistent with 
our previous studies (Yamaguchi & Proctor, 2006). The fourth outcome is due to the fact 
that the compatibility relation is task-relevant for the SRC task and task-irrelevant for the 
Simon task, so that the influence of switching that relation is more strongly manifested 
for the former than the latter task; thus, the effect is due mainly to the mapping-
determination stage. The last outcome is consistent with the fact that the cost of switching 
task is typically larger from a difficult task to an easy task than in the reverse direction. 
As the SRC task is more complex than the Simon task, a larger cost of task-switching is 
expected for the Simon task than for the SRC task. 

Given these basic findings, we conducted two additional experiments where we 
manipulated (a) payoffs given to correct responses for the compatible- and incompatible-
mapping tasks (Experiment 2) and (b) frequencies of the SRC and Simon trials 
(Experiment 3). In Experiment 2, half the subjects received a higher payoff for the 
compatible-mapping task (C-favor group), and the other half a higher payoff for the 
incompatible-mapping task (I-favor group). The experiment replicated (a) faster 
responses for the Simon task than for the SRC task and (b) the larger practice effect for 
the SRC task than for the Simon task. There was a dissociation between the Simon and 
SRC effects; the Simon effect was positive (16 ms for RT data, 1.77% for percentage 
error data), whereas the SRC effect was negative (-14 ms, -0.76%). Moreover, the error 
data suggest that in the first trial block, the compatibility effect (average of the SRC and 
Simon effects) was positive for the C-favor group and negative for the I-favor group, but 
for both groups, the effects gradually approached zero over trials. Thus, the payoff 
manipulation was effective at early stages, but its influence decreased and subjects seem 
to have performed the mixed-task in later trials just as the subjects in Experiment 1 did.  

In Experiment 3, we manipulated the frequencies of occurrence of the SRC and 
Simon tasks: For half the subjects, 80% of trials were from the Simon task (mostly-Simon 
group), and for the other half, 80% of trials were from the SRC task (mostly-SRC group). 
For the mostly-Simon group, responses were generally faster for the Simon task than for 
the SRC task, but for the mostly-SRC group, responses were initially faster for the Simon 
task and then for the SRC task in later trials. Thus, as subjects experienced the SRC task 
more often than the Simon task, they became more proficient at performing the SRC task 
than the Simon task. In contrast to the prior experiments, the mostly-SRC group showed 
similar costs of switching tasks, implying that, in this case, the SRC task was no longer 
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more difficult than the Simon task. 
 

 
An ACT-R model of the mixed-task condition was constructed based on the 

Instance-Based Learning Theory (IBLT; Gonzalez, Lerch, & Lebiere, 2003) and 
calibrated to the data of Experiment 1 (Dutt et al., 2010). The same model was applied to 
the data of Experiments 2 and 3, and the results suggested a good fit of the original model 
without major alternations. Thus, the project suggests the usefulness of the ACT-R/IBLT 
model for explaining human performance under multi-tasking conditions. 

 
4. Performance of concurrent tasks.  Often, not only does one have to be prepared to 
perform one of two or more tasks, but multitasking demands require that the tasks be 
performed concurrently.  The research conducted for this component examined issues 
relating to whether skills are acquired when attention is directed toward another task and 
coordination of performance across different tasks.   
 An issue of importance is the extent to which attention is required during learning 
of a skill and for that newly learned information to be expressed subsequently.  We 
investigated this issue with an auditory version of the practice/transfer paradigm described 
in section 2, in which subjects practiced making spatially incompatible responses to left 
and right tones based on their locations and then made the same responses based on the 
auditory frequencies (high or low) of the tones (Miles & Proctor, 2010).  The unique 
aspect of the study was that some participants performed the incompatible-mapping task 
while concurrently tracking a ball displayed on the screen by moving the computer 
mouse.  Because the ball tracking task was attentionally demanding, participants could 
pay less attention to the incompatible-mapping task. Consequently, if attention is required 
for establishing the new S-R associations, a smaller transfer effect to the Simon task 
should be obtained, as compared to those participants who performed the incompatible-
mapping task without the ball tracking.  This is the outcome that was obtained.  As in 

Figure 3. A hypothetical process architecture for the 
expanded mixing paradigm. 

Determine mapping 
rule 

Identity stimulus 
color 

Identify stimulus 
location 

Select response Select response 

Make response 

Encode display 
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Select a task 
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previous research, practice with the spatially incompatible mapping eliminated the Simon 
effect in the transfer task when there was no concurrent task during the acquisition phase.  
However, the Simon effect was not reduced in the transfer session when the tracking task 
was performed concurrently during practice.  In addition, we examined the influence of 
the concurrent ball tracking task in the transfer task. That is, all participants performed the 
incompatible-mapping task without the ball tracking and then transferred to the Simon 
task either with the ball-tracking or without it. The Simon effect was equivalent for the 
two groups, suggesting that attention is not required to manifest the effect of incompatible 
S-R links. These results imply that the transfer effect reflects “automatic retrieval” of the 
learned skills, which is consistent with the instance-based learning theory (Logan, 1988; 
Gonzalez et al., 2003; see Gonzalez’s report). 
 Dual-task performance is often studied in what is called the psychological 
refractory period (PRP) paradigm, in which stimuli for two different tasks are presented 
in close temporal proximity, each of which requires a speeded response (see Lien & 
Proctor, 2002, for a review).  This paradigm, which has a long history of research in 
applied experimental psychology much like that of compatibility effects (Telford, 1931), 
is of value because it allows assessment of both general attentional demands of response 
selection and more specific interactions across tasks.  The most widely established finding 
is that the response for Task 2 is slowed considerably when the time between stimulus 
onsets is short, and this PRP effect is typically attributed to a response-selection 
bottleneck.  One issue has been whether this bottleneck is bypassed, and the dual-task 
interference eliminated, when the stimuli and responses have a high form of compatibility 
called ideomotor compatibility.  An example of an ideomotor compatible task is 
responding to spoken letter stimuli by saying each letter’s name.  The basic idea is that the 
high S-R compatibility of such tasks may allow the response to be generated 
automatically, without requiring the typical response-selection process. 
 During the training MURI, we conducted two studies examining the PRP effect 
with ideomotor compatible tasks.  Shin, Cho, Lien, and Proctor (2007) reported three 
experiments in which both Task 1 and Task 2 were two-choice tasks: Task 1 required 
manual responses (keypresses or joystick movements) to left and right pointing arrows 
presented in left and right locations, respectively, and Task 2 required vocal naming 
responses to letters.  Shin and Proctor (2008) varied whether the first task had two or four 
choices, also in three experiments.  A PRP effect for Task 2 response time was evident in 
all of the conditions of these two studies, showing that ideomotor tasks do not seem to 
bypass the response-selection bottleneck.  Of most concern for present purposes is that 
across four or more dual-task blocks of up to 48 trials each in all experiments, only in one 
case, that of auditory-vocal Task 1 and visual-joystick Task 2 (Shin & Proctor, 2008), did 
the PRP effect decrease with practice, and even there it was still evident in the last trial 
block.  In fact, for the two experiments in which Task 1 used joystick responses to visual 
stimuli (Shin et al., Experiment 2; Shin & Proctor, Experiment 1), the PRP effect 
increased across blocks.  So, even with very highly compatible individual tasks, practice 
is not sufficient to overcome dual-task interference.  
 We also conducted studies that used the PRP paradigm to examine cross-talk 
between spatial tasks performed with the left and right hands.  For these experiments, the 
stimulus locations for Task 1 were to the left of center and those for Task 2 were to the 
right of center, and the responses were made with fingers on the left and right hands 
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respectively.  Each task had the same number of alternatives, two in the experiments of 
Vu and Proctor (2006), three in the experiments of Proctor and Vu (2009b), and four in 
those of Proctor and Vu (2009a).  The main variable of interest in all cases was the 
consistency of mappings for the two tasks.  Mappings were consistent when both were 
compatible or both incompatible (e.g., make the mirror opposite response) and 
inconsistent when Task 1 used one mapping and Task 2 another.  In all cases, a benefit for 
consistent mappings was obtained, similar to that reported initially by Duncan (1979) for 
three-choice tasks.  However, the basis for this consistency benefit was different for the 
two-choice tasks when compared to those involving more than two choices.  For two-
choice tasks, several findings (e.g., presence of benefit mainly at short onset intervals; no 
benefit when one task used auditory stimuli) implied that the consistency benefit was due 
to an emergent perceptual blank feature that allowed subjects to respond compatibly to 
blank regions of the visual display (i.e., when both task mappings were incompatible, the 
responses for both tasks corresponded to the locations in which stimuli did not occur).  
For 3- and 4-choice tasks, in contrast, the evidence favored Duncan’s original hypothesis 
that the benefit comes about from having only a single mapping rule to apply to both 
tasks, rather than having to choose between rules.  These results suggest that performance 
will be best when consistency of mappings is maintained across tasks and that training 
that highlights consistent relationships may be most beneficial.  
 Finally, a characteristic of multitasking in many situations is that a person must 
determine how much effort to devote to a particular task and when to switch attention 
from one task to another.  We examined issues relating to this strategic aspect of 
multitasking in a synthetic work environment (Wang, Proctor, & Pick, 2007, 2009) 
intended to be a generic representation of a variety of multitasking situations.  This 
environment requires concurrent performance of four tasks (math, memory search, visual 
monitoring, and auditory monitoring), each represented in a quadrant of the computer 
screen, that require positioning of a cursor with a computer mouse on a response button, 
and then clicking on the button.  Points are received for correct responses and lost for 
incorrect responses, and the goal is to maximize the number of points obtained.  We 
varied the payoffs for the two more cognitively demanding tasks, math and memory 
search, jointly (Wang et al., 2007) or singly (Wang et al., 2009) between participants to 
determine sensitivity of strategies to the payoff schedule across eight 5-min sessions.  
Participants were sensitive to the payoff differences, performing a task relatively more 
when its payoff was high than when it was low.  When the payoffs for the math and 
memory task were varied concurrently, performance of both tasks reflected their relative 
emphasis.  However, when the payoff was varied explicitly for only one of the tasks, 
implicitly modifying the relative payoff for the other, just performance of the task 
associated with the explicit payoff was affected.  For the next four transfer sessions, the 
payoff schedule was switched for half of the participants and kept the same for the other 
half.  Results showed that the participants modified their strategies consistent with the 
new payoffs.  However, residual effects of prior payoffs were evident such that the 
performance of the subjects for whom the payoff schedule changed did not match that of 
subjects who had performed with that payoff schedule all along.  General implications of 
this research include that payoffs for multiple-task environments need to be explicit, and 
practice should be provided for strategy development. When payoffs change, strategies 
adopted reflect current and previous payoffs.  
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5. Summary.  Our research has shown that there are benefits of applying individual 
principles in the training of specific tasks.  However, this training is not isolated and can 
suffer from interference from components within a task or between tasks.  We have 
identified specific factors that influence the learning and transfer of S-R associations and 
how they are impacted by task switching and multitasking.
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The goal of the Training MURI is to quantify effects on performance of 
different training methods for complex military tasks. However, the range 
of variables that can affect training and the multiplicity of tasks that may 
require training prevent an exhaustive quantification of training effects for 
specific tasks and training scenarios. To render the study of training 
effects tractable and to guide research, both in this MURI and in future 
work, we have developed a taxonomy that includes separate dimensions 
for task description, training procedure, and the context and assessment of 
task performance. The taxonomy, described in this paper, provides a 
framework by which training effects can be assessed and predicted 
componentially for any task. Examples of its application are discussed for 
specific laboratory tasks. 

 
1. Introduction. The goal of the Training MURI is to quantify the effects on 
performance of different training methods for complex military tasks. Our multi-pronged 
approach in meeting this goal has involved extensive basic experimental research 
exploring the effects of training variables on performance in laboratory tasks, together 
with computational modeling of human task performance. The empirical research is the 
basis for a set of training principles that relate training methods and outcomes and can 
assist in the development of training regimens by the military. However, the range of 
variables that can affect training efficacy and the multiplicity of tasks that may require 
training prevent an exhaustive quantification of training outcomes for specific tasks and 
training scenarios. In order to render the study of training effects tractable and to guide 
research, both in this MURI and in future work, we have developed a multi-dimensional 
taxonomy, which will provide a framework by which training effects can be assessed and 
predicted for any task. 

A taxonomy is a hierarchical classification based on a consistent set of principles 
that can be tested for agreement with empirical data and whose order corresponds to a 
real order of the classified elements (Krathwohl, Bloom, & Masia, 1964). To be testable, 
features of the MURI taxonomy should thus be relatable to the design of laboratory 
experiments being conducted to explore training variables in the MURI. That is, the taxa 
of the three dimensions must be capable of capturing the tasks, manipulations, and 
measured responses of the experiments. At the same time, taxa should be no finer than 
the experimental manipulations. In addition, the features should be broad enough to cover 
task, training, and performance requirements that may likely be encountered in a military 
context, which may be broader than the scope of current experimental coverage (although 
military tasks frequently include the experimental tasks as subtasks). Of further interest to 
the military is relating taxon effects captured by the MURI taxonomy to the task 
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taxonomy in the military’s Improved Performance Integration Tool (IMPRINT; Archer et 
al., 1999) simulation software. Thus, a further constraint on the taxonomy is that there be 
a mapping from MURI task taxa to IMPRINT task taxa.  

At the highest level, as specified by the MURI grant proposal, the taxonomy we 
have developed involves a four-dimensional decomposition of the training space. It 
includes separate dimensions of classification for task description, training procedure, 
and the context and assessment of task performance. The training principles are 
considered the fourth dimension. The first three dimensions are structured as hierarchical 
feature decompositions whose values and relationships are described in this paper. 

An assumption of the decompositional approach is that the goal of predicting 
performance for any task can be accomplished by combining the effects on each 
performance measure of individual training components for all task elements. 
Accomplishing this goal depends on an exploration of the matrix of cells in the training 
space defined by the taxa of the three dimensions. This work extends beyond the MURI; 
however, the space has been partially explored by empirical studies we have conducted, 
and identification of current coverage allows for planning of future work.  

This report presents a brief review of approaches to taxonomies in each of the 
three dimensions, together with motivation and description of the taxa selected for use in 
the MURI taxonomy. Principles used to select taxa, as well as the correspondence 
between the organization of taxa and the phenomena they are meant to capture, are 
highlighted. After presenting the taxonomy, application of it to two tasks, a digit data 
entry task (see, e.g., Healy, Kole, Wohldmann, Buck-Gengler, & Bourne, in press) and a 
visual search task (Young, Healy, Gonzalez, Dutt, & Bourne, in press), is discussed to 
illustrate how a taxonomic analysis can facilitate our understanding of task acquisition. A 
taxonomic analysis using IMPRINT task taxa and MURI training and performance taxa 
has been performed on all experimental tasks conducted in conjunction with the MURI. 
The analyses have been compiled to produce a planning matrix that shows the current 
extent to which the training space has been investigated and that can be used to plan 
future research. Finally, areas that we have identified as needing further development to 
enhance taxonomic analysis of the training space are discussed. 

 
2. Task type. A general definition of a task was given by Miller (1953) to accommodate 
the analysis of increasingly complex human activities. According to Miller, a task is "a 
group of discriminations, decisions and effector activities related to each other by 
temporal proximity, immediate purpose and a common man-machine output" (cited in 
Meister, 1976, p. 96). The definition can be interpreted as recognizing that tasks involve 
perceptual inputs, cognitive processing, and motor responses. From this starting point, the 
development of a specific taxonomy of human tasks has been approached in a variety of 
ways, including classifications based on task stimuli, human behavior during task 
performance, or human ability requirements (see Companion & Corso, 1982). The 
approach to classification clearly depends on the purpose to which a taxonomy is to be 
put (see Gawron, Drury, Czaja, & Wilkins, 1989). 

One class of task taxonomies particularly important in the fields of human 
learning and performance begins with the notion that tasks can be analyzed according to 
their demand on human abilities (see Fleishman, 1978). Roth (1992) proposed a 
taxonomy with five broad ability taxa: attentional, perceptional, psychomotor, physical, 
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and cognitive. As an application of the taxonomy, empirical data are used by Roth (1992) 
to relate the effects of external stressors to each ability taxon. Weighted decompositions 
of specific subtasks are then available to predict stressor effects at the task level.  

The task decomposition adopted for the MURI, shown in Table 1, builds on 
taxonomies like the Roth (1992) taxonomy of abilities, introducing a finer classification 
of abilities, while keeping the number of taxa tractable. Taxa are selected principally to 
capture the cognitive processing of stimuli. Categorizing information processing tasks 
was considered to be central, because of both the military’s primary desire to optimize 
training for the networked battlefield and the fact that most empirical studies conducted 
for the MURI have largely been designed to explore cognitive processing, with 
concomitant perceptual and psychomotor processes. In information processing tasks 
inputs are initially processed using perceptual and attentional abilities. Information is 
further synthesized with higher-order cognitive processes and memory, and output 
responding is planned. Finally, a psychomotor response in produced. This sequential 
processing cycle is reflected in the hierarchy of the taxonomy.  

  
Table 1. The MURI task dimension. 

 
Visual detection 
Visual discrimination 
Language processing (written) 
Auditory detection 
Auditory discrimination 
Language processing (oral) 

Perceptual/Attentional Processing 

Haptic processing 
Executive control/Monitoring 
Memory/Symbolic representation 
Imagery/Visual representation 
Concept formation/Classification 
Reasoning/Problem solving 
Decision making  

Synthesis 

Motivation/Affect 
Language planning 

Cognitive/Affective 
Processing 

Response Planning Motor response planning 
Manipulation/Fine motor output 
Action/Gross motor output Physical/Communicative Response 
Language production 

 
Although the current task taxonomy is sufficiently comprehensive to decompose 

MURI laboratory tasks, it may be that the use of the task taxonomy for some Army tasks 
may require additional distinctions. New ability taxa could readily be incorporated into 
the existing taxonomy. In addition, it may be desirable to allow for the inclusion of the 
relative contribution of each taxon to the performance of a task, which may vary from 
task to task and also across training.  

The MURI task taxa are different from the task taxa used for military simulation 
in IMPRINT; however, it is possible to establish a mapping between the MURI features 
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and the IMPRINT task taxa, although the mapping is not one-to-one. The mapping is 
shown in Table 2. 

 
3. Training method. The training dimension covers variables that capture the method of 
instruction and the types of activities performed during learning. Berliner (1983) 
recognized the need for more rigorous definitions of educational treatments, and he 
provided a taxonomy for classroom activity structures that takes into account the roles of 
students and teachers in instruction, classroom group size, response and feedback types, 
and the range and source of content.  

 
Table 2. Mapping between MURI task taxa and IMPRIMT task taxa. 

 
MURI task taxa IMPRINT task taxa 

Visual detection, Visual discrimination Visual 
Language processing (written) Communication (reading & writing) 
Auditory detection, discrimination (no corresponding IMPRINT taxon) 
Language processing (oral) Communication (oral) 

Fine motor - discrete Haptic processing Fine motor - continuous 
Executive control/Monitoring Information processing 

Information processing 
Communication (oral) Memory/Symbolic representation 
Communication (reading & writing) 

Imagery/Visual representation Information processing 
Concept formation/Classification Information processing 

Information processing Reasoning/Problem solving Numerical Analysis 
Decision making Information processing 
Motivation/Affect (no corresponding IMPRINT taxon) 
Language planning Communication (oral) 

Communication (reading & writing) 
Fine motor - discrete Motor response planning 
Fine motor - continuous 
Fine motor - discrete Manipulation/Fine motor output Fine motor - continuous 
Gross motor - light Action/Gross motor output Gross motor - heavy 
Communication (reading & writing) Language production Communication (oral) 

 
A broader perspective of training methods is captured by Jonassen and Tessmer 

(1996/97), who present a taxonomy of instructional and learning strategies and specific 
tactics for achieving training outcomes. Their strategies, compiled from a review of 
relevant literature, range from traditional objective strategies (e.g., present examples, 
provide practice, provide feedback) to more outcome-specific approaches (e.g., model 
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cognitive activity, relate to prior knowledge, scaffold performance). Although the 
strategy set presented may cover a large proportion of training scenarios, additional detail 
is desirable for decomposing training scenarios. 

There are two major pieces in the decomposition of task learning in the MURI 
taxonomy: pedagogy and practice. Pedagogy captures the method of task instruction. The 
pedagogy taxa are shown in Table 3, along with the values each parameter may assume. 
The practice taxa are used to describe the nature of practice performed during training. 
Practice can be further subdivided into scheduling parameters, task parameters, feedback 
parameters, and training context parameters. The parameter groupings for the practice 
taxa and the currently defined parameters within each grouping are shown in Table 4. 
Standard parameter values are indicated as default values in Tables 3 and 4, with the 
range of alternative values indicated. 

 
Table 3. The MURI training dimension pedagogy taxa. 

 
Lecture/Instruction 
Demonstration 
Discovery 
Computer instruction 
Simulation (i.e., interaction with 
computerized representation of a task) 

Instruction method 

Modeling (mimicking = observe and 
mimic a model performing the task) 

Discussion/Question & answer  default = 1-way; 2-way 
Immersion  default = no; yes (embedded in field 

context) 
Learning location  default = local; remote or “distance 

learning”  
Individualization default = no; yes - e.g., human or 

intelligent computer tutoring 
Group training  default = no; group size.  

Pe
da

go
gy

 p
ar

am
et

er
s 

Automation default = no; yes. 
 
Evidence for effects of parameters from both groupings on skill acquisition in a 

variety of tasks has been demonstrated in numerous laboratory studies (see Proctor & Vu, 
2006 for a review; see also O’Neil, 2003, on distance learning; Carpenter, Pashler, 
Wixted, & Vul, 2008, and Szpunar, McDermott, & Roediger, 2008, on testing during 
training). Corroborative evidence comes from studies of expert performance. Although 
the set of parameter values selected for inclusion in the MURI taxonomy are intended to 
allow an analysis of most training scenarios, additional pedagogy and practice parameters 
may be added to the taxonomy when they become necessary. 

 
4. Performance context and assessment. Taxonomies of training criteria have been 
important in assessing the effectiveness of training programs in the business environment. 
A simple and influential taxonomy of assessment criteria (Kirkpatrick, 1987; see Alliger, 
Tannenbaum, Bennett, Traver, & Shotland, 1997, for an augmented version of the 
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taxonomy) specifies four categories of criteria: reactions, learning, behavior, and results. 
The category of reactions assesses a trainee’s judgment of training usefulness, difficulty, 
and pleasantness. Learning encompasses all post-test assessments of knowledge and skill, 
although tests most commonly measure declarative knowledge of training materials. The 
behavior category captures on-the-job performance or behavior. The results category 
includes measures of the organizational impact of training. 
 
Table 4. The MURI training dimension practice taxa. 

 
Number of items/trials 
Item difficulty default = unspecified; difficulty level 
Item repetition  default = massed; repetition interval 
Time spacing  default = no rest; rest interval 
Distribution default = mixed; blocked 
Change in spacing  default = none; expansion; contraction 
Session (parameters of importance; 
at least number of sessions and 
session spacing) 

 

Testing  default = no testing; test schedule  

Scheduling 
Parameters 

Overlearning default = no; yes 
Scope  part, e.g., mental rehearsal; default = whole; 

supplemental 
Deep processing  default = no; yes 
Mediation (e.g., use 
of prior knowledge) 

default = no; yes 

Attentional focus  default = no focus; internal, external 
Attentional breadth  default = intermediate; global, local 
Stimulus-response 
compatibility  

default = yes; no 

Mapping type  default = consistent; varied 
Contralateral training  default = no; yes 
Time pressure  default = no; yes 

Task 
Parameters 

Stressor default = no; yes 
Presence of 
(response) feedback  

default = no; yes Feedback 
Parameters Feedback scheduling (relative to items) 

Distractor  default = no; yes 

Pr
ac

tic
e 

pa
ra

m
et

er
s 

Training 
Context 
Parameters 

Secondary activity  default = none; simultaneous; sequential 

 
Of importance to the current research effort from this taxonomy are the categories 

of behavior and learning, that is, measures of performance on the job (i.e., “in the field”) 
and of post-test performance. However, the Kirkpatrick (1987) taxonomy lacks sufficient 
detail to apply it to specific training situations. The behavior category does not capture 
differences between training and performance environments, which are known to impact 
performance. Additionally, the learning category in the Kirkpatrick taxonomy leaves 
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unspecified what types of measures may be necessary to assess training outcomes. The 
performance dimension of the MURI taxonomy incorporates these two components with 
separate taxa, of performance context and of performance assessment, but provides 
greater detail. Performance context covers the conditions of and delay to post-training 
performance, relative to training; performance assessment specifies measures of 
performance. 

 
4.1. Performance context. The performance context component relates the 

environment of post-training performance to the training environment. The major 
component of performance context captures the relationship of performance to the items, 
context, and task encountered in training. In addition, performance context is concerned 
with the time since training and the frequency of any intervening refresher training prior 
to performance. The taxa in the MURI taxonomy for performance context are shown in 
Table 5. 
 
Table 5. Decomposition of the performance context dimension of the MURI taxonomy.  
 

New items, item 
order, or item 
distribution  

default = same as training; 
different items, order, or 
distribution 

New context  default = same as training; 
different context 

Transfer parameters 

New task  default = same as training; 
different task 

Retention interval  default = none; time since training 
Refresher training schedule  default = none; refresher schedule 

 
4.2. Performance assessment. Complex training goals can be evaluated using 

systems designed to facilitate assessment of the acquisition of knowledge, such as in the 
taxonomy of cognitive learning developed by Bloom, Englehart, Furst, Hill, and 
Krathwohl (1956). In their taxonomy, cognitive learning goals can be arranged in a 
hierarchy of knowledge complexity. Mastering any level of the hierarchy requires 
mastery of the behaviors in the taxa below it. The levels proposed by Bloom et al. are 
shown in Table 6, along with methods of assessment for each level. 

 
Table 6. The Bloom et al. (1956) taxonomic hierarchy for the cognitive learning domain. 
 

Learning Goal Assessment  
Knowledge Recall or recognize information 
Comprehension Comprehend or interpret information 
Application  Use information to complete a task 
Analysis Distinguish, classify, and relate knowledge 
Synthesis Originate and combine ideas 
Evaluation Appraise and assess ideas based on standards 
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The Bloom et al. (1956) taxonomy focuses on the acquisition of verbal, or 
declarative, knowledge and associated behaviors. Skill performance can generally be 
objectively assessed in terms of speed or accuracy of task completion. Separate measures 
are needed, because it has been shown that there are tradeoffs between speed and 
accuracy in some tasks. In a data entry task, speed and accuracy show different patterns 
of results; speed improves with training while accuracy declines (Healy, Kole, Buck-
Gengler, & Bourne, 2004). However, in other scenarios, the opposite pattern might 
obtain. Moreover, situations in which training produces improved efficiency of 
performance (i.e., faster and more accurate responding) need to be differentiated from 
those in which it alters only the speed-accuracy criterion. It is also important to assess 
performance on sub-components of a task. For example, the response times for executing 
the different steps of a digit data entry task are not always positively correlated, with 
typers slowing down on one step in order to be faster on another (Healy et al., 2004).  

In some tasks, there is also a necessity to develop some index of changes in the 
learner’s cognition during training. For example, in a binary classification task, Bourne, 
Raymond, and Healy (2010) have shown that even when both speed and accuracy 
measures show continuous improvement, subjects use different strategies to guide their 
responses, often changing strategies during training. Measures must be developed to 
assess changes in cognitive strategies, because the strategy chosen may impact speed and 
accuracy, or even retention and transfer. 

 
Table 7. The Kraiger, Ford, and Salas (1993) classification of learning outcomes and 
associated measures of assessment. 
 

Learning outcome Assessment  
Verbal Knowledge Tests of memory 
Knowledge Organization Probe cognitive structures Cognitive 

Outcomes 
Cognitive Strategies Probe task protocol 

Proceduralization Compilation Composition Change in performance Skill-based 
Outcomes  

Automaticity Test with interference 
stimuli or distractors 

Attitudinal Self-report 
Affective 
Outcomes Motivational Disposition 

Self-report with 
increasing problem 
difficulty 

 
Researchers have also expanded the scope of learning outcomes to include 

affective or attitudinal learning goals as well as knowledge and skill acquisition. Drawing 
on all three areas of research, Kraiger, Ford, and Salas (1993) proposed a more 
comprehensive taxonomy of learning outcomes, shown in Table 7. They define learning 
as changes in cognitive, skill-based, and attitudinal states and discuss how learning in 
each category can be measured (see Table 6). The Kraiger et al. (1993) classification 
forms the basis for the MURI performance assessment taxonomy. However, speed and 
accuracy measures of individual components can be combined with the different levels to 
form a taxonomy of assessment tests. Having quantified the outcome of a particular 
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training scenario, the effectiveness of training can be measured by comparing post-
training performance with performance before or at the beginning of training, using an 
accepted measure of training, such as the training effectiveness ratio (Wickens & 
Holland, 2000). Performance results can then feed back to further training design. 
 
5. Using the taxonomy. A taxonomic breakdown of task, training, and performance 
dimensions provides a way to explore the training space incrementally. By holding the 
task constant, training effects can be quantified within many cells in the taxonomic space 
across the training and performance dimensions. Empirical data are generated by 
experimentation, with various separate experimental manipulations providing speed, 
accuracy, and strategy measures of performance for the effects of many training and 
performance contexts on task taxa. As examples of this approach, we will consider the 
coverage provided by experiments using two tasks, a simple number typing task (digit 
data entry) and a more complex visual search task (the RADAR task). 

Digit data entry is one simple task that has been extensively used by the MURI 
investigators to explore the effects of training on skill acquisition (e.g., Healy et al., in 
press). Most basically, the digit data entry task consists of typing, using the number 
keypad, a series of four-digit numbers presented visually on a computer screen. In this 
form, the task can be broken down, using the task taxonomy, into four MURI taxa: Visual 
detection (reading numbers from the screen), Memory/Symbolic representation (the 
cognitive representation of each number), Motor response planning (for typing each 
number), and Manipulation/Fine motor output (typing). 

Pedagogy in all digit data entry experiments simply involved (written) instruction. 
Practice in all training scenarios involved the repeated entry of numbers. However, 
experiments have explored the effects of varying practice scheduling parameters, 
including the number of items, item difficulty (e.g., by varying numerical structure or by 
requiring generation of numbers to be entered arithmetically), item repetition, item 
distribution, and the number of training sessions. Various task parameters have also been 
manipulated, including task scope (full typing task vs. mental rehearsal), processing 
depth (numeral vs. verbal presentation format), processing mediation (association of 
numbers with prior knowledge), contralateral training, and the presence of a physical 
stressor during training (hand weights). Additionally, the presence of feedback has been 
manipulated, as well as use of a simultaneous secondary task (articulatory suppression) 
and a sequential secondary task (calculation of the typing termination key). Finally, 
performance context has been varied from training context in terms of transfer parameters 
(new vs. old numbers, mental vs. physical typing task, typing hand, and typing on keypad 
vs. number row), post-training retention interval, and refresher training schedule. 

A number of important findings are the result of analyzing task performance in 
terms of its component taxa for digit data entry. Measuring speed and accuracy separately 
revealed that these measures show different patterns of results, as noted. Moreover, 
different training methods can influence the results of the measures independently, with, 
for example, the presence of a secondary task requirement (the calculation of the typing 
termination key) providing a cognitive antidote to the otherwise observed decline in 
typing accuracy across practice (Kole, Healy, & Bourne, 2008). The scope of practice 
(whole task vs. mental rehearsal) has an effect on the transfer of performance, with 
mental practice improving retention and transfer by strengthening an effector-
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independent representation (Wohldmann, Healy, & Bourne, 2008). A taxonomic analysis 
of the digit data entry task has also allowed us to quantify differential effects of training 
on individual taxa. In particular, repeated practice results in faster performance; however, 
the rate of improvement differs for the cognitive and motoric components of the task, 
with more learning occurring for the cognitive component (Healy et al., 2004). 

The RADAR task, developed by Gonzalez and Thomas (2008), is a visual search 
task in which subjects look for symbol targets in four squares moving from the four 
corners to the center of a radar-like display in a fixed amount of time. Each search 
opportunity is called a frame. Different sets of target and distractor symbols may be 
shown in the squares in each of seven frames comprising a trial, and the target symbols 
may differ from trial to trial. The size of the target memory set includes either one or four 
symbols. Squares may also be blank, and there is at most one target shown per trial. 
Subjects are to respond only if a target in the current memory set appears in one of the 
squares, and scoring is on both accuracy and correct response speed. The task can be 
broken down into six MURI taxa: Visual detection (scanning for symbols), 
Memory/Symbolic representation (remembering targets in memory set), Imagery/Visual 
representation (of symbols seen in a frame), Decision making (target decision), Motor 
response planning, and Manipulation/Fine motor output (button push on detection). 

Several experiments have explored the RADAR task (e.g., Young et al., in press). 
Pedagogy in all RADAR experiments involved (written) instruction. Practice involved 
repeated searches, with blocked practice of items varying in difficulty of mapping type 
(consistent vs. varied mapping) and processing load (size of the memory set). Training 
involved two sessions, and the presence of both a simultaneous secondary task 
(concurrent tone counting) and a sequential secondary task (action firing decision) was 
manipulated.  

Analysis of RADAR experimental results showed that practice enhanced correct 
target detection times at delayed test. Analyzing speed and accuracy measures separately 
showed improvement in target detection accuracy (viz., fewer false alarms) with practice, 
but no improvement in target detection times. At training, both simultaneous and 
sequential secondary tasks increased correct response times, and the sequential secondary 
task also lowered accuracy (resulting in more missed targets). The effects on test 
performance of training with a secondary task depended on the nature of the secondary 
task. There was a detrimental effect on target detection accuracy at test (more missed 
targets) of training with the simultaneous secondary task, but a beneficial effect on target 
detection accuracy at test (fewer missed targets) of training with the sequential secondary 
task. These results corroborate the proposal that not all added task difficulty during 
training enhances task performance at test; only some difficulties are desirable during 
training (Bjork, 1994). 

 
6. Possible expansions to the taxonomy. One important factor that is known to affect 
learning but that is not currently taken into account in the MURI taxonomy is individual 
differences in abilities and backgrounds. Whether or not practice in a skill makes 
individuals more similar or more different depends on the task, on individual differences 
in ability, and on individual differences in prior knowledge (Ackerman, 2007). For 
example, for tasks that depend on declarative knowledge, performance levels depend on 
whether the tasks are “open” or “closed.” Closed tasks are those that are bounded by a 
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reasonably finite domain of knowledge, whereas open tasks consist of those that increase 
with complexity. Thus, for open tasks (but not for closed tasks) there will be an 
increasing difference between the levels of the highest- and lowest-performing people. 
For tasks that allow individuals to build on existing knowledge, individual differences in 
prior knowledge have a larger effect on the acquisition of new knowledge than do 
individual differences in working memory (e.g., see Beier & Ackerman, 2005). Thus, 
understanding the effects of individual differences on training ultimately depends on the 
identification and effective use of a taxonomy of individual differences. As an example, 
work within the MURI has indicated that individual differences in general intelligence 
interact with automation, with reduced influence of general intelligence under higher 
levels of automation (Clegg & Heggestad, 2010). How individual differences affect 
training and interact with other training variables remains to be fully explored. 

Group training is another important area for future work. Many Army tasks 
involve the interaction of multiple individuals, who share in the responsibility of task 
completion. Shute, Lajoie, and Gluck (2000) provide a discussion of a taxonomy of 
common group training techniques and the interaction of techniques with individual 
differences in ability, demographics, and background. 
 
7. Toward improving training effectiveness. As the previous section indicates, 
experimental work performed as part of the MURI project has provided empirical data on 
a substantial number of task, training, and performance taxa combinations. Taking into 
account all MURI experiments increases the number of cells of the training space for 
which empirical data have been collected. To provide a basis for future research planning 
by the Army, we have compiled a matrix of training and performance taxa against the 
IMPRINT task taxa. The cells of the matrix for which empirical data have been collected 
are indicated with the name of the appropriate experimental task. This planning matrix is 
presented in Appendix A. 

The number of cells in the taxonomic space defined by the MURI taxonomy 
outlined in this paper is large, and so at this time many cells in the taxonomic space lack 
empirical data from laboratory experiments related to the MURI that can be used to 
quantify the effects of training. It is also important to note that the empirical data 
generated for many cells come from exploration of only a single task, so that their 
generality remains to be examined. At this point it is not known whether the effects in 
cells of the taxonomic space that have been quantified are additive when task, training, or 
performance context taxa are combined. As noted, the effects of individual differences in 
skill and ability also need to be taken into account. Exploration of the taxonomic space 
must necessarily extend beyond the MURI project. However, the taxonomic 
decomposition made possible by the MURI taxonomy affords the Army an approach to 
evaluating training effectiveness across tasks, potentially facilitating improved training in 
the future.  
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