Facilities Corrosion Impacts: “When Corrosion Wins, the Mission Ends”

Vincent F. Hock
Project Manager
Army Facilities Corrosion and Prevention and Control Program
ERDC-CERL, Champaign, Illinois, USA

Presentation to the
2010 Army Corrosion Summit
Huntsville, AL
10 February, 2010
Facilities Corrosion Impacts: 'When Corrosion Wins, the Mission Ends'

U.S. Army Engineer Research and Development Center (ERDC), Construction Engineering Research Laboratory (CERL), PO Box 9005, Champaign, IL, 61822

Approved for public release; distribution unlimited

2010 U.S. Army Corrosion Summit, Huntsville, AL, 9-11 Feb
Impact of Corrosion on Army Facilities

- Coating degradation on steel structures - roofing, storage tanks, bridges, etc.
- Water and fuel distribution systems, storage tanks, and pumping systems
- Water intrusion through concrete and masonry structures below grade
- Corrosion of underground pipelines, pier structures, airfields and pavements
- Corrosion of industrial heating and cooling systems
THE DoD UNIVERSE OF FACILITIES CORROSION

- **Known Material Solutions**
 - OSD Projects FY09
 - Known Material Solutions:
 - Detect (Condition Sensor)
 - Predict (Corrosion Rate)
 - Prevent (Coatings, CP, Inhibitors, Mat's Selection)
 - Manage (Remote Monitoring and Control)

- **Unknowns**
 - FY10-14 Unfunded Projects
 - Non-Material Solutions:
 - Training
 - Standards
 - Policy, Cost Study
 - Outreach
 - Communication

- **Unknowns**
 - Future
 - Science and Technology
Corrosion Prevention & Control (CPC) Technologies for Facilities

Purpose
To demonstrate and validate emerging corrosion control technologies at DoD Installations under the OSD sponsored Corrosion Prevention and Control Program.

Product/Results
- Technology demonstrations and implementations at DoD Installations.
- Cost and performance reports.
- Recommendations for design guidance updates—ACSIM Installation Design Standards

Payoff
Service life extension of aging mission critical utilities and structures. Reduction in sustainment, restoration and modernization (SRM) costs.
Self-Healing Coatings
[RDTE-Funded; Developed & Patented at CERL]

- **Purpose**: Paints and Coatings degrade fast due to mechanical damage. These areas are highly susceptible to corrosion.

- **Technology**: Microcapsules in the form of microscopic spheres on the order of 50 to 150 microns in diameter containing corrosion-inhibiting compounds and coating “healants”

- **Application**: Dispersed into various paint formulations and applied to Field demonstration of self-healing coatings on a fire suppression deluge water tank

- **Benefits**: Judiciously chosen microcapsules exhibit stability against degradation
Pipe Corrosion Sensors for Potable Water Systems

Purpose - Potable water distribution systems can have significant corrosion problems, leading to water quality and health issues.

Technology - In situ sensors have been developed that can measure the corrosivity of water and the instantaneous corrosion rate of piping. In-line corrosion rate sensors, In-line multi-parameter water quality sensors are combined via a SCADA system and viewable to operators.

Application - Sensors are installed at critical locations in potable water distribution systems. They continuously provide data on water corrosivity and pipe corrosion rates to a Supervisory Control and Data Acquisition (SCADA) system or other data logger.

Benefits - Public Works personnel are immediately alerted to water quality problems or active pipe corrosion so that they can take corrective action.
Ice Free Cathodic Protection (CP) Systems for Water Storage Tanks at Fort Drum

Purpose - In northern climates, ice buildup in potable water storage tanks destroys conventional cathodic protection systems.

Technology - An innovative design for an ice-free impressed current CP system for water storage tanks.

Application - This new system uses ceramic-coated wire anodes along with a flotation and support system that keeps the anodes submerged in water underneath surface ice, regardless of the water level. Demonstrated at Ft. Drum.

Benefits - Because the anodes and their supports are physically kept away from the ice, they are no longer subject to ice damage. The structure is cathodically protected regardless of the water temperature or level.

Without CP, accelerated corrosion occurs at defects in tank’s interior coating.
ERDC Materials Vision

Technologies

“Multifunctional Materials”
- Biostabilization
- Embedded Sensors
- Renewable Energy
- Micro Powered
- Thermal Management
- Self Diagnosis & Self Healing
- Detox Surfaces

Sciences

- Nanomaterials
- Nano-bio Technology
- Multi-scale Modeling
- Computational Materials Science
- Network Science & Informatics

Applications

- Protection & Maneuver
- Sustainable Forward Operating Bases (FOBs)
- Resilient Installations
RDT&E - Prediction of the Degradation of Composite Materials for Emerging Facilities and Equipment

Purpose:
Develop predictive models and algorithms for durability of fiber reinforced polymer (FRP) composites for facilities and equipment, based on mechanisms of deformation and degradation.

Results:
- Multi scale (micro to macro) modeling of degradation mechanisms, based on chemistry, bridging length and time scales
- Simulation algorithms based on multi-factor deformation and degradation models

Payoff:
- Improved materials selection and increased use of corrosion-resistant composite materials
- Transition to OSD/ACSIM Corrosion Control and Prevention Program
Opportunities/Challenges

Flexible Concrete

3-dimensional CNT-reinforced composite: a ‘fuzzy-fiber’ composite with \textit{in situ}-grown radially-aligned CNTs on the woven cloth.

Integrated Structural Battery with PV

Amorphous metal with Superior Corrosion Resistance

Electro-spun fibers