Excerpts from AMSAA’s M109A6 Paladin Starter Motor Corrosion Analysis

Approved for Public Release
Distribution is Unlimited

For the 2010
U.S. Army Corrosion Summit
February 9-11, 2010

Brian E. Frymiare
U.S. Army Materiel
Systems Analysis Activity
Excerpts from AMSAA’s M109A6 Paladin Starter Motor Corrosion Analysis

1. **REPORT DATE**
 - FEB 2010

2. **REPORT TYPE**
 - 00-00-2010 to 00-00-2010

4. **TITLE AND SUBTITLE**
 - Excerpts from AMSAA’s M109A6 Paladin Starter Motor Corrosion Analysis

6. **AUTHOR(S)**

7. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
 - U.S. Army Materiel Systems Analysis Activity, AMSRD-AMS-LR, 392 Hopkins Rd, Bld 248, Aberdeen Proving Ground, MD, 21005

11. **SPONSOR/MONITOR’S REPORT NUMBER(S)**

12. **DISTRIBUTION/AVAILABILITY STATEMENT**
 - Approved for public release; distribution unlimited

13. **SUPPLEMENTARY NOTES**
 - 2010 U.S. Army Corrosion Summit, Huntsville, AL, 9-11 Feb

15. **SUBJECT TERMS**

16. **SECURITY CLASSIFICATION OF:**
 - a. REPORT: unclassified
 - b. ABSTRACT: unclassified
 - c. THIS PAGE: unclassified

17. **LIMITATION OF ABSTRACT**
 - Same as Report (SAR)

18. **NUMBER OF PAGES**
 - 13

19. **NAME OF RESPONSIBLE PERSON**

Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std Z39-18
- What's a M109A6 Paladin?
- What's a Starter?
- Background
- Failed M109A6 Starter
- Analysis
- Analysis Results "It is a capital mistake to theorize before you have all the evidence."
- Recommendations "It biases the judgment."
- Alternate Test Procedure
- Questions Sir Arthur Conan Doyle 1859 - 1930
What’s a M109A6 Paladin?
What’s a Starter?
Background

An Unusually High Rate of M109A6 Paladin Starter Motors were Failing

The Failure Mode was Excessive Corrosion

The Corrosion Rendered the Starters Inoperative

Problem Started after a Switch from the Original Manufacturer to a New Manufacturer
Failed M109A6 Starter

Starter Drive Gear And Armature Shaft Corroded Together Unserviceable
Two Starter Motors (One from Each Manufacturer) were Analyzed.

A **Thorough** Material Analysis was Conducted on the Starters
Analysis Results

Despite the New Manufacturer stating that their Starter Motor Shaft’s Utilized a Protective Zinc Plating, NO Zinc was Found on the Armature Shaft Analyzed.

Lack of a Protective Coating Undoubtedly Led to the High Rate of Starter Motor Failures

The Corrosion Problem WAS NOT Revealed Under the Required 96 Hour Salt Spray Test

Corrosion was Starting on the Original Starter, Where the Starter Drive Gear Slides on the Armature Shaft – Wearing the Protective Zinc Coating Off
Three areas of recommendations were made:

Recommendations for the Current Starter

Recommendations for Future Starter

“In any situation,

The best thing you can do is the right thing.
The next best thing you can do is the wrong thing.
The worst thing you can do is nothing.”

Theodore (Teddy) Roosevelt
26th President of the United States
It was Recommended that any New Existing Starter Motors not be Utilized, and Starters Already Utilized be Recalled and Destroyed.

That for Future Starters, the Starter Armatures Material be Changed to Stainless Steel (Commercial Practice).

It was Recommended that all Starter Motors be Exercised During Salt Water Spray Corrosion Testing, and the Test Procedure be Changed so that any Similar Items be Exercised During Salt Water Spray Corrosion Testing.
Failed M109A6 Starter

Starter Drive Gear Slides on Armature Shaft Wearing Zinc Coating Off
Proposed Alternate Test Procedure

- Conduct 24 Hours of Salt Spray Testing
- Utilize Test Item for 40 % of its Life Cycle
- Conduct an Additional 24 Hours of Salt Spray Testing
- Utilize Test Item for an Additional 40 % of its Life Cycle
- Conduct an Additional 48 Hours of Salt Spray Testing

Above Test Procedure Should Reveal Corrosion on Parts That Wear

Other Procedures May be More Viable, or Cost Effective
Questions

Questions???

And Hopefully Some Good Answers!