Corrosion Prevention of Army Equipment in the 21st Century

Peter Morgan, Jenny Pick, Eric Kennett
1. REPORT DATE
 11 FEB 2010

2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
 Corrosion Prevention of Army Equipment in the 21st Century

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 BAE System, Adv Tech Centre Golf Course Lane, FPC 267, PO Box 5, Filton, Bristol, UK BS34 7QW,

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 unclassified
 b. ABSTRACT
 unclassified
 c. THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT
 Same as Report (SAR)

18. NUMBER OF PAGES
 32

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Corrosion Prevention of Army Equipment in the 21st Century

Overview

1. BAE Systems
2. Finding new treatments and coatings
3. Process selection criteria
4. Assessing performance
5. Conclusion
A Global Company with Global Interests

Worldwide employees 100,000
(including 9,500 employees in our joint ventures)
Advanced Technology Centre - Structure and Facilities

- Turnover: ~ £43M
- Employees: ~ 500
- Employees: >100,000 worldwide
BAE Systems – Delivering Advantage
2. Finding new treatments & coatings
Current surface treatment process

1. **Shell body** → **Alkali clean**
 - Material: Pyrene 11-02
 - Temp: 35 - 42 °C
 - Time: 8 - 10 mins

2. **Cold water rinse**
 - Temp: 15 °C min
 - Time: 20 s min

3. **Hot water rinse**
 - Temp: 75 °C min
 - Time: 20 s minimum

4. **Shell body** → **Phosphate**
 - Material: Solution
 - Temp: 55 - 65 °C
 - Time: 15 - 20 mins

5. **Cold water rinse**
 - Temp: 12 °C min
 - Time: 10 s min

6. **Hot water rinse**
 - Temp: 75 °C min
 - Time: 20 s min

7. **Shell body** → **Chromic acid rinse**
 - Material: 0.02 – 0.05%
 - Temp: 82 °C min
 - Time: 10s min

8. **Air blow dry**
 - As required

9. **Coated shell body**
Comparison of Technologies for Surface Treatment

<table>
<thead>
<tr>
<th>Technology</th>
<th>Process</th>
<th>Tanks</th>
<th>Temperature</th>
<th>Process Time</th>
<th>Chemicals</th>
</tr>
</thead>
<tbody>
<tr>
<td>current</td>
<td>Zn phosphate</td>
<td>7</td>
<td>5 heated</td>
<td>30mins</td>
<td>Zn (sludge) chromates</td>
</tr>
<tr>
<td>silane</td>
<td>Bespoke</td>
<td>5</td>
<td>Oven dry at 120°C</td>
<td></td>
<td>silane</td>
</tr>
<tr>
<td></td>
<td>Commercial</td>
<td>10</td>
<td>Oven dry</td>
<td></td>
<td>Silane Zr</td>
</tr>
<tr>
<td>Zr</td>
<td>1</td>
<td>6</td>
<td>RT</td>
<td></td>
<td>Zr</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Zr</td>
</tr>
<tr>
<td>Vanadate</td>
<td>5</td>
<td></td>
<td>RT</td>
<td></td>
<td>Zr, V</td>
</tr>
<tr>
<td>Auto catalytic</td>
<td>polymer</td>
<td>7</td>
<td></td>
<td></td>
<td>organic</td>
</tr>
</tbody>
</table>
Current Painting Process

shell body → Phosphate
- temp: °C
- time: mins

coated shell body

Pre warm shell
- temp: 40 °C
- time: 30 mins

Prime
- material: w/b primer
- application: spray
- temp: °C

Dry
- temp: 100 - 110 °C
- time: 20 - 30 mins

Topcoat
- material: w/b
- application: spray
- temp: °C

Dry
- temp: 30 - 150 °C
- time: 30 mins

painted shell body

Pre warm shell
- temp: 40 °C
- time: 30 mins
New Coating/Painting Processes

- Current aqueous 2-coat
- New aqueous 2-coat (x3)
- Aqueous single coat (x2)
- Powder coat (x3)
- E-coat
Test Matrix

<table>
<thead>
<tr>
<th>Surface treatments</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn phosphate</td>
<td></td>
<td>Si</td>
<td>Zr</td>
<td>Zr</td>
<td>Zr</td>
<td>C</td>
<td>V</td>
<td>Si</td>
</tr>
<tr>
<td>1 Water-based 2- coat</td>
<td>A1</td>
<td>B1</td>
<td>C1</td>
<td>D1</td>
<td>E1</td>
<td>F1</td>
<td>G1</td>
<td>H1</td>
</tr>
<tr>
<td>2 Water-based single coat 1</td>
<td>A2</td>
<td>B2</td>
<td>C2</td>
<td>D2</td>
<td>E2</td>
<td>F2</td>
<td>G2</td>
<td>H2</td>
</tr>
<tr>
<td>3 Ecoat</td>
<td>A3</td>
<td>B3</td>
<td>C3</td>
<td>D3</td>
<td>E3</td>
<td>F3</td>
<td>G3</td>
<td>H3</td>
</tr>
<tr>
<td>4 Powdercoat 1</td>
<td>A4</td>
<td>B4</td>
<td>C4</td>
<td>D4</td>
<td>E4</td>
<td>F4</td>
<td>G4</td>
<td>H4</td>
</tr>
<tr>
<td>5 Powdercoat 2</td>
<td>A5</td>
<td>B5</td>
<td>C5</td>
<td>D5</td>
<td>E5</td>
<td>F5</td>
<td>G5</td>
<td>H5</td>
</tr>
<tr>
<td>6 Powdercoat 3</td>
<td>A6</td>
<td>B6</td>
<td>C6</td>
<td>D6</td>
<td>E6</td>
<td>F6</td>
<td>G6</td>
<td>H6</td>
</tr>
<tr>
<td>7 Water based 2-coat system 2</td>
<td>A7</td>
<td>B7</td>
<td>C7</td>
<td>D7</td>
<td>E7</td>
<td>F7</td>
<td>G7</td>
<td>H7</td>
</tr>
<tr>
<td>8 Water based single-coat 2</td>
<td>A8</td>
<td>B8</td>
<td>C8</td>
<td>D8</td>
<td>E8</td>
<td>F8</td>
<td>G8</td>
<td>H8</td>
</tr>
<tr>
<td>9 Water based stoving enamel</td>
<td>A9</td>
<td>B9</td>
<td>C9</td>
<td>D9</td>
<td>E9</td>
<td>F9</td>
<td>G9</td>
<td>H9</td>
</tr>
</tbody>
</table>
3. Process selection criteria
Process Selection Criteria

Corrosion resistance

Corrosion creep
Process Selection Criteria

- Corrosion resistance
- Paint adhesion
Process Selection Criteria

- Corrosion resistance
- Paint adhesion
- Paint thickness
Process Selection Criteria

- Corrosion resistance
- Paint adhesion
- Paint thickness
- Economics

$$$
Process Selection Criteria

- Corrosion resistance
- Paint adhesion
- Paint thickness
- Economics
- Environment
Process Selection Criteria

- Corrosion resistance
- Paint adhesion
- Paint thickness
- Economics
- Environment
Process Selection Criteria

- Corrosion resistance
- Paint adhesion
- Paint thickness
- Economics
- Environment
- Support
Process Selection Criteria

- Corrosion resistance
- Paint adhesion
- Paint thickness
- Economic
- Environmental
- Support

Corrosion creep

0.2mm
4. Assessing Performance
Corrosion

- Sample coatings were damaged (scribed X)
- Accelerated corrosion tested to ASTM B117
- After corrosion they were dried and cleaned with abrasive (scotchbrite) and examined using optical microscopy
- Measurements of the corrosion damage were made
Assessing corrosion

- Paint blistering
- Corrosion creep
- No & size of pits
Assessment of Accelerated Corrosion Test Results

<table>
<thead>
<tr>
<th>Surface treatments</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paints</td>
<td>Zn phosphate</td>
<td>Si</td>
<td>Zr</td>
<td>Zr</td>
<td>Zr</td>
<td>C</td>
<td>V</td>
<td>Si</td>
</tr>
<tr>
<td>1 Water-based 2-coat</td>
<td>A1</td>
<td>B1</td>
<td>C1</td>
<td>D1</td>
<td>E1</td>
<td>F1</td>
<td>G1</td>
<td>H1</td>
</tr>
<tr>
<td>2 Water-based single coat 1</td>
<td>A2</td>
<td>B2</td>
<td>C2</td>
<td>D2</td>
<td>E2</td>
<td>F2</td>
<td>G2</td>
<td>H2</td>
</tr>
<tr>
<td>3 Ecoat</td>
<td>A3</td>
<td>B3</td>
<td>C3</td>
<td>D3</td>
<td>E3</td>
<td>F3</td>
<td>G3</td>
<td>H3</td>
</tr>
<tr>
<td>4 Powdercoat 1</td>
<td>A4</td>
<td>B4</td>
<td>C4</td>
<td>D4</td>
<td>E4</td>
<td>F4</td>
<td>G4</td>
<td>H4</td>
</tr>
<tr>
<td>5 Powdercoat 2</td>
<td>A5</td>
<td>B5</td>
<td>C5</td>
<td>D5</td>
<td>E5</td>
<td>F5</td>
<td>G5</td>
<td>H5</td>
</tr>
<tr>
<td>6 Powdercoat 3</td>
<td>A6</td>
<td>B6</td>
<td>C6</td>
<td>D6</td>
<td>E6</td>
<td>F6</td>
<td>G6</td>
<td>H6</td>
</tr>
<tr>
<td>7 Water based 2-coat system 2</td>
<td>A7</td>
<td>B7</td>
<td>C7</td>
<td>D7</td>
<td>E7</td>
<td>F7</td>
<td>G7</td>
<td>H7</td>
</tr>
<tr>
<td>8 Water based single-coat 2</td>
<td>A8</td>
<td>B8</td>
<td>C8</td>
<td>D8</td>
<td>E8</td>
<td>F8</td>
<td>G8</td>
<td>H8</td>
</tr>
<tr>
<td>9 Water based stoving enamel</td>
<td>A9</td>
<td>B9</td>
<td>C9</td>
<td>D9</td>
<td>E9</td>
<td>F9</td>
<td>G9</td>
<td>H9</td>
</tr>
</tbody>
</table>
Assessing Paint Adhesion
Assessment of Paint Adhesion

<table>
<thead>
<tr>
<th>Surface treatments →</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paints ↓</td>
<td>Zn phoshate</td>
<td>Si</td>
<td>Zr</td>
<td>Zr</td>
<td>Zr</td>
<td>C</td>
<td>V</td>
<td>Si</td>
</tr>
<tr>
<td>1 Water-based 2-coat</td>
<td>adhesive</td>
<td>Top coat</td>
<td>Top coat</td>
<td>X</td>
<td>mix</td>
<td>pr/aq</td>
<td>Top Coat</td>
<td>mix</td>
</tr>
<tr>
<td>2 Water-based single coat 1</td>
<td>topcoat</td>
<td>Top coat</td>
<td>Top coat</td>
<td>X</td>
<td>mix</td>
<td>pr/aq</td>
<td>Top coat</td>
<td>mix</td>
</tr>
<tr>
<td>3 Ecoat</td>
<td>pr / phos</td>
<td>glue</td>
<td>glue</td>
<td>X</td>
<td>glue</td>
<td>glue</td>
<td>glue</td>
<td>glue</td>
</tr>
<tr>
<td>4 Powdercoat 1</td>
<td>pr / phos</td>
<td>glue</td>
<td>glue</td>
<td>X</td>
<td>glue</td>
<td>mix</td>
<td>glue</td>
<td>glue</td>
</tr>
<tr>
<td>5 Powdercoat 2</td>
<td>200</td>
<td>glue</td>
<td>glue</td>
<td>X</td>
<td>glue</td>
<td>110</td>
<td>glue</td>
<td>120</td>
</tr>
<tr>
<td>6 Powdercoat 3</td>
<td>mix</td>
<td>glue</td>
<td>glue</td>
<td>X</td>
<td>glue</td>
<td>glue</td>
<td>glue</td>
<td>mix</td>
</tr>
<tr>
<td>7 Water based 2-coat system 2</td>
<td>pr / phos</td>
<td>Top coat</td>
<td>mix</td>
<td>X</td>
<td>Top coat</td>
<td>mix</td>
<td>Top coat</td>
<td>mix</td>
</tr>
<tr>
<td>8 Water based single-coat 2</td>
<td>pr / phos</td>
<td>glue</td>
<td>mix</td>
<td>X</td>
<td>mix</td>
<td>mix</td>
<td>mix</td>
<td>mix</td>
</tr>
<tr>
<td>9 Water based stoving enamel</td>
<td>pr / phos</td>
<td>mix</td>
<td>mix</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Measuring paint film thickness

B6

B4
Optical Microscope Assessment of Paint Thickness

<table>
<thead>
<tr>
<th>Surface treatments</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paints</td>
<td>Zn phosphate</td>
<td>Si</td>
<td>Zr</td>
<td>Zr</td>
<td>Zr</td>
<td>C</td>
<td>V</td>
<td>Si</td>
</tr>
<tr>
<td>1 Water-based 2- coat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>2 Water-based single coat 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3 Ecoat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>4 Powdercoat 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>5 Powdercoat 2</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Powdercoat 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Water based 2-coat system 2</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Water based single-coat 2</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Water based stoving enamel</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
5. Conclusions
Overall Assessment of the Performance of New Technologies

Paints

<table>
<thead>
<tr>
<th>Surface treatments</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Zn phosphate</td>
<td>Si</td>
<td>Zr</td>
<td>Zr</td>
<td>C</td>
<td>V</td>
<td>Si</td>
</tr>
<tr>
<td>1 Water-based 2-coat</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Water-based single coat 1</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Ecoat</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Powdercoat 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Powdercoat 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Powdercoat 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>7 Water based 2-coat system 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>8 Water based single-coat 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Water based stoving enamel</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Recommendations

- The technical assessment suggests the 4 following combinations should be considered for further investigation:
 - Surface treatment B & ecoat
 - Surface treatment B & powdercoat 2
 - Surface treatment E & ecoat
 - Surface treatment H & ecoat
Thanks for listening!