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Abstract 
Explosive loading of a reinforced concrete ammunition magazine may result in break-up and 
launch of debris. Since debris throw is one of the major hazards in case of an accidental 
explosion, it is of high importance within risk assessment tools. Within the Klotz Group this 
phenomenon has been modelled and implemented in the KG Software. The software is based 
on state of the art knowledge and experimental data from full scale trials. A number of new 
features are currently being implemented in two projects sponsored by the KG, and conducted 
by TNO and EMI. This paper describes and illustrates these features with examples.  
 
A number of these new features is related to risk assessment application. The first one is the 
possibility to define a sloped terrain, to enhance the applicability of the software in various 
countries. Furthermore, the possibility to calculate the number of hits at user-defined exposed 
sites, and the possibility to specify barricades have been added.  
 
In addition to these new features, the paper also addresses the improvement of the debris 
trajectory prediction. Conventional models describing the flight of debris are based on the 
assumption of individual debris motion. However, the debris cloud originating from a 
reinforced concrete wall is initially very dense. As a result, debris trajectories can not be 
considered independently at these stages. Comparing conventional models with experimental 
data has shown that small debris requires unrealistic high launch velocities to reach the 
observed pick-up distances. The developed ‘ballistic filtering’ model gives a more realistic 
description of the initial stages of debris throw. The model has been implemented in a 
research version of the KG Software and has been compared to trial data. 
 
1. Introduction 
Explosive loading of a reinforced concrete ammunition magazine may result in break-up and 
launch of debris. Since debris throw is one of the major hazards in case of an accidental 
explosion, it is of high importance within risk assessment tools. The Klotz Group (KG) has 
asked TNO Defence, Security and Safety and Fraunhofer Ernst-Mach-Institute (EMI) to 
develop the KG Software. This has been carried out in two joint projects in 2007 and 2008. 
With this software tool the debris hazard from RC structures in the event of an internal 
detonation can be quantified. The KG Software is the result of state of the art knowledge and 
available test data from a number of trials.  
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The KG Software is based on the KG Engineering tool (Van Doormaal, 2006) and the source 
function theorem formulation of the debris distribution (Van der Voort, 2008). The KG 
Engineering tool describes the distributions of debris mass, launch velocity and launch angle 
in dependence of the loading. These have been obtained by means of backward calculation. 
The source function theorem is an efficient method to derive the debris density from 
trajectory calculations. The calculation kernel has been developed by TNO (Van der Voort, 
2007) and the user interface including a backward calculation module by EMI (Pfanner, 
2007).  
 
A typical output screen of the KG Software is shown in Figure 1, illustrating a top view of a 
typical throw pattern (debris density in horizontal plane). Output is generated for the 10 Sci 
Pan mass bins, and can be presented individually or accumulated. Besides the debris density, 
the impact angle, impact velocity and impact energy can be presented.  
 

 
Figure 1. KG Software v1.0 output screen with a top view of the debris density 
 
The development of the KG Software has been reported in a large number of papers over the 
last years, as listed in the references (DDESB Explosive Safety seminar in 2006 and 2008 and 
ISIEMS in 2007). The KG Software has also been described in the NATO manual AASTP-4, 
2008.  
 
This paper describes a number of new features which are currently being implemented in the 
KG Software. The first three are related to risk assessment application (Van der Voort, 2010-
1). These are: 

• The possibility to determine the influence of a sloped terrain 
• The possibility to take the influence of a barricade at either the PES (Potentially 

Explosive Site) or the ES (Exposed Site) into account 
• The possibility to determine the number of hits at a predefined ES  

These extensions involve adaptations in both the calculation kernel and the user interface, and 
are described in Section 2, 3 and 4, respectively. Figure 2 gives an impression of the model 
input required for these new features.  
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Figure 2. Overview of new input for the KG Software v1.0 related to sloped terrain, 
barricades, and number of hits (top view and side view respectively). 
 
Furthermore, areas for improvement have been identified in relation to the trajectory 
calculations. The KG Software v1.0 predicts unrealistic high launch velocities for small 
debris. This is the result of an inadequate physical description of the initial stages of debris 
motion. In this regime a dense debris cloud is present, and the mutual influence of the debris 
has to be taken into account. As an alternative the ‘ballistic filtering’ model has been 
proposed (Van der Voort, 2010-2). This model is described in Section 5 and has been 
implemented in a research version of the KG Software. The model is compared to 
experimental results, and the assumptions in the model are optimized. A decision whether the 
ballistic filtering model should be included in a new version of the KG Software will be taken 
during the KG Fall 2010 meeting. 
 
For the long term the KG aims to further extend the KG Software with models for the 
interaction of primary fragments from cased ammunition with the RC structure. Experimental 
and numerical research in this area is currently being carried out. Also other types of storage 
structures are of interest, such as ISO containers. The status of the research in this area is 
presented by (Tatom, 2010).  
 
2. Sloped terrain 
The first new feature is the possibility to determine the influence of a sloped terrain, in order 
to enhance the applicability of the software in various countries. For each of the four sides of 
the PES (j=1..4) a fixed terrain slope αTj has to be entered between -45° and 45°. The impact 
distances are determined as follows. Each debris trajectory is linearized between time step ‘n-
1’ (just above the slope) and time-step ‘n’ (just below the slope). The impact distance is then 
obtained as the intersection r* between the linearized trajectory and the slope (Figure 3): 
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Figure 3 . Illustration of numerical method for determination of the impact distance. 
 
The impact distances are measured along the radial direction (r) in the horizontal plane, i.e. 
not along the slope itself. The debris density and impact angle are calculated for a locally 
horizontal surface, i.e. as seen from above. This is realistic since exposed sites on a slope are 
also always placed on a locally horizontal surface! Figure 4 shows that the impact angle at the 
bottom of the exposed site geometry is always negative for negative slopes (downhill). This 
observation is expected to hold true for all impacts on small exposed sites for realistic 
geometries. For positive slopes (uphill) both positive and negative impact angle are possible.  

αT3

r 

αT1

αimpact

αimpact

Positive slope
Negative impact angle

Positive slope
Positive impact angle

αT3

r αimpact

Negative slope
Negative impact angle

αT3

r 

αT1

αimpact

αimpact

Positive slope
Negative impact angle

Positive slope
Positive impact angle

αT3

r αimpact

Negative slope
Negative impact angle  

Figure 4. The possible combinations of terrain slope and impact angle.  
 
Figure 5 gives an illustration of the influence of a -15, -5, 5 and 15° sloped terrain on the 
debris density. The results show the decreasing impact distances with increasing terrain slope. 
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Figure 5. Illustration of the influence of a sloped terrain.  
 
3. Barricades at PES and ES 
Barricades at the PES have to be specified by setting the barricade height and its distance from 
the PES (Figure 2). This can be done for each of the four sides of the magazine separately. 
From this information the so-called ‘barricade blockage angle’ is calculated, i.e. the maximum 
vertical launch angle that is ‘blocked’ by the PES barricade. Barricades are assumed to be 
impenetrable and stationary during the explosion. Because this approach relies on the 
assumption of straight line trajectories, the barricade has to be specified within a certain 
maximum range from the PES. The exact requirements are not discussed in detail in this 
paper. Furthermore the relevant intervals of the azimuthal angle (in the horizontal plane) that 
are blocked by the barricade have to be defined. An example for realistic barricades is given in 
Figure 6, showing the plane of launch angles (-90° ≤ α ≤ 90°) versus azimuthal angles (0° ≤ β 
≤ 360°). The top part of the figure shows the barricade blockage angles αbj and the relevant 
azimuthal angle intervals ejsj βββ ≤≤ . In the brown parts of the graph all debris is ‘blocked’ 
by barricades.  
 
The bottom part of the figure gives a schematic representation of the source function for wall 
debris ),( βαn , which represents the distribution of wall debris over azimuthal angles and 
launch angles. The function gives the (number) density of debris per solid angle. Within the 
red circles the source function has large values, i.e. a large amount of debris is thrown in these 
directions. The source function is centered around the wall normal directions (with the average 
launch angle tilted slightly upwards).  
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Figure 6.  Illustration of PES barricades in the α-β plane (top). Illustration of the 
source function for wall debris in the α-β plane (bottom), not to scale. 
 
The next step in the calculation of the influence of the PES barricades, is the definition of a 
reduced source function ),( βαredn , by setting the source function ),( βαn  to zero for 
values of α and β that are ‘blocked’. Each launch angle is coupled to an impact distance by the 
vertical launch angle function )(rα . This function is determined with multiple forward 
trajectory calculations for a variety of launch angles. The impact distances depend on the 
mass (bin) and velocity of the debris, and on the terrain slope discussed in Section 2. For each 
mass bin debris launched just over the barricade (blockage angle) is coupled to an impact 
distance. Below these distances no debris will impact, hence ‘islands of debris’ are generated 
above these distances. If the barricade blockage angles are large enough virtually all debris 
will be blocked.  
 
The reduced source function directly leads to a reduced debris density field, using the source 
function theorem (Van der Voort, 2008-1 & 2008-2): 
 

rr
rrnr red

red ∂
∂
⋅

⋅
=Φ

ααβαβ )(cos)),((),(    (2) 

 
The source function theorem is illustrated in Figure 7. It can be derived by considering an 
infinitesimally small surface element βαα dd ⋅⋅cos  on the unit sphere of launch angles and 
azimuthal angles. This element is connected by debris trajectories to a corresponding surface 
element βddrr ⋅⋅  in the horizontal plane. Through both surface elements an equal number 
of debris is propagating drdrrddn ⋅⋅⋅Φ=⋅⋅⋅ βββααβα ),(cos),(  which leads to 
Equation (2) for infinitesimal elements. The derivation shows that infinitesimal surface 
elements at launch are assumed to be linked uniquely to surface elements at impact. This 
holds true in the most general case only if flat and high trajectories for a given mass (bin) are 
considered separately, since both of them can reach the same surface element in the plane. In 
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the present case, this distinction is not necessary, since we consider each wall (and the roof) 
of the PES separately.  
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Figure 7. Illustration of the source function theorem 
 
Figure 8 gives an illustration of the influence of a barricade blockage angle of -3, 3, 9 and 
15°. The results show the formation of ‘islands’ of debris for increasing barricade blockage 
angles. 
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Figure 8. Illustration of the reduced debris density due to PES barricades 
 
Barricades at the ES can be specified by a barricade height and distance from the ES, just as 
for the PES. However, it was decided to use rectangular barricades (Figure 2). The influence 
of the ES barricades is indicated in Section 4. 
 
4. The number of hits 
The ES is modeled as a rectangular box, and has to be specified by its dimensions, 
orientation, and barricades (Figure 2). Output is generated for two sides and the ‘roof’ of the 
ES. The ES dimensions can be chosen to match for example the human body or a building. 
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The number of hits at an ES can be calculated by integrating the reduced source function over 
the angular intervals that cover the ES. 
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maxmin ESES βββ ≤≤  azimuthal angle interval occupied by the ES 

maxmin ESES ααα ≤≤  launch angle interval occupied by the ES 
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Figure 9. Illustration of PES barricades in the α-β plane (top) including angular interval of 
ES. Illustration of the source function for wall debris in the α-β plane (bottom) including angular 
interval of ES. 
 
The angular interval of an ES component is illustrated by the blue area in Figure 9. The 
azimuthal angle interval is determined straightforward from the ES dimensions and the 
distance from PES to ES. The launch angle interval is related to the function )(rα  which was 
introduced in Section 3. Because some ES components extend over the height (z) this 
function has to be extended to ),( zrα . A distinction is made between the close-in regime and 
the far field regime for the computation of the launch angle.  
 
Close-in: 
In this regime the trajectories are well approximated by straight lines and the function 

),( zrα  can be derived in a straight forward manner from Figure 10. In the KG Software a 
PES wall is represented by a point source of debris at the centre of the wall (Figure 2). The 
angle ,close in jα −  is the launch angle of debris propagating in a straight line from the point 
source towards the ES component at height z . Note that z is defined here relative to the 
(sloped) terrain, while it was defined relative to the ground level at the source in Figure 3. 
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Figure 10. Close-in regime for debris launched from a debris source at a height h0 + h/2. h0 is 
the magazine elevation; h is the magazine heigth.  
 
Far field: 
The far field trajectories can not be approximated with straight lines. To allow for fast 
computations only )(rα  at z = 0 is stored, while ),( zrα  is estimated with a Taylor 
expansion around z = 0: 

z
rzrzr
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The derivative in equation (5) is estimated with the following algorithm (Figure 11) 

• Perform forward trajectory calculations for impact locations behind the ES 
• Register for each impact location also the impact angle 
• Backward calculate height h* of the trajectory at the ES center using a straight line 

approximation 
• If h* exceeds the ES height stop the procedure 
• Then estimate the derivative as follows: 
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Figure 11. Algorithm for estimation of the launch angle interval in the far field regime. 
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With the azimuthal angle and the launch angle intervals known, the integral (Equation 3) can 
be evaluated by discretization of the source function. In summary, this section showed how 
the number of hits at the wall and the roof of the ES can be computed. We did however not 
yet consider barricades at the ES. 
 
The same methodology used to compute the launch angle interval for debris that hits an ES 
component can be used to determine the debris that hits a barricade at the ES. In this way 
blocking angles resulting from a barricade at the ES can be computed. These blocking angles 
are then added to the reduced source function which already takes into account the barricades 
at the PES. This leads to a new reduced source function which takes both the barricades of 
PES and ES into account.  
 
5. Ballistic Filtering 
Conventional models describing the flight of debris are based on the assumption of individual 
debris motion. However, the debris cloud originating from a reinforced concrete wall is 
initially very dense. As a result debris trajectories can not be considered independently at 
these stages. Comparing conventional models with experimental (pick-up) data has shown 
that small debris requires unrealistic high launch velocities to reach the observed impact 
distances. An example is given in Figure 12 for the Kasun II trial with 80 kg PETN in a 8 m3 
cubicle RC structure. The KG Software predicts launch velocities for mass bin 10 that are 
much larger than what is considered realistic (for example the characteristic velocity DLV = 
121 m/s). The excess depends on the chosen type of representative mass (either maximum, 
middle or average). The largest excess values are found for the average mass (which is the 
smallest representative mass). 
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Figure 12. Launch velocity predicted with KG Software v1.0 for the 80 kg Kasun II trial, for 
mass bins represented by their maximum, middle or average mass. 
 
The developed ‘ballistic filtering’ model gives a more realistic description of the initial stages 
of debris throw. It models the transition phase from an entire wall (slab) to a debris cloud and 
finally to individually moving debris.  
The model assumes that the wall is launched with a uniform initial velocity equal to the DLV 
(Van Doormaal, 2006). The main parameter in the model is the so-called ‘ballistic coefficient’ 
κ, which occurs in the equations of motion, and represents the influence of drag. In general κ 
can be formulated as follows.  
 

( )( )
2

D aC M AM
m

ρκ ⋅ ⋅
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⋅
      (7) 



34th DoD Explosives Safety Seminar 2010, Portland, Oregon 

 11

With: 
Average presented area  A  
Mass    m (middle, maximum or average)  
Density of air   aρ    
Drag coefficient   DC  
Mach number    /M v c=  
Velocity of sound  c  
 
In the ballistic filtering model the ballistic coefficient of the debris cloud is initially equal to 
that of an intact wall, which can be written as: 
 

,
2

Dwall a
wall

c wall

C
d
ρκ

ρ
⋅

=
⋅ ⋅

      (8) 

since WHA ⋅= and  wallc dAm ⋅⋅= ρ   
 
where:  
Thickness of wall walld  
Density of concrete ρc 
 
Figure 13 gives an illustration of the expansion of a wall to a debris cloud with an expansion 
angle σd. For zero expansion angle the ballistic coefficient of the wall would not change.  
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Figure 13. Wall (left) and debris cloud (right). 
 
For a finite expansion angle, the area to mass ratio of the debris cloud increases with distance 
r, which results in the following model for the ballistic coefficient (using the geometry at r = 0 
and r): 
 

( ) ( )( ) ⎟⎟
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⎞
⎜⎜
⎝

⎛
⋅

⋅⋅+⋅⎟
⎠
⎞

⎜
⎝
⎛ +⋅⋅+⋅=

WH
rr

HW
r ddwallcloud

2
2tan411tan21)( σσκκ

 (9) 
 
By a comparison with experimental data it was concluded that the optimal value for dσ  is 
close to 1.5°. At a certain distance the ballistic coefficient of the cloud will exceed the 
ballistic coefficient of the individual debris. This will start at the larger mass bins and 
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continue towards the smaller mass bins. The ballistic coefficient of the debris is parameterized 
using the shape number:  
 

3/13/22 m
CS

c

aDn
debris

⋅⋅
⋅⋅

=
ρ

ρ
κ

       (10) 
 

3/2

⎟
⎠
⎞

⎜
⎝
⎛=

m
AS c

n
ρ

        (11) 
With: 
Shape number   Sn  
Drag coefficient   CD  
Density of air   ρa   
 
The drag coefficient is in general a function of the Mach number. Figure 14 shows empirical 
models for three different shapes. The dimensionless shape number and drag coefficient 
model have been chosen based on a literature review and on optimization to experimental 
data. This is not further elaborated in this paper. It was concluded that the assumption of 
rotating cubes having a shape number of 1.5 in combination with the drag coefficient for a 
cube is the best option. 
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Figure 14. Drag coefficient for spheres, natural fragments and cubes as a function of the 
Mach number.  
 
When the ballistic coefficient of the debris cloud exceeds that of individual debris, the debris 
will start to exit the cloud at the front, and move individually. The ballistic filtering model has 
been implemented in a research version of the KG Software. A comparison with KG Software 
v1.0 is shown in Figures 15 and 16. The simulations are carried out for the Sci Pan 1 trial 
which concerned the detonation of a bare charge of about 12 tonnes in a reinforced concrete 
structure with dimensions of about 10 by 10 by 5 m. 
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Sci Pan 1 
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Figure 15.  Impact velocity versus distance calculated with the KG Software v1.0. 
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Figure 16.  Impact velocity versus distance calculated with the research version for Sn = 1.5, 
drag coefficient for cubical shape, and σd = 1.5°. 
 
Figure 15 shows the impact velocity of debris versus distance, predicted with KG Software 
v1.0. Note the (unrealistic) high impact velocities for the small masses (mass bins 9 and 10). 
Figure 16 shows the more realistic behavior of a wall/debris cloud that is launched as a whole 
with the DLV and propagates according to the ballistic filtering model. At launch the impact 
velocities are equal as intended by the modeling. Initially also the decay rate of the velocity is 
equal for all mass bins. Then starting with the larger mass bins a smooth transition takes place 
between collective and individual motion of the debris.  
 
Figure 17 shows a comparison in terms of the debris density. Although the trajectory 
description has significantly changed, the differences in the debris density are only minor.  
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Sci Pan 1
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Figure 17.  Debris density versus distance calculated with KG Software v1.0, and with the 
research version for Sn = 1.5, drag coefficient for cubical shape, and σd = 1.5° 
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Figure 18.  Debris density versus distance calculated with the research version for Sn = 1.5, 
drag coefficient for cubical shape, and σd = 1.5°. Experimental results are also shown. 
 
Figure 18 compares the calculation results from the ballistic filtering model to experiments. 
The resemblance with the experimental data is of a similar quality as the KG Software v1.0. 
However, the ballistic filtering model has the following advantages over the current modeling 
in KG Software v1.0: 

• More realistic prediction of trajectories, and more realistic launch and impact 
conditions. This is especially relevant for the use of the KG Software as a 
consequence model in risk assessment. 

• No more dependence on backward calculations and related launch assumptions. 
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• Freedom to vary and optimize the above mentioned parameters to experimental data.  
 
A decision whether the ballistic filtering model should be included in a new version of the KG 
Software will be taken at the KG Fall meeting 2010. 
 
6. Conclusions 
An overview has been given of recent developments of the KG Software.  
 
A number of these new features is related to risk assessment application. The first one is the 
possibility to define a sloped terrain, to enhance the applicability of the software in various 
countries. Furthermore the possibility to calculate the number of hits at user-defined exposed 
sites, and the possibility to specify barricades at the PES have been added. It has been 
discussed how barriers at the PES can be taken into account. The new features have been 
implemented in a joint project by TNO and EMI. 
 
In addition to these new features, the paper also addresses the improvement of the debris 
trajectory prediction. Conventional models describing the flight of debris are based on the 
assumption of individual debris motion at launch. However, the debris cloud originating from 
a reinforced concrete wall is initially very dense. As a result debris trajectories can not be 
considered independently at these stages. Comparing conventional models with experimental 
data has shown that small debris requires unrealistic high launch velocities. The developed 
‘ballistic filtering’ model gives a more realistic description of the initial stages of debris 
throw. The model has been implemented in a research version of the KG Software and has 
been compared to trial data, showing good correlation. 
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Introduction
• Detonation in RC structure

• Break-up and debris throw is dominant effect
• Important in risk assessment

• KG Software
• Developed by TNO and EMI
• Sponsored by Klotz Group (KG)

• Based on
• KG E-Tool

• Mass, velocity, angle
• Source function theorem

• Output (10 Sci Pan mass bins)
• Debris density
• Impact velocity / energy
• Impact angle



Introduction

• Recent development of the KG Software (current paper)
• Topics:

• Sloped terrain
• PES barricades
• Calculations at ES

• Number of hits
• Barricades at ES

• Ballistic Filtering

• Future developments of the KG Software
• Interaction of cased ammunition with storage structure
• Other PES: ISO containers, brick

• Paper John Tatom
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New Input
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New Input
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Sloped terrain
• Debris density and impact angle calculated in ‘local’ horizontal plane
• Flat terrain or negative slope: only negative impact angle possible
• Positive slope: negative and positive impact angle possible
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Sloped terrain

• Adjusted algorithm to find trajectory-terrain intersection
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Sloped terrain

5° slope-5° slope

-15° slope
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PES barricades
• Calculation of the barricade blockage angle
• Reduced source function for wall debris
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PES barricades
• Blocking all launch angles (entire wall 1)

• Blocking all launch angles (half of wall 1)
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PES barricades
• Barricade blockage angle linked to impact distances
• Formation of ‘islands of debris’

-3° barricade
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Number of hits at ES

• Option: Shadow area method
• Calculates all debris impacting in shadow of object
• Fails for small negative and for positive impact angles
• Important failure in combination with sloped terrain
• Rejected !

• Instead: 
• The number of hits is equal to the (reduced) source function, 

integrated over the azimuthal and launch angles that it occupies

shadow

object

α
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Number of hits
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Ballistic Filtering
• Trajectory calculations based on assumption of individual motion

• No mutual influence

• Ballistic Filtering
• Solid wall (slab) launched with uniform velocity: DLV
• Expansion of debris cloud
• Transition from debris cloud to individual debris

Debris cloud (coupled trajectories)

Individual 
trajectories

Solid wall



Ballistic Filtering

• Without ballistic filtering
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Ballistic Filtering

• With ballistic Filtering 
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Sci Pan 1
• Comparison of debris density (Ballistic Filtering vs. trial data)
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Conclusions
• Recent developments of the KG Software

• Possibilities for risk assessment application:
• Sloped terrain
• PES barricades
• Number of hits at ES

• Fundamental improvement of trajectory calculations:
• Ballistic filtering advantages: 

• More realistic trajectory calculations
• Important in risk analysis
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