Improving Safety of Demil Operations Through Automation

Mark M. Zaugg
July 14, 2010
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUL 2010</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improving Safety of Demil Operations Through Automation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Dynamics Ordnance and Tactical Systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>See also ADM002313. Department of Defense Explosives Safety Board Seminar (34th) held in Portland, Oregon on 13-15 July 2010, The original document contains color images.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>b. ABSTRACT</td>
<td>c. THIS PAGE</td>
<td>SAR</td>
</tr>
</tbody>
</table>
Introduction

- Demil True/False Test
- Discussion of Test Answers
- Challenges of Demil
- Impact of Demil Challenges on Operations
- Addressing Demil Challenges through Automation and Unattended Operations
- Summary
- Conclusion
Demil True/False Test

1. Demil is simply reverse assembly! T/F

2. Being successful in ammunition manufacturing ensures you can be successful in ammunition demil! T/F

3. Everything you need to know to demil a munition can be obtained from the TDP! T/F
1. Demil is simply reverse assembly! T/F
 False – Munitions won’t come apart like they were put together
 - Use of cement, crimping, staking, etc.
 - Explosive hazards present on all parts of disassembly during demil vs. present primarily on final assembly
2. Being successful in ammunition manufacturing ensures you can be successful in ammunition demil! T/F

False – In general, ammunition manufacturers who have tried demil are no longer in demil business

- Knowing how you put munitions together doesn’t necessarily translate to knowing how to take it apart – refer to Question 1. comments
- Also, assembly knowledge often not available at time of demil
3. Everything you need to know to demil a munition can be obtained from the TDP! T/F
False – TDPs, however carefully prepared, have missing details, undocumented changes, undocumented variation in materials, dimensions, quality defects, and other variations. Don’t address changes due to aging, deterioration, impacts from various environmental exposures, etc.
Challenges of Demil

- Demil involves munitions that are:
 - Outdated/obsolete
 - Defective
 - Deteriorated
 - Not designed for demil

- Each of the above conditions present special problems
Impact of Demil Challenges on Operations

- Outdated/obsolete
 - Incomplete/missing TDP information
 - No inert items available for equipment prove-out – must use live items
 Examples – M23 VX Land Mine – punching through burster cover plate to remove booster pellet
 - TDP showed plastic burster cover plate
 - Large number had metal burster cover plate
Impact of Demil Challenges on Operations

Examples – MLRS Warhead

- No inert warheads for use to develop and test warhead downloading equipment – used live warheads
- No indication grenade foam supports glued into warhead casing
Impact of Demil Challenges on Operations

Examples – Cluster Bomb Disassembly

- No inert cluster bombs for use to develop and test bomblet disassembly equipment – used live bomblets
- Bomblets loaded in water in dispenser – some rusted – Voids filled with wood blocks & foam
Impact of Demil Challenges on Operations

● Defective
 ➢ May be more sensitive to handling operations
 Example – Fuzed 105mm projectiles had fuzes spun on at rotation speed that armed the fuzes
 ❏ Required totally remote disassembly operations
 ✓ Box opening
 ✓ Removal of complete rounds from fiber tubes
 ✓ Removal of fuze
Impact of Demil Challenges on Operations

- Deteriorated
 - Present unique and unknown conditions, e.g., explosives in threads, more sensitive compounds, poor structural integrity

 Extreme examples –
 - Corroded 20mm cartridges – required emergency demil by OD
 - Explosive D projectiles with explosives in fuze threads – caused explosion during defuzing operation
Impact of Demil Challenges on Operations

Corroded 20mm HE Cartridges
Impact of Demil Challenges on Operations

- Not designed for demil
 - Use of cement, staking, crimping makes disassembly more difficult
 - Detents/flats OK for assembly may be insufficient for disassembly
 - Insufficient protection to keep PEP out of threads
 - No access to fuze - Inability to determine if item is in safe condition
Impact of Demil Challenges on Operations

Example – MK 344 Bomb Fuze

• Booster closure screwed into housing and staked

• Drilling out stakes still wouldn’t allow disassembly by unscrewing – detent holes too small – tooling broke – cap also broke
Impact of Demil Challenges on Operations

MK344 Bomb Fuze
- Difficult to remove booster closure
Impact of Demil Challenges on Operations

Example – MLRS Warhead

• Fuze threads glued and staked – required cutting fuze housing off warhead

• Foam grenade supports for M77 grenades glued into warhead casing
Impact of Demil Challenges on Operations

Example – CBU Bomblets

• Bomblet halves crimped
Impact of Demil Challenges on Operations

Example – CBU Bomblets

• Fuze glued into bomblet
Impact of Demil Challenges on Operations

Example – M483 155mm ICM Projectile

• Safety pins removed from grenade fuzes during final assembly
Addressing Demil Challenges thru Automation/Unattended Operations

- Automated/unattended operations are critical when operation being performed:
 - Could cause initiation of a munition
 - Requires large application of force for disassembly
 - Involves cutting/shearing/sawing
 - Involves suspect conditions e.g., explosives in threads, sensitive components, potentially armed conditions, etc.
Addressing Demil Challenges thru Automation/Unattended Operations

- Automated operations can be justified when:
 - Quantity of munitions to be demilled makes development of automated equipment cost effective and efficient
 - Involves multiple process steps where initiation is possible
 - Risks to personnel from operations is high
- Operations are conducted unattended in Safety Cells – bays enclosed by concrete or steel walls
Addressing Demil Challenges thru Automation/Unattended Operations

- Examples of efficient, cost effective automated demil operations at GDOTS Munition Services
 - MLRS automated demil operations
 - Warhead download – removal of 644 M77 grenades
 - M77 Grenade disassembly
 - Arming ribbon removal
 - Removal of fuze
 - Removal of copper cone
 - Thermal treatment of grenade explosives
 - Rocket Motor sawing and thermal treatment
Addressing Demil Challenges thru Automation/Unattended Operations

- M483 155mm ICM projectile automated demil operations
 - Projectile download – removal of 88 M42/M46 grenades
 - M42/M46 Grenade disassembly
 - Arming ribbon removal
 - Removal of fuze
 - Removal of copper cone
 - Thermal treatment of grenade explosives
Addressing Demil Challenges thru Automation/Unattended Operations

MLRS/ICM Disassembly Building
Addressing Demil Challenges thru Automation/Unattended Operations

- M26 MLRS Rocket Motor Cutting and Thermal Treatment
 - Rocket motor cutting – underwater saws
 - Conducted unattended in containment cell
 - Rocket motor segment thermal treatment
 - Segments burned unattended in thermal treatment units
 - Acid exhaust gases neutralized in APCS
 - Particulate removed from exhaust gases in APCS
Addressing Demil Challenges thru Automation/Unattended Operations

Rocket Motor Cutting and Thermal Treatment Building
Addressing Demil Challenges thru Automation/Unattended Operations

● Unattended operations are used when:
 ➢ Quantity of munitions to be demilled is small – doesn’t warrant development of automated equipment
 ➢ Still involves process steps where initiation is possible
 ➢ Risks to personnel from operations is high
● Operations are conducted unattended in Safety Cells – bays enclosed by concrete or steel walls
Addressing Demil Challenges thru Automation/Unattended Operations

- Examples of unattended operations at GDOTS Munition Services
 - Disassembly of pyrotechnic munitions
 - 4.2” illuminating mortar disassembly
 - Photoflash cartridge cutting
Addressing Demil Challenges thru Automation/Unattended Operations
Summary

- Demil operations are difficult with many more challenges and hazards than are present with munitions assembly operations.
- Demil requires the application of sound engineering principles for equipment design.
- Demil requires hazardous operations to be conducted unattended in safety cells.
- Automation of demil operations is justifiable with large numbers of like munitions.
- Unattended operations used with small quantities.
Conclusion

- Demil operations can be accomplished safely through the use of properly designed automated equipment in safety cells, or the use of unattended disassembly equipment in safety cells.
- Understanding all of the potential hazards and consequences associated with demil enables the proper design of demil operations and equipment.