SURVIVABILITY ENHANCED RUN-FLAT VARIABLE FOOTPRINT TIRES

Presented by: James Capouellez (US ARMY, RDE-COM, TARDEC)
Dr. Jon Gerhardt (American Engineering Group)

Date: August 2010

DISTRIBUTION STATEMENT A: Approved for Public Release
Survivability Enhanced Run-Flat Variable Footprint Tires

Abstract

Security Classification
- **a. Report**: Unclassified
- **b. Abstract**: Unclassified
- **c. This Page**: Unclassified
- **17. Limitation of Abstract**: SAR
- **18. Number of Pages**: 20
- **19a. Name of Responsible Person**: Unclassified

Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
Current Run-Flat Technology

Military Run-flat Tire with Insert [1]

Comparison of Conventional Tire to a Stiff Sidewall Tire [2]
Current Run-Flat Technology Issues

- WEIGHT
- LOGISTICS BURDEN
- SHOCK & VIBRATION
- SIZE LIMITATION
- PERFORMANCE

HMMWV Run-flat Insert Special Tool and Installation [2]
Spiral Spring Modeling

Side view of single wire of tire spring

Isometric view of the 10 circular closed springs
Load and Boundary Conditions Applied on the Model for a First Order Foot Print Analysis
Concept #2: Load-Deflection Testing on Prototype Run Flat Tire with Spiral Spring with 0 Psi inflation pressure (185/80R13 Passenger Tire).

Load Deflection @ Four Positions, Wire Only, No Air
Carbon Fiber Reinforced Tire

- Composite Ring-Reinforced tire
- Comprising of carbon, which is encapsulated as composite hoops into the tire tread
- The undertread layer adheres the tire tread to the primed encapsulated composite hoops. Composite hoops will be spaced above belts in the undertread region.
- Carbon fiber is utilized with the binder so that the resulting composite has high modulus and high strength.
Survivability Enhanced Run-Flat Variable Footprint Tire Sectional View
FEA of Inflated Tire
Carbon Fiber Hoop Tire

Carbon Fiber Manufacturing
Testing

Load Deflection

DURABILITY

UNCLASSIFIED
Stress in Carbon Fiber Hoop

Steel Belt Orientations

Mises Stress generated in carbon fiber
Max – 168.4 MPa
Maximum Normal Stress (S33) in the Core Side = 0.9154 MPa

Maximum Normal Stress (S33) in the Tread Side = 0.2417 MPa
Foot Print Area – Smooth Tire

Contact Area (CAREA) = 21.08934 sq inch for half-tire
Total Contact Area = 42.17868 sq inch
Total Foot Print Area (Contact Area + Void Area) = 7.395251 in x 6.571889 in
= 48.600780 sq inch

Maximum Contact Pressure = 0.6612 MPa = 95.89 psi
Average Contact Pressure = 2335/42.17868 = 55.35 psi
Benefits

- SURVIVABILITY
- RUN-FLAT RANGE GREATER THAN MISSION RANGE
- POTENTIALLY NO DEGRADATION IN PERFORMANCE AT ZERO AIR PRESSURE
- UNSPRUNG MASS REDUCTION (ELIMINATE RUN-FLAT)
- REDUCED LOGISTICS BURDEN
- SAFETY (ZERO OR SIGNIFICANTLY REDUCED AIR PRESSURE)
- PERFORMANCE
- POTENTIAL TO BE USED ON VEHICLES THAT DON’T CURRENTLY HAVE RUN-FLATS
Survivability Enhanced
Run-Flat Variable
Footprint Tires

TARDEC
DEVELOPING TOMORROWS
TECHNOLOGY TODAY
CONTACTS:

James Capouellez
james.capouellez@us.army.mil
US Army RDE-COM
TARDEC, AMSRD-TAR-D, MS 233
Warren, MI 48397-5000

Dr. Jon Gerhardt
jon@engineering-group.com
American Engineering Group
934 Grant St, Suite #101,
Akron, OH 44311, USA

REFERENCES
http://www.army-technology.com/contractors/tracks/runflat/
15 July 2010.