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1.0 INTRODUCTION 
 
NASA’s Constellation Program plan currently calls for the replacement of the Space Shuttle with 
the ARES I & V spacecraft and booster vehicles to send astronauts to the moon and beyond. Part 
of the ARES spacecraft is the Orion Crew Exploration Vehicle (CEV), which includes the Crew 
Module (CM) and Service Module (SM). The Orion CM’s main propulsion system and supplies 
are provided by the SM. The SM is to be processed off line and moved to the Vehicle Assembly 
Building (VAB) for stacking to the first stage booster motors prior to ARES move to the launch 
pad. The new Constellation Program philosophy to process in this manner has created a major 
task for the KSC infrastructure in that conventional QD calculations are no longer viable because 
of the location of surrounding facilities near the VAB and the Multi Purpose Processing Facility 
(MPPF), where the SM will be serviced with nearly 18,000 pounds of hypergolic propellants.  
 
Engineering Analysis Inc. (EAI), under contract with ASRC Aerospace, Inc. in conjunction with 
the Explosive Safety Office, NASA, Kennedy Space Center (KSC), has carried out an analysis of 
the effects of explosions at KSC in or near various facilities produced by the spontaneous 
ignition of hypergolic fuel stored in the CEV SM.  The facilities considered included 
 

• Vehicle Assembly Building (VAB) 
• Multi-Payload Processing Facility (MPPF) 
• Canister Rotation Facility (CRF) 

 
Subsequent discussion deals with the MPPF analysis. The MPPF complex, constructed by NASA 
in 1994, is located just off E Avenue south of the Operations and Checkout (O&C) building in 
the Kennedy Space Center industrial area.  The MPPF includes a high bay and a low bay.  The 
MPPF high bay is 40.2 m (132 ft) long x 18.9 m (60 ft) wide with a ceiling height of 18.9 m (62 
ft). The low bay is a 10.4 m (34 ft) long x 10.4 m (34 ft) wide processing area and has a ceiling 
height of 6.1 m (20 ft).  The MPPF is currently used to process non-hazardous payloads.  Figure 
1 provides a view of the MPPF from the northwest. An interior view of the facility is shown in 
Figure 2.   
 
The study was concerned with both blast hazards and hazardous fragments which exceed 
existing safety standards, as described in Section 2.0.  The analysis included both blast and 
fragmentation effects and was divided into three parts as follows: 
 

• blast  
• primary fragmentation 
• secondary fragmentation 

 
Blast effects are summarized in Section 3.0, primary fragmentation in Section 4.0, and secondary 
fragmentation (internal and external) in Section 5.0.  Conclusions are provided in Section 6.0, 
while references cited are included in Section 7.0.  A more detailed description of the entire 
study is available in a separate document [1].  The study conformed to certain guidelines 
specified by NASA/KSC [2]. 
 
______________________________________________________________________________ 
* Numbers in brackets refer to references cited as presented in Section 7.0.  



 
Figure 1.  Multi-Payload Processing Facility (MPPF) 



 
 

Figure 2.  CEV 606 Short Stack Surrounded By Access Stand Positioned Within MPPF Highbay 



2.0 SAFETY STANDARDS 
 
Relevant safety standards [3 - 6] specify overpressure limits for inhabited buildings from 0.9 to 
1.2 psi.  Likewise, for fragmentation hazards, fragment impact energies in excess of 58 ft-lbf, in 
number densities greater than 1 per 600 square feet, (as measured in a vertical plane one foot 
wide extending from ground level up to an elevation of 6 feet) are considered hazardous.  For a 
building containing explosives with a TNT equivalence on the order of 1000 lbm

 

, the inhabited 
building distance is 1250 feet from the perimeter of the building.  Figure 3 provides a plan view 
of the explosive safety arc and nearby KSC structures. 

3.0 BLAST EFFECTS 
 
The hypergolic fuel contained within the CEV Service Module with a total mass (including 20% 
design growth margin) of 21,591 lbs, was assumed to detonate with an equivalent yield of 1080 
lbs of TNT.  The CEV was positioned in the Access Stand within the MPPF high bay, as shown 
in Figure 4.  All relevant components of the MPPF, both internal and external, were included in 
the analysis, along with all significant surrounding structures within a range of 1250 feet, or 
slightly further, from the MPPF.  Blast effects were computed by means of the HEXDAM 
software [7].  Five views of the undamaged MPPF structure, as generated by HEXDAM, are 
presented in Figures 5 through 9.  The corresponding five views of the MPPF with blast damage 
are presented in Figures 10 through 15.  As indicated in these last five figures, severe blast 
damage was predicted to much of the roof, as well as all four faces of the MPPF.  
 
With regard to overpressure predictions, both 0.9 and 1.2 psi horizontal contour plots were 
generated at eight different elevations, ranging from 0 to 70 feet.  The maximum ranges for such 
contours occurred at 50 feet, as shown in Figure 16.  As indicated in this figure, the 1.2 psi 
overpressure contour extended out no more than 355 feet from the MPPF perimeter while the 0.9 
psi overpressure contour extended out no more than 436 feet.  The results indicated significant 
hazard to the MPPF itself but no significant hazards to the surrounding buildings would result 
from blast effects. A summary of blast hazards is provided in Table 1. 
 

Table 1.  Summary of MPPF Blast Hazards 

                                  FACILITY #/NAME                                            HAZARDS       . 
M7-1104/MPPF High Bay       Moderate-to-Severe 
M7-1104/MPPF North Office            None-to-Severe 
M7-1104/MPPF Low Bay            None-to-Severe 
M7-1104/MPPF Flight Data Control Room        Slight-to-Severe 
M7-1104/MPPF Annex            None-to-Severe 
M7-1357/Multi Operations Support Bldg (MOSB)       None-to-Slight 
M7-1354/Payload Hazardous Servicing Facility (PHSF) Bldg      None-to-Slight 
M7-1355/PHSF Storage Bay              None-to-Slight 
M7-1059/Hypergolic Maintenance Facility        None-to-Slight 
M7-0777/Canister Rotation Facility - High Bay           None-to-Slight 
M7-0777/Canister Rotation Facility - Office Area               None 



 
 

 

Figure 3.  KSC Buildings in Vicinity of MPPF 
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Figure 4.  MPPF Plan View 



 
Figure 5. MPPF Roof 



 
Figure 6.  MPPF North Face 

 



Figure 7.  MPPF East Face 
 



Figure 8.  MPPF South Face 
 



 
 

Figure 9.  MPPF West Face 
 



 
Figure 10.  Damage Plot, MPPF Roof 

 



 
 

Figure 11.  Damage Plot, MPPF North Face 



 
Figure 12.  Damage Plot, MPPF East Face   

 



 
Figure 13.  Damage Plot, MPPF South Face 

 



Figure 14. Damage Plot, MPPF West Face 
 
 



 
Figure 15.  Horizontal Contour Plot, Overpressure (0.9 and 1.2 psi) Elevation 0 Ft. 
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Figure 16.  Horizontal Contour Plot, Overpressure (0.9 and 1.2 psi) Elevation 50 Ft. 
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4.0 PRIMARY FRAGMENTATION 
 
The aluminum components within the CEV Service Module and Spacecraft Adapter were treated 
as a hollow cylinder which was the source of all primary fragments produced by the explosion.  
Characteristics of this cylindrical approximation are given in Table 2.  Analyses of 88 different 
fragment paths were carried out by means of the PriFrag software [8].  A fragment drag 
coefficient of 1.2 was used in this analysis.  The results indicated that 19.27% of the fragment 
paths were blocked by MPPF internal structures but the remaining primary fragments would 
impact and penetrate the MPPF wall at an elevation of approximately 18 feet.  Such primary 
fragments were characterized by impact energies and number densities (as measured in a one-
foot wide vertical plane extending from ground level up to an elevation of 6 feet), which 
remained hazardous at ranges out to 898 feet beyond the MPPF perimeter, as shown in Figure 
17.  These primary fragments appear to represent the most significant hazard to most 
surrounding buildings.  A summary of primary fragmentation hazards is provided in Table 3. 
 

Table 2.  Cylindrical Approximation of CEV 606 Service Module and 
Space Craft Adapter for Primary Fragmentation 

 
Cylinder Outside Diameter (ft)       18.223 
Cylinder Height (ft)         16.8 
Cylinder Wall Thickness (ft)         0.0366 
Cylinder Composition    Aluminum 
Cylinder Mass (lbm
 Spacecraft Adapter    2837.84 

) 

 Service Module (.65 x 4780)  
              Total 5944.84  

3107.00 

 
Table 3.  Summary of MPPF Primary Fragmentation Hazards 

 

 
In carrying out this primary fragmentation analysis a discrepancy in the value of fragment drag 
coefficient was detected and corrected.  This discrepancy resulted from the fact that in certain 

                                   FACILITY #/NAME                                      HAZARDS 
M7-1104/MPPF High Bay               Severe 
M7-1104/MPPF North Office              Severe 
M7-1104/MPPF Low Bay              Severe 
M7-1104/MPPF Flight Data Control Room            Severe 
M7-1104/MPPF Annex              Severe 
M7-1357/Multi Operations Support Bldg (MOSB)            None-to-Slight 
M7-1354/Payload Hazardous Servicing Facility (PHSF) Bldg None-to-Slight 
M7-1355/PHSF Storage Bay           None-to-Slight 
M7-1059/Hypergolic Maintenance Facility         None-to-Slight 
M7-0777/Canister Rotation Facility - High Bay        None-to-Slight 
M7-0777/Canister Rotation Facility - Office Area        None-to-Slight 



standard references [6, 9-14] a value of 0.6 (instead of 1.2) was recommended for primary 
fragment drag coefficient.  This value, however, was based on a nonstandard definition of drag, 
in which a factor of one-half had been omitted.  In two earlier studies of explosions in the MPPF 
[15, 16] this smaller value had been used, resulting in the prediction of significantly greater 
hazardous primary fragmentation ranges. 
 

5.0  SECONDARY FRAGMENTATION 
 
The secondary (internal) fragments were produced by the interaction of the blast wave inside the 
MPPF high bay interacting with the CEV Access Stand.  The generation of secondary (internal) 
fragments is very dependent on the composition and configuration of the internal structures 
within the MPPF High Bay.  Because of their proximity to the explosion, secondary (internal) 
fragments tend to be more energetic then secondary (external) fragments, which tend to be more 
removed from the explosion. The HEXFRAG software [17] was used to carry out the analysis 
along the 21 different fragment paths, shown in Figure 18.  Along 3 of the paths the secondary 
(internal) fragments impacting the MPPF wall did not possess hazardous impact energies and 
could not penetrate the MPPF wall.  Fragments along the remaining 18 paths did possess 
hazardous impact energy, and their impact velocity was sufficient to penetrate the MPPF wall.   
 
The secondary (external) fragments were produced by the interaction of the blast wave with the 
external frangible components of the MPPF high bay, where moderate or severe damage was 
produced.  For purposes of the secondary (external) fragmentation analysis, the MPPF wall was 
assumed to consist of a sheet of corrugated steel.  The HEXFRAG software was used with this 
assumption to carry out the analysis along the same 21 fragment paths previously noted.   
The results from the HEXFRAG runs for the secondary (internal) fragments were combined with 
the secondary (external) fragment results to obtain the total secondary fragment hazardous 
ranges.  As shown in Figure 19, such ranges extended out no more than 420 feet beyond the 
MPPF perimeter.  Such fragments appear to pose a significant hazard to the MPPF itself but no 
hazard to any nearby KSC structures.  A summary of secondary fragmentation hazards is 
provided in Table 4. 
 

Table 4.  Summary of MPPF Secondary Fragmentation Hazards 
 

                                   FACILITY #/NAME                                              HAZARDS        . 
M7-1104/MPPF High Bay                    Severe 
M7-1104/MPPF North Office      Moderate-to-Severe 
M7-1104/MPPF Low Bay      Moderate-to-Severe 
M7-1104/MPPF Flight Data Control Room    Moderate-to-Severe 
M7-1104/MPPF Annex      Moderate-to-Severe 
M7-1357/Multi Operations Support Bldg (MOSB)                 None 
M7-1354/Payload Hazardous Servicing Facility (PHSF) Bldg               None 
M7-1355/PHSF Storage Bay                    None 
M7-1059/Hypergolic Maintenance Facility                  None 
M7-0777/Canister Rotation Facility - High Bay                 None 
M7-0777/Canister Rotation Facility - Office Area                 None 



 
 

Figure 17. Primary Hazardous Fragment Range Distribution 



 
 
 

Figure 18. Secondary Fragment Paths for MPPF 
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Figure 19.  Secondary Hazardous Fragment Range Distribution 

 



6.0  CONCLUSIONS 
 
Based on the results of the analyses described in Section 2.0 through 5.0, the following 
conclusions are reached: 
 

1) Blast hazards are limited primarily to the MPPF. 
2) Primary fragment hazards represent the greatest concern to surrounding KSC 

buildings with ranges extending out to 898 feet beyond the MPPF perimeter. 
 
Secondary hazardous fragment ranges extend out no more than 420 feet and pose minimal hazard 
to nearby KSC structures. 
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• ENGINEERING ANALYSIS INC. (EAI) CARRIED OUT 
EXPLOSIVE SAFETY STUDIES 
• UNDER SUBCONTRACT WITH ASRC AEROSPACE INC.
• UNDER SUPERVISION OF EXPLOSIVE SAFETY 

OFFICE, NASA, KSC

• CONCERNED WITH ORION CREW EXPLORATION 
VEHICLE (CEV) 
• PART OF ARES SPACECRAFT
• TWO COMPONENTS TO BE PROCESSED OFFLINE

• CREW MODULE (CM)
• SERVICE MODULE (SM)

• OFFLINE PROCESSING
• INVOLVES SERVICING OF SM WITH 18,000 POUNDS 

OF HYPERGOLIC FUEL
• CONVENTIONAL QD CALCULATIONS NO LONGER 

VIABLE

BACKGROUND

Engineering Analysis Inc. 1



• PRIMARY CONCERN:  SPONTANEOUS IGNITION OF 
HYPERGOLIC PROPELLANT

• FACILITIES INCLUDED IN EXPLOSIVE SAFETY STUDIES
• VEHICLE ASSEMBLY BUILDING (VAB)
• MULTI-PAYLOAD PROCESSING FACILITY (MPPF)
• CANISTER ROTATION FACILITY (CRF)

• SUBSEQUENT DISCUSSION DEALS WITH MPPF ANALYSIS

BACKGROUND (cont.)

Engineering Analysis Inc. 2



• PREDICT BLAST AND FRAGMENTATION EFFECTS 

PRODUCED BY THE EXPLOSION OF THE 

HYPERGOLIC FUELS CONTAINED IN THE CREW 

EXPLORATION VEHICLE (CEV 606) SERVICE 

MODULE IN THE MULTI-PAYLOAD PROCESSING 

FACILITY (MPPF).

• COMPARE RESULTS WITH CURRENT STANDOFF 

DISTANCE OF 1250 FT FROM OUTER PERIMETER OF 

MPPF.

STATEMENT OF PROBLEM 

Engineering Analysis Inc. 3



FIGURE 1.  MULTI-PAYLOAD PROCESSING FACILITY (MPPF) 4



FIGURE 2.  CEV 606 SHORT STACK SURROUNDED BY ACCESS STAND 
POSITIONED WITHIN MPPF HIGHBAY 5



• OVERPRESSURE LIMITS FOR INHABITED 
BUILDING:  0.9 - 1.2 PSI

• FRAGMENTATION LIMITS
• IMPACT ENERGY:   LESS THAN 58 FT-LBf
• HAZARDOUS FRAGMENT DENSITY:

• LESS THAN 1 FRAGMENT/600 FT2 

• IN VERTICAL PLANE
• ONE FOOT WIDE 
• EXTENDING FROM GROUND LEVEL UP TO SIX FT

• INHABITED BUILDING DISTANCE:  1250 FT, MEASURED 
FROM PERIMETER OF BUILDING CONTAINING 
EXPLOSIVE

SAFETY STANDARDS [1,2,3,4] 
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FIGURE 3.  KSC BUILDINGS IN VICINITY OF MPPF 7
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FIGURE 4.  MPPF PLAN VIEW
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• BLAST EFFECTS

• FRAGMENTATION EFFECTS
• PRIMARY
• SECONDARY

PROBLEM BREAKDOWN
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CALCULATION OF BLAST EFFECTS

Engineering Analysis Inc. 10

• TECHNICAL APPROACH - BASED ON HEXDAM SOFTWARE [6]

• RESULTS
• DAMAGE TO STRUCTURES
• OVERPRESSURE CONTOURS



• MASS OF HYPERGOLIC PROPELLANT (LBm)
• ACTUAL     - 17,992.4 
• 20% DGM*  - 3,598.5
• TOTAL 21,590.9 

• ASSUMED TNT EQUIVALENT (5.0%) (LBm):  1,079.54

• LOCATION:  POSITIONED ON PLATFORM IN 
ACCESS STAND IN MPPF HIGH BAY

• COORDINATES (FT)
• X =    8.366 
• Y = -13.189 
• Z =  20.908 

_____________________
*Design Growth Margin

EXPLOSION CHARACTERISTICS 
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FIGURE 5.  MPPF ROOF 12



FIGURE 6.  MPPF NORTH FACE 13



FIGURE 7.  MPPF EAST FACE
14



FIGURE 8.  MPPF SOUTH FACE
15



FIGURE 9.  MPPF WEST FACE
16



FIGURE # DESCRIPTION                     .

10 DAMAGE PLOT, MPPF ROOF

11 DAMAGE PLOT, MPPF NORTH FACE

12 DAMAGE PLOT, MPPF EAST FACE 

13 DAMAGE PLOT, MPPF SOUTH FACE

14 DAMAGE PLOT, MPPF WEST FACE

INDEX OF GRAPHICAL RESULTS
WITH BLAST DAMAGE 

Engineering Analysis Inc. 17



FIGURE 10.  DAMAGE PLOT, MPPF ROOF 18



FIGURE 11.  DAMAGE PLOT, MPPF NORTH FACE
19



FIGURE 12.  DAMAGE PLOT, MPPF EAST FACE 20



FIGURE 13.  DAMAGE PLOT, MPPF SOUTH FACE
21



FIGURE 14.  DAMAGE PLOT, MPPF WEST FACE
22
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24FIGURE 16.  HORIZONTAL CONTOUR PLOT, OVERPRESSURE 
(0.9 AND 1.2 PSI) ELEVATION 50 FT
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CALCULATION OF PRIMARY 
FRAGMENTATION EFFECTS

Engineering Analysis Inc. 25

• TECHNICAL APPROACH - BASED ON PRIFRAG SOFTWARE

• RESULTS
• PRIMARY FRAGMENT CHARACTERISTICS
• PRIMARY FRAGMENT PATHS
• HAZARDOUS FRAGMENT

• VELOCITIES
• RANGES
• NUMBER DENSITIES



• CYLINDER OUTSIDE DIAMETER (ft) - 18.223

• CYLINDER HEIGHT (ft) - 16.8

• CYLINDER WALL THICKNESS (ft) - 0.0366

• CYLINDER COMPOSITION - ALUMINUM

• CYLINDER MASS (lbm)
• SPACECRAFT ADAPTER - 2837.84
• SERVICE MODULE (.65 x 4780) - 3107.00

TOTAL  - 5944.84

• ALUMINUM DENSITY (lbm/ft3) - 169

• ELEVATION ABOVE GROUND LEVEL (ft)
• BASE OF CYLINDER - 9.62
• MIDPOINT OF CYLINDER - 18.02

CYLINDRICAL APPROXIMATION OF CEV 606 
SERVICE MODULE AND SPACE CRAFT 

ADAPTER FOR PRIMARY FRAGMENTATION 
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• PRODUCED BY EXPLOSION OF ONE CYLINDRICAL SOURCE

• DISTRIBUTED OVER A RANGE OF FRAGMENT SIZES (44)

• HIGH VELOCITY
• GENERALLY FASTER THAN BLAST WAVE
• GENERALLY FASTER THAN SECONDARY FRAGMENTS

• GENERATED AT 18.02* FEET ABOVE GROUND LEVEL
___________________________________________________
* CORRESPONDS TO MIDPOINT OF CYLINDRICAL MODEL

IMPORTANT FEATURES OF
PRIMARY FRAGMENTS

Engineering Analysis Inc. 27



• INITIAL REDUCTION OF VELOCITY OF ALL IMPACTING 
PRIMARY FRAGMENTS OCCURS AT MPPF HIGH BAY WALL

• ADDITIONAL REDUCTION OF VELOCITY OF SOME 
IMPACTING PRIMARY FRAGMENTS OCCURS AT

• MPPF LOW BAY WALL
• MPPF NORTH OFFICE WALL

REDUCTION IN PRIMARY 
FRAGMENT VELOCITY

Engineering Analysis Inc. 28
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CALCULATION OF MPPF SECONDARY  
FRAGMENTATION EFFECTS

Engineering Analysis Inc. 30

• TECHNICAL APPROACH - BASED ON HEXFRAG SOFTWARE [14]

• RESULTS
• SECONDARY FRAGMENT PATHS 
• FRAGMENTS IMPACTING POINTS SURROUNDING MPPF

• MASSES
• IMPACT VELOCITIES
• IMPACT ENERGIES
• NUMBER DENSITIES

• SECONDARY HAZARDOUS FRAGMENT RANGE



• PRIMARILY PRODUCED BY BLAST WAVE INTERACTION WITH
• COMPONENTS OF CEV ACCESS STAND
• COMPONENTS OF MPPF EXTERIOR WALL

• BLAST ORIGIN IS 20.91 FEET ABOVE GROUND LEVEL

• DISTRIBUTED OVER A RANGE OF FRAGMENT SIZES (10)

• LOWER VELOCITY
• SLOWER THAN BLAST WAVE
• SLOWER THAN PRIMARY FRAGMENTS

SIGNIFICANT CHARACTERISTICS OF 
MPPF SECONDARY FRAGMENTATION

Engineering Analysis Inc. 31
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SUMMARY OF ALL HAZARDS 

Engineering Analysis Inc. 34

Primary
               FACILITY #/NAME  Blast Fragmentation
M7-1104/MPPF High Bay Severe Severe  Severe

M7-1104/MPPF North Office Slight-to-
Severe

Severe Moderate-    
to-Severe

M7-1104/MPPF Low Bay Slight-to-
Severe

Severe Moderate-    
to-Severe

M7-1104/MPPF Flight Data Control Room Slight-to-
Severe

Severe Moderate-    
to-Severe

M7-1104/MPPF Annex Slight-to-
Severe

Severe Moderate-    
to-Severe

M7-1357/Multi Operations Support Bldg (MOSB) None-to-
Slight

None-to-
Slight

None

M7-1354/Payload Hazardous Servicing Facility 
(PHSF) Building

None-to-
Slight

None-to-
Slight

None

M7-1355/PHSF Storage Bay None-to-
Slight

None-to-
Slight

None

M7-1059/Hypergolic Maintenance Facility None-to-
Slight

None-to-
Slight

None

M7-0777/Canister Rotation Facility - High Bay None-to-
Slight

None-to-
Slight

None

M7-0777/Canister Rotation Facility - Office Area None None-to-
Slight

None

Secondary 
Fragmentati

HAZARD LEVEL



• BLAST HAZARDS 
• LIMITED PRIMARILY TO MPPF COMPONENTS
• 0.9 PSI CONTOUR EXTENDS OUT TO NO MORE THAN 

436 FT BEYOND MPPF PERIMETER
• 1.2 PSI CONTOUR EXTENDS OUT TO NO MORE THAN 

355 FT BEYOND MPPF PERIMETER

• PRIMARY FRAGMENT HAZARDS
• REPRESENT GREATEST CONCERN OUTSIDE MPPF
• EXTEND OUT TO 898 FT BEYOND MPPF PERIMETER

• SECONDARY FRAGMENT HAZARDS EXTEND OUT NO 
MORE THAN 420 FT BEYOND MPPF PERIMETER

CONCLUSIONS 

Engineering Analysis Inc. 35
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