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Abstract

The algorithms for computing molecular integrals with Slater functions imple-
mented in the SMILES package for molecular calculations have been thoroughly
analyzed regarding the accuracy and computational cost for high quantum numbers
and in a wide range of screening factors. Alternative algorithms have been developed
for those cases in which the old o algorithms are not suitable for the range of expo-
nents and quantum numbers considered. The new algorithms have been coded and
their performance has been thoroughly tested.
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1 Introduction

Slater orbitals provide a well-known basis for efficient descriptions of the atomic and molecular
eigenstates required in studies of chemical structures and related properties, and are potentially
applicable to a wide range of AFRL and other DoD branch interests. A recent series of studies[1,
2] describes a computational code suite (SMILES) developed in our group for calculations of
molecular integrals which overcomes many of the difficulties that have previously precluded
wide-spread adoption of Slater-based methodology for these purposes.
The SMILES methodology in present form is largely applicable to the orbital principal quantum
numbers required for accurate descriptions of the valence shells of atoms and molecules, and is
therefore highly suitable largely for studies of ground-state molecular structure and low-lying
valence excited electronic states. Highly excited molecular electronic states, however, are of
considerable interest in a great many connections, including optical spectroscopic diagnostics
for identification and characterization of newly synthesized chemical compounds for propulsion
and energetics[3], studies of photochemical potential energy surfaces for atmospheric and re-
lated reactions[4], descriptions of molecular Rydberg and continuum states required in photon
and electron-impact excitation processes [5], and in calculations which require spectral closure
over electronic states, such as the long-range interactions required in atomic and molecular
cluster studies[6], to mention some representative examples.
Extension of SMILES methodology to higher principal quantum numbers would open the way
to development of a great many new computational applications suites which can provide con-
comitant support to on-going DoD materials, chemical physics, and aeronautical and propulsion
sciences research programs. This extension requires a thorough revision on the performance of
the algorithms currently available and the design of new alternatives for those cases in which
the current algoritms are not well suited for large quantum numbers.
The currently available SMILES methodology is satisfactory for atomic orbital involving usual
values of screening factors and angular momentum quantum numbers, L, ranging from 0 to 5,
with allowable principal quantum numbers, N , from 1 to 7− L.
The methodology has been tested in a high amount of molecular calculations dealing with the
ground and low-lying excited states in molecules for standard equilibrium geometries. However,
the performance of these algorithms in less usual situations, as those requiring very high or very
small screening constants and higher quantum numbers, has not been examined to date.
The current work starts with the thorough analysis of the performance of the algorithms cur-
rently implemented in SMILES in a wide range of values of screening constants and for mod-
erately high values of quantum numbers. In those cases in which the algorithms do not provide
sufficient accuracy, other alternatives are formulated and coded, and their performance is tested
in order to assess their capability to overcome the existing ones.
The work has been developed in steps corresponding to the cathegories of integrals appearing
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in molecular calculations. In each step, a robust code, usually lengthy for practical pruposes but
good enough for a reference, has been developed to provide a reliable reference in testing.
Once the code for the reference has been implemented, integrals corresponding to appropriate
quantum numbers have been computed for a wide set of screening parameters. The currently
available algorithms and the reference program have been used for this purpose, and a thorough
comparison on accuracy has been carried out. In those cases in which the current algorithms
have revealed unsatisfactory, alternative procedures have been formulated, coded and tested.
In all cases, even for the algorithms already available in SMILES, new codes in FORTRAN 90
have been developed in order to allow their extension to quadruple precision and multiprecision
(mainly for the reference). In some cases, this has implied drastic modifications in the codes
with respect to the original ones, with new algorithms for the computation of auxiliary functions
and a significant storage reorganization.
In the following sections, after a summary of the basic definitions and concepts, the fundamen-
tals of the techniques applied for solving the integrals are described and the algorithms analyzed
for each type of integrals are reported. To make the text more readable, results and conclusions
are presented and commented within each type of integrals.
The report ends with a list of the programs developed. The files containing the source codes can
be found as supplementary material accompanying this report.

2 Basic concepts

LCAO ab initio calculations of the electron structure of molecules require four types of inte-
grals: overlap, Srs, kinetic energy, Trs, nuclear attraction, V I

rs, and electron repulsion, vrstu.
For a given basis set: {χr}mr=1, they are defined respectively by:

Srs ≡
∫
dr χr(r) χs(r) ≡ 〈χr |χs 〉 (1)

Trs ≡ −
1

2

∫
dr χr(r) ∇2χs(r) ≡ 〈χr | T̂ |χs 〉 (2)

V I
rs ≡ −QI

∫
dr

χr(r) χs(r)

|r−RI |
≡ 〈χr |

−QI

rI
|χs 〉 (3)

where QI is the charge of nucleus I , and

vrstu ≡
∫
dr χr(r) χs(r)

∫
dr′

χt(r
′) χu(r

′)

|r− r′|
≡ [χr χs |χt χu ] (4)

As the definitions render evident, molecular integrals can be classified into two main cathegories
attending the dimension of the integrals: one-electron (3D) and two-electron (6D). It is also well
known that the difficulties found in the evaluation of integrals with STO strongly depend on the
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number of centers of the functions. According to this number, they are further divided in one,
two, three and four-center integrals.
This report deals with the calculation of molecular integrals involving exponential functions
known as Slater type orbitals (STO). An unnormalized STO centered at a point RA is a product
of a regular (real) harmonic times a radial factor:

χnLM(ζ, rA) = zML (rA) rn−1
A e−ζ rA (5)

where rA = r−RA, n is a nonnegative integer and

zML (r) = rL zML (θ, φ) = (−1)M rL PM
L (cos θ) cosMφ 0 ≤M ≤ L

z−ML (r) = rL z−ML (θ, φ) = (−1)M rL PM
L (cos θ) sinMφ 1 ≤M ≤ L (6)

where PM
L (cos θ) denotes a Legendre function (see [7] Eq 8.751.1). Notice that index n is not

the usual N quantum number, but it is related to it by: n = N −L. Index n is useful to simplify
the notation in many equations.
STO can be normalized by multiplying by the norm factor:

Nn
LM =

√
2L+ 1

2π (1 + δM,0)

(L− |M |)!
(L+ |M |)!

(2ζ)2n+2L+1

(2n+ 2L)!
(7)

Eqs(1) to (4) show that molecular integrals depend on products of two functions rather than on
functions themselves. These products:

Dnn′

LML′M ′ ≡ χnLM(ζ, rA) χn
′

L′M ′(ζ, rB) (8)

will be called charge distributions (or simply distributions) in the sequel, a name coming from
the role played by these quantities in the integrals.
Details on properties of STO and their charge distributions are given in reference [2].

3 Ellipsoidal coordinates

As it is well known, ellipsoidal coordinates are often a good choice to deal with systems having
cylindrical symmetry. Since this is the case of all the two-center integrals, several algorithms
developed for these integrals are formulated using this type of coordinates. Here we summarize
their most relevant features.
Working on a lined-up system, ellipsoidal coordinates ξ, η y φ associated to a pair of centers, A
and B, lying on the Z axis are related to spherical coordinates by:

ξ =
rA + rB
R

η =
rA − rB
R

(9)
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and

rA = (ξ + η)
R

2
rB = (ξ − η)

R

2

senθA =

√
(ξ2 − 1) (1− η2)

(ξ + η)
senθB =

√
(ξ2 − 1) (1− η2)

(ξ − η)

cos θA =
ξη + 1

ξ + η
cos θB =

ξη − 1

ξ − η

(10)

It must be noticed also that:

x = xA = xB =
R

2

√
(ξ2 − 1) (1− η2) cosφ (11)

y = yA = yB =
R

2

√
(ξ2 − 1) (1− η2) sinφ (12)

z = zA =
R

2
(ξ η + 1) (13)

zB =
R

2
(ξ η − 1) (14)

In this system, φA = φB = φ, and the volume element is given by:

dr =
R3

8

(
ξ2 − η2

)
dη dξ dφ (15)

and the definition domain is:

0 ≤ φ ≤ 2π

−1 ≤ η ≤ 1

1 ≤ ξ ≤ ∞
(16)

The factor 1/|r− r′| can be expressed in terms of these coordinates as:

1

|r− r′|
=

(
2

R

) ∞∑
l=0

l∑
m=0

(2− δm,0) (2l + 1)

[
(l −m)!

(l +m)!

]2

Pm
l (ξ<) Qm

l (ξ>)

× Pm
l (η) Pm

l (η′) [cos(mφ) cos(mφ′) + sen(mφ) sen(mφ′)] (17)

where ξ< = min(ξ, ξ′), ξ> = max(ξ, ξ′) and Pm
l (z), Qm

l (z) are the corresponding Legendre
functions –see [7], sección 8.7.
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4 Translation of STO

Molecular integrals are specially simple if all the functions are centered at the same point of
space. This fact suggests that the solution of integrals involving functions centered at different
points could be simplified by referring these functions to a common center. This is the aim of
the so-called translation methods, which are actually expansions of basis functions in regular
spherical harmonics times radial factors. Placing the origin of coordinates at the common center,
they read:

χnLM(ζ, rI) =
∞∑
l=0

l∑
m=−l

zml (r) f Ilm(r) (18)

and the several translation methods basically differ in the particular representation chosen for
the radial factors.
Barnett and Coulson[12, 13] and Löwdin[14, 15] proposed more than fifty years ago to obtain
the radial factors from the addition theorem of Bessel functions (Gegenbauer expansion[16])
which, when RI lies on the z axis, reads:

e−ζrI

rI
=
∞∑
l=0

(2l + 1) Pl(cos θ)
Ml+1/2(ζr, ζRI)

(r RI)1/2
(19)

where

Mν(ζr, ζR) = Iν(ζr<) Kν(ζr>) (20)

r< = min(r, R), r> = max(r, R), Pl(cos θ) are the Legendre polynomials (see [7] seq 8.91),
θ is the angle between r and RI , and Iν(z), Kν(z) are the corresponding Bessel functions, the
latter also called Macdonald function (see [7] sec 8.4-8.5). This expression is easily extended
to arbitrary RI bearing in mind the addition theorem of the Legendre functions, and the result
is:

e−ζrI

rI
=
∞∑
l=0

l∑
m=−l

zml (r) zml (RI)
(2l + 1) (2− δm0) (l − |m|)!

(l + |m|)!
Ml+1/2(ζr, ζRI)

(r RI)l+1/2
(21)

This equation is sufficient to study the simplest integrals needed in the shift-operator context
to be described in the next section but, in a different context, it must be extended to integrals
involving functions with higher quantum numbers. An efficient way to carry out this task is to
combine Steinborn’s formula[17]:

− ∂

∂ζ
Mν(ζr, ζR) =

ζrR

2ν
[Mν−1(ζr, ζR)−Mν+1(ζr, ζR)] (22)

with the recurrence relation[18]:

9



[
r2 +R2 +

(ζrR)2

2(ν − 1)(ν + 1)

]
Mν(ζr, ζR) = rR

[
ν − 1

ν
Mν−1(ζr, ζR) +

ν + 1

ν
Mν+1(ζr, ζR)

]
+

(
ζrR

2

)2 [
Mν−2(ζr, ζR)

ν(ν − 1)
+
Mν+2(ζr, ζR)

ν(ν + 1)

]
(23)

for increasing the n quantum number and, next, to use the recurrence relations of the Legendre
functions for increasing l and m. The compact results obtained in this way are illustrated with
the examples of appendix 1 of ref[20].
The radial factors of eq(21) and their generalizations have different definitions for r < RI and
r > RI , a fact that can be unsuitable for some applications. The alternative are the one-range
formulas, in particular the remarkably simple one:

e−ζ rB

rB
= 2ζ e−ζ (R+r)

∞∑
l=0

(2l + 1) Pl(cos θ) (4ζ2 r R)l

×
∞∑
p=0

p!

(p+ l + 1)(p+ 2l + 1)!
L2l+1
p (2ζ r) L2l+1

p (2ζ R) (24)

where L2l+1
p (z) is a Laguerre polynomial (see [7] seq 8.97). This expression, which was first

derived by us[21, 22] and next studied by Steinborn[23], is valid for RI lying on the z axis, but
can be generalized to any orientation of RI and any quantum numbers like described in the two-
range case. There exist other alternatives obtained by projection of the radial functions[24, 25],
but they are more complicated than eq(24) and its generalization.

5 The shift-operator technique

A very powerful tool for dealing with two-center integrals has been developed in our group[8, 9,
10], and it is based on the fact that every basis function can be obtained by applying a differential
operator which acts on the real parameters of the simplest function. For STO, it gives:

χnlm(ζ, rI) = Ωn
lm(I)

e−ζ rI

rI
(25)

where

Ωn
lm(I) = zml (∇I)

(
− ∂

∂ζ

)n (
−1

ζ

∂

∂ζ

)l
(26)

with rI ≡ r − RI , and zml (∇I) being the operator obtained by replacing the corresponding
cartesian coordinates by the derivatives with respect to them, in the expression of the regular
harmonics in terms of these coordinates.
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Note that the shift-operator of eqs(25) and (26) relate an arbitrary STO with the simplest one
through parameters that remain after integration over the space variables, and therefore they
also relate integrals involving arbitrary STO with those involving the simplest STO. As a con-
sequence, integrals can be obtained in two separated steps: first, the expression of the integral
involving the simplest STO is derived, and next the shift operator is applied to obtain the final
integral. This approach has been applied to several types of integrals, as it will be shown later.
The master formula for a two-center integral, fn′L′M ′nLM , involving arbitrary quantum numbers can
be derived from the basic integral, f 000

000 , by:

fn
′L′M ′

nLM = Ωn
LM(I) Ωn′

L′M ′(J) f 000
000

≡
(
− ∂

∂ζ

)n (
− ∂

∂ζ ′

)n′
zML (∇I) z

M ′

L′ (∇J)

×
(
−1

ζ

∂

∂ζ

)L (
− 1

ζ ′
∂

∂ζ

)L′
f 000

000 (27)

where the basic integral f 000
000 ≡ f(R, ζ, ζ ′) is the simplest of the type under consideration,

i.e., that involving two 0s functions. In this expression, ζ and ζ ′ are the exponents of the 0s

functions, and R = X i + Y j + Z k ≡ (XJ −XI) i + (YJ − YI) j + (ZJ − ZI) k.
Bearing in mind Hobson’s theorem[11] and the relation:

∂

∂X
=

∂

∂XJ

= − ∂

∂XI

(28)

and likewise for ∂
∂Y

y ∂
∂Z

:

zML (∇I) z
M ′

L′ (∇J) f(R, ζ, ζ ′) = (−1)L
L<∑
k=0

2−k

k!

[
∇2k zML (R) zM

′

L′ (R)
]

×
(

1

R

∂

∂R

)L+L′−k

f(R, ζ, ζ ′) (29)

where L< = min(L,L′).
Expanding in harmonics the product of regular spherical harmonics:

zML (R) zM
′

L′ (R) =

L<∑
l=0

∑
m

cLML′M ′

L+L′−2l m zmL+L′−2l(R) R2l (30)

and applying∇2 to both sides of the equation, the first term of 29 is attained. Applying once, it
leads to:

∇2 zmp (R) R2l = 4 l (p+ l + 1/2) zmp (R) R2l−2 (31)
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and iterating:

∇2k zmp (R) R2l =
22k l! Γ(p+ l + 3/2)

(l − k)! Γ(p+ l − k + 3/2)
zmp (R) R2l−2k (32)

and, therefore:

zML (∇I) z
M ′

L′ (∇J) f(R, ζ, ζ ′) = (−1)L
L<∑
k=0

PLML′M ′

k (R)

(
1

R

∂

∂R

)L+L′−k

f(R, ζ, ζ ′) (33)

where:

PLML′M ′

k (R) =
2k

k!

L<∑
l=k

l! Γ(L+ L′ − l + 3/2) R2l−2k

(l − k)! Γ(L+ L′ − l − k + 3/2)

∑
m

αLML′M ′

L+L′−2l m zmL+L′−2l(R)

(34)
αLML′M ′

L+L′−2l m being the expansion coefficients of the product of regular spherical harmonics in
harmonics.

fn
′L′M ′

nLM = (−1)L
L<∑
k=0

PLML′M ′

k (R) fnLn
′L′

k (R, ζ, ζ ′) (35)

with:

fnLn
′L′

k (R, ζ, ζ ′) =

(
− ∂

∂ζ

)n (
− ∂

∂ζ ′

)n′ (
−1

ζ

∂

∂ζ

)L (
− 1

ζ ′
∂

∂ζ ′

)L′
×

(
1

R

∂

∂R

)L+L′−k

f(R, ζ, ζ ′) (36)

The presence in eq(36) of Bessel and derivative operators, which do not commute with one
another, can complicate the derivation of the master formula, but this can be circumvented by
using the following identities:

(
− ∂

∂ζ

)n (
−1

ζ

∂

∂ζ

)L
= (−1)n+L ζn

E(n/2)∑
i=0

n!

(n− 2i)! i! (2ζ2)i

(
1

ζ

∂

∂ζ

)n−i+L
=

n∑
i=E[n+1

2 ]

n! (2ζ)2i−n

(n− i)! (2i− n)! 2i

(
1

ζ

∂

∂ζ

)i+L
(37)

or
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(
− ∂

∂ζ

)n (
−1

ζ

∂

∂ζ

)L
=

n+L−1∑
p=0

cnLp
1

ζL+p

(
− ∂

∂ζ

)n+L−p

=
1

ζn+2L

n+L−1∑
p=0

cnLn+L−1−p ζ
p+1

(
− ∂

∂ζ

)p+1

L > 0 (38)

with

cnLp = (L+ p− 1)!
∑
i

n!

(L− i− 1)! (n− p+ i)! (p− i)! 2i i!
(39)

Alternatively:

(
− ∂

∂ζ

)n (
−1

ζ

∂

∂ζ

)L
=

1

ζn+2L

n+L−1∑
p=0

c′
nL
p ζp+1

(
− ∂

∂ζ

)p+1

(40)

with

c′
nL
p = (n+ 2L− p− 2)!

∑
i

n!

(L− i− 1)! (n− p+ i)! (p− i)! 2L−1−i i!
(41)

In both (39) and (41) the summation runs over the positive values of i for which the factorials
make sense.
Obviously, the final formula and the algorithm stability will depend on the expression taken for
the basic integral f(R, ζ, ζ ′).

6 Two-center one-electron integrals

These integrals can be classified in three groups: two-center overlap:

〈χnLM |χn
′

L′M ′ 〉 ≡
∫
dr χnLM(ζ, rA) χn

′

L′M ′(ζ
′, rB) (42)

kinetic energy:

〈χnLM | −
1

2
∇2 |χn′L′M ′ 〉 ≡ −

1

2

∫
dr χnLM(ζ, rA)∇2χn

′

L′M ′(ζ
′, rB) (43)

and nuclear attraction integrals:

〈χnLM | −
QA

rA
|χn′L′M ′ 〉 ≡ −QA

∫
dr χnLM(ζ, rA)

1

rA
χn
′

L′M ′(ζ
′, rB) (44)

The kinetic energy and nuclear attraction integrals of eqs(43) and (44) can be easily expressed
in terms of overlap integrals. In fact, since:
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∇2χn
′

L′M ′(ζ
′, r) = ζ ′

2
χn
′

L′M ′(ζ
′, r)−2ζ ′ (L′+n′) χn

′−1
L′M ′(ζ

′, r)+(n′−1) (2L′+n′) χn
′−2
L′M ′(ζ

′, r)

(45)
it follows:

〈χnLM | −
1

2
∇2 |χn′L′M ′ 〉 = −ζ

′2

2
〈χnLM |χn

′

L′M ′ 〉+ ζ ′ (L′ + n′) 〈χnLM |χn
′−1
L′M ′ 〉

− (n′ − 1) (L′ + n′/2) 〈χnLM |χn
′−2
L′M ′ 〉 (46)

Moreover, it is also obvious that:

〈χnLM | −
QA

rA
|χn′L′M ′ 〉 = −QA 〈χn−1

LM |χ
n′

L′M ′ 〉 (47)

Clearly, the analysis of the computation of the two-center one-electron integrals can be reduced
to the overlap integrals. These are, in principle, complicated functions depending on five real
variables (ζ , ζ ′, XB − XA, YB − YA, ZB − ZA) and six integer quantum numbers (n, L, M ,
n′, L′, M ′). However, using normalized functions and taking a lined-up axis system, they are
reduced to functions of two real variables (ζ RAB, ζ ′ RAB) and five indices: (n, L, n′, L′, M )
which can be further reduced to two-indices functions depending on two-variables by means of
the recurrence relations of the spherical harmonics.
Simple and appealing algorithms for their calculation can be designed by reversing this process,
i.e. by computing first the two-indices functions and applying next the recurrence relations to
increase the quantum numbers. Notice however that there are different possible choices for this
pair of indices, and every choice determines the set of recurrence relations to be applied. In prin-
ciple, the best choice should lead to (i) accurate and nonexpensive two-indices functions, and
(ii) a stable recursion scheme. Examples of two-indices functions fulfilling the first requirement
are:

〈χnL0 |χ0
00 〉 =

∫
dr z0

L(r) rn−1 e−ζ r r−1
B e−ζ

′ rB (48)

and

〈χn00 |χn
′

00 〉 =

∫
dr rn−1 e−ζ r rn

′−1
B e−ζ

′ rB (49)

The first one, eq(48), was the choice in the first version of SMILES, in spite of the fact that
the associated recursions are not stable, because that version was intended for relatively low
quantum numbers, in which case the recurrence relations had to be applied a rather reduced
number of times.
The second choice, eq(49), is that implemented in the current version of SMILES. It has two im-
portant features: the starting two-indices integrals can be computed with full accuracy, and the
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associated recursions, though not being fully stable, downgrades more slowly than the previous
one, so that moderate quantum numbers can be reached with a reasonable accuracy.
Nonetheless, as it will be shown in the next section, it is still not sufficiently good for very
high quantum numbers and, therefore, we have developed a new algorithm which improves the
performance of the previous ones.

6.1 Algorithm 1: the old scheme (〈χn00 |χn
′

00 〉) scheme

The procedure starts with the two-indices integrals 〈χn00 |χn
′

00 〉 in the lined-up axis system, and
next uses recurrence relations for increasing the remaining quantum numbers. The starting
integrals are:

〈χn00 |χn
′

00 〉 =

∫
dr rn−1 e−ζ r rn

′−1
B e−ζ

′ rB =

(
− ∂

∂ζ

)n (
− ∂

∂ζ ′

)n′ ∫
dr

e−ζ r e−ζ
′ rB

r rB
(50)

Different algorithms[1] lead to different expressions for the pending integral, and we must
choose the most convenient one for taking the derivatives of eq(50) and preserving full ac-
curacy. This is:

〈χ0
00 |χ0

00 〉 ≡
∫
dr

e−ζ r e−ζ
′ rB

r rB
=

4π

ζ + ζ ′

∫ 1

0

du e−ζ r u e−ζ
′R (1−u) (51)

where R is the distance AB: R = |RB −RA| = |RB| = |ZB|.
Replacing (51) in (50), the derivatives can be easily taken with the aid of Leibnitz rule, leading
to:

〈χn00 |χn
′

00 〉 = 4 π
n∑
p=0

n′∑
p′=0

(
n

p

) (
n′

p′

)
(n+ n′ − p− p′)! Rp+p′

(ζ + ζ ′)n+n′−p−p′+1

×
∫ 1

0

du up (1− u)p
′
e−ζRu e−ζ

′R(1−u) (52)

or equivalently:

〈χn00 |χn
′

00 〉 =
4 π n! n′! Rn+n′ e−ζR

ζ + ζ ′

n+n′∑
k=0

1

(n+ n′ + 1− k)! [(ζ + ζ ′)R]k

×
min(k,n′)∑

p=max(0,k−n)

k!

(k − p)! p!
φ
(
n′ + 1 + p− k;n+ n′ + 2− k; (ζ − ζ ′)/R

)
ζ > ζ ′ (53)

where φ(α, β, z) is the confluent hypergeometric series (eq 9.210.1 of ref[7]).
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Eqs(52) and (53) keep the whole accuracy if ζ > ζ ′ but fail for ζ < ζ ′. In this case, accuracy is
recovered by means of Kummer’s transformation:

φ
(
α, β, (ζ − ζ ′)R

)
= e−(ζ′−ζ)R φ

(
β − α, β, (ζ ′ − ζ)R

)
(54)

which simply exchanges the order in the pairs (ζ, ζ ′) and (n, n′).
The set of recurrence relations needed for increasing the remaining quantum numbers can be
easily derived from the definition (M > 0):

zMM (r) =
(M − 1/2)!√

π
(2 r sin θ)M cosMφ (55)

and

zML+1(r) =
1

L−M + 1

[
(2L+ 1) r cos θ zML (r)− (l +M) r2 zML−1(r)

]
(56)

with the convention: zML (r) = 0 for L < M .
Combination of eq(55) with the cosine theorem gives the first recurrence relation:

〈χnM+1M+1 |χn
′

M+1M+1 〉 =
(2M + 1)2

4R2

[
2〈χn+2

MM |χ
n′+2
MM 〉+ 2R2〈χn+2

MM |χ
n′

MM 〉

+ 2R2〈χnMM |χn
′+2
MM 〉 − 〈χ

n+4
MM |χ

n′

MM 〉 − 〈χnMM |χn
′+4
MM 〉 −R

4〈χnMM |χn
′

MM 〉
]

(57)

and eq(56) leads to:

〈χnL+1M |χn
′

L′M 〉 =
2L+ 1

L− |M |+ 1

[
〈χn+2

LM |χn
′

L′M 〉+R2 〈χnLM |χn
′

L′M 〉 − 〈χnLM |χn
′+2
L′M 〉

2 R

− (L+ |M |) 〈χn+2
L−1M |χ

n′

L′M 〉
]

(58)

〈χnLM |χn
′

L′+1M 〉 =
2L+ 1

L− |M |+ 1

[
〈χn+2

LM |χn
′

L′M 〉 −R2 〈χnLM |χn
′

L′M 〉 − 〈χnLM |χn
′+2
L′M 〉

2 R

− (L+ |M |) 〈χnLM |χn
′+2
L′−1M 〉

]
(59)

The recursion scheme proceeds as it follows:

M = 0 : 〈χn00 |χn
′

00 〉
(58)−−→ 〈χnL0 |χn

′
00 〉

(59)−−→ 〈χnL0 |χn
′

L′0 〉
(57)

y
M = 1 : 〈χn11 |χn

′
11 〉

(58)−−→ 〈χnL1 |χn
′

11 〉
(59)−−→ 〈χnL1 |χn

′

L′1 〉
(57)

y
M = 2 : ... ... ...

(60)
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6.2 Algorithm 2: the ellipsoidal coordinates scheme

A new algorithm developed in this project is based on the formulation of the problem in ellip-
soidal coordinates. This coordinates system implies working in a lined-up system as discussed
in the previous section in which integrals involving funtions with different values of the M
quantum number are null by symmetry. Therefore, we will consider only the case:

〈χnLM |χn
′

L′M 〉 =

∫
dr zML (rA) zML′ (rB) rn−1

A rn
′−1
B e−ζ rA e−ζ

′ rB (61)

To express these integrals in ellipsoidal coordinates, we will separate the representation of the
spherical harmonics from that of the radial factors. For these latter, it reads:

dr rn−1
A rn

′−1
B e−ζ rA e−ζ

′ rB = dξ dη dφ

(
R

2

)n+n′+1

(ξ + η)n (ξ − η)n
′
e−βξ e−νη (62)

where β = (ζ + ζ ′) R/2 and ν = (ζ − ζ ′) R/2. Expanding the binomials and grouping terms,
it results:

dr rn−1
A rn

′−1
B e−ζ rA e−ζ

′ rB = dξ dη dφ

(
R

2

)n+n′+1

e−βξ e−νη
n+n′∑
p=0

ξn+n′−p ηp ann
′

p (63)

with

ann
′

p = (−1)p
min(n,p)∑

i=max(0,p−n′)

n! n′! (−1)i

(n− i)! (n− p+ i)! (p− i)! i!
(64)

The coefficients ann′p can be recursively obtained by means of:

an+1n′

p = ann
′

p + ann
′

p−1 (65)

and

ann
′+1

p = ann
′

p − ann
′

p−1 (66)

Eq(63) leads to:

〈χn00 |χn
′

00 〉 = 2π

(
R

2

)n+n′+1 n+n′∑
p=0

An+n′−p(β) Bp(ν) ann
′

p (67)

where

Aj(β) =

∫ ∞
1

dξ ξj e−β ξ (68)
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and

Bj(ν) =

∫ 1

−1

dη ηj e−ν η (69)

Let us consider now the expansion of the spherical harmonics. Since, 〈χnLM |χn
′

L′M 〉 = 〈χnL−M |χn
′

L′−M 〉
we will consider only the case M ≥ 0, in which:

zML (rA) zML′ (rB) =
1

2
(1 + cos 2Mφ) RL+L′ (ξ2 − 1)M (1− η2)M

× 1√
π

E
(

L−M
2

)∑
i=0

(L− 1/2− i)! (−1)i

(L−M − 2i)! i! 22i
(ξ η + 1)L−M−2i (ξ + η)2i

× 1√
π

E
(

L′−M
2

)∑
i′=0

(L′ − 1/2− i′)! (−1)i
′

(L′ −M − 2i′)! i′! 22i′
(ξ η − 1)L

′−M−2i′ (ξ − η)2i′(70)

Expanding in powers of ξ and η and grouping terms, it follows:

zML (rA) zML′ (rB) =
1

2
(1 + cos 2Mφ)

(
R

2

)L+L′ L+L′∑
k=0

2k∑
j=0

ξ2k−j ηj αLML′M
kj (71)

Multiplying (63) by (71), the general integral can be expressed as:

〈χnLM |χn
′

L′+1M 〉 = π (1 + δM0)

(
R

2

)n+n′+L+L′+1 L+L′∑
k=0

2k∑
j=0

n+n′∑
p=0

An+n′+2k−j−p(β)

× Bj+p(ν) ann
′

p αLML′M
kj (72)

or, alternatively:

〈χnLM |χn
′

L′M 〉 = π (1 + δM0)

(
R

2

)n+n′+L+L′+1 L+L′∑
k=0

n+n′+2k∑
λ=0

An+n′+2k−λ(β) Bλ(ν)

×
min(λ,2k)∑

j=max(0,λ−n−n′)

ann
′

λ−j α
LML′M
kj

= π (1 + δM0)

(
R

2

)n+n′+L+L′+1 L+L′∑
k=0

n+n′+2k∑
λ=0

An+n′+2k−λ(β) Bλ(ν)

×
min(λ,λ−n−n′)∑

p=max(0,λ−n−n′)

ann
′

p αLML′M
kλ−p (73)
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The coefficients αLML′M
kj can be obtained by recursion. We start from eq(71) for the particular

case L = L′ = M :

zMM (rA) zMM (rB) =
1

2
(1 + cos 2Mφ)

(
R

2

)2M [
(M − 1/2)!√

π

]2

2M (ξ2 − 1)M (1− η2)M

=
1

2
(1 + cos 2Mφ)

(
R

2

)2M [
(M − 1/2)!√

π

]2

2M
2M∑
k=0

2k∑
i=0

ξ2k−2j η2i

× (−1)k+M (M !)2

(M + k + i)! (M − i)! (k − i)! i!
(74)

and define:

αMMMM
k 2i+1 = 0 (75)

αMMMM
k 2i =

(−1)k+M 22M [(M − 1/2)!]2 (M !)2

π (M − k + i)! (M − i)! (k − i)! i!
(76)

with 0 ≤ i ≤ k.
Next, the recurrence relation for increasing L:

zML+1(r) =
1

L−M + 1

[
(2L+1)

R

2
(1+ξ η) zML (r)−(L+M)

(
R

2

)2

(ξ2+2 ξ η+η2) zML−1(r)

]
(77)

leads to:

αL+1ML′M
kj =

2L+ 1

L−M + 1

(
αLML′M
kj + αLML′M

k−1 j−1

)
− L+M

L−M + 1

(
αL−1ML′M
k−1 j + 2 αL−1ML′M

k−1 j−1 + αL−1ML′M
k−1 j−2

)
(78)

where zMM−1(r) = 0.
For increasing L′:

zML′+1(r) =
1

L′ −M + 1

[
−(2L′+1)

R

2
(1−ξ η) zML′ (r)−(L′+M)

(
R

2

)2

(ξ2−2 ξ η+η2) zML′−1(r)

]
(79)

leads to:

αLM L′+1M
kj = − 2L′ + 1

L′ −M + 1

(
αLML′M
kj − αLML′M

k−1 j−1

)
− L′ +M

L′ −M + 1

(
αLM L′−1M
k−1 j − 2 αLM L′−1M

k−1 j−1 + αLM L′−1M
k−1 j−2

)
(80)
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6.3 Tests on the accuracy of algorithms 1 and 2

The first test illustrates the accuracy of the two above described algorithms in case of moderate
quantum numbers. Fig 1 gives the order of magnitude of the integrals involving normalized
STO for a range of exponents and with quantum numbers: NA = NB = 10, LA = LB = 5,
and −5 ≤ M ≤ 5. Notice that, in the notation used throughout this report: n = N − L, i.e.,
the integrals correspond to nA = nB = 5 in this notation. The scaled exponents (ζA ≡ ζA R,
ζB ≡ ζB R) range from 5 · 10−3 to 5 · 102 in an almost exponential way.

Integrals     n
A
=n

B
=5;   l

A
=l

B
=5; R = 1 

0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512

0.005 0 -1 -3 -6 -9 -12 -15 -18 -21 -24 -27 -29 -31 -33 -35 -37 -39

0.01 -1 0 -1 -3 -6 -9 -12 -15 -18 -21 -24 -26 -28 -30 -32 -34 -36

0.03 -3 -1 0 -1 -2 -4 -7 -10 -13 -16 -19 -21 -23 -25 -27 -29 -31

0.06 -6 -3 -1 0 -1 -2 -4 -7 -10 -13 -15 -18 -20 -22 -24 -26 -28

0.12 -9 -6 -2 -1 0 -1 -2 -4 -7 -10 -12 -15 -17 -19 -21 -23 -25

0.25 -12 -9 -4 -2 -1 0 -1 -2 -4 -7 -9 -11 -14 -16 -18 -20 -21

0.5 -15 -12 -7 -4 -2 -1 0 -1 -2 -4 -6 -9 -11 -13 -15 -17 -19

1 -18 -15 -10 -7 -4 -2 -1 0 -1 -2 -4 -6 -8 -10 -12 -14 -16

2 -21 -18 -13 -10 -7 -4 -2 -1 0 -1 -2 -4 -6 -8 -10 -12 -14

4 -24 -21 -16 -13 -10 -7 -4 -2 -1 0 -1 -2 -4 -6 -8 -10 -12

8 -27 -24 -19 -15 -12 -9 -6 -4 -2 -1 -1 -1 -3 -4 -6 -8 -10

16 -29 -26 -21 -18 -15 -11 -9 -6 -4 -2 -1 -1 -1 -3 -5 -7 -9

32 -31 -28 -23 -20 -17 -14 -11 -8 -6 -4 -3 -1 -2 -4 -6 -8 -10

64 -33 -30 -25 -22 -19 -16 -13 -10 -8 -6 -4 -3 -4 -10 -15 -17 -19

128 -35 -32 -27 -24 -21 -18 -15 -12 -10 -8 -6 -5 -6 -15 -31 -39 -42

256 -37 -34 -29 -26 -23 -20 -17 -14 -12 -10 -8 -7 -8 -17 -39 -81 -92

512 -39 -36 -31 -28 -25 -21 -19 -16 -14 -12 -10 -9 -10 -19 -42 -92 -186

Overlap integrals with normalized STO: n
A
=n

B
=5, l

A
=l

B
=5, R = 1

Decimal logarithm of the absolute value of the  integrals

Exps

Figure 1: Overlap integrals with NA = NB = 10, LA = LB = 5

Region of exponents corresponding to negligible integrals (absolute value lower than 10−15) is
coloured in this and the following figures. The behavior of the algorithms in this region is rather
irrelevant, but we have kept the values attained therein to fully illustrate the analysis carried out.
It must be recalled that the information on the number of absolute decimal figures in this region
can be completely useless: for very small integrals, there can be a high number of accurate
decimal figures (zeroes) even in cases in which the order of magnitude in the computed integral
is wrong.
The figure shows that these integrals have meaningful values even for relatively large scaled
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exponents (in the range of 30).
The number of correct significant figures (i.e. the relative error) attained with both algorithms
working in double precision are reported in figure 2. In this case as well as in the remaining
tables, the reference values were computed with the algorithm based in ellipsoidal coordinates
using multiprecision (65 significant digits in computation). A previous analysis on the consis-
tence of the results was made using different working precision values (lower and higher that
those finally chosen) in a number of selected cases. This analysis showed that the number of
digits finally taken in the calculations was sufficient to yield more than 20 correct significant
figures in the results for all the selected range of exponents. Figure 3 gives the number of correct
decimal places (absolute error).
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Integrals     n
A
=n

B
=5;   l

A
=l

B
=5; R = 1 

0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512

0.005 0 0 0 0 0 0 0 0 2 6 8 10 10 7 5 2 0

0.01 0 0 0 0 0 0 0 0 2 5 9 10 10 8 4 2 0

0.03 0 0 0 0 0 0 0 0 2 5 8 10 10 8 5 2 0

0.06 0 0 0 0 0 0 0 0 3 5 8 10 10 8 5 2 0

0.12 0 0 0 0 0 0 0 0 3 6 8 10 10 8 5 2 0

0.25 0 0 0 0 0 0 0 0 3 7 9 10 10 8 5 1 0

0.5 0 0 0 0 0 0 0 1 3 6 9 11 10 7 4 2 0

1 0 0 0 0 0 0 1 3 4 6 9 10 9 7 5 1 0

2 2 2 2 3 3 3 3 4 5 6 8 10 10 6 4 1 0

4 6 5 5 5 6 7 6 6 6 7 9 11 10 7 3 0 0

8 8 8 8 8 8 9 9 9 8 9 10 8 9 6 3 0 0

16 10 10 10 10 10 10 11 10 10 11 8 13 11 8 5 2 0

32 10 10 10 10 10 10 11 10 10 10 10 11 11 8 5 2 0

64 7 8 8 8 8 8 8 8 7 7 7 9 8 9 5 2 0

128 5 4 5 5 5 5 5 5 5 3 3 5 5 5 7 2 0

256 2 2 2 2 2 1 2 2 1 1 0 2 2 2 2 6 0

512 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

Algorithm based on recursion over L,L' and M starting from integrals <N00|N'00> 

Number of accurate significant figures of integrals computed in double precision

Exps

Integrals     n
A
=n

B
=5;   l

A
=l

B
=5; R = 1 

0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512

0.005 14 14 14 14 13 13 13 13 13 13 13 12 7 4 0 0 0

0.01 14 14 13 14 14 13 14 14 13 14 13 12 7 4 0 0 0

0.03 14 13 13 13 13 13 14 13 13 14 13 11 7 5 0 0 0

0.06 14 14 13 13 13 14 13 14 14 13 13 12 7 4 0 0 0

0.12 13 14 13 13 13 13 13 13 13 14 13 12 8 4 0 0 0

0.25 13 13 13 14 13 14 14 13 14 13 13 11 8 5 0 0 0

0.5 13 14 14 13 13 14 14 13 14 13 13 11 8 5 0 0 0

1 13 14 13 14 13 13 13 14 14 13 13 11 8 4 0 0 0

2 13 13 13 14 13 14 14 14 13 13 12 11 8 4 0 0 0

4 13 13 13 13 14 13 13 13 13 13 12 11 8 3 0 0 0

8 13 13 13 13 13 13 13 13 12 12 13 8 7 3 0 0 0

16 12 12 11 12 12 11 12 11 11 11 8 12 9 4 0 0 0

32 7 7 7 7 8 8 8 8 8 8 7 9 10 6 0 0 0

64 5 5 5 4 4 5 4 4 4 3 2 4 6 9 0 0 0

128 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 0 0

256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0

512 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

Algorithm based on ellipsoidal coordinates

Number of accurate significant figures of integrals computed in double precision

Exps

Figure 2: Accurate significant figures in double precision for overlap integrals withNA = NB = 10, LA = LB =
5
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Integrals     n
A
=n

B
=5;   l

A
=l

B
=5; R = 1 

0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512

0.005 0 0 0 0 0 6 11 18 23 30 35 39 41 41 40 39 39

0.01 0 0 0 0 0 2 9 14 20 26 32 36 38 38 38 36 34

0.03 0 0 0 0 0 0 3 10 15 21 27 31 33 34 32 31 30

0.06 0 0 0 0 0 0 1 7 12 18 24 28 30 30 29 29 27

0.12 0 0 0 0 0 0 0 4 10 15 20 25 27 26 26 24 24

0.25 6 2 0 0 0 0 0 2 7 14 18 22 24 23 22 21 20

0.5 11 9 3 1 0 0 0 1 5 10 15 19 20 20 19 19 17

1 18 14 10 7 4 2 1 3 5 8 13 17 17 17 17 16 15

2 23 20 15 12 10 7 5 5 5 7 10 14 16 14 14 13 12

4 30 26 21 18 15 13 10 8 7 8 10 13 14 13 11 10 10

8 35 32 27 24 20 18 15 13 10 10 11 13 12 11 10 9 8

16 39 36 31 28 25 22 19 17 14 13 12 13 12 11 10 9 8

32 41 40 33 30 27 24 21 18 16 14 13 13 15 15 14 13 12

64 41 38 33 30 27 24 21 18 15 13 13 12 15 23 24 24 23

128 40 37 32 29 27 23 20 17 15 11 11 11 14 25 44 48 47

256 39 36 31 28 25 22 19 16 13 11 9 10 13 24 48 94 100

512 39 35 30 28 24 21 17 15 12 9 8 8 12 23 48 99 200

Algorithm based on recursion over L,L' and M starting from integrals <N00|N'00> 

Number of accurate decimal figures of integrals computed in double precision

Exps

Integrals     n
A
=n

B
=5;   l

A
=l

B
=5; R = 1 

0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512

0.005 14 14 17 20 22 25 28 31 34 37 40 41 39 38 36 33 31

0.01 14 14 15 17 19 22 26 28 31 34 37 38 36 35 32 30 27

0.03 17 15 13 14 16 18 21 24 26 29 31 32 31 30 27 24 22

0.06 20 17 14 13 14 16 18 21 24 26 28 30 27 27 25 22 19

0.12 22 19 16 14 13 14 16 18 20 24 26 26 24 24 21 19 16

0.25 25 22 18 16 14 14 14 16 18 20 23 23 21 20 18 15 13

0.5 28 26 21 18 16 14 14 14 16 18 20 20 18 17 15 12 10

1 31 28 24 21 18 16 14 14 14 16 17 17 16 14 12 10 6

2 34 31 26 24 20 18 16 14 14 14 15 15 13 12 9 6 4

4 37 34 29 26 24 20 18 15 14 14 14 13 12 9 7 4 2

8 40 37 31 28 26 22 20 17 15 14 14 13 10 8 5 3 0

16 41 38 32 30 26 23 20 17 15 13 13 13 10 8 6 3 1

32 39 36 31 27 24 21 18 16 13 12 10 10 14 11 10 7 4

64 39 35 30 27 23 20 17 14 12 9 8 8 11 22 21 18 15

128 36 32 27 24 21 18 15 12 9 7 6 6 10 20 44 42 40

256 33 30 24 22 19 15 12 9 6 4 3 3 7 18 42 94 92

512 31 27 22 19 16 13 10 7 4 2 0 1 4 15 40 92 198

Algorithm based on ellipsoidal coordinates

Number of accurate decimal figures of integrals computed in double precision

Exps

Figure 3: Accurate decimal figures in double precision for overlap integrals with NA = NB = 10, LA = LB = 5
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Integrals     n
A
=n

B
=5;   l

A
=l

B
=5; R = 1 

0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512

0.005 0 0 3 5 8 11 14 18 20 23 26 28 28 26 23 20 17

0.01 0 0 3 6 8 12 15 18 21 23 26 29 28 26 23 20 17

0.03 3 3 6 7 9 12 15 17 21 24 26 29 29 26 23 20 17

0.06 5 7 8 8 10 12 15 17 20 23 27 29 28 26 23 20 17

0.12 9 9 9 10 11 13 16 18 21 24 26 29 28 26 23 20 17

0.25 11 12 12 13 13 14 16 19 21 23 27 28 28 26 23 20 17

0.5 15 15 15 15 16 16 17 19 21 24 26 29 28 26 22 19 17

1 18 18 17 17 19 18 19 20 22 24 26 28 28 25 22 19 17

2 20 21 21 21 21 21 21 22 23 25 27 28 27 25 22 19 16

4 23 23 24 23 24 24 24 25 25 25 28 28 27 24 22 19 16

8 26 26 26 27 26 27 26 26 27 28 28 26 27 25 21 18 15

16 28 29 29 29 29 29 29 28 29 28 26 30 29 26 23 20 17

32 28 28 29 28 28 28 28 28 28 27 27 29 30 27 23 20 17

64 26 26 26 26 26 26 26 26 25 25 25 26 27 28 25 20 17

128 23 23 23 24 23 23 23 23 22 22 21 23 23 25 26 21 17

256 20 20 20 20 20 20 20 20 19 19 18 20 20 20 21 24 17

512 17 17 17 17 17 17 17 17 16 16 15 17 17 17 16 17 23

Algorithm based on recursion over L,L' and M starting from integrals <N00|N'00> 

Number of accurate significant figures of integrals computed in quadruple precision

Exps

Integrals     n
A
=n

B
=5;   l

A
=l

B
=5; R = 1 

0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512

0.005 32 31 31 32 31 31 32 32 32 31 31 30 25 23 18 13 9

0.01 31 32 32 32 31 31 31 32 32 31 31 29 25 23 18 13 9

0.03 31 32 32 31 31 31 32 32 31 31 31 30 25 22 18 13 9

0.06 32 32 31 32 31 31 32 32 31 31 31 30 25 22 18 13 9

0.12 31 31 31 31 31 31 31 32 31 32 31 29 25 23 18 13 9

0.25 31 31 31 31 32 32 32 32 32 31 31 30 25 22 18 13 9

0.5 32 31 32 32 31 32 32 31 32 31 31 30 25 22 18 13 9

1 32 32 32 32 32 32 31 31 31 31 30 30 26 22 18 13 9

2 32 32 31 31 31 32 32 31 32 31 31 29 26 22 17 13 8

4 31 31 31 31 32 32 31 31 31 30 30 29 25 21 17 12 8

8 31 31 31 31 31 31 31 30 31 30 31 26 25 20 16 12 7

16 30 30 30 30 29 30 30 30 29 29 26 30 27 22 18 13 9

32 25 25 25 25 25 25 25 26 26 25 25 27 28 24 19 14 9

64 23 23 22 22 23 22 23 22 22 21 21 23 24 26 19 14 9

128 18 18 18 18 18 18 18 18 17 17 16 18 18 19 24 15 9

256 13 13 13 13 13 13 13 13 13 12 11 14 13 14 15 23 10

512 9 9 9 9 9 9 9 9 9 8 7 9 9 9 10 10 22

Algorithm based on ellipsoidal coordinates

Number of accurate significant figures of integrals computed in quadruple precision

Exps

Figure 4: Accurate significant figures in quadruple precision for overlap integrals with NA = NB = 10, LA =
LB = 5
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Integrals     n
A
=n

B
=5;   l

A
=l

B
=5; R = 1 

0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512

0.005 0 0 6 11 17 23 29 35 41 47 53 58 60 59 58 58 56

0.01 0 0 5 9 14 21 27 33 39 44 50 55 56 56 56 54 53

0.03 6 5 6 8 11 16 22 27 34 40 45 50 52 51 50 49 48

0.06 11 10 8 8 10 14 19 24 30 36 42 47 48 47 47 46 45

0.12 18 14 11 10 11 14 18 23 28 33 39 43 45 45 44 42 42

0.25 23 21 16 15 14 14 16 21 25 30 36 40 42 42 41 39 38

0.5 29 26 22 19 18 16 17 19 24 28 33 38 39 39 37 36 35

1 35 32 27 24 23 20 19 21 22 27 30 34 36 35 34 33 33

2 41 39 34 31 28 25 23 22 23 26 29 32 33 33 32 31 30

4 47 44 40 36 33 30 28 27 26 26 29 31 32 30 30 29 28

8 53 50 45 42 39 36 33 30 30 29 29 30 30 30 28 27 26

16 57 55 50 46 44 40 37 34 33 31 30 31 30 29 29 27 26

32 60 56 52 48 45 42 39 36 33 32 30 31 33 33 32 31 30

64 59 56 52 49 45 41 39 35 33 30 30 30 33 41 43 41 42

128 59 56 51 48 44 40 38 35 32 30 28 29 33 43 62 65 66

256 57 54 49 46 43 40 37 34 31 29 27 27 32 42 66 112 117

512 56 53 48 45 42 39 36 33 30 28 26 27 30 41 65 117 217

Algorithm based on recursion over L,L' and M starting from integrals <N00|N'00> 

Number of accurate decimal figures of integrals computed in quadruple precision

Exps

Integrals     n
A
=n

B
=5;   l

A
=l

B
=5; R = 1 

0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512

0.005 32 32 35 38 40 43 47 50 53 56 57 60 56 57 54 51 49

0.01 32 32 34 35 37 40 43 46 50 52 54 56 53 53 51 48 45

0.03 35 33 32 32 33 36 39 42 44 47 50 51 48 48 46 43 40

0.06 38 35 32 32 32 34 36 39 42 44 47 48 45 45 43 40 37

0.12 40 37 33 32 32 32 34 36 38 42 43 44 42 42 39 37 34

0.25 43 40 36 34 33 32 32 34 36 38 40 41 39 38 36 33 31

0.5 47 43 39 36 34 32 32 32 34 35 37 38 36 35 33 30 28

1 50 46 42 39 36 34 32 32 32 33 35 36 34 32 30 27 24

2 53 50 44 42 38 36 34 32 32 32 33 33 32 30 27 25 22

4 56 52 47 44 42 39 35 33 32 31 32 32 30 27 25 22 20

8 57 54 50 46 43 40 37 35 33 32 32 31 29 26 24 21 18

16 60 56 51 48 44 41 38 36 33 32 31 31 29 26 24 21 19

32 56 53 48 45 42 39 36 34 32 30 29 29 32 29 27 25 23

64 57 53 48 45 42 39 35 32 30 27 26 26 29 41 38 36 33

128 54 51 46 43 39 36 33 30 27 25 24 24 27 38 62 60 58

256 51 48 43 40 37 33 30 28 25 22 21 21 25 36 60 112 110

512 49 45 40 37 34 31 28 24 22 20 18 19 23 33 58 110 217

Algorithm based on ellipsoidal coordinates

Number of accurate decimal figures of integrals computed in quadruple precision

Exps

Figure 5: Accurate decimal figures in quadruple precision for overlap integrals withNA = NB = 10, LA = LB =
5
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Integrals     n
A
=n

B
=10;   l

A
=l

B
=10; R = 1 

0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512

0.005 0 -1 -6 -11 -17 -23 -29 -35 -41 -47 -53 -58 -62 -66 -70 -73 -77

0.01 -1 0 -3 -6 -11 -17 -23 -29 -35 -41 -46 -52 -56 -60 -64 -67 -70

0.03 -6 -3 0 -1 -4 -9 -14 -19 -25 -31 -37 -42 -46 -50 -54 -57 -61

0.06 -11 -6 -1 0 -1 -4 -9 -14 -19 -25 -31 -36 -40 -44 -48 -51 -55

0.12 -17 -11 -4 -1 0 -1 -4 -9 -14 -19 -25 -30 -34 -38 -41 -45 -48

0.25 -23 -17 -9 -4 -1 0 -1 -4 -8 -13 -18 -23 -28 -31 -35 -39 -42

0.5 -29 -23 -14 -9 -4 -1 0 -1 -4 -8 -13 -17 -22 -26 -29 -33 -36

1 -35 -29 -19 -14 -9 -4 -1 0 -1 -4 -8 -12 -16 -20 -23 -27 -30

2 -41 -35 -25 -19 -14 -8 -4 -1 0 -1 -4 -7 -11 -14 -18 -21 -25

4 -47 -41 -31 -25 -19 -13 -8 -4 -1 0 -1 -4 -7 -11 -14 -17 -21

8 -53 -46 -37 -31 -25 -18 -13 -8 -4 -1 0 -2 -4 -7 -11 -14 -17

16 -58 -52 -42 -36 -30 -23 -17 -12 -7 -4 -2 -1 -2 -4 -7 -11 -14

32 -62 -56 -46 -40 -34 -28 -22 -16 -11 -7 -4 -2 -1 -2 -5 -8 -11

64 -66 -60 -50 -44 -38 -31 -26 -20 -14 -11 -7 -4 -2 -3 -8 -12 -15

128 -70 -64 -54 -48 -41 -35 -29 -23 -18 -14 -11 -7 -5 -8 -19 -28 -33

256 -73 -67 -57 -51 -45 -39 -33 -27 -21 -17 -14 -11 -8 -12 -28 -62 -77

512 -77 -70 -61 -55 -48 -42 -36 -30 -25 -21 -17 -14 -11 -15 -33 -77 -161

Overlap integrals with normalized STO: n
A
=n

B
=10, l

A
=l

B
=10, R = 1

Decimal logarithm of the absolute value of the  integrals

Exps

Figure 6: Overlap integrals with NA = NB = 20, LA = LB = 10

26



Integrals     n
A
=n

B
=10;   l

A
=l

B
=10; R = 1 

0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512

0.005 0 0 0 0 0 0 0 0 0 0 0 0 5 4 0 0 0

0.01 0 0 0 0 0 0 0 0 0 0 0 0 4 3 0 0 0

0.03 0 0 0 0 0 0 0 0 0 0 0 0 4 4 0 0 0

0.06 0 0 0 0 0 0 0 0 0 0 0 0 4 3 0 0 0

0.12 0 0 0 0 0 0 0 0 0 0 0 0 4 4 0 0 0

0.25 0 0 0 0 0 0 0 0 0 0 0 0 4 4 0 0 0

0.5 0 0 0 0 0 0 0 0 0 0 0 0 3 4 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 4 3 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 4 3 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 3 2 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 2 3 1 0 0 0

16 0 0 0 0 0 0 0 0 0 0 2 5 6 1 0 0 0

32 4 4 4 4 4 4 3 4 4 3 3 6 9 5 0 0 0

64 4 4 4 4 4 4 4 4 4 2 1 1 5 6 0 0 0

128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0

256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

512 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Algorithm based on recursion over L,L' and M starting from integrals <N00|N'00> 

Number of accurate significant figures of integrals computed in double precision

Exps

Integrals     n
A
=n

B
=10;   l

A
=l

B
=10; R = 1 

0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512

0.005 10 10 10 10 10 10 10 10 10 10 9 9 6 0 0 0 0

0.01 10 10 10 10 10 10 10 10 10 10 9 9 7 0 0 0 0

0.03 10 10 10 10 10 10 10 10 10 10 9 9 7 0 0 0 0

0.06 10 10 10 10 10 10 10 10 10 10 9 9 6 0 0 0 0

0.12 10 10 10 10 10 10 10 10 10 10 10 9 7 0 0 0 0

0.25 10 10 10 10 10 10 10 10 10 10 10 8 7 0 0 0 0

0.5 10 10 10 10 10 10 10 10 10 10 9 9 7 0 0 0 0

1 10 10 10 10 10 10 10 10 10 9 9 9 6 0 0 0 0

2 10 10 10 10 10 10 10 10 11 9 9 8 6 0 0 0 0

4 10 10 10 10 10 10 10 10 9 9 8 6 5 0 0 0 0

8 9 9 9 9 10 10 9 9 9 8 10 7 3 0 0 0 0

16 9 8 9 8 9 9 9 9 8 6 7 8 4 0 0 0 0

32 6 7 6 6 7 6 6 6 6 5 3 4 6 0 0 0 0

64 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0

128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

512 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Algorithm based on ellipsoidal coordinates

Number of accurate significant figures of integrals computed in double precision

Exps

Figure 7: Accurate significant figures in double precision for overlap integrals withNA = NB = 20, LA = LB =
10
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Integrals     n
A
=n

B
=10;   l

A
=l

B
=10; R = 1 

0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512

0.005 0 0 0 0 0 0 0 11 23 35 47 57 67 70 69 68 65

0.01 0 0 0 0 0 0 0 5 17 30 41 51 60 63 63 61 59

0.03 0 0 0 0 0 0 0 0 8 20 31 42 50 55 53 51 49

0.06 0 0 0 0 0 0 0 0 2 14 25 35 44 47 47 45 42

0.12 0 0 0 0 0 0 0 0 0 9 19 30 38 42 41 39 37

0.25 0 0 0 0 0 0 0 0 0 3 13 24 32 35 34 33 30

0.5 0 0 0 0 0 0 0 0 0 0 7 17 25 30 28 27 24

1 11 5 0 0 0 0 0 0 0 0 3 12 21 23 22 20 19

2 23 17 8 2 0 0 0 0 0 0 0 8 15 18 17 14 12

4 35 30 20 14 9 3 0 0 0 0 0 5 11 12 11 9 6

8 47 41 31 25 19 13 7 3 0 0 0 5 8 9 7 5 3

16 57 51 42 35 30 24 17 12 8 5 5 7 8 7 4 2 0

32 67 60 50 44 38 32 25 21 15 11 8 8 10 8 6 3 0

64 70 64 54 48 42 35 30 24 18 13 9 7 8 12 13 11 8

128 69 63 53 48 41 35 28 23 17 12 8 5 7 13 29 31 29

256 69 61 51 45 40 33 27 20 15 9 6 3 4 12 31 73 77

512 65 59 49 43 37 30 24 18 12 7 3 0 1 9 30 78 172

Algorithm based on recursion over L,L' and M starting from integrals <N00|N'00> 

Number of accurate decimal figures of integrals computed in double precision

Exps

Integrals     n
A
=n

B
=10;   l

A
=l

B
=10; R = 1 

0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512

0.005 10 11 16 21 27 33 39 45 51 57 62 67 68 61 61 55 50

0.01 11 11 13 17 22 27 33 39 45 51 56 60 63 55 55 49 44

0.03 16 13 10 11 14 19 24 29 35 41 46 50 53 46 45 40 34

0.06 21 17 11 10 11 14 19 24 29 35 40 44 47 39 39 33 28

0.12 27 22 14 11 10 11 14 19 24 29 34 38 41 33 33 27 22

0.25 33 27 19 14 11 11 11 14 18 23 28 32 34 27 26 21 15

0.5 39 33 24 19 14 11 11 11 14 18 22 26 29 21 20 15 9

1 45 39 29 24 19 14 11 11 11 13 17 21 23 15 14 9 3

2 51 45 35 29 24 18 14 11 11 11 14 16 17 10 9 3 0

4 57 51 41 35 29 23 18 14 11 11 10 12 12 6 4 0 0

8 62 56 46 40 34 28 22 17 14 11 11 10 9 3 0 0 0

16 67 60 50 44 38 32 26 21 16 12 10 10 7 2 0 0 0

32 68 63 53 47 41 34 28 23 17 12 8 6 8 3 0 0 0

64 61 55 46 39 33 27 21 15 10 6 3 2 2 10 2 0 0

128 61 54 45 39 33 26 21 14 8 3 0 0 0 2 26 21 15

256 55 49 39 33 27 21 15 9 3 0 0 0 0 0 20 69 65

512 50 44 34 28 22 15 9 3 0 0 0 0 0 0 15 65 169

Algorithm based on ellipsoidal coordinates

Number of accurate decimal figures of integrals computed in double precision

Exps

Figure 8: Accurate decimal figures in double precision for overlap integrals withNA = NB = 20, LA = LB = 10
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Integrals     n
A
=n

B
=10;   l

A
=l

B
=10; R = 1 

0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512

0.005 0 0 0 0 0 0 0 0 0 6 12 18 22 22 17 12 6

0.01 0 0 0 0 0 0 0 0 0 6 12 18 22 22 17 12 6

0.03 0 0 0 0 0 0 0 0 1 6 12 18 22 22 17 12 6

0.06 0 0 0 0 0 0 0 0 0 7 13 18 22 22 17 12 5

0.12 0 0 0 0 0 0 0 0 1 6 12 18 22 22 17 12 6

0.25 0 0 0 0 0 0 0 0 2 7 12 18 22 22 17 11 5

0.5 0 0 0 0 0 0 0 0 2 8 13 18 22 22 17 11 6

1 0 0 0 0 0 0 0 1 4 9 13 18 22 22 17 11 5

2 0 0 1 0 1 2 2 4 7 9 14 18 22 21 17 11 5

4 6 6 6 7 6 7 8 9 9 11 15 17 21 20 16 10 4

8 12 12 12 13 12 12 13 13 14 15 18 20 20 20 14 8 3

16 18 18 18 18 18 18 18 18 18 17 20 22 23 19 15 8 3

32 22 22 22 22 22 22 22 22 22 21 20 23 27 23 18 12 5

64 22 22 22 22 22 22 22 22 21 20 20 19 23 25 17 12 6

128 17 17 17 17 17 17 17 17 17 16 14 15 18 17 20 12 5

256 12 12 12 11 12 12 11 12 12 10 8 9 12 12 12 17 6

512 6 6 6 5 6 5 6 5 6 4 3 3 5 6 6 6 14

Algorithm based on recursion over L,L' and M starting from integrals <N00|N'00> 

Number of accurate significant figures of integrals computed in quadruple precision

Exps

Integrals     n
A
=n

B
=10;   l

A
=l

B
=10; R = 1 

0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512

0.005 28 28 28 28 28 28 28 28 28 28 27 27 24 14 8 0 0

0.01 28 28 28 28 28 28 28 28 28 28 28 26 24 14 9 0 0

0.03 28 28 28 28 28 28 28 28 28 28 28 27 25 14 8 0 0

0.06 28 28 28 28 28 28 28 28 28 28 27 27 25 14 8 0 0

0.12 28 28 28 28 28 28 29 28 28 28 27 27 25 14 9 0 0

0.25 28 28 28 28 28 28 28 28 28 28 27 27 25 14 8 0 0

0.5 28 28 28 28 29 28 28 28 28 28 27 26 24 14 8 0 0

1 28 28 28 28 28 28 28 28 28 28 28 27 24 14 9 0 0

2 28 28 28 28 28 28 28 28 28 28 27 26 24 13 8 0 0

4 28 28 28 28 28 28 28 28 28 28 27 24 23 13 7 0 0

8 27 28 28 28 27 27 27 28 27 27 28 25 21 14 6 0 0

16 27 27 27 27 27 27 26 27 26 24 25 25 22 14 5 0 0

32 25 24 25 25 25 25 24 24 24 23 21 22 25 18 8 0 0

64 14 14 14 14 14 14 14 14 13 13 14 14 18 21 9 0 0

128 8 9 8 8 9 8 8 9 9 7 6 5 8 9 16 1 0

256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12 0

512 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

Algorithm based on ellipsoidal coordinates

Number of accurate significant figures of integrals computed in quadruple precision

Exps

Figure 9: Accurate significant figures in quadruple precision for overlap integrals with NA = NB = 20, LA =
LB = 10
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Integrals     n
A
=n

B
=10;   l

A
=l

B
=10; R = 1 

0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512

0.005 0 0 0 0 0 5 17 29 41 53 65 76 85 88 87 85 82

0.01 0 0 0 0 0 0 12 24 35 47 59 70 79 82 80 79 76

0.03 0 0 0 0 0 0 2 14 26 37 49 60 68 72 71 69 66

0.06 0 0 0 0 0 0 0 9 20 32 43 54 62 66 65 63 60

0.12 0 0 0 0 0 0 0 3 14 25 37 47 56 60 59 57 55

0.25 5 1 0 0 0 0 0 1 10 20 30 41 50 53 53 50 48

0.5 17 12 3 0 0 0 0 0 6 16 26 35 44 47 46 44 42

1 29 24 14 10 3 1 0 1 5 13 21 30 38 41 40 38 36

2 41 35 26 20 14 10 6 5 7 10 18 26 33 36 35 33 30

4 53 47 37 32 25 20 16 13 10 12 16 23 28 31 30 28 24

8 65 59 49 43 37 31 26 21 18 16 18 23 25 27 25 23 20

16 76 70 60 54 47 41 35 30 26 23 23 24 26 25 24 20 18

32 84 79 69 62 56 50 44 38 33 28 26 26 28 27 23 21 19

64 88 82 72 66 60 53 47 42 36 31 28 25 27 31 30 28 26

128 88 81 71 65 60 53 47 41 35 30 26 24 25 31 46 49 48

256 85 80 69 64 57 51 45 39 33 28 23 21 22 29 50 90 95

512 83 77 67 61 55 48 42 37 30 25 21 18 19 27 48 96 189

Algorithm based on recursion over L,L' and M starting from integrals <N00|N'00> 

Number of accurate decimal figures of integrals computed in quadruple precision

Exps

Integrals     n
A
=n

B
=10;   l

A
=l

B
=10; R = 1 

0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512

0.005 29 30 35 40 45 51 57 63 69 75 80 84 87 80 79 73 68

0.01 30 28 31 34 40 45 51 57 63 69 74 78 80 74 73 67 61

0.03 35 31 28 29 32 37 42 48 54 59 65 69 71 64 63 58 52

0.06 40 34 29 29 29 32 37 42 48 53 58 63 65 58 57 52 46

0.12 45 40 32 29 28 29 33 36 42 47 52 56 59 52 51 45 40

0.25 51 45 37 32 30 28 29 32 37 41 46 50 52 46 44 39 33

0.5 57 51 42 37 33 29 28 29 32 36 40 44 46 40 38 32 27

1 63 57 48 42 36 32 29 28 29 32 36 39 40 34 32 27 21

2 69 63 54 48 42 37 32 29 28 29 31 34 35 28 26 22 16

4 75 69 59 53 47 41 36 32 29 29 29 29 30 24 22 16 10

8 80 74 65 58 52 46 40 36 31 29 28 28 27 21 17 11 6

16 84 78 69 63 56 50 44 39 34 29 28 28 25 20 14 9 3

32 87 80 71 65 59 53 46 40 36 30 27 25 26 20 15 10 4

64 80 74 64 58 52 46 40 34 28 24 21 19 20 28 20 17 12

128 79 73 63 57 51 44 38 32 27 22 17 14 15 20 44 39 33

256 73 67 58 52 45 39 32 26 22 16 11 9 9 17 39 88 83

512 68 61 52 46 40 33 27 21 15 10 6 3 4 12 33 83 186

Algorithm based on ellipsoidal coordinates

Number of accurate decimal figures of integrals computed in quadruple precision

Exps

Figure 10: Accurate decimal figures in quadruple precision for overlap integrals with NA = NB = 20, LA =
LB = 10

From these figures, it is clear that:
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• Algorithms 1 and 2 are complementary in the sense that algorithm 1 works better for large
scaled exponents whilst algorithm 2 works better for smaller exponents.

• Though the accuracy of algorithm 2 is roughly higher, neither algorithm 1 or 2 in double
precision give sufficient accuracy in the whole range of exponents.

Figures 4 and 5 enable the same comparison in case of integrals computed in quadruple preci-
sion. It is clear now that

• Algorithm 1 can be confidently used except for very small scaled exponents (lower than
0.15) whilst algorithm 2 gives satisfactory results in the whole range of exponents studied.

• Algorithm 2 downgrades when one of the exponents is very high (∼ 500) and the other,
moderate (∼ 8).

In the second test, the results of both algorithms are compared in a case of higher quantum
numbers: NA = NB = 20, LA = LB = 10, −10 ≤ M ≤ 10 (nA = nB = 10 in our notation).
Figure 6 shows the order of magnitude of these integrals as a function of the scaled exponents
in the same range as before. Now integrals have meaningful values for exponents as large as
60, notably higher than in test 1.
Figs 7 and 8 fully confirm the previous conclusions reached in test 1: algorithms are comple-
mentary and double precision is not sufficient. Furthermore, comparing figs 2 and 3 with 7 and
8 it becomes evident the quick downgrading of the results of algorithm 1 in double precision as
the LA and LB quantum number increase. Figures 9 and 10 show that quadruple precision is not
sufficient to reach an acceptable final precision in these integrals. On the contrary, algorithm 2
still works well in almost the whole range of scaled exponents; it only fails when an exponent is
very high (∼ 500) and the other is moderate (∼ 8). Fortunately, these integrals are small (10−10

to 10−14) and just in these cases algorithm 1 gives sufficent accuracy.
The algorithms used for computing the Aj(β) and Bj(ν) integrals are fully stable (see appendix
A), and so are the computations of the ann′p and αLM L′M

kj constants. The accuracy losses come
from the cancellations between the positive and negative terms appearing in the summation of
eq(73).

6.4 Shift operators for two-center one-electron integrals: an alternative algorithm

The algorithm described in the previous section 6.2 has proved to be sufficiently accurate for
one-electron two-center integrals in a wide range of exponent values for fairly high quantum
numbers and it has been adopted for computing this type of integrals. Nevertheless, as some
algorithms for Coulomb integrals that will be described below require overlap integrals with
rather high quantum numbers, a third algorithm has been developed to compute them in these
extreme cases.
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In this alternative approach, the master formula for the overlap integral is written as:

〈χnLM |χn
′

L′M ′ 〉 = (−1)L
L<∑
k=0

PLML′M ′

k (R) SnLn′L′k (R, ζ, ζ ′) (81)

where

SnLn′L′k (R, ζ, ζ ′) =

(
− ∂

∂ζ

)n (
− ∂

∂ζ ′

)n′ (
−1

ζ

∂

∂ζ

)L (
− 1

ζ ′
∂

∂ζ ′

)L′
×

(
1

R

∂

∂R

)L+L′−k

f(R, ζ, ζ ′) (82)

Derivation of explicit expressions for the SnLn′L′k coefficients is simple if the following expres-
sion is taken for the basic integral:

〈 0s | 0s′ 〉 =
√

8 π R

∫ 1

0

du k̂−1/2(ζuR) (83)

The action of the three Bessel operators on the modified Macdonald functions is straightforward
and gives:

SnLn
′L′

k (R, ζ, ζ ′) = (−1)L+L′+k
√

8 π R2k+1

(
− ∂

∂ζ

)n (
− ∂

∂ζ ′

)n′
×

∫ 1

0

du uL (1− u)L
′
k̂−k−1/2(ζuR) (84)

There are now two possibilities. If the derivative operators are expressed in terms of Bessel
operators with the aid of eq(37), after some algebra, it comes:

SnLn′L′k (R, ζ, ζ ′) =
(−1)L+L′+k

√
8π R2k+1

(2ζ)n (2ζ ′)n′

n∑
i=

E[
(n+1)

2
]

n′∑
i′=

E[
(n′+1)

2
]

cni (ζR) cn
′

i′ (ζ
′R)

×
∫ 1

0

du uL+i (1− u)L
′+i′ k̂−k−i−i′−1/2(ζuR) (85)

where 0 ≤ k ≤ min(L,L′) and:

cni (ζR) =
(−1)n+i n! (2 ζ2 R2)i

(2i− n)! (n− i)!
(86)

The pending integral can be computed by numerical methods. Alternatively, the problem can
be reduced to compute integrals with the general form:
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K p,p′

−m−1/2(w,w
′) =

∫ 1

0

du up (1− u)p
′
k̂−m−1/2

(√
w2u+ w′2(1− u)

)
(87)

which have been discussed elsewhere [18, 19].
In the second possibility, the integral of eq(84) can be solved and, next, the derivative operators
are applied. In order to do this, we carry ut the expansion of the Macdonald function in Gegen-
bauer polynomials and integate term by term. After some cumbersome algebra, the final result
can be written as:

SnLn
′L′

k =

(
− ∂

∂ζ

)n (
− ∂

∂ζ ′

)n′
(−1)L+L′+k

√
8 π 22k+1

(ζ2 − ζ ′2)k+1/2

L+L′−2k∑
j=0

L LL′

k+1/2(j) Mk+1/2+j

(88)
where

L LL′

k+1/2(j) ≡ (−1)j
√
π

(k + 1/2 + j) (2k + j)!

2k−1/2 j!

×
L′−k∑
i=0

(−1)i (L′ − k)! (L− k + i)! (L+ i)!

(L′ − k − i)! (L− k + i− j)! (L+ k + 1 + j + i)! i!
(89)

and

Mk+1/2+j ≡ Ik+1/2+j

(
R (ζ − ζ ′)

2

)
Kk+1/2+j

(
R (ζ + ζ ′)

2

)
(90)

Defining α = ζ + ζ ′ and α′ = ζ − ζ ′, and taking into account that:

(
− ∂

∂ζ

)n (
− ∂

∂ζ ′

)n′
= (−1)n+n′

n+n′∑
p=0

cnn
′

p

(
∂

∂α

)n+n′−p (
∂

∂α′

)p
(91)

with

cnn
′

p = (−1)p
min(n,p)∑
i=max(0,

p−n′)

(−1)i n! n′!

(n− i)! (n′ − p+ i)! (p− i)! i!
(92)

a compact expression is attained:

SnLn
′L′

k = (−1)n+n′+L+L′+k
√

8 π 22k+1

L+L′−2k∑
j=0

L LL′

k+1/2(j)

×
n+n′∑
p=0

cnn
′

p F
(n+n′−p)
k+1/2,j (αj, R) G

(p)
k+1/2,j(α

′
j, R) (93)
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where:

F
(m)
k+1/2,j(α,R) =

(
∂

∂α

)m Kk+1/2+j(αR/2)

αk+1/2
(94)

G
(m)
k+1/2,j(α

′, R) =

(
∂

∂α′

)m Ik+1/2+j(α
′R/2)

α′k+1/2
(95)

Functions F (m)
k+1/2,j(α,R) and G(m)

k+1/2,j(α
′, R) have different expressions depending on the for-

mula taken for the products of powers by Bessel functions. Thus, taking derivatives directly
with the aid of Leibnitz rule gives:

F
(m)
k+1/2,j(α,R) =

(−1)m

(k − 1/2)! αm+k+1/2

m∑
i=0

(
m

i

)
(m+ k − 1/2− i)!

(
αR

4

)i
×

i∑
r=0

(
i

r

)
Kk+1/2+j−i+2r(αR/2) (96)

and

G
(m)
k+1/2,j(α

′, R) =
(−1)m

(k − 1/2)! α′m+k+1/2

m∑
i=0

(
m

i

)
(m+ k − 1/2− i)!

(
−α

′R

4

)i
×

i∑
r=0

(
i

r

)
Ik+1/2+j−i+2r(α

′R/2) (97)

If, as an aternative, we write:

F
(m)
k+1/2,j(α,R) =

(
R

2

)k+1/2 (
∂

∂α

)m (
αR

2

)j
k̂−k−1/2−j(αR/2) (98)

and

G
(m)
k+1/2,j(α

′, R) =

(
R

2

)k+1/2 (
∂

∂α′

)m (
α′R

2

)j Ik+1/2+j(α
′R/2)

(α′R/2)k+1/2+j
(99)

Leibnitz rule gives:

F
(m)
k+1/2,j(α,R) =

(
R

2

)k+1/2+j

m! j! αj−m
m∑

p=max(0,
m−j)

(−1)p (αR/2)2p

(m− p)! (j −m+ p)!

×
E( p

2)∑
i=0

(−1)i

(p− 2i)! i! (α2R2/2)i
k̂−k−1/2−j−p+i(αR/2) (100)
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and

G
(m)
k+1/2,j(α

′, R) =

(
R

2

)k+1/2+j

m! j! α′
j−m

m∑
p=max(0,
m−j)

(α′R/2)2p

(m− p)! (j −m+ p)!

×
E( p

2)∑
i=0

1

(p− 2i)! i! (α′2R2/2)i
Ik+1/2+j+p−i(α

′R/2)

(α′R/2)k+1/2+j+p−i (101)

Notice that, whereas eqs(96) and (100) are free of cancellation issues, eqs(97) and (99) may be
not. Therefore, the former are preferable.

7 Coulomb integrals

The Coulomb integrals between four Slater functions are defined as:

[χnA
LA MA

χ
n′A
L′A M ′A

|χnB
LB MB

χ
n′B
L′B M ′B

] ≡
∫
dr

∫
dr′ χnA

LA MA
(ζA, rA) χ

n′A
L′A M ′A

(ζ ′A, rA)

× χnB
LB MB

(ζB, r
′
B) χ

n′B
L′B M ′B

(ζ ′B, r
′
B)

1

|r− r′|
(102)

Since one-center STO distributions can be expressed in terms of STO:

χnLM(ζA, r) χn
′

L′M ′(ζ
′
A, r) =

∑
l

∑
m

αLM L′M ′

L+L′−2l m zmL+L′−2l(r) rn+n′+2l−2 e−(ζA+ζ′A) r (103)

the integrals of eq (102) are linear combinations of more simple integrals [χnlm |χn
′

l′m′ ]:

[χnA
LA MA

χ
n′A
L′A M ′A

|χnB
LB MB

χ
n′B
L′B M ′B

] =
∑
l

∑
m

∑
l′

∑
m′

α
LAMA L′AM

′
A

LA+L′A−2l m α
LBMB L′BM

′
B

LB+L′B−2l′ m′ [χnlm |χn
′

l′m′ ]

(104)
where 0 ≤ l ≤ [(LA +L′A)/2], 0 ≤ l′ ≤ [(LB +L′B)/2], each the sums over m and m′ contains
two terms at most, and:

[χnlm |χn
′

l′m′ ] ≡ [χnlm(ζ, rA) |χn′l′m′(ζ ′, r′B) ] ≡
∫
dr

∫
dr′ χnlm(ζ, rA) χn

′

l′m′(ζ
′, r′B)

1

|r− r′|

=

∫
dr

∫
dr′ zml (rA) rnA−1

A e−ζ rA zm
′

l′ (r′B) r′
nB−1
B e−ζ

′ r′B
1

|r− r′|
(105)

where we have used the decomposition of the product of regular harmonics in harmonics, and
taken ζ = ζA + ζ ′A and ζ ′ = ζB + ζ ′B.
Eq 105 can be written in the compact form:
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[ χnlm |χn
′

l′m′ ] = δmm′

∫
dr V n

lm(r) χn
′

l′m′(rB)

=

∫
dr V n

l (r)

[
zml (r) zml′ (rB) r2k

B

]
e−ζ

′ rB

rB
(106)

where

V n
l (r) =

4π

(2l + 1) ζn+1

{
(n+ 2l + 1)!

(2l)!

γ(2l + 1, ζ r)

(ζ r)2l+1

− e−ζ r (ζr)i
n−1∑
i=0

[
(n+ 2l + 1)!

(i+ 2l + 1)!
− n!

i!

] }
(107)

For odd n′, e−ζ′ rB/rB must be replaced by e−ζ′ rB .
A first general expression can be by direct substitution of the potential of eq(107) into the
definition of eq(106) gives:

[ χnLM |χn
′

L′M ′ ] = δMM ′
4π

(2L+ 1)

{
(n+ 2L+ 1)!

ζn+2L+2

[∫
dr

zML (r) χn
′

L′M ′(rB)

r2L+1

−
2L∑
j=0

ζj

j!

∫
dr zML (r) rj−2L−1 e−ζr χn

′

L′M ′(rB)

]

− 1

ζn+1

n−1∑
i=0

[
(n+ 2L+ 1)!

(i+ 2L+ 1)!
− n!

i!

]
ζ i
∫
dr zML (r) ri e−ζr χn

′

L′M ′(rB)

}
(108)

The last term in the r.h.s. is a sum of ordinary overlap integrals which have been previously
discussed. The first term can be regarded as an overlap integral with ζ = 0 and negative index
n. The second term is a sum of overlap integrals with negative n index that can be attained
either by translation methods or by recurrence relations.
This integral can be written also as:

[ χnLM |χn
′

L′M ′ ] =
(n+ 2L+ 1)!

(2L+ 1)! ζn
(n′ + 2L′ + 1)!

(2L′ + 1)! ζ ′n
′ [ χ0

LM |χ0
L′M ′ ]

− 4 π (n+ 2L+ 1)!

(2L′ + 1) ζ ′n
′+1 (2L+ 1)! ζn

n′−1∑
i=0

[
(n′ + 2L′ + 1)!

(i+ 2L′ + 1)!
− n′!

i!

]
ζ ′
i 〈χ0

LM |χi+1
L′M ′ 〉

− 4π

(2L+ 1) ζn+1

n−1∑
i=0

[
(n+ 2L+ 1)!

(i+ 2L+ 1)!
− n!

i!

]
ζ i 〈χi+1

LM |χ
n′

L′M ′ 〉 (109)
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A second general formula for the Coulomb integral of eq(106) is:

[ χnLM |χn
′

L′M ′ ] = δMM ′ 4 π
∑
l

∑
p

BLMkL′M
lp RL+L′+2k−l−2p−1/2

×
∫ ∞

0

dr V n
L (r) r2p+l+3/2 Ml+1/2 (110)

in which a one-dimension integral appears, that can be solved by numerical or analytical methods[18].
As an alternative, the shift operators approach can be used. This procedure provides a lot of
different master formulas depending on the expression taken for the basic integral. We will just
report here a pair of ilustrative examples.
As it has been commented previously –see sec 3– shift operators allow us to write the general
integral as:

[ χnLM |χn
′

L′M ′ ] =

L<∑
k=0

PLML′M ′

k (R) JnLn
′L′

k (111)

where PLML′M ′

k (R) are the functions defined in ec(34) and

JnLn
′L′

k =

(
− ∂

∂ζ

)n (
−1

ζ

∂

∂ζ

)L (
− ∂

∂ζ ′

)n′ (
− 1

ζ ′
∂

∂ζ ′

)L′ (
1

R

∂

∂R

)L+L′−k

[ χ |χ′ ]

(112)
According to the Fourier transform technique:

[ χ |χ′ ] ≡ f(R, ζ, ζ ′) ≡ [ χ0
00 |χ0

00 ] = 16 π
√

2π R−1/2

∫ ∞
0

dk
k−1/2 J1/2(kR)

(ζ2 + k2) (ζ ′2 + k2)
(113)

and writing the derivative operators in terms of Bessel operators the application of the operators
is trivial and gives:

JnLn
′L′

k =
8π2
√

2π (−1)L+L′−k

RL+L′−k+1/2

∑
i

∑
i′

cLni (ζ) cL
′n′

i′ (ζ ′)

×
∫ ∞

0

dk
kL+L′−k−1/2 JL+L′−k+1/2(kR)

(ζ2 + k2)L+1+i (ζ ′2 + k2)L′+1+i′
(114)

where E
(
n+1

2

)
≤ i ≤ n, E

(
n′+1

2

)
≤ i′ ≤ n′,and the functions cLni (ζ) are:

clni (ζ) =

√
2

π

2l n! (l + i)! (2ζ)2i−n (−1)n+i

(n− i)! (2i− n)!
(115)

Notice that one-dimension integrals of only one type appear.
The semiinfinite integrals with oscillatory integrands of eq(114) can be replaced by integrals
with finite limits and nonoscillatory integrands by means of Feynman transform:
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1

(ζ2 + k2)p+1 (ζ ′2 + k2)p′+1
=

(p+ p′ + 1)!

p! p′!

∫ 1

0

du
up (1− u)p

′

(ζ2 u+ ζ ′2 (1− u) + k2)p+p′+2
(116)

changing the order of the integrals and taking into account that:

∫ ∞
0

dk (k R)l−1/2 Jl+1/2(kR)
1

(a2 + k2)p+1
=
R2p+1

p! 2p

∫ 1

0

dt t2p+1 k̂l−p−1/2(aRt)

=
(aR)2l

p! 2p a2p+1

∫ 1

0

dt t2l k̂p−l+1/2(aRt) (117)

This leads to:

JnLn
′L′

k (R, ζ, ζ ′) =
(−1)L+L′+k 8 π

√
2π R2k+3

(2ζ)n (2ζ ′)n′

n∑
i=

E[
(n+1)

2
]

n′∑
i′=

E[
(n′+1)

2
]

cni (ζR) cn
′

i′ (ζ
′R)

×
∫ 1

0

du uL+i (1− u)L
′+i′

∫ 1

0

dt t2(L+L′+i+i′+1)+1 k̂−k−i−i′−3/2(ζuRt) (118)

where:

cni (ζR) =
(−1)n+i n! (2 ζ2 R2)i

(2i− n)! (n− i)!
(119)

The analytical solution of the innermost integrals follows immediately from∫
dx x2m+1 k̂ν(αx) = − m!

2(α2/2)m+1

m∑
i=0

(α2 x2/2)i

i!
k̂ν+m+1−i(αx) (120)

and the second integral can be solved with numerical methods.
Eq(118) allows also to separate the long- and short-range contributions. The former is attained
by bringing the upper limit of the innermost integral to infinity, and the latter by integrating over
1 ≤ t ≤ ∞. Notice that the long-range contribution must coincide with

[χnlm |χn
′

l′m′ ]R>> = 4 π2 (−1)l
′ √

π (l + l′ − 1/2)!

(l + 1/2)! (l′ + 1/2)!

(n+ 2l + 1)! (n′ + 2l′ + 1)!

ζn+2l+2 ζ ′n
′+2l′+2

×
n∑
m′′

αlm l′m′

l+l′ m′′
zm
′′

l+l′(R)

R2(l+l′)+1
(121)

The solution in case of equal exponents is straightforward by taking ζ = ζ ′ in eq(114) and
solving the pending integral with:
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∫ ∞
0

dk (k R)l−1/2 Jl+1/2(kR)

(a2 + k2)p+1
=

1

Ra2p+2

[
2l−1/2 (l − 1/2)!−

p∑
i=0

(a2R2/2)i

i!
k̂l+1/2−i(aR)

]

=
1

Ra2p+2

(p− l − 1/2)!

p! 2l+1/2

p−l∑
i=0

(l − p)i 2i

(2l − 2p)i i!
γ(2l + 1 + i, aR) for p ≥ l (122)

=
1

Ra2p+2

(l − p− 3/2)!

p! 22p−l+3/2

l−p−1∑
i=0

(p+ 1− l)i 2i

(2p+ 2− 2l)i i!
γ(2p+ 2 + i, aR) for p < l

where p = L+ L′ + i+ i′ + 1, l = L+ L′ − k and a = ζ .
As a second example, we will consider the generalization of

[ χ |χ′ ] = 16π2

{
1

ζ2 ζ ′2 R
+

1

(ζ2 − ζ ′2)

[
1

ζ

∫ ∞
1

du e−ζRu − 1

ζ ′

∫ ∞
1

du e−ζ
′Ru

]}
(123)

which is interesting because, in this case, the shift operators technique allows to separate the
long- and short-range contributions as well as to obtain simple expressions for both.
First, we write:

JnLn
′L′

k = JnLn
′L′

k (long)− JnLn′L′k (short) (124)

where

JnLn
′L′

k (long) =

(
− ∂

∂ζ

)n(
−1

ζ

∂

∂ζ

)L(
− ∂

∂ζ ′

)n′ (
− 1

ζ ′
∂

∂ζ ′

)L′ (
1

R

∂

∂R

)L+L′−k
16 π2

ζ2 ζ ′2 R
(125)

Application of shift operators is straightforward since the variables are uncoupled, and gives:

JnLn
′L′

k (long) =
4 (−1)k π5/2 (L+ L′ − k − 1/2)!

2k (L+ 1/2)! (L′ + 1/2)!

(2L+ n+ 1)! (2L′ + n′ + 1)! R2k

ζ2L+n+2 ζ ′2L
′+n′+2 R2L+2L′+1

(126)
Derivation of the expression for the short-range term is a bit cumbersome. This term is:

JnLn
′L′

k (short) =

(
− ∂

∂ζ

)n(
−1

ζ

∂

∂ζ

)L(
− ∂

∂ζ ′

)n′(
− 1

ζ ′
∂

∂ζ ′

)L′(
1

R

∂

∂R

)L+L′−k

[ χ |χ′ ]short
(127)

where

[ χ |χ′ ]short =

√
2

π
16 π2 1

(ζ2 − ζ ′2)

∫ ∞
1

du

[
k̂1/2(ζRu)

ζ
−
k̂1/2(ζ

′Ru)

ζ ′

]
(128)

Bearing in mind eq(34), we rewrite this term as:
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JnLn
′L′

k (short) =
∑
i

∑
i′

cni (ζ) cn
′

i′ (ζ
′)

(
−1

ζ

∂

∂ζ

)L+i (
− 1

ζ ′
∂

∂ζ ′

)L′+i′

×
(

1

R

∂

∂R

)L+L′−k

[ χ |χ′ ]short (129)

where E
(
n+1

2

)
≤ i ≤ n, E

(
n′+1

2

)
≤ i′ ≤ n′ and:

cni (ζ) =
(−1)n+i n! (2ζ)2i−n

(n− i)! (2i− n)! 2i
(130)

The problem is thus reduced to taking the three pending derivatives. After some algebra, it
comes:

JnLn
′L′

k (short) =

√
2

π

16 π2

ζ2 − ζ ′2
(−1)n+n′+L+k Rn+n′+2k+1

[(ζ2 − ζ ′2) R2/2]L+L′

×
n∑

i=E(n+1
2 )

n′∑
i′=E(n′+1

2 )

cni (ζR) cn
′

i′ (ζ
′R)

1

[(ζ2 − ζ ′2) R2/2]i+i′

×
{L+i∑
j=0

(
L+ i

j

)
(L+ L′ + i+ i′ − j)! [(ζ2 − ζ ′2) R2/2]j

×
∫ ∞

1

du u2j+1 k̂L+L′−k−j−1/2(ζRu)

−
L′+i′∑
j′=0

(
L′ + i′

j′

)
(L+ L′ + i+ i′ − j′)! [−(ζ2 − ζ ′2) R2/2]j

′

×
∫ ∞

1

du u2j′+1 k̂L+L′−k−j′−1/2(ζ
′Ru)

}
(131)

where the pending integrals are:

∫ ∞
1

du u2j+1 k̂ν(zu) =
j! 2j

(z2)j+1

j∑
i=0

(z2/2)i

i!
k̂ν+j+1−i(z) (132)

7.1 Tests on the accuracy of algorithms for Coulomb integrals

The formal developments of the previous sections can be combined in many ways, leading
to a huge amount of possible algorithms for the calculation integrals. The analysis of every
alternative implies its implementation in a program code and a thorough testing of the results.
As a consequence, a previous selection of the possible candidates is mandatory.
For the moment, we have implemented and tested only three algorithms among the more simple
ones. In all of them, the final Coulomb integrals are obtained as linear combinations of integrals
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[ χnLM |χn
′

L′M ′ ], as indicated in eq(104). The algorithms differ in the way the [ χnLM |χn
′

L′M ′ ]

integrals are computed.
First, a code in double precision based on eq(112) combined with the shift operators technique
was attempted (file coulomb 2010 shiftop D.f90). This was an appealing approach be-
cause the general Coulomb integrals were reduced to linear combinations of overlap integrals
plus one Coulomb integral involving functions with n ≡ N − L = 0. Since the quantum
numbers appearing in the overlap integrals are twice the values of these numbers in the basis
functions, we had to develop a new algorithm for overlap integrals more robust than any other
proposed before. Unfortunately, after the new algorithm for overlap integrals was developed
and coded, and once the accuracy in the overlap was guaranteed, we found that, for high quan-
tum numbers, big numerical cancellations occur between the first summand in eq(112) and the
remaining ones. Because of it, we preferred to try a different solution.
In the second attempt, a code based on the numerical integration of eq(110) was prepared (file
coulomb 2010 intnum D.f90). In principle, the algorithm seems to be more robust than
the previous one, but there is a problem with the dependence of the integrand with the values
of the exponents and the quantum numbers. This dependence is rather involved and makes it
difficult to design a good choice of the quadrature points, which is critical in the final result.
In view of this, we have tried a third solution, which is closely related with that already imple-
mented in SMILES, based on eq(108). The algorithm follows closely the presciption of ref[26],
but the calculation of the auxiliary functions has been completely redesigned. In this way, we
have been able to extend the accuracy of the calculations. We have thus prepared three codes
corresponding to double and quadruple precision and multiprecision[27]. The latter has been
taken as a reliable reference for all the remaining codes.
Figs 11 to 14 illustrate the quality of the results attained with the double and quadruple versions
of the third code (with the multiprecision values taken as a reference). As it can be seen in figs
11 and 12, for high quantum numbers, there is a rather broad range of exponents, defined by
the value of the lowest (ζ, ζ ′) between 4 and 64, in which there is a significant loss of accuracy.
Using quadruple precision in this range is sufficient to overcome the problem, as figs 11 and 12
show.
The employment of quadruple precision implies a penalty in computational time by a factor
between 10 and 100 with respect to double precision. Since the algorithm is quite fast, the
computational cost in quadruple still remains acceptable. Nevertheless, it is always possible
to combine both double and quadruple precision in the same code, restricting the use of the
quadruple precision to those cases in which a significant loss of accuracy has been detected.
Finally, it should be noticed that the formal developments above reported open the door to
many other possible algorithms. However, at this moment, we consider that the current al-
gorithm based on translation, with quadruple precision in the prescripted cases, is sufficiently
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satisfactory to fulfill the current requirements in molecular calculations with STO.

0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512
0.005 15 - - - - - - - - - - - - - - - -
0.01 18 15 - - - - - - - - - - - - - - -
0.03 18 18 14 - - - - - - - - - - - - - -
0.06 18 18 17 14 - - - - - - - - - - - - -
0.12 18 18 17 17 14 - - - - - - - - - - - -
0.25 18 18 17 17 16 14 - - - - - - - - - - -
0.5 18 18 17 17 16 16 13 - - - - - - - - - -
1 18 18 17 17 16 16 16 13 - - - - - - - - -
2 18 18 17 17 16 16 16 15 11 - - - - - - - -
4 18 18 17 17 16 16 16 16 15 10 - - - - - - -
8 18 18 17 17 16 16 16 16 15 13 9 - - - - - -

16 18 18 17 17 16 16 16 16 15 14 11 8 - - - - -
32 18 18 17 17 16 16 16 16 15 14 11 8 4 - - - -
64 18 18 17 17 16 16 16 16 15 14 11 8 4 9 - - -

128 18 18 17 17 16 16 16 16 15 14 11 8 4 13 14 - -
256 18 18 17 17 16 16 16 16 15 14 11 8 4 14 14 14 -
512 18 18 17 17 16 16 16 16 15 14 11 8 4 14 14 14 14

Absolute error NA=NA'=6  LA=LA'=5   NB=NB'=6  LB = LB' = 5
Double precision

Exp+Exp'

Figure 11: Accurate decimal figures in double precision for Coulomb integrals withNA = NB = NC = ND = 6,
LA = LB = LC = LD = 5

0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512
0.005 8
0.01 10 8
0.03 14 13 9
0.06 14 14 11 8
0.12 14 14 13 11 8
0.25 14 14 14 13 11 8
0.5 14 14 14 14 14 11 8
1 14 14 14 14 14 14 11 9
2 14 14 14 14 14 14 13 12 9
4 14 14 14 14 14 14 14 13 11 7
8 14 14 14 14 14 14 14 14 12 10 7

16 14 14 14 14 14 14 14 14 14 12 9 6
32 14 14 14 14 14 14 14 14 14 12 10 7 2
64 14 14 14 14 14 14 14 14 13 13 10 6 1 3

128 14 14 14 14 14 14 14 14 14 12 9 7 3 7 14
256 14 14 14 14 14 14 14 14 14 13 9 7 3 8 14 14
512 14 14 14 14 14 14 14 14 14 13 8 7 3 9 14 14 14

Relative error NA=NA'=6  LA=LA'=5   NB=NB'=6  LB = LB' = 5
Double precision

Exp+Exp'

Figure 12: Accurate significant figures in double precision for Coulomb integrals withNA = NB = NC = ND =
6, LA = LB = LC = LD = 5
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0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512
0.005 33
0.01 36 33
0.03 37 36 32
0.06 37 37 36 32
0.12 37 37 36 36 32
0.25 37 37 36 36 35 31
0.5 36 36 36 36 35 35 31
1 37 36 36 36 35 35 34 30
2 37 36 36 36 35 35 35 33 29
4 37 36 37 36 35 35 35 34 32 28
8 36 36 36 36 35 35 35 34 34 31 27

16 36 36 36 35 35 35 35 34 34 32 29 25
32 36 36 36 36 35 35 35 34 34 32 29 25 22
64 36 36 36 35 35 35 35 34 34 32 29 25 22 18

128 37 36 36 36 35 35 35 34 34 32 29 25 22 18 30
256 36 36 36 35 35 35 35 34 34 32 29 25 22 18 33 34
512 36 36 36 36 35 35 35 34 34 32 29 25 22 18 33 34 33

Absolute error NA=NA'=6  LA=LA'=5   NB=NB'=6  LB = LB' = 5
Quadruple precision

Exp+Exp'

Figure 13: Accurate decimal figures in quadruple precision for Coulomb integrals with NA = NB = NC =
ND = 6, LA = LB = LC = LD = 5

0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512
0.005 26
0.01 28 26
0.03 33 32 26
0.06 33 32 29 27
0.12 33 33 31 29 26
0.25 33 32 33 31 29 26
0.5 33 33 34 33 31 29 25
1 33 33 34 32 33 31 29 27
2 33 33 34 33 33 33 31 30 27
4 33 32 34 32 33 33 33 31 28 25
8 33 32 33 33 33 33 33 31 31 29 25

16 33 33 34 33 33 33 33 33 32 30 27 24
32 33 33 34 32 33 33 33 33 32 31 29 25 20
64 33 33 33 33 33 33 33 33 31 31 29 24 19 14

128 33 32 34 32 33 33 33 33 33 31 28 25 20 15 23
256 33 32 34 33 33 33 33 33 33 31 28 25 21 15 29 27
512 33 33 33 33 33 33 33 33 33 31 26 25 21 15 31 28 33

Relative error NA=NA'=6  LA=LA'=5   NB=NB'=6  LB = LB' = 5
Quadruple precision

Exp+Exp'

Figure 14: Accurate significant figures in quadruple precision for Coulomb integrals with NA = NB = NC =
ND = 6, LA = LB = LC = LD = 5

8 Hybrid integrals

Hybrid integrals of STOs are defined as:

[χnA
LA MA

χnB
LB MB

|χn
′
A

L′A M ′A
χ
n′′A
L′′A M ′′A

] ≡
∫
dr

∫
dr′ χnA

LA MA
(ζA, rA) χnB

LB MB
(ζB, rB)

× χ
n′A
L′A M ′A

(ζ ′A, r
′
A) χ

n′′A
L′′A M ′′A

(ζ ′′A, r
′
A)

1

|r− r′|
(133)
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To compute the hybrid integrals, the one-center distribution, χn
′
A

L′A M ′A
(ζ ′A, rA) χ

n′′A
L′′A M ′′A

(ζ ′′A, rA) is
decomposed as a linear combination of one-center distributions –see eq(103). In this way, the
general hybrid integral of eq(133) can be expressed as a linear combination of integrals like:

[χnA
LA MA

χnB
LB MB

|χνλµ ] =

∫
dr

∫
dr′χnA

LA MA
(ζA, r) χnB

LB MB
(ζB, rB)

1

|r− r′|
χνλµ(ζ, r′)

(134)
where centerA has been taken as the coordinates origin and ζ ≡ ζ ′A+ζ ′′A. The coefficients of the
linear combination are those of the decomposition of products of regular spherical harmonics
into spherical harmonics.
The problem is thus reduced to the efficient computation of integrals like (134). In the current
approach, these integrals are computed starting from some basic integrals which can be chosen
as:

IνλµnLM ≡
∫
dr

∫
dr′χnA

LA MA
(ζA, rA) χ0

00(ζB, rB)
1

|r− r′|
χνλµ(ζ, r′) (135)

for integrals with NB even, and

JνλµnLM ≡
∫
dr

∫
dr′χnLM(ζA, rA) χ1

00(ζB, rB)
1

|r− r′|
χνλµ(ζ, r′) (136)

forNB odd, and translating the factor |r−RAB|2E(nB/2) zMB
LB

(r−RB) to center A. In a lined-up
axis system –with the Z and Z ′ axes coincident and the (X, Y ) axes parallel to (X ′, Y ′)– this
translation is very simple and all the integrals with M 6= µ vanish after integration on φ.
We start by translating the factor |r−RAB|2E(nB/2) by:

|r−RAB|2E(nB/2) = (r2 +R2
AB − 2 r RAB cos θ)E(nB/2) (137)

where E(ν) stands for the integer part of ν. This equation yields the recurrence relation:

[n, L,M ; νB + 2, 0, 0 | ν, λ,M ] = R2
AB [n, L,M ; νB, 0, 0 | ν, λ,M ]

+ [n+ 2, L,M ; νB, 0, 0 | ν, λ,M ]

− 2RAB

2L+ 1

{
(L−M + 1) [n, L+ 1,M ; νB, 0, 0 | ν, λ,M ]

+ (L+M) [n+ 2, L− 1,M ; νB, 0, 0 | ν, λ,M ]

}
(138)

that can be used to reach the integrals for νB = nB. In order to get the pertaining values of LB
and MB, we apply the translation of the solid regular harmonic zMB

LB
(r − RB) to the integrals

[n, L,M ;nB, 0, 0 | ν, λ,M ], by means of
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zMB
LB

(r−RAB) =

LB∑
k=|MB |

(
LB + |MB|
k + |MB|

)
(−RAB)LB−k zMB

k (r) (139)

followed by the decomposition of the product zMA
LA

(r) zMB
k (r) with

zML (r) zM
′

L′ (r) =
∑
l

∑
µ

αLM L′M ′

L+L′−2l µ r
2l zµL+L′−2l(r) (140)

where |µ| ≤ l ≤ E[(L+ L′)/2] and, in the lined-up system, the sum over µ contains two terms
at most.
This gives:

[n, L,M ;nB, LB,MB | ν, λ, µ ] =

LB∑
k=|MB |

(
LB + |MB|
k + |MB|

)
(−RAB)LB−k

×
∑
l

αLAMA kMB
LA+k−2l µ [n+ 2l, LA + k − 2l, µ;nB, 0, 0 | ν, λ, µ ] (141)

8.1 Calculation of the basic hybrid integrals

The basic integrals can be written as:

IνλµnLM =

∫
drχnA

LA MA
(ζA, rA) χ0

00(ζB, rB) V ν
λµ(ζ, r) (142)

and

JνλµnLM =

∫
drχnA

LA MA
(ζA, rA) χ1

00(ζB, rB) V ν
λµ(ζ, r) (143)

where V ν
λµ(ζ, r) is the potential generated by the one-electron distribution χνλµ(ζ, r′). This

potential is well known and can be written as:

V ν
λµ(ζ, r) =

4 π

2λ+ 1
zµλ(r)

{
(ν + 2λ+ 1)!

ζν+2λ+2 r2λ+1

[
1− e−ζr

2λ∑
j=0

(ζ r)j

j!

]

+
e−ζr

ζν+1

ν−1∑
j=0

(ζ r)j
[
ν!

j!
− (ν + 2λ+ 1)!

(2λ+ j + 1)!

]}
(144)

Replacing 144 in 142 this latter can be written as:

IνλµnLM =
∑
l

αLM λµ
L+λ−2l 0 A

nν
lLλ (145)

where:
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AnνlLλ =
2l + 1

(2λ+ 1) ζ

{
(ν + 2λ+ 1)!

ζν+2λ+1
hn+L−λ−l−1
l (ζA, ζB)

−
2λ∑
j=0

ζj

j!
hn+L+j−λ−l−1
l (ζA + ζ, ζB)

]
+

ν−1∑
j=0

hn+L+j+λ−l
l (ζA + ζ, ζB)

×
[
ν!

j!
− (ν + 2λ+ 1)!

(j + 2λ+ 1)!

]}
(146)

hnl (α, β) being the two-center overlap integrals:

hnl (α, β) =

∫
dr rn−1 z0

l (r) e−αr
e−βrB

rB
(147)

For the JνλµnLM integrals, an equation like (145) also holds replacing hnl by Hn
l in eq(147), with:

Hn
l (α, β) =

∫
dr rn−1 z0

l (r) e−αr e−βrB (148)

The problem is thus reduced to the evaluation of the overlap integrals hnl (α, β) and Hn
l (α, β),

which can be accomplished with any of the procedures previously described for overlap inte-
grals. In particular, the current codes compute these integrals by means of the STO translation
formulas:

hnl (α, β) =
4π Rn+l+1

AB e−(α+β)

2l + 1

[
Φl(β) iln(α, β) +

φl(β) kln(α, β)

(α + β)n+1

]
(149)

Hn
l (α, β) = 4π Rn+l+2

AB e−(α+β)

{
β

2l + 1

[
Φl−1(β) iln(α, β)

2l − 1
− Φl(β) il+1n(α, β)

2l + 3

]
+

1

β (α + β)n+1

[
φl(β) kl+1n(α, β)− φl−1(β) kln(α, β)

]}
l > 0 (150)

Hn
0 (α, β) = 4π Rn+2

AB e−(α+β)

{
i0n(α, β)− β

3
i1n(α, β)

+
1

β (α + β)n+1

[
φ0(β) k1n(α, β)−

(
φ0(β) +

y2

3
φ1(β)

)
k0n(α, β)

]}
(151)

Hn
l (α, β) =

y

2l + 1

[
hn+2
l−1 (α, β)− hnl+1(α, β)

]
(152)

with

Φl(β) =
(2β)l+1/2 l!

π1/2 (2l)!
eβ Kl+1/2(β)

= 1F1(−l;−2l; 2β) (153)

46



φl(β) = (2/β)l+1/2 (l + 1/2)! Il+1/2(β)

= 0F1(l + 3/2; β2/4) (154)

iln(α, β) = (2/β2)l+1/2 (l + 1/2)! eα
∫ 1

0

dt tn e−αt (βt)l+1/2 Il+1/2(βt)

=
∞∑
j=0

(β2/4)j 1F1(1;n+ 2l + 2j + 3;α)

j! (l + 3/2)j (n+ 2l + 2j + 2)
(155)

kln(α, β) = eα+β (α + β)n+1 l! 2l+1/2

(2l)! π1/2

∫ ∞
1

dt tn e−αt (βt)l+1/2 Kl+1/2(βt)

=
l∑

j=0

(
2β

α + β

)j
en+j(α + β)

(−l)j (n+ j)!

j! (−2l)j
(156)

In these equations, (a)j denotes the corresponding Pochhammer symbol, Kν(z) are the Mac-
donald functions, Iν(z) the corresponding Bessel functions, and en(z) stands for the truncated
exponential:

en(z) =
n∑
j=0

xj

j!
(157)

The set of Φl functions is computed by recursion in a fully stable way:

Φl+1(β) = Φl(β) +
β2

(2l − 1) (2l + 1)
Φl−1(β) (158)

starting from Φ0(β) = 1 and Φ1(β) = 1 + β.
The set of φl functions can be computed also by recursion by means of:

φl−1(β) = φl(β) +
β2

(2l + 1) (2l + 3)
φl+1(β) (159)

since the relation is stable for backwards recursion, it must be started from φlmax(β) and φlmax−1(β),
which are computed by means of eq(154). To improve performance, Miller’s algorithm[28] is
used.
For the calculation of the kln(α, β), the first row is computed by:

k0n(α, β) = n! en(α + β) (160)

the second row, by:
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k1n(α, β) = k0n(α, β) +
β

α + β
k0n+1(α, β) (161)

and the remaining ones, by:

kl+1n(α, β) = kln(α, β) +
β2

(α + β)2 (2l + 1) (2l − 1)
kl−1n+2(α, β) (162)

Finally, in the calculation of the iln(α, β), three cases are distinguished:
Case 1: β ≤ 1

The elements ilmax n(α, β) with n ≤ −1 are computed by means of the second expression in
eq(155). Although the sum is infinite, it converges very quickly for these values of β. The
remaining elements are computed by means of:

iln(α, β) =
1

2l + 3

[
φl+1(β) + α il+1n−1(α, β)− (n− 1) il+1n−2(α, β)

]
(163)

il n+1(α, β) =
1

(2l + 3) (n+ 2l + 3)

[
(α2 − β2) il+1n+1(α, β)− (n+ 1) α il+1n(α, β)

+ (α + 2l + 3) φl+1(β) +
β2

2l + 5
φl+2(β)

]
(164)

il n(α, β) =
1

(2l + 3) (n+ 2l + 3) (n+ 2l + 2)

{
(α2 − β2) α il+1n+1(α, β)

−
[
(n+ 1) α2 + (n+ 2l + 3) β2

]
il+1n(α, β) + α2 φl+1(β)

+ (2l + 3) (α + n+ 2l + 3) φl(β)
}

(165)

Case 2: β ≥ α + 8

The elements il−2lmax(α, β) and il−2lmax+1(α, β) are computed by eq(155). The remaining
elements with l = lmax are computed by:

il n+2(α, β) =
1

α2 − β2

[
−(n+ 1) (n+ 2l + 2) il n(α, β)

+ 2α (n+ 2l + 2) il n+1(α, β) + (n+ 1− α) φl(β)− β2

2l + 3
φl+1(β)

]
(166)

Case 3: 1 < β < α + 8

The elements il n(α, β) with n = nmin and l = nmax − nmin, and l = nmax − nmin − 1

are computed by eq(155). The elements with n = nmin + 1 and l = nmax − nmin − 1, and
l = nmax − nmin − 2 are computed by:

il n+1(α, β) =
1

α

[
(n+ 2l + 2) il n(α, β) +

β2

2l + 3
il+1n(α, β)− φl(β)

]
(167)

48



and (164) respectively.
The remaining elements with n = nmin and n = nmin + 1 are computed by:

il n(α, β) =
1

(n+ 2l + 2) (n+ 2l + 3)

{
−
[

(n+ 2l + 7/2) β2

l + 3/2
− α2

]
il+1n(α, β)

+
(α2 − β2) β2

(2l + 3) (2l + 5)
il+2n(α, β) + (α + n+ 2l + 3) φl(β) +

β2

2l + 3
φl+1(β)

}
(168)

and the remaining elements, by:

il−1n+2(α, β) = il n(α, β) +
β2

(2l + 3) (2l + 1)
il+1n(α, β) (169)

Finally, the hypergeometrics 1F1(1;n;α) ≡ Fn(α) appearing in eq(155) are computed by back-
wards recursion:

Fn(α) = 1 +
α

n
Fn+1(α) (170)

starting with the explicit definition

Fn(α) =
∞∑
j=0

αj

j!
(171)

for an index n such that the series converges quickly.

8.2 Tests on the accuracy of algorithms for hybrid integrals

The above exposed algorithms for hybrid integrals have been implemented in FORTRAN at
three different levels of accuracy: double precision, quadruple precision and multiprecision[27].
The multiprecision version (with a working precision of 65 decimal digits) has been used as a
reference for testing the accuracy of the other two.
Figs 15 to 20 illustrate the accuracy attained in the hybrid integrals with the current algorithm
for N = 6 and L = 5 for the four functions. As it can be seen, there is a wide range of values
of the exponents for which the accuracy loss in double precision is dramatic, and the algorithm
seems not no be suitable in DP. When quadruple precision is used, the range becomes narrower
but it still remains a range –corresponding to values of the exponents that do not appear in usual
basis sets– for which all the figures are lost even in quadruple precision. The consequence
is rather obvious, if exponents within this range will be used, algorithms based on a different
formalism must be investigated. For the moment, the only available solution is based in the
Gaussian expansions of the STO, which can be used to cover these pathological cases.
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0.0025 0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256

0.005 12 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17
0.01 9 14 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17
0.03 3 6 12 14 17 17 17 17 17 17 17 17 17 17 17 17 17
0.06 0 3 8 11 14 16 16 16 16 16 17 17 17 17 17 17 17
0.12 0 2 5 7 11 13 16 16 16 16 16 16 16 16 16 16 16
0.25 0 0 1 5 8 11 14 16 16 16 16 16 16 16 16 16 16
0.5 0 0 0 1 4 7 10 14 16 16 16 16 16 16 16 16 16
1 0 0 0 0 0 3 7 10 13 15 15 15 15 15 15 15 15
2 0 0 0 0 0 0 3 6 9 13 15 15 15 15 15 15 15
4 0 0 0 0 0 0 0 3 6 9 12 14 14 14 15 14 14
8 0 0 0 0 0 0 0 1 3 7 10 12 12 13 12 13 12

16 0 0 0 0 0 0 0 0 3 5 8 11 12 12 12 12 12
32 0 0 0 0 0 0 0 2 5 9 11 15 15 15 15 15 15
64 0 0 0 0 2 5 8 11 15 17 20 23 25 25 25 25 25

128 9 13 17 20 23 26 29 33 36 39 42 45 48 49 49 49 49
256 57 60 65 68 71 74 77 80 83 86 89 92 95 97 97 98 98

Hybrid integrals: exA=exB; exA'=exB'
Accurate decimal places NA=NA'=6  LA=LA'=5   NB=NB'=6  LB = LB' = 5

Double precision

 exA'=exA'' 
exA =exB

Figure 15: Hybrid integrals with ζA = ζB and ζ ′
A = ζ ′

B in double precision

0.0025 0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256

0.005 0 1 6 8 11 14 17 21 24 26 29 30 30 30 30 30 30
0.01 0 1 4 7 10 13 16 19 22 25 27 28 29 29 29 29 29
0.03 0 0 1 4 8 10 13 16 20 22 25 25 25 25 25 25 25
0.06 0 0 0 2 5 8 11 15 17 20 23 24 24 24 24 24 24
0.12 0 0 0 0 3 6 9 12 15 19 21 22 22 22 22 22 22
0.25 0 0 0 0 1 4 7 10 13 16 19 20 20 20 20 20 20
0.5 0 0 0 0 0 2 5 8 11 14 17 18 18 18 18 18 18
1 0 0 0 0 0 0 2 6 9 12 15 17 17 17 17 17 17
2 0 0 0 0 0 0 1 4 7 10 13 16 16 16 16 16 16
4 0 0 0 0 0 0 0 1 4 8 10 13 14 14 14 14 14
8 0 0 0 0 0 0 0 0 2 6 9 11 13 13 13 13 13
16 0 0 0 0 0 0 0 0 2 5 8 11 13 13 13 13 13
32 0 0 0 0 0 0 0 2 5 8 11 14 17 17 17 17 17
64 0 0 0 0 1 4 8 12 14 17 20 23 26 27 27 27 27

128 9 12 17 20 23 26 29 32 35 38 42 45 48 51 51 51 51
256 54 57 62 65 68 71 74 77 80 83 86 89 92 95 98 99 100

Hybrid integrals: exA'=exA''; exA'=exB+5
Accurate decimal places NA=NA'=6  LA=LA'=5   NB=NB'=6  LB = LB' = 5

Double precision
 

exA'=exA'' 
exB

Figure 16: Hybrid integrals with ζA = ζB and ζ ′
B = ζ ′

A + 5 in double precision
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0.0025 0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256

0.005 0 0 5 8 11 14 17 20 23 26 29 30 30 30 30 30 30
0.01 0 0 3 5 9 12 15 18 21 24 27 27 28 27 28 28 28
0.03 0 0 0 3 6 9 12 15 18 21 24 24 24 24 24 24 24
0.06 0 0 0 1 4 7 10 13 16 19 22 23 23 22 22 22 22
0.12 0 0 0 0 2 5 8 11 14 17 20 21 21 21 21 21 21
0.25 0 0 0 0 0 3 6 9 12 15 18 19 19 19 19 19 19
0.5 0 0 0 0 0 1 4 7 10 13 16 17 17 17 17 17 17
1 0 0 0 0 0 0 2 5 8 11 14 15 16 15 16 15 15
2 0 0 0 0 0 0 0 3 6 9 12 14 14 14 14 14 14
4 0 0 0 0 0 0 0 1 4 7 10 12 12 12 12 12 12
8 0 0 0 0 0 0 0 0 3 6 9 11 11 11 11 11 11

16 0 0 0 0 0 0 0 0 3 6 9 11 12 12 12 12 12
32 0 0 0 0 0 0 0 3 6 9 12 15 15 15 15 15 15
64 0 0 0 0 3 6 9 13 16 18 22 25 25 25 25 25 25

128 11 14 19 22 25 28 31 34 37 40 43 46 49 49 49 49 49
256 54 57 62 65 68 71 74 77 80 83 86 89 92 95 96 96 96

Hybrid integrals: exA'=exA''; exB=exA+5
Accurate decimal places NA=NA'=6  LA=LA'=5   NB=NB'=6  LB = LB' = 5

Double precision

 exA'=exA'' 
exA

Figure 17: Hybrid integrals with ζB = ζA + 5 and ζ ′
A = ζ ′

B + 5 in double precision

0.0025 0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256

0.005 31 35 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36
0.01 28 30 34 35 35 35 35 35 35 35 35 35 35 35 35 35 35
0.03 22 24 30 33 36 36 36 36 36 36 36 36 36 36 36 36 36
0.06 18 21 26 29 32 35 35 35 35 35 35 35 35 35 35 35 35
0.12 16 18 23 26 29 32 36 35 36 35 35 35 36 35 36 35 35
0.25 11 15 19 22 26 29 32 35 35 35 35 35 35 35 35 35 35
0.5 8 12 16 19 22 25 29 32 34 34 35 34 34 34 34 34 34
1 4 7 13 16 19 21 24 28 31 34 34 34 34 34 34 34 34
2 1 4 9 12 15 18 21 24 27 30 34 33 34 33 34 34 34
4 0 2 6 9 12 15 18 21 24 28 30 32 32 32 32 32 32
8 0 0 3 6 9 12 16 18 22 25 27 30 30 30 30 30 30

16 0 0 2 5 8 11 15 17 20 23 27 30 30 30 30 30 30
32 0 0 5 7 11 14 17 20 23 26 30 33 33 34 34 34 34
64 6 8 14 16 19 22 26 29 32 35 38 41 43 43 43 43 43

128 28 31 36 39 42 45 48 51 54 57 60 63 66 67 67 67 67
256 75 78 83 86 89 92 95 98 101 104 107 110 113 115 115 115 115

Hybrid integrals: exA=exB; exA'=exB'
Accurate decimal places NA=NA'=6  LA=LA'=5   NB=NB'=6  LB = LB' = 5

Quadruple precision

 exA'=exA'' 
exA =exB

Figure 18: Hybrid integrals with ζA = ζB and ζ ′
A = ζ ′

B in quadruple precision
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0.0025 0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256

0.005 16 19 23 27 30 32 37 39 42 45 48 48 48 48 48 48 48
0.01 14 17 22 25 29 31 36 37 40 43 46 46 46 46 46 46 46
0.03 11 14 19 22 25 28 31 35 37 41 43 44 44 44 45 45 45
0.06 9 12 17 20 23 27 29 32 36 38 41 42 42 42 42 42 42
0.12 7 10 15 18 22 25 27 30 33 36 39 41 41 41 40 41 40
0.25 5 8 13 16 19 22 25 28 31 34 37 39 39 39 39 39 39
0.5 3 6 12 15 17 20 23 26 29 32 35 37 37 37 37 37 37
1 1 4 8 11 15 18 21 24 27 30 33 36 36 36 36 36 36
2 0 2 6 9 12 15 19 22 24 27 31 33 34 34 34 34 34
4 0 0 5 7 11 13 17 20 22 26 29 31 32 32 32 32 32
8 0 0 2 5 9 11 15 18 21 24 27 30 32 31 31 32 31
16 0 0 1 5 8 11 14 17 20 23 26 29 32 32 32 32 32
32 0 0 4 7 10 13 16 20 23 26 29 32 34 35 35 35 35
64 5 8 13 17 19 22 26 29 32 35 38 41 44 45 45 45 45

128 28 31 36 39 42 45 48 51 54 57 60 63 66 69 69 69 69
256 72 75 80 83 86 89 92 95 98 101 104 107 110 113 116 117 117

Hybrid integrals: exA'=exA''; exA'=exB+5
Accurate decimal places NA=NA'=6  LA=LA'=5   NB=NB'=6  LB = LB' = 5

Quadruple precision 

 
exA'=exA'' 

exB

Figure 19: Hybrid integrals with ζA = ζB and ζ ′
B = ζ ′

A + 5 in quadruple precision

0.0025 0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256

0.005 15 19 23 26 29 32 35 38 41 44 47 48 47 48 48 48 48
0.01 13 16 21 24 27 30 33 37 39 42 45 46 46 46 46 46 46
0.03 10 13 18 21 24 27 31 33 36 39 42 43 43 43 43 43 43
0.06 8 11 16 18 22 25 28 31 34 37 40 40 40 40 40 40 40
0.12 6 9 13 17 20 23 26 29 32 35 38 39 39 39 39 39 39
0.25 4 7 12 15 18 21 24 27 30 33 36 37 37 37 37 37 37
0.5 2 5 10 13 15 19 22 25 28 31 34 35 35 35 35 35 35
1 0 3 8 10 14 17 19 23 26 29 32 33 33 34 33 33 33
2 0 1 6 9 12 15 18 21 24 27 30 32 32 32 32 32 32
4 0 0 4 7 10 13 16 19 22 25 28 31 31 31 31 31 31
8 0 0 3 6 9 12 15 18 21 24 27 29 29 29 29 29 29

16 0 0 3 6 9 12 15 18 21 24 27 29 29 29 29 29 29
32 0 1 6 9 12 15 18 21 24 28 30 33 33 33 33 33 33
64 8 10 15 18 21 24 27 32 34 37 39 42 43 43 43 43 43

128 30 33 38 40 44 47 50 53 56 59 62 65 67 67 67 67 67
256 72 75 80 83 86 89 92 95 98 101 104 107 110 113 115 115 115

Hybrid integrals: exA'=exA''; exB=exA+5
Accurate decimal places NA=NA'=6  LA=LA'=5   NB=NB'=6  LB = LB' = 5

Quadruple precision

 exA'=exA'' 
exA

Figure 20: Hybrid integrals with ζB = ζA + 5 and ζ ′
A = ζ ′

B + 5 in quadruple precision
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9 Exchange integrals

Exchange integrals of STOs are defined as:

[χnA
LA MA

χnB
LB MB

|χn
′
A

L′A M ′A
χ
n′B
L′B M ′B

] ≡
∫
dr

∫
dr′ χnA

LA MA
(ζA, rA) χnB

LB MB
(ζB, rB)

× χ
n′A
L′A M ′A

(ζ ′A, r
′
A) χ

n′B
L′B M ′B

(ζ ′B, r
′
B)

1

|r− r′|
(172)

Although the translation method previously exposed can be also used for these integrals, carry-
ing out a double translation, in this case the treatment in terms of ellipsoidal coordinates seems
to be better suited, and the algorithm currently implemented is based on this approach. To our
knowledge, the first satisfactory solution to these integrals using ellisoidal coordinates was re-
ported by Ruedenberg [29], who proposed a factorization of the integral as a product of two
functions, each associated to a charge distribution. The procedure involves a single numerical
integration and, unfortunately, fails to give even middle accuracy for high quantum numbers and
small exponents. The presence of the numerical integral, though simple, makes it difficult to
cover all the combinations of exponents and quantum numbers in a simple way. An alternative
was proposed by Maslen and Trefry [30] which leads to some improvement in the performance,
but with quite a significant downgrading in the accuracy when increasing quantum numbers.
We propose a better procedure based on ellipsoidal coordinates and the extensive usage of
recurrence relations[31] is summarized below.
In this algorithm, the exchange integral are written as:

[χnA
LA MA

χnB
LB MB

|χn
′
A

L′A M ′A
χ
n′B
L′B M ′B

] = 2 π2 (RAB/2)nA+LA+nB+LB+n′A+L′A+n′B+L′B

×
∑

m=M+,M−

(−1)m (1 + δm0)
∞∑

l=|m|

(2l + 1)

[
(l − |m|)!
(l + |m|)!

]2

×

nA+LA+nB
+LB−|m|∑
k=0

n′A+L′A+n′B
+L′B−|m|∑
k′=0

W
|m|
l (k, k′; β, β′)

× J
nALA|MA|,nBLB |MB |
lkm (γ) J

n′AL
′
A|M

′
A|,n

′
BL
′
B |M

′
B |

lk′m (γ′) (173)

where

M+ = sgn(MAMB)× (|MA|+ |MB|)

M− = sgn(MAMB)× | |MA| − |MB| | (174)
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W
|m|
l (k, k′; β, β′) =

∫ ∞
1

dξ (ξ2 − 1)m/2 Qm
l (ξ)

[
ξk e−βξ Km

lk′(β
′, ξ)

+ ξk
′
e−β

′ξ Km
lk (β, ξ)

]
(175)

Km
lp (x, ξ) =

∫ ξ

1

dξ′ (ξ′
2 − 1)m/2 Pm

l (xi′) ξ′
p
e−xξ

′
(176)

JnLM,n′L′M ′

lkm (z) = sm

n+n′+L
+L′−|m|∑
j=0

Imlj (z) Ω
nL|M |,n′L′|M ′|
kjm (177)

where sm and Ω
nL|M |,n′L′|M ′|
kmj are numerical coefficients whose calculation is summarized in the

appendix B, and

Imlp (z) =

∫ 1

−1

dη (1− η2)m/2 Pm
l (η) ηp e−zη (178)

Finally:

γ = (ζA − ζB) RAB/2 β = (ζA + ζB) RAB/2

γ′ = (ζ ′A − ζ ′B) RAB/2 β′ = (ζ ′A + ζ ′B) RAB/2

It can be seen that both the functions JnLM,n′L′M ′

lkm (z) and W |m|
l (k, k′; β, β′) play an essential

role and the efficiency of the the algorithm is determined by their calculation.
According to eq(177), the calculation of the JnLM,n′L′M ′

lkm (z) requires the Ω
nL|M |,n′L′|M ′|
kmj coef-

ficients and the Imlp (z). Since the Ω
nL|M |,n′L′|M ′|
kmj do not depend on the exponents of the STO,

they can be computed once, following the prescription of appendix, and stored. The Imlp (z) are
closely related to the φl(z) functions defined in eq(154), and their efficient computation follows
the same scheme as described for those functions.
Nevertheless, it should be noticed that the JnLM,n′L′M ′

lkm (z) depend on the parameters of the distri-
butions (pairs of STO) whereas the Ω

nL|M |,n′L′|M ′|
kmj depend on pairs of distributions (four STO).

As a consequence, the efficiency of the overall algorithm is determined by the computation of
these functions. The algorithm for their efficient calculation is described below.

9.1 Calculation of the functions W |m|
l (k, k′; β, β′)

The recurrence relation to increase m:
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Wm+1
l (k, k′; β, β′) = (l −m)

[
(l + 1−m)2

2l + 1
W
|m|
l+1(k, k′; β, β′)

− (l +m+ 1) W
|m|
l (k + 1, k′ + 1; β, β′)

]
+

(l +m)2 (l +m+ 1)

2l + 1
W
|m|
l−1(k, k′; β, β′) (179)

reduces the problem to evaluating the set of functions with m = 0. To compute them, it is better
to work with the auxiliary functions:

wkk
′

ll′ ≡
∫ ∞

1

dξ Ql(ξ) ξ
k e−βξ

∫ ξ

1

dξ′ Pl′(ξ
′) ξ′

k′
e−β

′ξ′

+

∫ ∞
1

dξ Ql′(ξ) ξ
k′ e−β

′ξ

∫ ξ

1

dξ′ Pl(ξ
′) ξ′

k
e−βξ

′
(180)

Obviously:

W
|m|
l (k, k′; β, β′) = wkk

′

ll (181)

From the recurrence relation of the Legendre polynomials –see [7] eq 8.733.2– the following
recurrence relations for the wkk′ll′ can be derived:

(2l′ + 1) wk k
′+1

ll′ = (l′ + 1) wkk
′

l l′+1 + l′ wk k
′

l l′−1 l′ > 0 (182)

(2l + 1) wk+1 k′

ll′ = (l + 1) wkk
′

l+1 l′ + l wk k
′

l−1 l′ l > 0 (183)

wk k
′

l0 = wk k
′−1

l1 +
1

β′
[
Kl k+k′−1(β + β′) + (k′ − 1) wk k

′−1
l0 − wk k′−2

l1

]
(184)

wk k
′

l0 = wk−1 k′

l1 +
1

β

[
Kl k+k′−1(β + β′) + (k − 1) wk−1 k′

l0 − wk−2 k′

l1

]
(185)

with

Kl n(s) = K0
ln(s,∞) (186)

From these equations, it follows that the set of functions wkk′ll can be computed in a numerically
stable way from the functions wll′ ≡ w00

ll . For these functions, the following relations hold:

wll′ =
β′

2l′ + 1

[
wl l′+1 − wl l′−1

]
+ ull′ (187)
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wll′ =
β

2l + 1

[
wl+1 l′ − wl−1 l′

]
+ ul′l (188)

where

ull′ ≡ ull′(s) =

∫ ∞
1

dξ e−sξ
[
Ql(ξ) P

(−1)
l′ (ξ)− Pl(ξ) Q(−1)

l′ (xi)
]

(189)

with

P
(−1)
l (ξ) =

∫ ξ

1

dξ′ Pl(ξ
′) =

1

2l + 1

[
Pl+1(ξ)− Pl−1(ξ)

]
(190)

Q
(−1)
l (ξ) =

∫ ξ

1

dξ′ Ql(ξ
′) =

1

2l + 1

[
Ql+1(ξ)−Ql−1(ξ)

]
l > 0 (191)

The recursions (187) and (188) are stable neither for ascending nor for descending. Because of
it, the bisection algorithm reported in [32] has been used, starting from w00, w0lmax , wlmax0 and
wlmaxlmax . The first three are computed by:

w00(β, β
′) =

1

2 β β′

{
eβ−β

′
Γ(0, 2β) + eβ

′−β Γ(0, 2β′)− eβ+β′ Γ[0, 2(β + β′)]

+ e−(β+β′)

[
C + ln

(
2ββ′

β + β′

)]}
(192)

C being Euler constant (0.577 215 664 ...);

wl0(β, β
′) =

1

β′

[
e−β

′
Ll(β) + νl−1 − eβ+β′

l−1∑
k=0

(2β)k

k + 1
θkl (β) Γ[−k, 2(β + β′)]

− θll(β) µl(β
′, β + β′) (193)

w0l(β, β
′) = wl0(β

′, β) (194)

with l = lmax, and

Llmax(β) =

∫ ∞
1

dξ e−βξ Qlmax(ξ)

' e−β

lmax (lmax + 1)

[
1− 2β

(lmax − 1) (lmax + 1)

]
(195)

θkl (β) =
k∑
j=0

(l + j)!

(l − j)! j! (2β)j
(196)
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µl(x, y) = ey
∞∑
k=l

(2x)k

k + 1
Γ(−k, 2y) (197)

Γ(−n, z) =

∫ ∞
z

dt e−t t−n−1 (198)

For β/β′ < 5, the following equation is used instead of (197):

µl(x, y) =
1

2x

[
e−y ln

y

y − x
+ ex+y Γ(0, 2y)− ey−2x Γ[0, 2(y − x)]

]
− ey

l−1∑
k=0

(2x)k

k + 1
Γ(−k, 2y) (199)

The value of lmax is fixed as a power of 2 large enough to allow to compute the wlmaxlmax by the
first term of its asymptotic series:

wll '
e−(β+β′)

(β + β′) l (l + 1)
+ · · · (200)

9.2 Tests on the accuracy of algorithms for exchange integrals

The above exposed algorithm for exchange integrals have been implemented in FORTRAN at
three different levels of accuracy: double precision, quadruple precision and multiprecision[27].
The multiprecision version (with a working precision of 65 decimal digits) has been used as a
reference for testing the accuracy of the other two.
Figs 21 to 24 illustrate the accuracy attained in the exchange integrals. As it can be seen, there
is a region of intermediate values of the exponents in which some loss of accuracy is found,
mainly when the exponents of the functions of a given distribution are different. In fact, it is to
be expected that higher the differences between the exponents imply a slower convergence on
the series on l of eq(173). Nevertheless, the accuracy loss in the cases tested seems to be not
too dramatic and, if higher accuracy is required, the quadruple precision does the job in a very
satisfactory way, as it can be appreciated in figs 10 to 12. As a consequence, most integrals can
be computed in double precision and the use of quadruple precision can be restricted to those
cases in which a significant loss of accuracy has been detected.
Finally, it should be mentioned that algorithms for exchange integrals based on the translation
of STO may be an interesting alternative in cases involving charge distributions with a high
asymmetry, i.e with one exponent much larger than the other.
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0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128
0.0025 17 - - - - - - - - - - - - - -
0.005 17 17 - - - - - - - - - - - - -
0.01 17 17 16 - - - - - - - - - - - -
0.03 17 17 16 16 - - - - - - - - - - -
0.06 17 17 16 16 16 - - - - - - - - - -
0.12 17 17 16 16 16 15 - - - - - - - - -
0.25 17 17 16 16 16 15 15 - - - - - - - -
0.5 17 17 16 16 16 15 15 15 - - - - - - -
1 17 17 16 16 16 16 15 15 15 - - - - - -
2 17 17 16 16 16 16 15 15 15 14 - - - - -
4 17 16 16 16 15 15 15 14 14 14 13 - - - -
8 17 17 16 16 16 15 15 15 14 14 13 11 - - -

16 20 20 20 19 19 19 18 18 18 17 16 15 15 - -
32 31 30 30 29 29 29 29 28 28 28 27 25 25 28 -
64 55 55 54 54 53 53 53 53 52 52 51 49 49 52 63

128 107 107 106 106 105 105 105 105 104 104 103 101 101 104 -

Exchange integrals: exA=exB; exA'=exB'
Accurate decimal places NA=NA'=6  LA=LA'=5   NB=NB'=6  LB = LB' = 5

Double precision

exA =exB 
exA'=exB'

Figure 21: Exchange integrals with ζA = ζB and ζ ′
A = ζ ′

B in double precision

0.0025 0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64

0.005 32 31 31 31 30 30 30 29 29 29 29 29 29 33 42
0.01 30 29 29 29 28 28 28 27 27 27 27 27 27 30 41
0.03 27 26 26 26 25 25 25 24 24 24 24 24 24 27 38
0.06 25 24 24 24 23 23 23 23 22 22 22 22 22 26 36
0.12 23 23 22 22 22 21 21 21 20 20 20 20 20 24 34
0.25 21 21 20 20 20 19 19 19 19 18 18 19 19 22 32
0.5 19 19 19 18 18 18 17 17 17 17 17 17 16 20 30
1 18 18 17 17 17 16 16 16 16 15 15 15 15 19 28
2 17 17 16 16 16 16 15 15 15 14 14 13 13 17 27
4 17 16 16 16 15 15 15 14 14 14 14 12 12 15 25
8 17 16 16 16 15 15 14 14 14 14 12 11 11 14 25

16 17 16 16 16 15 15 15 14 14 14 13 12 12 15 25
32 20 20 20 19 19 19 19 18 18 18 17 15 15 19 29
64 31 31 30 30 30 29 29 29 29 29 27 26 26 29 39

Exchange integrals: exB=exA; exB'=exA'+5
Accurate decimal places NA=NA'=6  LA=LA'=5   NB=NB'=6  LB = LB' = 5

Double precision
 exA'=exB' 

exA

Figure 22: Exchange integrals with ζA = ζB and ζ ′
B = ζ ′

A + 5 in double precision
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0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128

0.005 44 42 39 37 35 34 32 31 30 29 29 29 33 44 42
0.01 42 40 37 35 33 32 30 29 28 27 27 27 31 41 41
0.03 39 37 34 32 30 29 27 26 25 24 24 24 28 38 38
0.06 37 35 32 30 28 27 25 24 23 22 22 22 26 37 36
0.12 35 33 30 28 27 25 23 22 21 20 20 20 24 34 34
0.25 34 32 29 27 25 23 21 20 19 19 18 19 22 32 32
0.5 32 30 27 25 23 21 20 19 18 17 16 17 20 31 30
1 31 29 26 24 22 20 19 17 16 15 15 15 19 29 28
2 30 28 25 23 21 19 18 16 15 14 13 13 18 27 27
4 29 27 24 22 20 19 17 15 14 13 11 12 16 26 25
8 29 26 23 21 20 18 16 14 13 12 11 11 15 26 25

16 29 27 24 22 20 18 17 15 13 12 11 12 15 26 25
32 33 31 28 26 24 22 20 19 18 16 15 15 19 30 29
64 43 41 38 36 34 32 31 29 28 27 25 26 29 39 39

128 42 41 38 36 34 32 30 28 27 25 25 25 29 39 -

Exchange integrals: exB=exA+5; exA'=exB'+5
Accurate decimal places NA=NA'=6  LA=LA'=5   NB=NB'=6  LB = LB' = 5

Double precision
 exA 
exB'

Figure 23: Exchange integrals with ζB = ζA + 5 and ζ ′
A = ζ ′

B + 5 in double precision

0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128
0.0025 35 - - - - - - - - - - - - - -
0.005 35 35 - - - - - - - - - - - - -
0.01 35 35 34 - - - - - - - - - - - -
0.03 35 35 34 34 - - - - - - - - - - -
0.06 35 35 34 34 34 - - - - - - - - - -
0.12 35 35 34 34 34 33 - - - - - - - - -
0.25 35 35 34 34 34 33 33 - - - - - - - -
0.5 35 35 34 34 34 33 33 33 - - - - - - -
1 35 35 35 34 34 34 33 33 33 - - - - - -
2 35 35 34 34 34 34 33 33 33 33 - - - - -
4 35 34 34 34 34 33 33 33 32 32 31 - - - -
8 35 34 34 34 33 33 33 33 32 32 31 30 - - -

16 38 38 37 37 37 37 36 36 36 36 34 33 33 - -
32 48 48 48 48 47 47 47 46 46 46 44 43 43 46 -
64 73 73 72 72 71 71 71 70 70 70 69 67 67 70 77

128 125 125 124 123 123 123 123 123 120 116 112 110 109 112 -

Exchange integrals: exA=exB; exA'=exB'
Accurate decimal places NA=NA'=6  LA=LA'=5   NB=NB'=6  LB = LB' = 5

Quadruple precision

exA =exB 
exA'=exB'

Figure 24: Exchange integrals with ζA = ζB and ζ ′
A = ζ ′

B in quadruple precision
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0.0025 0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256

0.005 50 50 49 49 49 48 48 48 47 47 47 47 47 50 61 85 132
0.01 48 48 47 47 47 46 46 46 45 45 45 45 45 49 59 83 130
0.03 45 45 44 44 44 43 43 43 42 42 42 42 42 45 56 80 127
0.06 43 43 42 42 42 41 41 41 40 40 40 40 40 44 54 78 124
0.12 41 41 40 40 40 39 39 39 39 38 38 38 38 41 52 76 122
0.25 39 39 39 38 38 38 37 37 37 37 37 36 37 40 50 74 120
0.5 38 37 37 37 36 36 36 35 35 35 35 34 35 38 48 72 117
1 36 36 36 35 35 35 34 34 34 34 33 28 33 25 47 71 115
2 35 35 35 34 34 34 33 33 33 33 32 31 32 35 45 70 113
4 35 34 34 34 34 33 33 33 32 32 31 30 30 33 43 68 111
8 34 34 34 33 33 33 33 32 32 32 30 29 29 33 43 67 110
16 35 35 34 34 34 33 33 33 32 32 31 30 29 33 43 67 110
32 39 39 37 38 37 37 37 37 36 36 35 33 33 36 47 71 113
64 49 49 49 48 47 48 47 47 47 46 45 44 44 47 57 80 -
64 74 73 73 72 72 72 72 71 71 70 70 68 68 71 80 100 -

128 126 125 124 125 124 124 124 123 121 117 113 111 110 113 - - -

Exchange integrals: exB=exA+5; exA'=exB'
Accurate decimal places NA=NA'=6  LA=LA'=5   NB=NB'=6  LB = LB' = 5

Quadruple precision 

 exA'=exB' 
exA

Figure 25: Exchange integrals with ζA = ζB and ζ ′
B = ζ ′

A + 5 in quadruple precision

0.005 0.01 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256

0.005 62 60 57 55 54 52 50 49 48 47 47 47 51 61 86 133
0.01 60 58 55 53 52 50 48 47 46 45 45 45 49 59 84 131
0.03 57 55 52 50 49 47 45 44 43 42 42 42 46 56 81 128
0.06 55 53 50 48 47 45 43 42 41 41 40 40 44 54 79 125
0.12 54 52 48 47 45 43 41 40 39 39 38 38 42 53 77 123
0.25 52 50 47 45 43 41 40 38 38 37 36 36 40 51 75 121
0.5 50 48 45 43 41 40 38 37 36 35 34 35 39 49 73 118
1 49 47 44 42 40 38 37 35 31 34 33 24 37 47 71 116
2 48 46 43 41 39 37 36 31 33 32 31 32 35 46 70 114
4 48 45 42 40 39 37 35 33 32 31 30 30 34 44 69 112
8 47 45 42 39 38 36 34 32 31 30 29 29 25 43 68 111

16 47 45 42 40 38 36 35 25 31 30 29 30 33 44 68 111
32 51 49 46 44 42 40 38 37 35 34 26 33 37 48 72 114
64 61 59 56 54 52 51 49 47 46 44 43 44 47 58 80 -

128 86 84 81 79 77 75 73 72 70 69 68 68 72 80 101 -
256 133 131 128 125 123 121 118 116 114 112 111 111 114 - - -

Exchange integrals: exB=exA+5; exA'=exB'+5
Accurate decimal places NA=NA'=6  LA=LA'=5   NB=NB'=6  LB = LB' = 5

Quadruple precision
 exA 
exB'

Figure 26: Exchange integrals with ζB = ζA + 5 and ζ ′
A = ζ ′

B + 5 in quadruple precision
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10 Large STO-nG expansions for three- and four-center two-electron in-
tegrals

Up to date, the efforts carried out for the direct calculation of three- and four-center two-electron
integrals involving STO have not yield sufficiently efficient algorithms yet. Although it is to be
expected that these efforts will prove fruitful in the near future and that such efficient algorithms
will be designed, the only currently available algorithms for computing these two-electron in-
tegrals in the general case are based on the use of large Gaussian expansions of the STO –the
so-called STO-nG expansions.
Using these expansions, each integral with STO becomes a linear combination of integrals
involving Gaussian type orbitals (GTO), which can be computed by very efficient algorithms.
In order to attain an accuracy in the integrals suitable for molecular calculations, the number
of Gaussians per STO can be moderately large (between 10 to 15 in HF calculations, larger for
CI calculations) and usual algorithms implemented in standard computational packages cannot
be very efficient in this case. In 1996 Prof. K. Ishida developed a new algorithm[33], and has
improved it later on. This algorithm has proved to be very efficient when using large STO-nG
expansions, and it is currently implemented in SMILES[2].
In the final phase of the current project, new STO-nG expansions have been attained to cover a
range of quantum numbers: 0 ≤ L ≤ 6 and L ≤ N ≤ 9 except the 0s) that is sufficient for most
cases. Attaining long expansions is not an easy task, mainly for high quantum numbers, and it
requires special techniques for minimization of residual funtions depending on a large number
of nonlinear (exponential) parameters. In our group we have developed one of such techniques,
which is summarized in appendix C.
The expansions obtained in this project have been added to the file with the previously existing
ones, and the new file is included in the supplementary material of this report, together with a
standalone program for computing two-electron integrals with these expansions.

11 Conclusions

Different algorithms for integrals appearing in molecular integrals with Slater type orbitals
(STO) have been coded and their performance has been thoroughly tested regarding their accu-
racy and computational cost.
In a first step, algorithms for the calculation of two-center one-electron integrals have been
formulated, coded and analyzed. The main conclusions of this part were that:

• The algorithms already currently available in SMILES for these integrals, based on recur-
rence relations, cannot provide sufficient accuracy for large N and L quantum numbers.
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• The new algorithm using ellipsoidal coordinates enables to compute these integrals with
sufficient accuracy for molecular calculations in a range of values ofN and L considerably
larger than the previous one.

• An alternative algorithm based on the shift operators technique has been also developed
and tested to be used in some algorithms for the computation of Coulomb integrals.

In a second step, the calculation of the two-center coulomb integrals has been dealt with. Since
these integrals play a very important role in some formulations of molecular structure calcu-
lation, a thorough analysis of the mathematical aspects of the problem was carried out. The
formulation in terms of the shift-operators technique, Fourier transform and translation method
was carefully revisited and different combinations of these techniques were explored. Finally,
three different algorithms were selected for implementation and testing: one based on shift op-
erators, and two different algorithms using the translation of the STO. The main conclusions of
this part were:

• The extension to higher quantum numbers of the algorithms already available in SMILES
for theseintegrals, based on the translation of STO, implies further parametrization of aux-
iliary functions, which is a cumbersome process.

• The new algorithm using shift operators leads to serious numerical cancellations for high
quantum numbers which cause an important loss of accuracy.

• The new algorithm using translation methods accompanied by a one-dimension numerical
integration seems to be more robust and is quite fast, but the dependence of the integrand
with both the exponents and quantum numbers of the STO makes it difficult to implement
an efficient quadrature scheme for the general case.

• The algorithm using translation methods with analytical integration seems to be the best
option in this moment.

In the third step, the hybrid integrals were examined and algorithms based on the translation
method were implemented, coded and tested. The main conclusions of this part were:

• The algorithm used in SMILES for hybrid integrals, based on the translation of STO, lead
to a serious loss of accuracy for high quantum numbers in the current implementation.

• The new algorithm for hybrid integrals, based also in the translation method but with
different procedures for the computation of auxiliary functions, allows to extend the range
of applicability to higher quantum numbers, but quadruple precision is mandatory in a
broad range of values of the exponents, this being insufficient in some combinations of
large and small values of the exponents.
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• Algorithms based on the usage of large STO-nG expansions of the STO (see below in this
report) can be a provisional alternative for these pathological cases, but a further study of
alternative techniques such as those based on ellipsoidal coordinates, seems to be desir-
able.

The third step was devoted to the computation of exchange integrals with algorithms based on
ellipsoidal coordinates. The main conclusion of the analysis were:

• The algorithm used in SMILES for exchange integrals, based on the translation of STO,
can be confidently used for moderately high quantum numbers, but changes must be done
in the codes.

• The new codes for these integrals allow to extend the range of applicability to higher quan-
tum numbers, the bottleneck being now the size of some intermediate auxiliary matrices,
which hinders the usage of multiprecision. Nevertheless, this is not a serious drawback
since multiprecision is only used as a testing reference.

• A further effort to redesign the implementation avoiding the use of such large intermediate
matrices may be convenient.

Finally, as scheduled in the proposal, new STO-nG expansions were developed to fully cover
the range of quantum numbers: 0 ≤ L ≤ 6 and L ≤ N ≤ 9 (except the 0s). These expansions
are used for computing three- and four-center molecular integrals with STO and, as commented
above, could be useful to cover the pathological cases of hybrid integrals until a better alternative
is available.
Instructions for installing and running the programs corresponding to the different algorithms
accompanying this report are given in appendix D.

Appendix A. The functions Aj(β) and Bj(ν)

The functions Aj(β) are closely related to the Euler Incomplete Gamma functions of second
type:

Aj(β) =

∫ ∞
1

dξ ξj e−β ξ =
j!

βj+1
e−β ej(β) (201)

where ej(β) is the expansion of the exponential function truncated at jth order.
They can be computed in a fully stable way by ascending recursion:

Aj(β) =

[
j Aj−1(β) + e−β

]
1

β
(202)
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The calculation of the Bj(ν) functions is a bit more difficult. Their main properties are summa-
rized below.
Definition:

Bj(ν) =

∫ 1

−1

dη ηj e−ν η (203)

Power expansion,
for j even (j ≡ 2p):

B2p(ν) =
∞∑
i=0

ν2i

(p+ 1/2 + i) (2i)!
=

1

p+ 1/2
1F2(p+ 1/2; 1/2, p+ 3/2; ν2/4) (204)

for j odd (j ≡ 2p+ 1):

B2p+1(ν) = −
∞∑
i=0

ν2i+1

(p+ 3/2 + i) (2i+ 1)!
=

1

p+ 3/2
1F2(p+3/2; 3/2, p+5/2; ν2/4) (205)

Expansion in Bessel functions:
for j = 2p the following identity can be used:

(u2)p = (u2 − 1 + 1)p =

p∑
n=0

p! (−1)n

(p− n)! n!
(1− u2)n (206)

and therefore (see [7] eq. 8.431):

B2p(ν) =

p∑
n=0

p! (−1)n

(p− n)! n!

∫ 1

−1

du (1− u2)n e−ν u

=
√

2π

p∑
n=0

p! (−2)n

(p− n)! νn+1/2
In+1/2(ν) (207)

For j = 2p+ 1, combining the relation:

B2p+1(ν) =
∂

∂ν
B2p(ν) (208)

with [7] eq. 8.486.5, it follows:

B2p+1(ν) = −
√

2π ν

p∑
n=0

p! (−2)n

(p− n)! νn+3/2
In+3/2(ν) (209)

Expansion in Gamma functions.
Direct integration of eq(203) yields:

64



Bj(ν) = 2 eν
∫ 1

0

dt (2t− 1)j e−2νt = (−1)j eν
j∑
i=0

j! (−1)i

(j − i)! i!
γ(i+ 1, 2ν)

νi+1
(210)

Recurrence relations.
Integration by parts gives:

(j + 1) Bj(ν) = e−ν + (−1)j eν + ν Bj+1(ν) (211)

This relation, applied twice, gives:

(j + 1) (j + 1) Bj(ν) = e−ν (j + 2 + ν) + (−1)j eν (j + 2− ν) + ν2 Bj+2(ν) (212)

Iterated application of this process yields:

1

j!
Bj(ν) = e−ν

∞∑
i=0

(j + 2 + 2i+ ν)

(j + 2 + 2i)!
ν2i + (−1)j eν

∞∑
i=0

(j + 2 + 2i− ν)

(j + 2 + 2i)!
ν2i (213)

or, equivalently:

1

(2k)!
B2k(ν) = (eν + e−ν)

∞∑
i=0

1

(2k + 1 + 2i)!
ν2i − (eν − e−ν)

∞∑
i=0

1

(2k + 2 + 2i)!
ν2i+1

(214)
and

1

(2k + 1)!
B2k+1(ν) = −(eν−e−ν)

∞∑
i=0

ν2i

(2k + 2 + 2i)!
+(eν+e−ν)

∞∑
i=0

ν2i+1

(2k + 3 + 2i)!
(215)

The algoritm for Bj(ν) functions.
The algorithm followed to compute theBj(ν) functions consists of the use of upwards recursion
from j = 0 to j = E[ν] and downwards recursion from j = jmax to j = E[ν]. Upwards
recursion starts with:

B0(ν) =
2 sinh(ν)

ν
, B0(0) = 2 (216)

Downwards recursion starts with Bjmax(ν) computed by means of eq(213) with jmax taken as
the lowest suitable even number to prevent cancellation errors. Convergence of the series is
checked and a warning message will be issued if the prescribed convergence (1.d-35 in quadru-
ple precision) is not achieved with the highest allowed number of terms (100). We have never
observed that message throughout our tests, i.e. the maximum available number of terms seems
to be sufficient for reaching convergence in all cases.
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The stability of the recursion scheme was thoroughly tested with Mathematica, working in
extended precision, and no loss of accuracy was observed. The algorithm seems to be fully
stable.

Appendix B. Calculation of the coefficients ΩnLM,n′L′M ′

kmj

The decomposition of a two-center charge distribution in ellipsoidal coordinates gives:

rA rB χ
n
LM(rA, ζ) χn

′

L′M ′(rB, ζ
′) =

(
RAB

2

)n+n′+L+L′

e−ξ (ζ+ζ′) RAB/2

× e−η (ζ−ζ′) RAB/2
∑
µ

sµΦµ(φ)
[
(ξ2 − 1) (1− η2)

]|µ|/2

×

n+n′+L
+L′−|µ|∑
r=0

n+n′+L
+L′−|µ|∑
s=0

ΩnL|M |,n′L′|M ′|
rsµ ξr ηs (217)

where

Φµ(φ) =

{
cosµφ µ ≥ 0

sin |µ|φ µ < 0
(218)

∑
µ

sµ Φµ(φ) = ΦM(φ) ΦM ′(φ) = sM+ ΦM+(φ) + sM− ΦM−(φ) (219)

with

sM+ =


1 if M = 0 or M ′ = 0

−1/2 if sgn(M) < 0 and sgn(M ′) < 0

1/2 otherwise
(220)

sM− =


0 if M = 0 or M ′ = 0

1/2 if sgn(M) = sgn(M ′)

sgn(M) sgn(|M ′| − |M |) (1− δM−M ′,0)/2 otherwise
(221)

M+ = (|M |+ |M ′|) sgn(M) sgn(M ′) (222)

M− =
∣∣|M | − |M ′|

∣∣ sgn(M) sgn(M ′) (223)

where sgn(m) stands for the algebraic sign of m times 1.
The ΩnLM,n′L′M ′

kmj coefficients can be expressed in terms of AnL|M |ij and BnL|M |
ij defined by:
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rnA z
M
L (rA) = (RAB/2)n+L ΦM(φ)

[
(ξ2 − 1) (1− η2)

]|M |/2 n+L−|M |∑
i=0

n′+L′−|M |∑
j=0

A
nL|M |
ij ξi ηj

(224)

rnB z
M
L (rB) = (RAB/2)n+L ΦM(φ)

[
(ξ2 − 1) (1− η2)

]|M |/2 n+L−|M |∑
i=0

n′+L′−|M |∑
j=0

B
nL|M |
ij ξi ηj

(225)
which can be computed by recursion:

A
0M |M |
ij = B

0M |M |
ij = (2|M | − 1)!! δi0 δj0 (226)

(L− |M |+ 1) A
0L+1 |M |
ij = (2L+ 1)

(
A

0L|M |
i−1 j−1 + A

0L|M |
i j

)
− (L+ |M |)

(
A

0L−1 |M |
i−2 j + 2 A

0L−1 |M |
i−1 j−1 + A

0L−1 |M |
i j−2

)
(227)

(L− |M |+ 1) B
0L+1 |M |
ij = (2L+ 1)

(
B

0L|M |
i−1 j−1 −B

0L|M |
i j

)
− (L+ |M |)

(
B

0L−1 |M |
i−2 j − 2 B

0L−1 |M |
i−1 j−1 +B

0L−1 |M |
i j−2

)
(228)

A
n+1L|M |
ij = A

nL|M |
i−1 j + A

nL|M |
i j−1 (229)

B
n+1L|M |
ij = B

nL|M |
i−1 j −B

nL|M |
i j−1 (230)

The final expression of the ΩnLM,n′L′M ′
rsµ being:

ΩnLM,n′L′M ′

rsM+
=

min(r,
n+L−|M |)∑
i=max(0,r−n
−L+|M ′|)

min(s,
n+L−|M |)∑
j=max(0,s−n
−L+|M ′|)

A
nL|M |
ij B

n′L′|M ′|
r−i s−j (231)

ΩnLM,n′L′M ′

rsM−
=

p∑
i=max(0,
p−r/2)

min(p,s/2)∑
j=0

ΩnLM,n′L′M ′

r+2i−2p s−2j M+

(−1)i+j (p!)2

i! j! (p− i)! (p− j)!
(232)

with p = min(|M |, |M ′|).
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Appendix C. Approximation of functions with basis sets containing a big
number of nonlinear parameters

Let us consider the approximation of a function f(r) in terms of a set of functions,{χr(r, ξ)}mr=1,
depending on nonlinear parameters, ξ = (ξ1, ...ξn, ). For a given ξ, the optimal approximation,
f ′(r), is the projection onto χ:

| f ′(r) 〉 = P | f(r) 〉 (233)

with the projector:

P = |χ 〉 S−1 〈χ | =
∑
i

∑
j

|χi 〉 (S−1)ij 〈χj | (234)

where |χ 〉 = ( |χ1 〉, |χ2 〉, ... |χm 〉), and the S is the overlap matrix with elements Srs =

〈χr |χs 〉. The residual will be:

∆2 = || | f 〉 −P | f 〉 ||2 = 〈 f | 1−P | f 〉 (235)

and minimizing it with respect to ξ:

∂∆2

∂ξi
=

∂

∂ξi
〈 f | 1−P | f 〉 = −〈 f | ∂P

∂ξi
| f 〉 = 0 i = 1, 2, ...m (236)

Furthermore:

∂P

∂ξi
= | ∂χ

∂ξi
〉 S−1 〈χ | + |χ 〉 S−1 〈 ∂χ

∂ξi
| + |χ 〉 ∂S

−1

∂ξi
〈χ | (237)

where

∂S−1

∂ξi
= −S−1 ∂S

∂ξi
S−1 = −S−1

[
〈 ∂χ
∂ξi
|χ 〉+ 〈χ | ∂χ

∂ξi
〉
]

S−1 (238)

Replacing in eq(237) and grouping terms:

∂P

∂ξi
= |χ 〉 S−1 〈 ∂χ

∂ξi
| (1−P) + (1−P) | ∂χ

∂ξi
〉 S−1 〈χ | (239)

and for real functions it turns:

gi =
∂∆2

∂ξi
= −〈 f | ∂P

∂ξi
| f 〉 = −2〈 f |χ 〉 S−1 〈 ∂χ

∂ξi
| (1−P) | f 〉 (240)

In general, ∆2 will be a complicated nonlinear function of ξ. Eq(240) can be combined with a
gradient technique for minimization, but it is preferable to use a second order method. To do
this, the second derivatives of the projector can be obtained from eq(237):
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∂2P

∂ξj∂ξi
= | ∂

2χ

∂ξj∂ξi
〉 S−1 〈χ | + |χ 〉 S−1 〈 ∂2χ

∂ξj∂ξi
| + | ∂χ

∂ξi
〉 S−1 〈 ∂χ

∂ξj
|

+ | ∂χ
∂ξj
〉 S−1 〈 ∂χ

∂ξi
| + | ∂χ

∂ξi
〉
(
∂S−1

∂ξj

)
〈χ | + |χ 〉

(
∂S−1

∂ξi

)
〈 ∂χ
∂ξj
|

+ | ∂χ
∂ξj
〉
(
∂S−1

∂ξi

)
〈χ | + |χ 〉

(
∂S−1

∂ξj

)
〈 ∂χ
∂ξi
|

+ |χ 〉
(
∂2S−1

∂ξj∂ξi

)
〈χ | (241)

and

Dji =
∂2∆2

∂ξj∂ξi
= 〈 f | ∂

2P

∂ξj∂ξi
| f 〉 (242)

Notice that the first derivatives of S−1 are given by ec(238) and the second, by:

∂2S−1

∂ξj∂ξi
= − ∂

∂ξj

[
S−1 ∂S

∂ξi
S−1

]
= S−1

[
∂S

∂ξj
S−1 ∂S

∂ξi
+
∂S

∂ξi
S−1 ∂S

∂ξj
− ∂2S

∂ξj∂ξi

]
S−1 (243)

where
∂2S

∂ξj∂ξi
= 〈 ∂2χ

∂ξj∂ξi
|χ 〉+ 〈χ | ∂

2χ

∂ξj∂ξi
〉+ 〈 ∂χ

∂ξj
| ∂χ
∂ξi
〉+ 〈 ∂χ

∂ξi
| ∂χ
∂ξj
〉 (244)

As an alternative, eq(239) can be used to give:

∂2P

∂ξj∂ξi
= | ∂χ

∂ξj
〉 S−1 〈 ∂χ

∂ξi
| (1−P) + (1−P) | ∂χ

∂ξi
〉 S−1 〈 ∂χ

∂ξj
|

+ |χ 〉 | ∂S
−1

∂ξj
〈 ∂χ
∂ξi
| (1−P) + (1−P) | ∂χ

∂ξi
〉 | ∂S

−1

∂ξj
〈χ |

+ |χ 〉 | S−1 〈 ∂2χ

∂ξj∂ξi
| (1−P) + (1−P) | ∂

2χ

∂ξj∂ξi
〉 | S−1 〈χ |

− |χ 〉 | S−1 〈 ∂χ
∂ξi
| ∂P
∂ξj
− ∂P

∂ξj
| ∂χ
∂ξi
〉 | S−1 〈χ | (245)

If each approximating function depends on a single parameter {χs(r, ξs)}ms=1:

∂χs
∂ξi

= δis
∂χi
∂ξi

(246)

Defining:

C† = 〈 f |χ 〉 = (〈 f |χ1 〉, 〈 f |χ2 〉, . . . ) C = 〈χ | f 〉 =


〈χ1 | f 〉
〈χ2 | f 〉

...

 (247)
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C
†

= 〈 f |χ 〉 S−1 C = S−1 〈χ | f 〉 (248)

C′
†

= (〈 f | ∂χ1

∂ξ1
〉, 〈 f | ∂χ2

∂ξ2
〉, . . . ) C′ =


〈 ∂χ1

∂ξ1
| f 〉

〈 ∂χ2

∂ξ2
| f 〉

...

 (249)

C′′
†

= (〈 f | ∂
2χ1

∂ξ2
1

〉, 〈 f | ∂
2χ2

∂ξ2
2

〉, . . . ) C′′ =


〈 ∂2χ1

∂ξ21
| f 〉

〈 ∂2χ2

∂ξ22
| f 〉

...

 (250)

S = 〈χ |χ 〉 =

 〈χ1 |χ1 〉 〈χ1 |χ2 〉 . . .

〈χ2 |χ1 〉 〈χ2 |χ2 〉 . . .

. . . . . . . . .

 (251)

M = 〈 ∂χ
∂ξ
|χ 〉 =

 〈
∂χ1

∂ξ1
|χ1 〉 〈 ∂χ1

∂ξ1
|χ2 〉 . . .

〈 ∂χ2

∂ξ2
|χ1 〉 〈 ∂χ2

∂ξ2
|χ2 〉 . . .

. . . . . . . . .

 (252)

N = 〈 ∂
2χ

∂ξ2 |χ 〉 =


〈 ∂2χ1

∂ξ21
|χ1 〉 〈 ∂

2χ1

∂ξ21
|χ2 〉 . . .

〈 ∂2χ2

∂ξ22
|χ1 〉 〈 ∂

2χ2

∂ξ22
|χ2 〉 . . .

. . . . . . . . .

 (253)

T = 〈 ∂χ
∂ξ
| ∂χ
∂ξ
〉 =

 〈
∂χ1

∂ξ1
| ∂χ1

∂ξ1
〉 〈 ∂χ1

∂ξ1
| ∂χ2

∂ξ2
〉 . . .

〈 ∂χ2

∂ξ2
| ∂χ1

∂ξ1
〉 〈 ∂χ2

∂ξ2
| ∂χ2

∂ξ2
〉 . . .

. . . . . . . . .

 (254)

the elements of the gradient become:

gi = −2Ci

[
C ′i −

∑
s

Mis Cs

]
= −2Ci

[
C ′i − (M C)i

]
(255)

(for large expansions M C decays quickly and may lead to accuracy losses). The second order
derivatives are:

Dij = −2

{
δij Ci

[
C ′′i − (N C)i

]
+
[
C ′i (S−1)ij C

′
j − Ci Tij Cj

]
−

[
C ′i (S−1)ij (MC)j + C ′j (S−1)ji (MC)i

+ Cj (MS−1)ji C
′
i + Ci (MS−1)ij C

′
j

]
+

[
Ci (MS−1 M†)ij Cj + (MC)i (S−1)ij (MC)j

+ Cj (MS−1)ji (MC)i + Ci (MS−1)ij (MC)j
]}

(256)
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Appendix D. Installing and running the codes

The * global *.f90 file containing the modules always must be compiled first with a suit-
able FORTRAN compiler. In case of the quadruple precision code, the compiler must admit
this possibility.
Once the corresponding object and the .mod files have been generated, the file containing the
code of the algorithm must be compiled, and the resulting objects must be linked.
In case of the multiprecision version, the Fortran-90 Multiprecision System (mpfun90) must be
installed in the computer. This package, created and maintained by David H. Bailey, is freely
distributed and, in the moment this report is being made, it can be downloaded in the URL:
http://crd.lbl.gov/ dhbailey/mpdist/ Instructions for installation and usage of
the multiprecision system can be found within the package.
The link instruction for multiprecision must include the path to the directory where the modules
specific of mpfun90 reside. Beware that these modules have been created with the same
compiler to be used for compiling the sources for hybrid or exchange integrals.
To run the programs, just proceed as usual: write the executable name followed by the inputfile
and the output file preceded by < and > respectively.
We are also including input samples and their corresponding output files for testing that instal-
lation has been succesful, and as a guide.
Hereafter, some simple examples of installation and run follow. In all of them, we will assume
that Intel’s ifort FORTRAN90 compiler will be used. For other compilers, make the suitable
changes (notice the comments above for the quadruple precision version).
Example 1: installing and running hybrid 2010 D

Type the following:

ifort -O3 -c hybrid 2010 global D.f90

ifort -O3 hybrid 2010 D.f90 hybrid 2010 global D.o -o hybrid 2010 D

hybrid 2010 D < hybrid 2010 D.inp > outputfile D

Compare the content of outputfile Dwith that of hybrid 2010 D.out coming with this
report.
Example 2: installing and running hybrid 2010 mp (multiprecision)
In this example, we will suppose that mpfun90 has been installed in the system and that its
corresponding modules and objects reside in a directory named /lib/mpfun/f90/. Type
the following:

ifort -O3 -c -I/lib/mpfun90/f90 hybrid 2010 global mp.f90

ifort -O3 -I/lib/mpfun90/f90 /lib/mpfun90/f90/mp*.o hybrid 2010 global mp.o
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hybrid 2010 mp.f90 -o hybrid 2010 mp

hybrid 2010 mp < hybrid 2010 mp.inp > outputfile mp

Compare the content of outputfile mp with that of hybrid 2010 mp.out.
Further assistance can be found in rafael.lopez@uam.es.
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Supplementary material

A tar file compressed with gzip (EOARD 093069 b.tgz), accompanying this report, contains the
files mentioned in it.
Extract the content, with
tar -vxzf EOARD 093069 b.tgz

or alternatively with
gunzip EOARD 093069 b.tgz

followed by
tar -vxf EOARD 093069 b.tar

it will create a directory named EOARD 093069 with the following files:
oneelectrelips-Q.f90
oneelectrelips-Q.inp
oneelectrelips-Q.out
coulomb 2010 shiftop D.f90
coulomb 2010 shiftop global D.f90
coulomb 2010 shiftop D.inp
coulomb 2010 shiftop D.out
coulomb 2010 intnum D.f90
coulomb 2010 intnum global D.f90
coulomb 2010 intnum D.inp
coulomb 2010 intnum D.out
coulomb 2010 transl D.f90
coulomb 2010 transl global D.f90
coulomb 2010 transl D.inp
coulomb 2010 transl D.out
coulomb 2010 transl Q.f90
coulomb 2010 transl global Q.f90
coulomb 2010 transl Q.inp
coulomb 2010 transl Q.out
coulomb 2010 transl mp.f90
coulomb 2010 transl global mp.f90
hybrid 2010 D.f90
hybrid 2010 global D.f90
hybrid 2010 D.inp
hybrid 2010 D.out
hybrid 2010 Q.f90
hybrid 2010 global Q.f90
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hybrid 2010 Q.inp
hybrid 2010 Q.out
hybrid 2010 mp.f90
hybrid 2010 global mp.f90
hybrid 2010 mp.inp
hybrid 2010 mp.out
exchange 2010 D.f90
exchange 2010 global D.f90
exchange 2010 D.inp
exchange 2010 D.out
exchange 2010 Q.f90
exchange 2010 global Q.f90
exchange 2010 Q.inp
exchange 2010 Q.out
exchange 2010 mp.f90
exchange 2010 global mp.f90
exchange 2010 mp.inp
exchange 2010 mp.out
stngexp 2010.f
stogto 2010.f90
stogto 2010.inp
stogto 2010.out
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[19] Ema, I.; López, R.; Fernández, J.J.; Ramı́rez, G.; Rico, J.F. Int J Quantum Chem 108,
25-39, (2008)

75
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