
I
TECHNICAL REPORT RDMR-WD-l

TEXT TO SPEECH (TTS) CAPABILITIES

FOR THE COMMON DRIVER TRAINER

(CDT)

Michael Hanners
And

Danny Carter
Weapons Development and Integration Directorate

Aviation and Missile Research, Development,
and Engineering Center

October 2010

Approved for public release; distribution is unlimited.

DESTRUCTION NOTICE

FOR CLASSIFIED DOCUMENTS, FOLLOW THE PROCEDURES IN
DoD 5200.22-M, INDUSTRIAL SECURITY MANUAL, SECTION 11-19
OR DoD 5200.1-R, INFORMATION SECURITY PROGRAM REGULATION,
CHAPTER IX. FOR UNCLASSIFIED, LIMITED DOCUMENTS, DESTROY
BY ANY METHOD THAT WILL PREVENT DISCLOSURE OF CONTENTS
OR RECONSTRUCTION OF THE DOCUMENT.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED
AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION
UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT
DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR
APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE
OR SOFTWARE.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gather1ng and maintaining the data needed, and completing and reviewing this collection of Information. Send convnents regarding this burden estimate or any other aspect of this collection
of Information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 222024302, and to the Qmce of Management and Budget, Paperworl< Reduction Pro'ect (0704-'11881, Washington, DC 20503

1.AGENCY USE ONLY 1 2. REPORT DATE 1 3. REPORT TYPE AND DATES COVERED

October 2010 Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Text To Speech (TTS) Capabilities for the Common Driver Trainer
(CDT)

6. AUTHOR(S)

Michael Hanners and Danny Carter

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Commander, U.S. Army Research, Development, and REPORT NUMBER

Engineering Command
TR-RDMR-WD-IO-40 ATTN: RDMR-WDG-C

Redstone Arsenal, AL 35898

9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING I MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION I AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited. A

13. ABSTRACT (Maximum 200 Words)

The U.S. Army Aviation and Missile Research, Development, and Engineering Center (AMRDEC) was tasked
to analyze options for potential Text To Speech (TTS) improvements as part ofthe scenario generation system
for the Common Driver Trainer (CDT). This report provides a discussion of some of the available TTS
technologies, as well as a recommended path forward. In addition to the research performed, AMRDEC
personnel also developed code to assist in familiarization with TTS capability. Descriptions of this software,
along with code samples from some of the commercial products, are provided in the report. AMRDEC
recommended that the CDT program develop an application or component that provides TTS capabilities,
including text and file input, voice selection, a custom dictionary, voice recording, file exporting to standard
audio formats, and sound file organization.

14. SUBJECT TERMS

Text To Speech (TTS), audio, training device, trainers, Common Driver Trainer
(CDT), software

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
NSN 7540-01-280-5500

i/(ii Blank)

15. NUMBER OF PAGES

33
16. PRICE CODE

20. LIMITATION OF ABSTRACT

SAR
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-\8
298-\02

EXECUTIVE SUMMARY

The Common Driver Trainer (CDT) program is in the process of upgrading software,
including replacement of the scenario-generation capability. The u.s. Army Aviation and
Missile Research, Development, and Engineering Center (AMRDEC) is providing support to the
CDT program and was tasked to analyze options for potential Text to Speech (TTS)
improvement as part of the scenario generation system. This report provides a discussion of
some of the available TTS technologies, as well as a recommended path forward. A decision
matrix was developed that summarizes the findings for the technologies evaluated, resulting in a
commercial product by Loquendo being selected as providing the best functionality. In addition
to the research performed, AMRDEC personnel also developed code to assist in familiarization
with TTS capability. Descriptions of this software, along with code samples from some of the
commercial products, are provided in the report.

Regardless of the TTS technology selected, AMRDEC recommends that the CDT
program develop an application or component that provides TTS capabilities, including text and
file input, voice selection, a custom dictionary, voice recording, file exporting to standard audio
formats, and sound file organization. This software component can be developed independently
from other scenario-generation system development efforts and may either be kept as a separate
tool or integrated with other CDT software as required.

III

Figure

LIST OF ILLUSTRATIONS

Title

1. Common Driver Trainer Stryker Variant [1] ... 2

2. Creating an AT&T Natural Voices TTS Engine [5]... 4

3. Initialization and Shut Down of the Wizzard TTS Engine [5] 5

4. Speaking Text Using the Wizzard TTS Engine [5] ... 5

5. Rate and Volume Adjustment for Wizzard SDK [5] .. 5

6. Speech Synthesis Markup Language Tags [5] .. 6

7. AT&T Natural Voices Dictionary Editor [4] .. 7

8. Various Code Samples from the VoiceText SDK [7].. 8

9. Cepstral's Pitch Control ... 9

10. Cepstral's Emphasis Control.. 9

11. NaturalReader Examples [9] .. 10

12. NaturalReader Pronunciation Editor [9] .. 11

13. TextSpeech Pro Application ... 11

14. TextSpeech Pro Pronunciation Corrector ... 12

15. Various Code Samples from the VoiceText SDK [9] .. 13

16. Code Sample Showing Use of the Loquendo SDK [11] .. 14

17. TTS Director [12] ... 15

18. TTS Director Unit Selector [12] ... 16

19. Lexicon Manager Tool [12] ... 17

20. C++ TTS Application .. 18

21. C++ SAPI Code .. 18

22. C# TTS Application ... 19

23. Scope Statements in C# TTS Application .. 19

Figure

LIST OF ILLUSTRATIONS (CONCLUDED)

Title

24. Initializing the Engine ,., ... ,. .. a 19

25. Adding Installed Voices to a Combo Box 20

26. Speaking Text ... 20

vi

Table

1.

2.

3.

4.

5.

6.

7.

LIST OF TABLES

Title

Wizzard Software AT&T Natural Voices System Requirements [4] 7

NeoSpeech VoiceText System Requirements [6] .. 8

Cepstral TTS System Requirements [8] .. 9

NaturalReader System Requirements [9] .. 10

Programming Languages Supported ... 12

Loquendo System Requirements [11] .. 13

Decision Matrix .. 21

viil(viii Blank)

I. INTRODUCTION

The Common Driver Trainer (CDT) program is in the process of revamping its scenario
generation capability. One feature of the scenario-generation tool is the ability to add sounds to
occur at various points in the scenario. In support of this capability, there is a requirement to
provide Text to Speech (TTS) capability, such that verbal cues can be provided as desired. As
part of this new development, the Aviation and Missile Research, Development, and Engineering
Center (AMRDEC) was asked to research TTS options in support of the CDT program. This
report includes reviews of various commercial options of various tools that provide speech
synthesis capability.

Speech synthesis is artificial production of sound by a computer that resembles human
voices. This technology gives computer programmers the ability to match human-like voices to
computer-generated simulations. TTS is a tool that uses speech synthesis to allow programmers
to provide input text for computer-generated speech synthesized voices to speak. Some voices
are very realistic, while others are somewhat robotic. This study describes features from some of
the available technologies, along with a description of software developed by AMRDEC.
Finally, a recommendation is provided to the CDT program as to a potential path forward.

II. CDT OVERVIEW

The CDT provides both initial and sustainment training for several families of vehicles,
including the Stryker (Fig. 1), Abrams, and Mine Resistant Ambush Protected (MRAP) vehicles.
The components of the CDT include the vehicle cab, the visual system, the Instructor/Operator
Station (lOS), the After Action Review (AAR) station, the motion system, and various
computers for the simulation and image generation [1].

The vehicle cab is interchangeable between the various platforms supported by the CDT.
This ensures commonality among many of the components for the various vehicle types
supported. The display system is controlled by a commercial Image Generator (IG), specifically
the Rockwell Collins EPX-50. The host simulation computer communicates to the EPX IG
using the Common Image Generator Interface (CIGI) standard.

The lOS allows the instructor to select the scenario for the student to execute and to
monitor the student's progress during the exercise. Additionally, the instructor can provide
verbal instructions to the student through the intercom system and insert system faults. Finally,
the lOS supports recorded AAR for reviewing the student's performance.

When generating scenarios, the instructor must have the ability to insert audio files for
playback during an exercise. This can be accomplished through both insertion of pre-recorded
audio files and using TTS to generate new audio files.

1

Figure 1. Common Driver Trainer Stryker Variant [l]

III. SPECIFIC CDT REQUIREMENTS

The eDT requirements related to TTS and sound recording are as follows [2]:

• The eDT scenario-generation system shall allow a Scenario Manager to add new sound
libraries.

• The eDT scenario-generation system shall allow a Scenario Manager to add new sound
files to existing sound libraries.

• The eDT scenario-generation system shall include a recording/editing capability to
facilitate the creation of new aural cues.

• The recording system shall be capable of recording human speech.
• The recording system shall be capable of editing and saving sound files in the following

formats: .wav, .mp3, .wma.
• The recording system shall allow the Scenario Manager to set default sound file

parameters, such as sampling rate, for each supported file format.
• The eDT scenario-generation system shall include a TTS speech synthesis capability to

facilitate the creation of new aural cues from text files.
• The eDT scenario-generation system shall allow a Scenario Author to designate

whether a sound file associated with a scripted event is to be played through the cab
speakers, the cab headset, or both.

• The eDT scenario-generation system shall be capable of storing 1024 sound files or
calls to sound files as part of a scenario file.

2

IV. COMMERCIAL OPTIONS

There are many choices for TTS software vendors available, most of which offer the same
basic options. Some of the vendors actually use the same voices. The following sections
describe some of the various commercial options available.

A. Microsoft

Microsoft has developed a Speech Application Programming Interface (SAPI) that
allows the use of speech synthesis and speech recognition within Windows applications. All
versions of the Application Programming Interfaces (APIs) are designed to allow software
developers to incorporate into programs speech synthesis and speech recognition by using a
standard set of interfaces. These APIs are accessible by a number of programming languages.

In earlier versions, the SAPIs were used to act as an interface between applications and
the speech engine. In 2000, Microsoft released SAPI 5 in which applications communicate with
a runtime component called the sapi.dll. Applications make calls to the engine through the API,
and the runtime component interprets and processes the commands. Section V.A. shows an
example of a simple application that was developed by AMRDEC using the Microsoft SAPI
library.

SAPI 5.0 is a complete redesign from earlier versions. Significant alterations were
needed to make older engines and applications compatible with this new version. This new
change was to prevent the API from relying on a particular engine. Also, the change was made
to make it easier to incorporate speech in applications by moving initialization code into the
runtime.

SAPI 5.1 was released in 2001 as part of the Speech Software Developer Kit (SDK)
5.1. Interfaces were added to the API to allow use by Visual Basic, scripting languages, and
managed code. This version was shipped in Windows XP.

SAPI 5.2 was a special version of the API that was released in 2004 that is for use only
in the Microsoft Speech Server. It added support for Speech Synthesis Markup Language
(SSML) that allows changes for special pronunciation of words such as acronyms. Also added
in the new version was Speech Recognition Grammar Specification (SRGS). This capability
added the ability for speech recognition that might be used in automated phone services asking
for a certain phone extension.

SAPI 5.3 was the version of the API that came with Windows Vista. This version
provides new recognition and speech engines. With Windows Speech Recognition being part of
the operating system, the Speech SDK and APIs are now part of the Windows SDK. SAPI5.3
supports W3C XML speech grammars for recognition and synthesis. The SSML version 1.0
adds ability to mark up voice characteristics, speed, volume, pitch, and pronunciation.

A managed code Speech API with similar functionality to SAPI 5 is standard in the
.NET Framework 3.0. This API is available in Windows XP, Windows Server 200312008, and
Windows Vista [3]. Section V.B. shows example code developed by AMRDEC using the
Microsoft managed code Speech API.

3

B. Wizzard Software

Wizzard Software offers packages that allow developers to integrate speech into their
projects using either AT&T Natural Voices Desktop or IBM Via Voice. The IBM Via Voice
technology provides a nearly unlimited quantity of voices, since the voices are digitized by
modifying various parameters such as pitch and gender at run-time. However, the AT&T
Natural Voices technology likely provides the best fit for the COT, since the voices that are
supported have a more natural sound [4].

Wizzard Software offers a cross platform development suite that allows for both
Windows and Linux users. The AT&T Natural Voices engine provides a means to customize
pronunciation of words, along with defining acronyms and abbreviations.

Wizzard Software's SDK can be purchased for $295. However, licensing is also
required to use, deploy, or distribute speech technologies or audio files. Desktop deployment is
$10.50 per copy with a minimum order of$1,500.

To create an engine for the Windows Desktop Edition of the AT&T Natural Voices
TTS Engine, the code shown in Figure 2 is required.

CTTSEngine *pEngine = 0;
TTSConfig ttsConfig;
II Setup our configuration
ttsConfig.m_ eEngineModel = TTSENGINEMODEL STANDALONE;
ttsConfig.m_ eEngineBehavior = TTSENGINE_ SYNCHRONOUS;
II Create the engine
result = ttsCreateEngine(&pEngine, ttsConfig);
II Success?
if (result == TTS_ OK && this->m_ pEngine)

II AddRef() the engine
pEngine->AddRef() ;
II application continues

II Release the engine
pEngine->Release();

Figure 2. Creating an AT&T Natural Voices TTS Engine [5J

4

After the engine is created, it must be initialized. Once this is completed, standard TTS
actions can occur. When these functions are finished, the engine should be shut down. So, for
every call to initialize, there should be a call to shut down. This is demonstrated in Figure 3.

// Initialize the engine
TTS_ RESULT result = pEngine->Initialize();
if (SUCCEEDED(result)) {

... speak etc.
// we are done, so shut down the engine
pEngine->Shutdown() ;

Figure 3. Initialization and Shut Down of the Wizzard TTS Engine [5}

After the engine is initialized, the voices can be enumerated and a specific voice for the
application can be selected. The code for this may also be found in the Developer's Guide.
Prompting the engine to speak the requested text is perfonned as shown in Figure 4.

// Speak some text
string szText = "hello!";
TTS _ RESULT result = pEngine->Speak((PUTF8String) szText.c_ str(),
CTTSEngine: : sf_default) ;
if (FAILED(result)) {

cout « CTTSResult::GetErrorString(result);

Figure 4. Speaking Text Using the Wizzard TTS Engine [5}

Additional settings can be made, such as rate and volume, as shown in Figure 5.

// Rate and volume adjustmen t

pEngine->SetRate(-10); // Approximately 1/3 normal rate
pEngine->SetVolume(25); /1 ~ normal speaking volume
pEngine->Speak((PCUTF8String)"A slow whisper", 14,

CTTSEngine: : sf_default) ;
pEngine->SetRate(10); // Approximately 3 times normal rate
pEngine->SetVolume(200); // twice normal speaking volume
pEngine->Speak((PCUTF8String)"A quick shout!", 14,

CTTSEngine: :sf_default);

Figure 5. Rate and Volume Adjustmentfor Wizzard SDK [5}

5

SSML provides tags that allow a programmer to control various aspects of speech
synthesis such as pronunciation, rate, and pitch. Figure 6 shows examples of "Say-As" tags
which are used to manipulate how the words are to be spoken.

Say-As
Say-As tags provide contextual hints to the TTS engine about how
text should be pronounced. The TTS engine supports a number of
different contexts that can be used to fine-tune the pronunciation
of words.
Say-As > Acronym
The Acronym context tells the TTS engine to treat the text as an
acronym and to pronounce the text as the letters in the words. This
tag is especially useful if your text is mostly upper case and you
use the ATT_Ignore_Case tag but then encounter an acronym. Syntax:
<SAY-AS Type="Acronym"> text </SAY-AS>
Example: MADD <Say-as type="acronym"> MADD </Say-as>
Note: Pronounced as "mad M-A-D-D".
Say-As > Address
The Address context tells the TTS engine to treat the text as an
address. Syntax: <SAY-AS Type="Address"> text </SAY-AS>
Example: <Say-as Type="Address"> 123 Main St. , New York, NY 10017
</Say-as>
Note: will be pronounced "one twenty three main street, New York,
New York one zero zero one seven"
Say-As > ATT_Math
The ATT Math context tells the TTS engine to treat the text as a
mathematical expression.
Syntax: <SAY-AS Type="ATT_Math"> text </SAY-AS>
Example: <Say-as Type="ATT_Math"> 3+4=7 </Say-as> 3+5=8
Note: Pronounced as "three plus four equals seven three plus sign
five equal sign eight"

Figure 6. SSML Tags [5J

6

The Wizzard Software AT&T Natural Voices SDK also comes with a Dictionary
Editor, which can be used as delivered or used as a baseline for a custom application. This
application, shown in Figure 7, allows users to provide custom pronunciations to words.

~ A TT NV Dictionary Editor l8J
Qjctionary Word tielp

Words

harnessing
in'leigle
jalClpeno
jocelyn
linu~
los angeles
lottery

margarine
mathematlze
mathematized
mathematized
meme
memes
memol.\-'
mercury
mICIOW<lVe
misery
montage
montgomery
rnyspace

1'0'

v

Selected Word

W ord: I machinery Say

~~-------=~~-~ Phonemes: 1m ax 0 sh iy 1 n ax 0 r iy 0 Sa)'

Convert

Y pdate Insert

- Settings

Voicelont: Imike16 ~ Desktop ani),

Host and port I·p 7000 ·s localho:st Server Only

Use this voice alphabet: I atLdarpabet_eng Ish ~
Installation folder: !C:\Program Files\6. TTNaturarvoices\ T T54

C:\t..lfIN" ork \ATTN atural VoieesW ersion_ 42_ Windows\trial\c1ient\sdk \samples\V8 6·0 ietionary·E ditor \eustom.d iet

Figure 7. AT&T Natural Voices Dictionary Editor [4J

Table 1 shows the system requirements for Wizzard Software's AT&T Natural Voices
SDK. This software offers numerous options for operating system support and has relatively low
system memory requirements.

Table 1. Wizzard Software AT&T Natural Voices System Requirements [4]

Operating System Windows: NT, 2000, XP, Server 2003, Vista
Linux: Red Hat Enterprise Linux 5.0, 5.1,5.2, Fedora

Core 5-10, Ubuntu 8.04 GCC Version 4.1+
Memory Windows: 256MB (128 Minimum)

Linux: 512MB (128 Minimum)
Processor Linux: 500 MHz

Windows: 300 MHz
Free Disk Space 500 MB
Programming Languages Supported C++ (Can also be integrated with Visual Basic, C#,

ASP, FlashlPHP in Windows)

7

C. NeoSpeech

The NeoSpeech engine that can be used for developing custom TTS applications is the
VoiceText™ Text-To-Speech Engine. The VoiceText engine also provides dictionary
customization for pronouncing symbols, abbreviations, and new terms. The VoiceText engine
was originally developed by a Korean company called Voiceware Co., Ltd. This company is the
main investor for the California-based NeoSpeech company [6].

NeoSpeech offers an SDK for $950 and licenses at $550 for each computer. Several
English voices are available, including Julie, Kate, and Paul. Based upon the names of the
voices, it may be that the VoiceText capability is the technology being used currently on the
CDT.

Limited documentation was found for the English version of the VoiceText SDK.
However, an API Programmer's Guide for the Korean Engine was located [7], and Figure 8
shows some of the sample code from that document.

II Load the TTS Database
if (VT_ LOADTTS KOR (NULL, -1, NULL, NULL) ,= VT_ LOADTTS_ SUCCESS)

return -1;

II Load the user dictionary
if (VT_ LOAD_ UserDict_ KOR(l, "userdict.csv") !=
VT_ LOAD_ USERDICT SUCCESS)

return -1;

II set the pitch, speed, volume, and pause between sentence time
VT SetPitchSpeedVolumePause_ KOR (110, 90, 300, 2000, -1);

Figure 8. Various Code Samples from the Voice Text SDK [7]

Table 2 shows the system requirements for using NeoSpeech.

Table 2. NeoSpeech VoiceText System Requirements [6]

Operating System Windows: 98 or higher (Vista requires administrator
privilege)

Linux: Red Hat Enterprise Linux 4 or higher (known to
work 5.0,5.1,5.2, Fedora Core 5-10, Ubuntu 8.04
GCC Version 4.1+

Processor Pentium III 500MHz
Memory 128 MB (256 MB Recommended)
Free Disk Space 64-900 MB
Programming Langua!.!:es Supported C/C++

8

D. Cepstral

Cepstral provides TTS technologies, and, in fact, the company claims, "Text-to-Speech
is our only focus." Cepstral offers an affordable SDK at $299, and their voices are
approximately $50 each. The SDK allows developers to pair their own applications with
Ceptral's TTS. The SDK contains all of the .h header files and .lib libraries needed to link with a
C++ project under MAC OS X, Windows, and Linux. The SDK also includes registration keys
for all voices on all supported platforms to allow for uninhibited development [8].

Cepstral offers custom voice tuning that allows their technicians to alter or add
phonetics that are not accessible through SSML calls. Also, the Cepstral voices are SAPI 5
compliant, so the voices can be used directly by the Microsoft Speech SDK, although the SSML
capability is not supported when using SAPI instead of the Cepstral proprietary SDK.

Table 3 shows the system requirements for using the Cepstral TTS capability.

Table 3. Cepstral TTS System Requirements [8]

Operating System Windows, Macintosh OS X. or Linux
Processor
Memory 32MB
Free Disk Space 10-20 MB (Per voice)
Programming Languages Su!'ported C/C++

Cepstral offers the use of SSML with their voices which allows the user to control the
various aspects ofthe voice to achieve desired results. The text in Figure 9 demonstrates the
method used to control the pitch of a voice.

"< prosody pitch = 'x-low' > This is half-pitch </prosody>"
"<prosody pitch='low'>This is 3/4 pitch.</prosody>"
"<prosody pitch='medium'>This is normal pitch.</prosody>"
"<prosody pitch='high'>This is twice as high.</prosody>"
"<prosody pitch='x-high'>This is three times as high.</prosody>"
"<prosody pitch='default'>This is normal pitch.</prosody>"
"<prosody pitch='-50%'>This is 50% lower.</prosody>"
"<prosody pitch='+50%'>This is 50% higher.</prosody>"
"<prosody pitch='-6st'>This is six semitones lower.</prosody>"

Figure 9. Cepstral's Pitch Control

Emphasis can be added to certain words to by using SSML as seen in Figure 10.

"This is <emphasis level='strong'>stronger</emphasis> than the rest."
"This is <emphasis level='moderate'>stronger</emphasis> than the rest."
"This is <emphasis level='none'>the same as</emphasis> than the rest."

Figure 1 O. Cepstral's Emphasis Control

9

E. NaturalReader

NaturalReader offers a number of voices from AT&T and NeoSpeech. They do not
offer an SDK, but they offer a developer version for $199.00 which includes eight voices. This
can be called by command lines from other applications to convert text to audio files. Available
options are as follows [9]:

• Convert a text string into an audio file
• Convert a text file into an audio file
• Batch convert multiple text files into audio files
• Set the voice, speaking speed, and audio quality
• Converts text to MP3, WAY, or OGG audio formats

Figure 11 shows some examples for converting TTS using NaturalReader, and Table 4
provides the system requirements. Figure 12 shows the NaturalReader Pronunciation Editor,
which allows the user to easily add new abbreviations and change the pronunciation of words.

1. Convert text into audio files:
Convert "How are you? I am fine." To Fine.mp3
NaturalReaderCL -str How are you? I am fine.

-save f:\fine.mp3 -reg XXXXXXXXXXXX

2. Convert text file into audio file:
Convert "f:\Mfile\plan.txt" into mp3
fileNaturalReaderCL -txt f:\Mfile\plan.txt

-save f:\Mfile\plan.mp3 -reg XXXXXXXXXXXX

Figure 11. NaturalReader Examples [9]

Table 4. NaturalReader System Requirements [9]

Operating System Windows 98/MeINT/2000/XPNistalWin7
Processor 500 Mhz
Memorv 128 MB (256 recommended)
Free Disk Space 50 MB (Natural voices may require 600MB free space)
Programming Languages Supported Any language that can make a call to a command line

10

~ PronunCl.at l.on Edl.tor rEJ
Pronunciotion ·

Numt Source ~rd
~ 11 ! Dr

.... N_T

2 NaturalReader

3 Ave.

4 B A

5 B C

6 cm

dept

di st

(

I Delete II Delete all

Source Word

Replaced Word

1...0 Append to Itat I [e ModIfy I
~I

Replaced Word

Doctor

Natural Reader

Avenue

Bachelo r of Arts

Before Chri st

centimeter

department

district

A

--..,

Import... I [Save to ..

[~ Video Help I

Figure 12. Natura/Reader Pronunciation Editor [9]

F. Digital Future

Digital Future's TextSpeech Pro application provides the capability to synthesize TTS
from many document formats, such as text, Microsoft Word, rich text (RTF), and Adobe PDF.
This software uses several capabilities already described in this paper, including AT&T Natural
Voices, NeoSpeech, and Cepstral. An advanced editor allows the user to create conversations.
Also, speech properties-such as the voice, speed, volume, and pitch--can be modified, and
custom pronunciations can be applied. Command-line capability is also provided. Figure 13
shows the TextSpeech Pro application, while Figure 14 shows the Pronunciation Corrector [10].

I: TextSpeech Pro GJ[Q] X
Ale Speech Edit VIew Tools WIndow Help

stop

• EmIlI R~ lim Br_ 1E! 8iJtd1 Convener

~ liIb1led ~ Oocunelt 1..l2s

T~ Pro 3 II ;u,..-d easy 10 leacn.

IT~ Pro IS Itle .lBndlord ... text-ID-meech con-outi'>Q for most eperatInQ systemS.

T6!Speecn Pro l a.opporu manv 'DICe< ond!Ml'lY doffe'."t~. ~ Heip>(iet more YOaS.. . you...,;h 10 add
more ~ty vaiCft to Tel<tSpe«h Pro.

EJ Bookmark M.!Inager

o From () To

Figure 13. TextSpeech Pro Application

11

fjX

~ St;

~ Pronunciation Corrector r? IfX'I
--* C--------] __ wri C::::::::==-J rp.to ... I~ _I
.... ..-- __ ':Som vii --II Add_ I

ErtaW1 LSpailll' t -..to ~ _ I: _

Remove SourCE! Target Language Role Reac

-------tJ
?i-I -------. ... ,...-......... "'" I OK II c.roa.I I -!/ ~-.. _eIhct. •. _ _

Figure 14. TextSpeech Pro Pronunciation Corrector

In addition to the TextSpeech Pro application, Digital Future also provides a TTS SDK.
This SDK supports a wide variety of programming languages and provides a variety of voices.
Digital Future is a cross platform application offering solutions for Windows, MAC OS X, and
Linux. The programming languages supported for these operating systems are shown in Table 5.
Numerous audio output formats are also available.

Table 5. Programming Languages Supported

Microsoft Windows C++, Java, C# .NET, Visual Basic.NET, Visual Basic 6
Mac OS X Objective-C/C++ (Cocoa). C++ (Carbon). Java
Linux C++, Java

12

The Digital Future SDK provides a standard API to speech engines, and the company
also provides 24-hour developer support. While not stated directly on the website, it appears as
though the API interfaces to the Cepstral technology at a minimum. Figure 15 shows some
example API calls. The SDK from Digital Future is available for $1500. Digital Future offers
different options of voice usage and different prices for each option. IfNeoSpeech voices are
used the price is $100 per voice per machine. If Cepstral' s voices are used, then the price is $60
per voice per machine.

DFTTSSpeak(O, 1, "David", -1, 1033, "Testing the Digital Future
Text-to-Speech SDK.", -1, -1, -1, -1, -1,
DFTTS_ TEXT_ TYPE_ XML,-l);

DFTTSExportToFileEx(O, "Paul", 1, 1033, "Testing the Digital
Future Text-to-Speech SDK.", -1, -1, -1, -1, -1,
DFTTS_ TEXT_ TYPE_ XML, "test.wav", 0, "", -1, -1);

Figure 15. Various Code Samples from the Voice Text SDK [9J

G. Loquendo

Loquendo is a global TTS provider that presents high quality speech synthesis. They
offer a cross platform solution that supports Windows and Linux. Loquendo is an expensive
alternative for TTS, since the SDK costs $2000 and there is an additional charge of $250 per
application for a single voice. However, the voices are clear, natural sounding, and more
realistic than any others researched for this report. Table 6 shows the system requirements.

Table 6. Loquendo System Requirements [11]

Operating System Windows XPNistaiServer 2003/2008
Red Hat Enterprise Linux 3, 4, 5
SUSE Linux 10

Processor Pentium family (or equivalent)
Memorv 10 MB RAM available for the engine
Free Disk Space 50 MB per voice
Programming Languages Supported C/C++/Java

13

The C/C++ API provides non-object-oriented, C style interfaces into the Loquendo
TTS engine. Capabilities provided through the API include setting the language, stereo balance,
reverb, speed, and pitch, along with other options. While code using the API does not appear as
clean as an object-oriented solution would be, it does appear fairly straightforward to use.
Example calls into the Loquendo API are shown in Figure 16.

ttsResultType r = tts OK ;
ttsHandleType hReader, hVoice, hLanguage;

II create a new reader
r = ttsNewReader(&hReader, NULL);

if (r != tts OK) return r;

II create a new voice
r = ttsNewVoice(&hVoice, NULL, "BernardH

);

if (r != tts OK) return r;

II create a new language
r = ttsNewLanguage(&hLanguage , NULL , "frenchH

);

II set the voice
r = ttsSetVoice(&hReader, hVoice);

II set the language
r = ttsSetLanguage(&hReader, hLanguage);

if (r != tts OK) return r;

II set the pitch to 55
ttsSetPitch (hReader, 55);

II set the speed to 10
ttsSetSpeed (hReader, 55);

II example of synchronous call (TTS conversion of a text file)
r = ttsRead (hReader,"input.txt", ttsFALSE , ttsTRUE ,NULL);

if(r != tts OK) return r;

II example of asynchronous call (TTS conversion of a text buffer)
r = ttsRead (hReader,"l, 2, 3, 4, 5.", ttsTRUE , ttsFALSE ,NULL);

II wait until completion or a 5 sec timeout has elapsed
ttsWaitForEndOfSpeech (hReader,5000,NULL) ;

Figure 16. Code Sample Showing Use o/the Loquendo SDK [II}

14

Figure 17 shows a screen shot of the TTS Director. This tool allows users to make
changes in tone, hesitations, and various other speech qualities using SSML tags.

File fd~ ~ew ControrTags Effects Conllgurallon Tools Help - --J:tJ.a:J.-J JIJ ITimes New Roman ::::J j2O""3

lOOYe (Amentan English male voice)

SSML....Eumple~Sml l

1 < ?xmi verSLOI1 ="1. O".?>

Mode: IAutodetect ::::J

~. Play

z <speak version=" 1. 0" xmlns=''http://www.w3.org/ZOO1l10/synthesis''
xmlns :xsi=''http://www. w3. org/ZOO lIXMLSchema-instance"
xsi :schemaLocation=''http://www. w3. org/ZOO 111 O/synthesis

5 http://www.w3.orgITRIspeech-synthesis/synthesis.xsd''
lIJDl:lmg="en-US">

? <!-- This is an SSML 1.0 example -->

8 <voice gender="female''>Hello, I'm a Loquendo female voice. <break time="ls"l>
Let me introduce my friend Dave ...

10 <lvoice>
11 <voice rumIe=''Dave''>Hi. I'm Dave. It's very nice to meet you!<lvoice>
12 <ispeak>j

~ 0 errors to report

OK

status: Dave. EnglishUs. 32000 Hz. stereo

Figure 17. TTS Director [12]

15

Loquendo allows the user to add realistic sounds to projects. They offer a vast
repertoire of sounds such as laughs, coughs, sighs, and hesitation. If the user wants a prompt
read in particular way in tenns of intonation or emphasis, the User-Driven Unit Selection tool
within the TTS Director software can be used (Figure 18) to obtain various alternatives for a
highlighted word or words until an acceptable pronunciation is achieved .

•
File ~dH ~ew ControlTags Effects Configuration Tools Help

:~~.8JJlJ ITimesNewRoman ::OJ ~ Mode: IAutodetect ::OJ
IDave (Amencan EnoUsh male..,lce) i1 '=jEn-O.,,-Ils.,..,.hU-S----::OJ-,; IS) Stop I

0,4094 my name is Dave, I'm a Loquendo voice.

o lind ·.r.I~1 hnn I UflUUI

r Fo.cus

__ J fuV name Is DaveJ

~LJ _:...
- Unlss------------------------------...,

status: Dave, EnglishUs, 32000 Hz, stereo

m'lln'elmlz .

104094 Discarded untts: •• Play

Figure 18. TTS Director Unit Selector {12]

16

Figure 19 shows a Loquendo tool called Lexicon Manager, which allows the user to
phonetically create the way a word is to be pronounced. Acronyms and abbreviations can be
customized for speaking in a suitable manner using this tool.

? lO(JJendo lencon Mdn.lger "~Ei
Fie Edit Contw.ur&lon Help

j~ ~1iI. .;~ ill 1000 Q (} =., leave (Amancal En~lish mala VOIW) ::1 IEnglishU; :::J
1 Lexicon list
0- EKample lex Sactlon I IEnr.hs,

r- ; ~";i"n • .----O- n--:;Jin- a-J T-ex:-_ -----.---a.-bslltlJtt--Te-~-----.--Ph-o-ne-tl-cT-ra-n;-cr-D-tlO-n ---,----c-om- m-en- t ---.------.

t , t>lllarguaQ85 ltd Loquendo TTS Document .,
~

tell[10 speecn ISAIVI-'A=(t"I::'St#tQl#Sp"W:i

.2!.l ~ IJIU

EI I ~17 I
~~E@

~ a[aU au

Figure 19. Lexicon Manager Tool [12J

v. SAMPLE APPLICATIONS USING MICROSOFT LIBRARIES

.,

oU

In preparation for the TTS research, AMRDEC developed some simple TTS applications to
gain understanding of the technology. Microsoft's TTS libraries, which were described in
Section IV.A, were successfully used to create a Microsoft Foundation Class (MFC) application
using C++ and a Windows Forms application using C# .NET. The C# application proved to be
the easiest to develop.

A. C++ Application

AMRDEC developed a C++ application that provided TTS capability using the
Microsoft SAPI 5 library. A simple Graphical User Interface (GUI) was added using the MFC
library. Voices can be chosen from the list of available voices installed on the computer, and the
output can also be customized through setting the rate and volume.

Figure 20 shows the graphical user interface used in the C++ application. As shown, a
voice can be selected from the available Microsoft SAPI-compatible voices. Also, text can be
entered directly for speaking, or a text file can be provided as the text input. Figure 21 shows a
portion of the code used to achieve speech synthesis in C++.

17

[JJ Text to Speech i-1[Q1r'X1
Select Voice

T we te~t here:

J(8row~e

Speak

Figure 20. C++ TTS Application

II convert text to speech
void TextToSpeech(std: :string inputText)
{

CComPtr<ISpVoice> pVoice;

if (FAILED (CoInitialize (NULL)))
{

II Error intiliazing COM
return ;

II create the voice object
HRESULT hr = CoCreateInstance(CLSID_ SpVoice, NULL,

CLSCTX_ALL, IID_ ISpVoice, (void **) &pVoice);

CComPtr<ISpObjectToken> token;
std::string voiceName = "Name=" + m_ Voices[m_ CurrentVoice];

II find the selected voice
hr SpFindBestToken(SPCAT_VOICES, A2BSTR(voiceName.c_ str()),

0, &token);
hr pVoice->SetVoice(token);

if (SUCCEEDED (hr))
{

BSTR bstr = A2BSTR(inputText.c str());
II speak the text
hr = pVoice->Speak(bstr, 0, NULL);
pVoice.Release();

CoUninitialize();

Figure 21. C++ SAP! Code

18

B. C# Application

AMRDEC also developed a Windows Fonns C# application that uses Microsoft's
managed code Speech API. This .NET library was found to be simpler to use than the C++
SAPI library. With a few lines of code and an integrated GUI, the developer was able to produce
a working TTS application. Some of the key steps to achieving this are provided in the
following paragraphs. Figure 22 shows the GUI for AMRDEC's prototype C# application.

1\! Text to Spel!ch r - 1r5lrxl
Choose a Voice:

Microsoft Mike .,

Type T eKt Here: Volume Rate

1.....>;
100 10

I am very thankful for the opportunity to work at AM R DECK

0
v

0
y

·10 I
Open T his File

I C: \readerlile2 t"1 Speak

Open File

Exit Read File

Figure 22. C# TTS Application

In order to achieve Speech Synthesis in C#, the System Speech library must first be
added to the project references. Then, scope statements for the components being used must be
included. At a minimum, this requires the line of code provided in Figure 23.

using System. Speech. Synthesis;

Figure 23. Scope Statements in C# TTS Application

Once the project is appropriately setup, initializing the speech synthesizing component
is simple, as shown in Figure 24.

~, ." . . ~ m_ SpeechSynthesizer;
m SpeechSynthesizer = new ~ ,. C:C J , () ;

Figure 24. Initializing the Engine

19

Selecting voices from those installed on a particular computer is also easy by using the
code shown in Figure 25. This code places the available voice options in a drop down box for
the user's selection.

foreach (:;::,:"'>",~-,-"'i',i_ voice in voices)
{

string v = voice.VoiceInfo.Name.ToString();
VoiceChoiceComboBox.Items.Add(v) ;

Figure 25. Adding Installed Voices to a Combo Box

The code in Figure 26 is triggered when the "Speak" button is pressed on the dialog.
The action that follows is that the Speech Synthesizer speaks the text the user has typed into the
text box or input from an external text file.

private void SpeakButton_ Click(object sender, Lven:-_Args e)
{

II Select the voice in the speech engine to match the
II selected voice on the combo box
if (C:):1 ~:: .ToString(VoiceChoiceComboBox.SelectedItem) != 1111)
{

m_SpeechSynthesizer.SelectVoice(
C(;:-:-, (0:" :: . ToString (VoiceChoiceComboBox. SelectedItem)) ;

II Set the volume and rate
m_ SpeechSynthesizer.Volume = VolumeTrackBar.Value;
m_ SpeechSynthesizer.Rate RateTrackBar.Value;

II Speak the text
m_ SpeechSynthesizer.Speak(RichTextBox.Text) ;

Figure 26. Speaking Text

VII. RECOMMENDATION

There are at least two design options for providing TTS capability for the eDT program,
regardless of the TTS technology used. One possibility is to integrate the TTS functionality
directly into the scenario-generation tool. Another approach is to create a separate application
dedicated to adding or creating audio files that would then be made available to the scenario­
generation system. In either case, there should be a means of generating aural cues using both
TTS and recorded voice.

20

AMRDEC recommends that the CDT program develop an application or component that
provides the following basic functions, most of which are already requirements for the CDT
scenario-generation system:

• Type text into an input box for TTS creation of audio file
• Input text from a file for TTS creation of audio file
• V oice selection for the TTS engine
• Record human speech into an audio file
• Export files in . wav, .mp3, . wma formats
• Provide a custom dictionary screen that defines how the TTS engine pronounces

acronyms, special words, and so forth.
• Handle file organization on the hard drive as needed by the scenario-generation system

As part of the decision process for selecting a recommended TTS capability, a matrix with
various weighting factors was developed. The weights column defines the importance of each
factor on a scale from 1 to 10, with 10 being most important. Each of the technologies described
in Section IV were evaluated against these factors, with 10 being the best score and 0 being the
worst score for a particular weight. The total score was obtained by summing the product of the
weights and scores for each technology. The results shown in Table 7 are not completely
scientific, since the scores are somewhat subjective and dependent upon the evaluator's
understanding of the data readily available for the individual technologies. However, these
results do generally show the consensus of the authors.

Table 7. Decision Matrix

Weighting Factors Weights Microsoft Wizzard NeoSpeech Cepstral
Natural Digital

Loquendo
Readers Future

Cost (high score
means low cost) 7 10 8 0 7 5 6 3
Works on Microsoft
Windows 10 10 10 10 10 10 10 10
SmoothnesslNatural
sounding 9 5 7 9 6 8 9 10
Accuracy of
pronunciation 9 7 8 7 7 7 7 10
Customizable for
acronyms,
pronunciation 7 5 9 8 7 2 10 10

Cross-platform 2 0 10 10 10 2 10 10

Input file formats 6 10 10 10 6 10 10 10
SDK for custom
applications 4 10 10 10 10 5 10 10
Simplicity of SDK
integration 3 10 9 7 5 5 5 7
Availability of
COTS tool 3 0 10 0 0 10 10 10
Simplicity of COTS
tool 3 0 8 0 0 10 10 9

Total Score 443 555 441 426 443 551 569

21

As shown in the decision matrix, the Loquendo library provides the best solution based
upon the weighting factors considered. Selection of this library would offer the user the most
natural and realistic speech out of the alternatives studied. While there will be a cost impact
associated with using this software, the library is an improvement over the current CDT TTS
functionality. If the cost of the Loquendo library exceeds the CDT budget for this requirement,
perhaps either the Wizzard Software solution with the AT&T Natural Voices or the Digital
Future TTS SDK could be utilized.

Regardless of the solution chosen, AMRDEC is capable of implementing the new software
in support of the CDT program. The simplest solution would be to task AMRDEC to develop a
separate application meeting the requirements stated above. However, if the TTS capability is
desired to be integrated with the scenario-generation software, this, too, can be accomplished
once AMRDEC is provided with the source code for that software.

22

REFERENCES

1. Website: www.peostri.army.miIIPRODUCTS/CDT_SV

2. PRF-PT-00430 Version 4.1, August 1,2009, Appendix A, Scenario Generation System
Specific Requirements, Section 3.5 "Sounds/Aural Cues"

3. Website: http://en.wikipedia.orglwiki/Speech_Application_Programming_Interface

4. Website: www.wizzardsoftware.com

5. AT&T Natural Voices™ Text-To-Speech Engines Version 4.2 for Windows Developer's
Guide, Copyright 2001-2008 by AT&T Corporation
(http://www.wizzardsoftware.comldocs/att_NV_dev_windows.pdt)

6. Website: www.neospeech.com

7. VoiceText Korean Engine API Programmer's Guide, Software Version 3.7.0,
VoiceText™, Voiceware Co., Ltd. (http://www.neospeech.comlmanual/vt_kor-Engine­
API-References-v3.7.0%20(english_translation).pdt)

8. Website: www.cepstral.com

9. Website: www.naturalreaders.com

10. Website: www.digitalfuturesoft.com

11. Website: www.loquendo.com

12. Loquendo TTS 7 Programmer's Guide, Copyright 2001-2008 Loquendo

13. Bonardo, Davide, Loquendo TTS Director: The next generation prompt-authoring suite
for creating, editing and checking prompts, (www.loquendo.comleniartic1es/Loquendo­
TTS-Director. pdt)

23

AAR

AMRDEC

API

CIGI

CDT

GUI

IG

lOS

MFC

MRAP

SAPI

SDK

SRGS

SSML

TTS

LIST OF ACRONYMS AND ABBREVIATIONS

After Action Review

Aviation and Missile Research, Development, and Engineering Center

Application Programming Interface

Common Image Generator Interface

Common Driver Trainer

Graphical User Interface

Image Generator

Instructor/Operator Station

Microsoft Foundation Class

Mine Resistant Ambush Protected

Speech Application Programming Interface

Software Developer Kit

Speech Recognition Grammar Specification

Speech Synthesis Markup Language

Text to Speech

24

INITIAL DISTRIBUTION LIST

Weapon Systems Technology
Information Analysis Center
Alion Science and Technology
201 Mill Street
Rome, NY 13440

Defense Technical Information Center
8725 John J. Kingman Rd., Suite 0944
Fort Belvoir, VA 22060-6218

AMSAM-LI

RDMR

RDMR-CSI

RDMR-WDG

RDMR-WDG-C

PEO STRl
SF AE-STRl-PS-E-S
12350 Research Parkway
Orlando, FL 32826-3276

PEO STRl
SF AE-STRl-PSG-E-S
12350 Research Parkway
Orlando, FL 32826-3276

Ms. Perry E. Onderdonk
ponderdonk@alionscience.com

Mr. Jack L. Rike
i rike@dtic.mil

Ms. Anne C. Lanteigne
anne.lanteign .mil

Dr. Robin Buckelew
robin.buckelew@us.army.mil
Mr. Jim Hatfield
jim.hatfield@us.army.mil
Ms. Julie Locker
julie.locker@us.army.mil

Copies
Electronic

Electronic

Electronic

Electronic

Electronic

Electronic

Electronic

Electronic

Mr. Roger Berry Electronic
roger. berry@us.army.mil
Mr. Danny Carter Electronic
danny. carter l@us.army.mil
Mr. Michael Hanners ElectroniclHardcopy
michael.hanners 1 @us.army.mil

Mr. Darryl Williams
darryl. williams2@us.army.mil

Mr. Dean Runzel
dean.runzel@us.army.mil

Dist-1I(Dist-2 Blank)

Electronic

Electronic

