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CONFERENCE PAPER 
 
The planetary geomagnetic Kp index (3-hour average recorded every 3 hours) exhibits a high degree of correlation 
from one value to the next.   In fact, a simple persistence model that forecasts the next 3-hr value as being equal to 
the current value shows a linear correlation coefficient of r = 0.797 and a root-mean square error of RMSE = 0.918 
from actual values as calculated using historic Kp data from solar cycles 17 through 23.  This simple persistence 
model can be used as a baseline for comparison to other forecast models and, when interpolation effects are taken 
into account, provides forecasts that are better correlated and have a smaller RMSE to the actual data than most 
existing neural network methods that use sentinel solar wind and interplanetary magnetic field data.  A new forecast 
method based on the unscented Kalman filter (UKF) is developed to generate forecasts of Kp using previous values 
of this index to fully exploit persistence and sentinel solar wind interplanetary magnetic field data to provide a 
geomagnetic storm trigger.  The resulting forecast model performs better than all existing Kp forecast models.  
Model performance is measured by calculating the linear correlation coefficient and the RMSE between the forecast 
value and the actual value.  A new skill score that assesses how well the model predicts the onset of a geomagnetic 
storm is also introduced.  The UKF-based model offers the opportunity for further improvement by adding new 
inputs and refining the state and measurement functions in the filter and can be used to forecast other geomagnetic 
indices as well. 
 

1.  INTRODUCTION 
 
The three-hour planetary geomagnetic index Kp is one of the most commonly used geomagnetic indices to indicate 
the severity of global magnetic disturbances.  Indeed, the NOAA’s Space Weather Prediction Center (SWPC) uses 
an estimated Kp value to determine their Geomagnetic Storm warnings.  References [1] and [2] provide excellent 
overviews of the origin and use of this index as well as detailed examinations of the precision and accuracy of 
existing forecast models.  Most of these forecast models are based on using a neural network (NN) with sentinel 
solar wind and interplanetary magnetic field (IMF) derived inputs from the Sun-Earth L1 libration point, with some 
including the most current estimated Kp measurement as an input as well. 
 
Operations that rely on Kp are challenged continuously to generate creditable forecasts of geomagnetic activity.  
Before considering transient events that can elevate the level of geomagnetic disturbances, the forecaster establishes 
a baseline forecast without transient features.  Two primary considerations are persistence and recurrence.  
Persistence assumes what is happening from hour-to-hour or even from day-to-day will not change.  Recurrence 

                                                            
1 Colorado Professional Resources, LLC Chief Scientist, Colorado Springs, Colorado, USA.  Subcontract JT515 to 
TEAS contract FA9200-07-C-0006 on task order TEASV-08-1204 
2 Director, Advanced Sciences and Technology Research Institute for Astrodynamics (ASTRIA), AFRL, 
Albuquerque, New Mexico, USA 
3 Defense Meteorological Satellite Program Systems Group Technical Director, Peterson AFB, Colorado Springs, 
Colorado, USA 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
SEP 2010 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2010 to 00-00-2010  

4. TITLE AND SUBTITLE 
Kp Forecast Model Using Unscented Kalman Filtering 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Air Force Research Laboratory,Advanced Sciences and Technology
Research Institute for Astrodynamics (ASTRIA),Kirtland 
AFB,NM,87117-5776 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
2010 Advanced Maui Optical and Space Surveillance Technologies Conference, 14-17 Sep, Maui, HI. 

14. ABSTRACT 
 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

10 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



assumes no change from one solar rotation to the next.  Even though the Sun is a dynamic main sequence star, the 
time scale of changes allows both persistence and recurrence to be useful forecast agents.   
 
In this paper, we will follow this example by establishing a baseline forecast in the absence of transient events using 
persistence alone and then add sentinel solar wind inputs to forecast the onset of geomagnetic storms.  First, an 
analysis of historic values of Kp from solar cycles 17 through 23 is accomplished and a simple persistence model and 
an average persistence model are developed to establish baseline forecasts of future values of Kp from the current 
nowcast value alone.  These models will be the standard by which to evaluate the performance of the existing NN 
sentinel models.  The effects of the data sets used and how that affects the measured performance of the particular 
forecast models will also be taken into account.  A new skill score that assesses how well the model predicts 
increases in activity during geomagnetic storms is also introduced.  Next, the unscented Kalman filter (UKF) [3] is 
described and used to create a new mechanism for forecasting future values of Kp.  The UKF combines Kalman 
filtering, the optimal filter for estimating linear systems, with the unscented transform, which uses deterministic 
sampling to estimate the state and covariance of the system through a nonlinear function.  The UKF has seen 
extensive use in spacecraft attitude determination [4,5,6,7].  The UKF model forecasts will first exploit persistence 
alone and then incorporate sentinel solar wind data as a storm-time trigger.  Again, model performance is evaluated 
by calculating the linear correlation and root-mean square error between the forecast Kp and the actual Kp, and the 
storm-time onset skill score and comparing with the performance of the simple and average persistence models. 

 

Fig. 1. Frequency of three-hour Kp during different solar cycles.  Open symbols 
are 10-year cycles, gray symbols are 11-year cycles, and solid symbols are 12-
year cycles. 

 
 

2.  HISTORIC Kp FROM SOLAR CYCLES 17 THROUGH 23 
  
The three-hour planetary Kp index were tabulated by solar cycle using the archives at the World Data Center for 
Geomagnetism, Kyoto (http://swdcwww.kugi.kyoto-u.ac.jp/index.html).  Fig. 1 displays the distribution of Kp 
during each of the seven solar cycles covered.  The 12-year solar cycles (SC20, SC23) show a higher frequency of 
low geomagnetic activity (Kp < 2) and a lower frequency of moderate to high geomagnetic activity (Kp > 5) as 
compared to the 10-year solar cycles (SC18, SC19, SC21).  The 11-year solar cycles (SC17, SC22) fall somewhere 
in between.  Fig. 2 displays the root mean square error (RMSE) of each Kp with past values as a function of time.  



Clearly evident is a dip at 27 days indicating solar feature recurrence consistent with the Carrington synodic rotation 
period of the Sun where the same active region or coronal hole/high speed stream produces similar solar wind and 
interplanetary magnetic field conditions and thus similar geomagnetic conditions and variations.  The most recent 
past values representing persistence, however, provide a lower RMSE and are thus more predictive to estimating 
future values. 

 
Fig. 2 – RMSE of difference of Kp with past values for different solar cycles. 

 
 

3. THE Kp SIMPLE AND AVERAGE PERSISTENCE MODELS 
 
Models based on the nowcast Kp will be evaluated to form a baseline to compare all other forecast models.  In light 
of Fig. 2, the Kp simple persistence model uses the nowcast Kp as the forecast for the next Kp and the Kp average 
persistence model uses the average of the next value from the historic data with the same nowcast Kp as the forecast 
for the next Kp.  Fig. 3a shows the results of running the models on all the data (3 hour time interval) to provide a 
forecast 3 hours ahead.  Fig. 3b shows the RMSE in the predicted values as a function of the actual Kp values. There 
is an improvement in the overall RMSE from actual values when comparing the average persistence model over the 
simple persistence model.  This improvement is due to the marked improvement in RMSE for Kp values close to the 
modal value at the expense of the RMSE away from the modal value as displayed in Fig. 3b.  The 3-hour forecast 
correlation coefficients and overall RMSE for the simple persistence model are listed in Table 1 for each solar cycle, 
two sets of data used with the UKF models (1933-2008 and 1998-2008) and the data sets of [1,8,9] (1975-2001) and 
[2] (April 2001, all of 2006 and 2007).   The test set for [10], described below, is identical to Solar Cycle 22.   
 
The persistence correlation coefficient for a 3-hour forecast is about r = 0.8 for all time periods.  Most of the 
previous forecast models described in the literature, however, generate Kp forecasts of less than 3 hours.  These 
models are their reported results are summarized in Table 2.  To implement and evaluate these models using a 
nowcast Kp, it is either necessary to create a new set of Kp data, for example by interpolating between the official 3 
hour values (to a 15 minute time granularity as done in [1]) or use a different source of data (the estimated 3-hour Kp 
that is calculated hourly by the Air Force Weather Agency (AFWA) Space Weather Operations Center as suggested 
by [2]).  Both options affect the resulting correlation coefficients and must be understood before direct comparison 
to the persistence models can be made.  Interpolating between points artificially enhances the correlation by de-
emphasizing extreme values in the time series and will increase the correlation and decrease the RMSE.  For hourly 



sampling of a 3-hour smoothed value, the correlation will increase and RMSE will decrease because a direct 
dependence between the hourly values has been added due to the smoothing process.  
 

 
Fig. 3 –Kp simple persistence model (solid circles) and Kp average persistence 
model (open circles) 3-hour ahead performance.  (a) predicted versus actual and 
(b) RMSE 

 
Table 1.  3-hr forecast correlation coefficient for simple persistence model 

Time period r RMSE 
SC17 0.793 0.946 
SC18 0.791 0.985 
SC19 0.793 0.977 
SC20 0.784 0.922 
SC21 0.779 0.938 

SC22 [10] 0.801 0.894 
SC23 0.810 0.876 

1933-2008 (data set 1) 0.797 0.933 
1998-2008 (data set 2) 0.812 0.878 

1975-2001 [1,8,9] 0.793 0.913 
Apr 2001, 2006-2007 [2] 0.806 0.809 

 
Care must be taken when using hourly data (whether estimated or interpolated) of this 3-hour average to compare 
the baseline results of the Kp persistence models to another forecast model.  Nevertheless, Fig. 4 attempts to do just 
this by comparing the previous published model linear correlation coefficients and RMSE with the Kp simple 
persistence model.  Two sets of results from the Kp simple persistence model are displayed:  the first (solid line) 
using the official Kp from 1933-2008 in the original 3-hr granularity oversampled to a 1-hr granularity (the Kp 
reported for a particular 3-hour window was taken to be the Kp for each hour in that 3-hour window); the second 
(dashed line) using this same data interpolated to a 1-hr granularity.  Oversampling avoids the boost in correlation 
that results by interpolating. 
 
The Costello NN [8], NARMAX [9], and APL models [1] results in Table 2 are taken from [1] using 15-minute 
interpolated official Kp from 1975-2001 and is best compared to the dashed line.  The RMSE values were not 
reported in [1] and were instead estimated using their Figs. 1, 2, 3, 6a, 7a and 8.  Reference [10] (BWL in Table 2) 
NN model test data are official Kp values at the original 3-hour tempo from SC22 (1986-1996) and is best compared 
to the solid line.  Reference [2] (BRL in Table 2) linear models and NN models use the official Kp from April 2001 
and 2006, 2007 transformed to a 1-hour cadence by oversampling and are best compared to the solid line.  In all but 
one case, use of the sentinel solar wind and IMF inputs does not improve the overall correlation between the actual 



values and the forecast values from using past values alone as in the Kp persistence models described above.  In all 
cases, the RMSE is not improved.  Due to the high degree of persistence in Kp, evaluating models with a skill score 
that uses all data (e.g. Figs. 9 and 10 in [1] and Fig. 13 in  [2]) shows similar results when comparing existing NN 
model results to simple persistence.  Using these measures as a basis of forecast performance are not adequate and a 
new measure that evaluates how well the model forecasts the onset of a geomagnetic storm is required. 

 
Table 2.  Kp forecast model descriptions 

Name Input 
Forecast 

(hrs) r RMSE Reference 
Costello NN v, Bz, |B| 1 0.75 0.71 [8,1] 

BWL NN v, n, Bz, |B| 1 0.768 0.985 [10] 
NARMAX v, p, Bz, |B|, Kp 1 0.77 0.79 [9,1] 

APL Model 1 v, n, Bz, |B|, Kp 1 0.92 0.55 [1] 
APL Model 2 v, n, Bz, |B|, Kp 4 0.79 0.97 [1] 
APL Model 3 v, n, Bz, |B| 1 0.84 0.85 [1] 

BRL linear 1-hr BI 1 0.712 1.44 [2] 
BRL linear 3-hr BI 3 0.770 1.21 [2] 

BRL NN Model 1 BI, Kp 1 0.863 0.71 [2] 
BRL NN Model 2 BI, Kp 2 0.854 0.82 [2] 
BRL NN Model 3 BI 1 0.852 1.12 [2] 
BRL NN Model 4 BI 3 0.845 1.12 [2] 
v, p, n = solar wind speed, dynamic pressure, density 
|B| = IMF magnitude 
Bz = z-component of IMF 
BI = Boyle Index (derived from v, |B|, and Bz) see [2]) 
Kp = nowcast Kp value  

 

 
 

Figure 4 –Kp simple persistence model x-hour ahead (a) correlation coefficient 
and (b) RMSE as a function of x (forecast in hours) for all data (solid line are 
original 3-hr oversampled at 1-hr granularity and dashed line for original data 
interpolated to 1-hr granularity).  Previously published model results plotted as 
reported for comparison. 

 
 
To this end, a skill score based on the Heidke Skill Score (Eq. 1 in [2]) will be used to evaluate the forecast models.  
In this skill score, only those times when the actual value exceeds a “storm threshold” will be evaluated.  A “hit” (a) 
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threshold” corresponding to the change in Kp required for the onset of a geomagnetic storm and S is a “tolerable 
error” in forecasting the magnitude of the onset.  By this measure, simple and average persistence have a storm onset 
skill score for a +3 hour forecast of SS = 0, for storm threshold of Kp = 3.9, T = 1.0, and S = 0.4. 
 

4. THE UKF FORECAST MODEL 
  
The Kalman filter will be used to generate a forecast for Kp.  The basic steps in a Kalman filter are: 1. the state 
vector and covariance from the current time step are passed through a state function that translates the values to the 
next time step creating an “a priori” state vector and covariance, 2. the “a priori” state vector and covariance are 
used in a measurement function that translates the values to a corresponding predicted measurement and covariance, 
3. the predicted measurements and covariance are then compared to the actual measurements and covariance at that 
time step and this difference along with the so-called “Kalman gain” are used to adjust the values in the a priori state 
vector and covariance to an “a posteriori” state vector and covariance, and 4. this a posteriori state vector and 
covariance are then used at the start of the next step.  The predicted measurement in step 2 can be used as a forecast 
value and repeated use of the state and measurement functions at this point in the Kalman filter cycle can create 
forecasts any number of time steps into the future for the current step.   
 
In a regular Kalman filter, the state function and measurement function must be linear.  Various methods have been 
employed to extend the Kalman filter for use with nonlinear functions.  We will use the Unscented Kalman Filter 
(UKF) (also called the Sigma-Point Kalman Filter) that employs the unscented transform [3]. In this study, we use 
the nomenclature of [5] and set the UKF tuning parameters to 1=α , 0=β  and 0=κ . 
 

The key to using the UKF as a forecast model will be in creating a state vector ( kx̂ ) and covariance ( kP ), a state 

function ( ( )kk wxf ,ˆ ) and a measurement function ( ( )kk vxh ,ˆ ).  In each of the models described below, we use an 
n×1 state vector given by 

 ++ = kk cx rˆ  (1) 

where +
kcr is a vector of parameters to be used in the measurement function.  The noiseless state function used will 

be 
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which simply means the parameters in the state vector are assumed to be constant within the time step.   
  
Three different noiseless measurement functions that forecast Kp will be evaluated: 
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The first two measurement functions (Eq. 3a and 3b) will explore the limits of using persistence alone and have a 
state vector with n = n' + 1 and n = (n'+1)(n'+2)/2 parameters respectively.   The third measurement function (Eq. 
3c) will incorporate a quiet time forecast using simple persistence (first two parameters) and a storm trigger using a 
Boyle index-like function (the remaining eleven parameters) that incorporates sentinel solar wind number density 
(nk) and velocity (vk) and IMF strength (Bk) and z-component ((Bz)k).   
 
The +3hr forecast at step k is kŷ in the nomenclature of the UKF.  Additional forecasts (for +6hr, +9hr, etc…) at 
step k are accomplished by using Equation 2 and 3a, 3b, or 3c iteratively at that point in the UKF cycle.  The values 
of the solar wind and IMF values used in Eq. 3c for these extended forecasts were kept constant. 
 
In this study, the initial state was set to  
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The persistence only values (Eq. 5a) correspond to simple persistence while the storm-trigger values (Eq. 5b) 
correspond to an average of simple persistence and the linear fit to the logarithm of the Boyle index (Eq. 2 in [2]).  
The components of the covariance matrix associated with the parameters are initially set high to allow the UKF 
room to adjust them accordingly. 
 



The persistence only measurement functions used Kp 
data from 1933 through 2008 while the storm-trigger 

measurement function used Kp data from 1998 to 2008 and corresponding solar wind and IMF data from the 
Advanced Composition Explorer (ACE).   The solar wind and IMF hourly data were tabulated using the Level 2 On-
line data archives at the ACE website (http://www.srl.caltech.edu/ACE/ASC/level2/index.html).   Any missing 
hourly ACE data was replaced with the last valid value for that quantity and then averaged to the same 3-hour 
cadence as the Kp data.  All the data was processed with the UKF multiple times using the final state vector of the 
current iteration as the initial state vector of the next iteration until the resulting linear correlation coefficient from 
one iteration to the next remained essentially constant.  In this way, the final iteration starts with parameter values 
close to their optimal values.  The UKF model performance is measured from this final iteration.  Conversely, as 
done with neural network forecast models, a training data set could have been used to first find these optimal 
parameters with a test data set then used only once to measure the model performance.  This was done for the 
persistence only models described below where the training data set covered the first solar cycle and the test data set 
covered the remaining solar cycles and identical results were found. 
 
Various persistence only models with n' = 1 to 10 were evaluated.  For measurement function Eq. 3a and n' = 1, the 
performance is essentially identical to the average persistence model described in section 3.  Increasing n’ improved 
the linear correlation and RMSE slightly indicating some memory in the magnetosphere to past Kp values.  Above n'  
> 7, the improvement in performance is negligible.  For measurement function Eq. 3b, again the performance 
improves slightly for greater values of n' and at a faster rate than with Eq. 3a, indicating nonlinear dependencies.  
Above n'  > 4, the improvement in performance was negligible and in fact actually became worse above n' = 6.   The 
UKF persistence only model will use the results of Eq. 3b with n' = 4 in the remaining discussion and figures.  All 
the state vector parameters vary relatively smoothly about nonzero averages.  Interestingly, many of the parameters 
exhibit variations correlated with the solar cycle.  The resulting linear correlation coefficients are r = 0.803, 0.688, 
and 0.613 for a +3 hour, +6 hour, and +9 hour forecast respectively.  This represents a 0.8%, 2.2%, and 3.3% 
improvement over the simple persistence model.  The root mean square errors are RMSE = 0.844, 0.996 and 1.059 
for a +3 hour, +6 hour, and +9 hour forecast respectively.  This represents an 8.0%, 14.0%, and 17.7% improvement 
over the simple persistence model and a slight improvement over the average persistence model.  The storm onset 
skill score for a +3 hour forecast is SS = 0.017 (for storm threshold of Kp = 3.9, T = 1.0, and S = 0.4), again 
representing a slight improvement over simple persistence, but essentially a negligible forecast of storm onset. 
 

 
Figure 5 – UKF persistence-only model (solid diamonds) and UKF storm-trigger 
model (open diamonds) 3-hour ahead performance. (a) predicted versus actual 
and (b) RMSE.  The simple persistence model (closed gray circles) and average 
persistence model (open gray circles) also shown for comparison. 

 
The storm-trigger model of Eq. 3c improves the forecast significantly.  The linear correlation coefficients are r = 
0.871, 0.753, and 0.669 for a +3 hour, +6 hour, and +9 hour forecast respectively representing a 7.2%, 8.4%, and 



8.4% improvement over the simple persistence model.    The root mean square errors are RMSE = 0.685, 0.930, and 
1.067 for a +3 hour, +6 hour, and +9 hour forecast respectively representing a 20.4%, 14.9%, and 12.2% 
improvement over the simple persistence model.  Most significantly, the storm onset skill score for a +3 hour 
forecast is SS = 0.419 (for storm threshold of Kp = 3.9, T = 1.0, and S = 0.4). 

 
Figure 6 –UKF persistence-only model (solid diamonds) and UKF storm-trigger 
model (open diamonds) x-hour ahead (a) correlation coefficient and (b) RMSE 
as a function of x (forecast in hours) for all data.  Simple persistence model 
(line) is for estimated 3-hr smoothed data and all models corrected for 
interpolation and data set effects. 

 
Fig. 5 reproduces Fig. 3 for the 1998 to 2008 data set and with the UKF models also plotted.  Fig. 6 reproduces Fig. 
4 with the UKF models also plotted, data interpolation effects removed and the results scaled to a common data set 
(1933-2008) using the values listed in Table 1.  The scaling was done by assuming the percent difference from 
simple persistence remains constant when using different data sets. 
 
 

5. CONCLUSIONS 
 

The planetary geomagnetic index displays a high degree of persistence.  Previously reported results comparing 
actual Kp 

values and forecast values using various forecast models that use sentinel solar wind and IMF data as well 
as the current Kp 

have not comprehensively compared the linear correlation and RMSE results to simple persistence 
and account for effects caused by smoothing and interpolating the Kp data.  When this is done, most previously 
reported forecast models actually perform worse than simple persistence alone.  A new measure, the storm onset 
skill score, is defined such that it equals zero for simple persistence and thus can serve as a true measure of forecast 
performance. 
 
Models using the unscented Kalman filter (UKF) and various measurement functions were evaluated.  Whereas the 
resulting performance of persistence-only models was only slightly better than simple persistence, the storm-trigger 
model outperformed all previously published forecast models.   
 
The utility of using the UKF as the engine behind a forecast model is clearly demonstrated and opens up the 
possibility of incorporating a host of other inputs to the model and exploring the use of other state and measurement 
functions.  Finally, the UKF can be used to forecast other geomagnetic indices as well. 

 
 
 
 



6. REFERENCES 
 

1.  Wing, S., J. R. Johnson, J. Jen, C.-I. Meng, D. G. Sibeck, K. Bechtold, J. Freeman, K. Costello, M. Balikhin, and 
K. Takahashi (2005), Kp forecast models, J. Geophys. Res., 110, Issue A4, CiteID A04203 
 
 2. Bala, R., P. H. Reiff, and J. E. Landivar (2009), Real-time prediction of magnetospheric activity using the Boyle 
Index, Space Weather, 7, S04003, doi:10.1029/2008SW000407. 
 
3. Julier, S. G., and J. K. Uhlmann (1997), A new extension of the Kalman filter to nonlinear systems, Proceedings 
of SPIE: The International Society for Optical Engineers, Vol. 3068, 182-193 
 
4. van der Merwe, R., and E.A Wan (2001), The square root unscented Kalman filter for state and parameter-
estimation, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 6, 3461-3464 
 
5. Crassidis, J. L., and F. L. Markley (2003), Unscented filtering for spacecraft attitude estimation, Journal of 
Guidance, Control, and Dynamics, Vol. 26, No. 4, pp. 536-542 
 
6. Jah, M. K., Lisano, M. E., II, Born, G.H., and Axelrad, P. (2008), Mars aerobraking spacecraft state estimation by 
processing inertial measurement unit data, Journal of Guidance, Control, and Dynamics, Vol. 31, No. 6, pp. 1802-
1813 
 
7. Wetterer, C. J., and M. K. Jah (2009), Attitude estimation from light curves, Journal of Guidance, Control, and 
Dynamics, Vol. 32, No. 5, pp. 1648-1651 
 
8. Costello, K.A. (1997), Moving the Rice MSFM into a real-time forecast model using solar wind driven forecast 
models, PhD. Dissertation, Rice University, Houston, TX. 
 
9. Balikhin, M. A., O. M. Boaghe, S. A. Billings, and H. St C. K. Alleyne (2001), Terrestrial magnetosphere as a 
nonlinear resonator, Geophys. Res. Lett., 28, 1123-1126. 
 
10. Boberg, F., P. Wintoft, and H. Lundstedt (2000), Real-time Kp prediction from solar wind data using neural 
networks, Phys. Chem. Earth, 25, 275. 
 
 
 
 


