Applications Overview of IHDIV NSWC’s Reactive Materials

Brian Amato
301-744-1414
Brian.Amato@navy.mil

Carl Gotzmer
301-653-1000
carl.gotzmer@navy.mil

Steve Kim
301-744-1275
steven.s.kim@navy.mil
Applications Overview of IHDIV NSWC’s Reactive Materials

Naval Sea Systems Command (NAVSEA), Naval Surface Warfare Center, Indian Head Division, Indian Head, MD, 20640

Presented at National Capital Region Energetics Symposium, La Plata, MD, April 27-28, 2009.

Distribution/Availability Statement
Approved for public release; distribution unlimited

Subject Terms
- Reactivity
- Composite Materials
- Reactive Materials
- Naval Architectures
- Naval Engineering

Security Classification of:
- a. Report: Unclassified
- b. Abstract: Unclassified
- c. This Page: Unclassified

Limitation of Abstract
Same as Report (SAR)

Number of Pages
14

Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
What are Reactive Materials?

Reactive Materials” refers to materials that either react with themselves (thermites, intermetallics) or combust violently with air (Al, Ti, Hf) upon impact releasing energy.

- An energetic material consisting of two or more solid-state reactants that together form a thermo-chemical mixture
- Typically metal-metal and/or metal-metal oxide mixtures with and without binders
- Materials with higher predicted energy per unit volume than conventional energetics
- Energy release management is critical to obtain useful energy from RMs
 - RM formulation (particle size, density, structural properties etc..)
 - System engineering

<table>
<thead>
<tr>
<th>Composition</th>
<th>(-ΔH) [cal/g]</th>
<th>(-ΔH) [cal/cm³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNT</td>
<td>1,040</td>
<td>1,530</td>
</tr>
<tr>
<td>HMX</td>
<td>1,280</td>
<td>2,510</td>
</tr>
<tr>
<td>Ti+2B</td>
<td>1,115</td>
<td>3,992</td>
</tr>
<tr>
<td>2 Al + 3 H2O</td>
<td>---</td>
<td>10,154</td>
</tr>
<tr>
<td>C+O2</td>
<td>2,800</td>
<td>17,600</td>
</tr>
<tr>
<td>4Al+3O2</td>
<td>7,420</td>
<td>20,040</td>
</tr>
</tbody>
</table>

ENERGY COMPARISON
Classes of Reactive Materials

- Self-Propagating High-temperature Synthesis (SHS) - **more energy**
 - Thermitic - metal/metal oxide reactions
 - Thermite and MIC reactions
 - Intermetallic reactions
 - Aluminides
 - Borides
 - Carbides
 - Metal/fluorine systems

- Ultra-fine powders - **energy management**
 - ALEX (exploded wire)
 - MIC ingredients
 - Nano-laminates
 - Mechanochemical Synthesis (MCS)
 - Energy Saturated Media (ESM)
 - Hf and Ti powders
Potential Applications

- Biological agent defeat
- Material destruction
- Target damage using structural reactives
 - Reactive fragments
 - Enhanced blast effects
- High Explosive Target Countermeasure
- Improved underwater explosives
- Manufacturing
- Metal cutting/concrete cutting
- Propellant/Explosive additives
Advantages of an RM

- Additional energy by replacing inert components with an RM
- Adaptable to a variety of applications
- Offers kill mechanisms that resulting in lower collateral damage
- Many RMs are 4.1 Flammable solid versus 1.1 detonable explosives
- Improved Insensitive Munitions (IM) sensitivity
- Minimal gas evolved during combustion
- Warhead fill would survive high impacts from penetration
Biological Agent Defeat Application

- HE overpressure and target damage will result in large release of live agents and massive collateral damage downwind.

1 GRAM 10 BILLION SPORES

8,000 Spores 50% Lethal

Anthrax Spores
RM that produces a long thermal pulse, low overpressure and biocides will be effective against biological agents.

In FY2005, IHDIV NSWC demonstrated the Vulcan Fire intermetallic / oxidizer payload against Anthrax simulant during the Agent Defeat ACTD Program.

Effective Kill Environment
- Sustained target temperature >500F
- Biocides created
 - Cl₂
 - Titanium Dioxide
- Very low overpressure
High Explosive Target Countermeasure Application

- RMss may be effective countermeasure to HE targets. The goal is to identify RM candidates that can destroy these targets with minimal collateral damage
 - Maximize target break-up and combustion
 - Prevent target detonation response

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
Test chamber simulates HE target impacted by RM projectile. It incorporates an HE bulk and rubble zone to simulate impact damage.

- Data Collection
 - Temperature vs Time
 - Pressure vs Time
 - Chamber damage serves as a witness to HE response
 - HE consumption
- Scalable
 - Chamber was sized to hold ~380g but can be scaled
Material Destruct Application

- Sustained high temperature is required to destroy materials. An RM producing high overpressure is not desired.
- The Vulcan Fire (VF) intermetallic RM with and without oxidizer was demonstrated for material destruct application.
Underwater Warhead Application

- Increase underwater warhead performance by reacting water with an RM.
- The challenge is to react and mix RM with external water fast enough to support shock impulse and bubble.
- Small scale tests conducted in FY09 indicate that the aluminum-water reaction was fast enough to increase shock impulse and bubble energy.
Structural RM Applications

Reactives augment Kinetic Energy Effects with Chemical Energy to Enhance Lethality and Battle Damage Indication.

- IHDNSWC has developed the highest performing RMs with densities >5.5 g/cc. Goal is to increase density to steel (7.8 g/cc)
 - For a reactive fragment impacting a target, the break-up and react as a FAE inside the target
 - For enhanced blast, an RM case will immediately breakup during HE event and react as a FAE

HE detonation disperses Structural RM and initiates fuel/air combustion with heated/dispersed RM particles resulting in increased blast.
RM are fired from 1K to 8K ft/sec. They penetrate thin steel plate and break up finally impacting on anvil in test chamber.

We can collect peak and quasistatic pressure data, spectroscopy data, pyrometry data, flash x-ray images, high speed optical photography, reaction gas sampling, and RM debris collection in a single shot.

Quasistatic pressure generally accepted as performance metric.
Points of Contact (POC)

- Carl Gotzmer, Code TM3, Carl.Gotzmer@Navy.Mil, (301) 653-1000
- Brian Amato, Code E123A, Brian.Amato@Navy.Mil, (301) 744-1414
- Steven Kim, Code E123B, Steven.S.Kim@Navy.Mil, (301) 744-1275

- Acknowledgements
 - Jason Jouet, PhD, Code R11JJ, Jason.Jouet@Navy.Mil, (301) 744-4212
 - Richard Lee, PhD, Code R12RL, Richard.J.Lee@Navy.Mil, (301) 744-2380