Title: In$_{0.69}$Al$_{0.31}$As$_{0.41}$Sb$_{0.59}$/In$_{0.27}$Ga$_{0.73}$Sb double-heterojunction bipolar transistors with InAs$_{0.66}$Sb$_{0.34}$ contact layers

Report Date: SEP 2010

Dates Covered: 00-00-2010 to 00-00-2010

Performing Organization: Naval Research Laboratory, 4555 Overlook Avenue Southwest, Washington, DC, 20375

Distribution/Availability Statement: Approved for public release; distribution unlimited
In$_{0.65}$Al$_{0.35}$Sb, and 1

Measurements, results, analysis: the relevant HBT contacts.

guides were deposited onto the SI GaAs substrate with airbridges to device isolation by a wet etch, co-planar ground-signal-ground wave-
doped (Te: 5 \times 1018 cm$^{-3}$) double-heterojunction bipolar transistors (HBTs) incorporating InAs$_{0.66}$Sb$_{0.34}$ for use as the emitter contact and sub-collector layers is presented. Use of InAs$_{0.66}$Sb$_{0.34}$ results in a significant improvement in performance over the first reported HBTs in this material system [5]. These devices show excellent DC and RF performance with the highest measured short-circuit current gain cutoff frequency (f_m) for an HBT fabricated in this material system.

Growth and fabrication: The HBTs were grown by solid-source molecular beam epitaxy (MBE) using As$_2$ and Sb$_2$ from valved cracking sources. From substrate to surface, the growth consisted of a semi-insulating (SI) GaAs substrate; a buffer of 3000 Å GaAs, 12 Å AlSb, 5000 Å In$_{0.27}$Ga$_{0.73}$Sb, and 1 μm of In$_{0.71}$Ga$_{0.29}$As$_{0.41}$Sb$_{0.59}$ collector consisting of a 200 Å doping grade (Te: 9.6 \times 1018 cm$^{-3}$) adjacent to the sub-collector, a 1500 Å low doped (Te: 5 \times 1016 cm$^{-3}$) region, and a 50 Å UID layer adjacent to the base; a 1000 Å p$^+$ (Be: 3 \times 1019 cm$^{-3}$) In$_{0.27}$Ga$_{0.73}$Sb base; a n In$_{0.69}$Al$_{0.31}$As$_{0.41}$Sb$_{0.59}$ collector consisting of a 400 Å doping grade (Te: 6.7 \times 1018 cm$^{-3}$) adjacent to the sub-collector, a 1500 Å low doped (Te: 5 \times 1016 cm$^{-3}$) region, and a 50 Å UID layer adjacent to the base; a 1000 Å n$^+$ (Be: 3 \times 1019 cm$^{-3}$) In$_{0.27}$Ga$_{0.73}$Sb base; a n In$_{0.69}$Al$_{0.31}$As$_{0.41}$Sb$_{0.59}$ emitter consisting of 500 Å lightly doped (Te: 2 \times 1017 cm$^{-3}$) adjacent to the emitter contact layer, and a 100 Å n$^+$ (Te: 9.6 \times 1017 cm$^{-3}$) In$_{0.66}$Sb$_{0.34}$ emitter contact. In$_{0.66}$Sb$_{0.34}$ has been shown to have superb electron transport properties and offers extremely low contact resistance when used for n-type ohmic contacts, making it an excellent choice for the n-type emitter contact and sub-collector layers [6]. Alternatively, In$_{0.71}$Ga$_{0.29}$Sb has been shown to have excellent hole transport properties and results in extremely low resistance, p-type contacts, making it an ideal choice for the p-type base layer [7].

The HBTs were fabricated using standard processing and e-beam lithography techniques. The emitter and collector n-type contacts consisted of an unannealed Te$_{0.5}$Pt$_{0.5}$Au (100:50:2500 Å) stack [6]. The base p-type contact consisted of an unannealed Pd$_{0.6}$Pt$_{0.4}$Au (100:50:2500 Å) stack [7]. The emitter mesa was defined using a tartaric acid-based wet etch, with the base mesa defined by SiCl$_4$-based ICP RIE. The tartaric-based etch used for the emitter mesa etch is non-selective, requiring a thicker base layer (t_{base} = 1000 Å) to guarantee a good yield. After device isolation by a wet etch, co-planar ground-signal-ground waveguides were deposited onto the SI GaAs substrate with airbridges to the relevant HBT contacts.

Measurements, results, analysis: The Gummel plot and common-emitter collector characteristics of an HBT with a 2 \times 10$^{-3}$ μm2 emitter contact area are shown in Figs. 1 and 2, respectively. The area of the base-emitter junction, measured by scanning electron microscopy (SEM), is approximately 1.4 \times 9.4 μm2, owing to undercutting during the emitter wet etch. The device shows excellent base and collector ideality of $n_B = 1.5$ and $n_C = 1.0$, respectively. The improvement of the base ideality (n_B) and high base-emitter voltage before the diodes become resistively limited, as compared to previous results [4, 5, 8], suggest that the inclusion of In$_{0.65}$Al$_{0.35}$Sb, for the emitter contact and sub-collector layers has reduced the relative series resistance seen by each junction, improving the overall performance of the device. The low current gain, $\beta = I_C/I_B = 2 - 3$, is believed to be due to Be diffusion into the emitter, removing the efficacy of the base-emitter heterojunction, as similar device structures have yielded current gains as high as 17 \times 20 [4, 5, 8]. As can be seen from the collector characteristic in Fig. 2, the HBT exhibits a high collector current density of $I_C = 1.9 \times 10^4$ A/cm2. The high collector current at low base-emitter biases demonstrates the excellent low voltage operation of these devices. Relatively large breakdown voltages ($V_{CE,bkdn} > 2.5$ V) at low currents have been measured.

The measured short-circuit current gain (h_{21}) and Mason’s unilateral gain (U) at $V_{CE} = 1$ V and $I_C = 7.6 \times 10^4$ A/cm2 are shown in Fig. 3. The maximum measured short-circuit current gain cutoff frequency was $f_m = 59$ GHz with an associated maximum frequency of oscillation of $f_{max} = 34$ GHz ($V_{CE} = 1$ V, $I_C = 7.6 \times 10^4$ A/cm2; Fig. 4). f_{max} in
these devices is limited by the device geometry (base-emitter contact spacing of \(\approx 1 \mu m\), base contact width of 2 \(\mu m\), collector thickness of 1550 \(\AA\)) resulting in an estimated base resistance of \(R_B = 12.3 \Omega\), base-collector capacitance of \(C_{BC} = 148.5 \text{ fF}\), and an associated \(f_{\text{max}}/f_t = 0.61\) (with \(f_t = 59 \text{ GHz}\)), very close to the measured ratio of \(f_{\text{max}}/f_t = 0.57\). \(f_{\text{max}}\) is expected to improve by nearly a factor of 2.5 simply through proper device scaling. Additionally, a selective etch for the emitter mesa definition would facilitate the use of a thinner base [8], which should improve \(f_t\).

Fig. 4 Plot of short-circuit current gain cutoff frequency \((f_t)\) and maximum frequency of oscillation \((f_{\text{max}})\) against collector current \((I_C)\) and collector-emitter voltage \((V_{CE})\)

Conclusions: \(\text{In}_{0.59}\text{Al}_{0.41}\text{Sb}_{0.59}/\text{In}_{0.27}\text{Ga}_{0.73}\text{Sb}\) double-heterojunction bipolar transistors incorporating \(\text{InAs}_{0.66}\text{Sb}_{0.34}\) in the emitter contact and sub-collector layers have been demonstrated. These HBTs show excellent DC performance and RF performance with a high collector current density \((I_C = 1.9 \times 10^5 \text{ A/cm}^2)\), relatively large breakdown voltage \((V_{CE,\text{break}} > 2.5 \text{ V})\), a maximum \(f_t = 59 \text{ GHz}\) (the highest measured for this material system), and \(f_{\text{max}} = 34 \text{ GHz}\).