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Mathematical Notation and Convention

A description of the notation most commonly used throughout this dissertation is provided

in Table 1. Additionally, we adopt the following conventions: The distance between two

vectors x and y is defined as

d(x,y) := ||x− y|| (1)

whereas the distance between a vector x and a set S is defined as

d(x, S) := inf
s∈S

d(x, s). (2)

The projection of a vector x onto a set S is defined as

ΠS(x) := {s ∈ S : d(x, s) = d(x, S)} . (3)

In general, ΠS is set-valued and may be empty. Finally, in Ch. 3, a tilde will be used to

denote membership in the codomain of an operator (e.g., x̃), whereas a hat will denote

membership in the range of an operator (e.g., x̂).

xiii



x scalar variable

x vector variable

xn nth element of vector x

X matrix

[X]m,n or xm,n element in mth row and nth column of matrix X

j imaginary unit (j2 = −1)

|·| absolute value (modulus) operator

∠· angle (argument) of a complex value, we adopt ∠0 := 0

Re {·} real part of a complex value

Im {·} imaginary part of a complex value

(·)∗ conjugate of a complex number

(·)T transpose of a vector

(·)H conjugate transpose (Hermitian) of a vector

||·|| Euclidean norm

||·||∞ maximum norm (maximum absolute value)

CN N -dimensional complex Euclidean space

RN N -dimensional real Euclidean space

RN
+ N -dimensional vectors whose elements are nonnegative.

BN all vectors in CN with unit norm (i.e., unit N -ball)

⊗ Kronecker product

� Hadamard (entrywise) product

� element-wise inequality

◦ function composition

R (·) range of an operator

N (·) kernel (null space) of an operator

IN N ×N identity matrix

Table 1: Mathematical Notation
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We adopt the convention for complex partials and gradients described in [1, p. 105].

That is, let x, y ∈ R and z ∈ C be such that z = x + jy. Then the partials of G : C → R

with respect to z and z∗ are defined as

∂G

∂z
:=

1

2

{
∂G

∂x
− j

∂G

∂y

}
(4)

∂G

∂z∗
:=

1

2

{
∂G

∂x
+ j

∂G

∂y

}
. (5)

Note that z and z∗ are treated as independent variables of G. If z = [z1 . . . zN ]T ∈ CN ,

then the gradients of G : CN → R with respect to z and zH are defined as

∇zG :=

[
∂G

∂z1

∂G

∂z2

. . .
∂G

∂zN

]
(6)

∇zHG :=

[
∂G

∂z∗1

∂G

∂z∗2
. . .

∂G

∂z∗N

]T

. (7)

If a vector valued mapping H : CN → RN is defined by H(x) = [G1(x) . . . GN(x)]T ,

where Gi : CN → R, then the Jacobian of H with respect to the vector x is defined as

[JxH(x)]n,m := [∇xGn(x)]m (8)

For optimization packages that do not directly support complex valued design variables, we

can exploit the conjugate symmetry between (6) and (7) to efficiently compute the gradient

with respect to the real and imaginary parts of z. That is,

∇zrG = 2Re {∇zG} (9)

∇zi
G = −2Im {∇zG} . (10)

where zr, zi ∈ RN and z = zr + jzi [2].
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Chapter 1

Introduction

In this dissertation, we advance the theory of transmit adaptive (ATx) radar system de-

sign. Specifically, we present methods for generating transmit waveforms that a) maximize

the detection probability in a known interference environment, and b) possesses certain

characteristics required by the transmitter hardware and the receiver signal processing. The

purpose of this chapter is to introduce transmit adaptivity (Sec. 1.1), place our work into the

proper context (Sec. 1.2), and make explicit our contribution to the theory of ATx system

design (Sec. 1.3).

1.1 Transmit Adaptivity in Radar

In this section, we define transmit adaptivity and discuss some of the potential benefits

afforded by this technology (Sec. 1.1.1). We then discuss the many possible embodiments

of transmit adaptivity (Sec. 1.1.2). This is followed by a more detailed discussion of the

embodiment that is the subject of our research (Sec. 1.1.3).

1



1.1.1 Motivation

Radar systems transmit an electromagnetic signal into a volume of space containing both

objects of interest (targets) and objects not of interest (clutter). The signal reflects from

both kinds of objects, and these reflections are received by the radar along with signals

produced by other sources (interference). The radar must then separate the target returns

from the clutter and interference. There are currently effective techniques for adaptively

suppressing clutter and interference at the receiver. Salient examples include: constant

false alarm rate (CFAR) detectors, adaptive antenna beamforming techniques, and space-

time adaptive processing (STAP). In theory, clutter and interference suppression could be

enhanced if the transmit signal was tailored to the target/clutter/interference environment.

However, despite potentially significant performance gains, this kind of transmit adaptivity

has not yet become a mature technology. This is principally due to the insufficient com-

puting power and limited RF waveform generation hardware that have heretofore rendered

adaptive transmit techniques impractical to implement. However, the coupling of Moore’s

Law with recent advances in arbitrary waveform generation has dramatically improved the

prospects of transmit adaptivity as a viable technology. As a result, there has been a resur-

gent interest in adaptive transmit radar systems. This is evidenced by a number of new

conferences, research programs, and publications dedicated to transmit adaptivity [3–7].

So what does it mean exactly for a radar system to be transmit adaptive? A system is

transmit adaptive if it is capable of altering its transmit waveform in response to knowl-

edge about its environment. By environment we mean those elements that affect system

performance, such as targets, clutter, and radio frequency interference (RFI). Knowledge

of the environment could be acquired a priori, estimated online, or both. A notional ATx

system is illustrated in Fig. 1.1. In general, a transmit waveform is designed using the

environmental knowledge base. This designed waveform is then transmitted, and the trans-

mitted signal reflects from both targets and clutter. The target and clutter reflections are

collected at the receiver along with additive interference and receiver noise. Environmental
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Figure 1.1: Functional block diagram of a transmit adaptive (ATx) system.

knowledge and knowledge of the transmit waveform are then used to adaptively process

the received signal. The results of the signal processing stage might then be used to update

the environmental knowledge base.

There are three main reasons to investigate transmit adaptivity in radar systems: 1) per-

formance improvement, 2) resource management, and 3) novel missions. The first reason

has to do with improving performance given constraints on the transmit waveform (e.g.,

peak power, nice autocorrelation), the remaining two reasons have to do with maintaining

a minimum level of performance while either minimizing resources or performing multiple

functions. For example, a transmit adaptive system might be able to compute a transmit

waveform that maximizes the probability of detection in a given RFI environment (Reason

1). Such a system might also be able to maintain the probability of detection at a desired

level while using a minimal amount of transmit power (Reason 2). Ideally, an ATx system

would also be capable of performing two missions simultaneously, say spotlight synthetic

aperture radar (SAR) and digital communications, while maintaining a minimum level of

performance for each function (Reason 3). Of course, these are just notional examples.
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However, they illustrate the gains that might accompany ATx technology. The research

in this dissertation is concerned with Reason 1. That is, we present methods for finding

waveforms to maximize the probability of detection subject to constraints on the transmit

waveform.

1.1.2 Types of Transmit Adaptivity

While ATx has not yet developed into a mature technology, one should not conclude that

the ATx research corpus is limited. In fact, ATx has been investigated for many appli-

cations (i.e., detection, estimation, tracking, imaging, classification). Furthermore, these

investigations often have differing requirements regarding the environmental knowledge to

be used and the degree of transmitter reconfigurability to be exploited. In order to place our

work into the proper context, we find it useful to first define categories of ATx technology

based upon the degree of reconfigurability required of the transmitter. We can then use this

taxonomy to focus our discussion.

Figure 1.2 depicts a taxonomy of ATx methodologies based upon the degree of reconfig-

urability required of the transmitter. This taxonomy consists of two broad methodological

families: selection and design. The selection family includes all methodologies that require

waveforms, or waveform parameters, to be computed before operation. Waveform selec-

tion denotes those methodologies that adaptively choose a pre-designed waveform based

upon current operating conditions. In a similar way, parameter selection denotes those

methodologies that assume a canonical transmit waveform structure (e.g., pulsed LFM), but

have the ability to adaptively select waveform parameters (e.g., pulse repetition frequency,

carrier frequency, pulse width, chirp rate) from a pre-determined set. Methodologies in

the design family, on the other hand, compute one or more waveform parameters online,

that is, during operation. Methodologies belonging to the parameter design subfamily are

an extension of parameter selection. These methodologies assume a particular waveform

structure, but they do not select parameters from a pre-defined set. Instead, the values of
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Figure 1.2: A taxonomy of ATx methodologies based on the degrees of freedom (DOF)
required by the transmitter. The DOFs available to each methodology increases as we
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corresponds to an increase in potential performance improvement.

the parameters are calculated based upon information about the operating environment.

Methodologies belonging to the arbitrary waveform design subfamily assume almost no

structure for the transmit waveform. That is, each discrete-time sample is considered to be

a degree of freedom (DOF) available to the design algorithm. Within the arbitrary wave-

form design subfamily belong optimal and suboptimal methodologies. Optimal method-

ologies directly maximize the radar performance metric of interest, whereas suboptimal

methodologies apply a more heuristic approach to improving radar performance. Within

the optimal methodologies we find constrained methodologies, which afford optimal per-

formance (however it is defined) while explicitly taking into account constraints imposed

by the system’s transmit hardware and receiver signal processing. While an unconstrained

algorithm is desirable, it is very rare that a problem formulation permits this.

It is not yet clear whether waveform selection or waveform design will be the more

profitable approach to transmitter adaptivity. A shortcoming of the selection family is that
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libraries of waveforms or waveform parameters must be designed before operation, and

algorithms must search the library for the best performer. This can be computationally

expensive. However, waveform library size can be quite small for some applications. For

example, Moran et al. [8] considered a problem in which the transmitter is capable of trans-

mitting only chirps of a given duration and bandwidth. Their work showed that the optimal

library for their problem consists of just two waveforms – one with the greatest chirp rate,

and one with the least. It was shown that waveforms with a chirp rate in between these

endpoints are unnecessary. On the other hand, when the transmitter has a high degree of

agility, as is assumed by arbitrary waveform design, then one expects waveform selection

to under utilize the available DOFs compared to design methodologies. This could result in

suboptimal performance. Furthermore, waveform design is more dynamic than waveform

selection, and may therefore be able to make better use of dynamically changing environ-

mental information.

The research presented in this dissertation belongs to the class of constrained optimal

waveform design. That is, we seek the best possible solutions while considering all con-

straints placed on the waveform by the radar system. The benefit of this approach is that

the constrained optimal waveform design is guaranteed to improve performance at least as

well as any other method. Therefore, even if the solution method is inefficient, we have at

least provided a tight upper bound on the performance gains that can be achieved. Optimal

solutions are generally computationally expensive. As such, we also consider suboptimal

designs that are computationally more attractive.

1.1.3 Arbitrary Waveform Design

By examining Fig. 1.1, we see that the arbitrary waveform design problem is comprised of

two parts: adaptation and optimization. Furthermore, we recognize that adaptation can be

decomposed into two principle activities, which are summarized by

Adaptivity = learning + reconfiguring.
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That is, an ATx system must be capable of learning about its environment, and then re-

configuring its transmitter accordingly. The capability of such a system is limited by the

degree to which it can perform either of these tasks. We have already addressed the idea

of reconfiguration by choosing arbitrary waveform design as our application. However, to

understand what the system must learn, and then address how well it can do so, we must

first recognize that:

Optimization = objective + constraints.

An optimal waveform must maximize system performance while satisfying a number of

system constraints. We call the measure of system performance the objective function.

The objective function we use throughout this research is the signal-to-interference-plus-

noise ration (SINR). However, other metrics can be found in the literature. (See Sec. 1.2.)

Examples of system constraints that might be imposed on the waveform are 1) constant

modulus, which is required for efficient transmission, and 2) a thumbtack ambiguity func-

tion, which is often required by the receiver signal processing scheme. In order to develop

a viable ATx technology, one must be able to formulate system performance in terms of

an objective function, and one must recognize all system constraints. Only then can the

environmental parameters that must be inferred/estimated be identified (e.g., interference

covariance matrix).

Our research is concerned with the optimization portion of the arbitrary waveform de-

sign problem, i.e., the waveform optimization problem. We assume that the adaptive prob-

lem (i.e., learning and reconfiguring) has been solved. This is not a particularly strong

assumption because 1) arbitrary waveform generation is a mature technology, and 2) our

work assumes that only the RFI power spectral density must be estimated, and this is a well

understood problem in signal processing. We therefore focus on formulating the proper ob-

jective function and constraints, and we seek efficient solutions to the resulting optimization

problem.

7



1.2 Literature Review

In this section, we review the ATx research literature. Our discussion begins with a justi-

fication of the scope of our review (Sec. 1.2.1). This is followed by a review of only the

most relevant results (Sec. 1.2.2). A more detailed literature review is then presented in

(Sec. 1.2.3). Note that the full review in Sec. 1.2.3 is chiefly for researchers of waveform

optimization, and it may therefore be skipped by the more casual reader without losing the

context of this work.

1.2.1 Scope

In the previous section, we restricted our discussion of adaptive transmit methodologies

to the waveform optimization problem. However, the literature on waveform optimization

addresses problems of target detection, parameter estimation, tracking, synthetic aperture

radar (SAR) imaging, and target classification. It is not practical to discuss all of this lit-

erature at length. Since the proposed research is concerned with the detection of targets,

we will restrict our review of the literature to only those works addressing the detection

and classification problems. The classification literature is considered because the detec-

tion problem can be formulated as a special case of the classification problem. We will

not discuss work concerning waveform optimization for target state estimation or tracking.

This is because “improved detection performance also leads to improved tracking perfor-

mance. This is due to the fact that, for a given probability of detection, a lower probability

of false alarm implies less uncertainty in the origin of the measurement which leads to

lower tracking error.” [9].

In should also be noted that a great deal of waveform optimization research has occurred

in the communications and controls literature. In fact, some problems in communications

can be considered as duals of some radar waveform optimization problems, and early radar

waveform optimization research borrowed techniques from the controls literature. A com-
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plete review of the communications and controls literature is impractical. Instead, we shall

discuss only those works that directly influence or benefit radar waveform design.

1.2.2 Most Relevant Results

Waveform optimization for clutter and interference suppression has been considered since

at least 1965, when Van Trees remarked that “the most effective way (within the limita-

tions of our model) to combat reverberation is through proper signal design.” [10]. The

earliest work focused on finding signal/filter pairs to maximize the signal-to-clutter-plus-

interference ratio (SCIR) at the time of target detection [11–25]. These algorithms, which

we refer to as eigen-iterative algorithms, iteratively solve a system of Fredholm integral

equations by first finding the optimal filter for a given signal, and then finding the opti-

mal signal for that filter, and then finding the optimal filter for that signal, and so on. In

general, the only constraints placed on the signal and filter by the eigen-iterative algorithm

are those of finite energy and duration. Amplitude and phase modulation limitations [16],

implementation errors [19], constant modulus [23], and quantization effects [24, 25] were

also addressed using extensions of the eigen-iterative approach. However, these individual

constraints were never considered together in a single problem formulation.

The optimality of the eigen-iterative approach was never proven, but the point became

somewhat moot when Sibul and Titlebaum [26] showed that simultaneous signal/filter de-

sign is unnecessary under the assumed signal model. They showed that, “the performance

of the optimal receiver in detecting target echoes from a point target in signal-dependent in-

terference depends only upon the channel power spectral density (PSD), the ambient noise

PSD, the Doppler frequency shift induced by the point target’s motion, and the power spec-

trum of transmit signal. When each of these factors is specified, the solution to the design

of the optimal receiver is determined. Of all these factors, the only one that is under the

control of an active sonar/radar system designer is the transmit signal.” [27]. Under these

conditions, the optimal receiver is determined by the Neyman-Pearson criteria. Taking
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the Neyman-Pearson approach, Kay [28] extended work by Kooij [29], and used varia-

tional analysis to find the optimal transmit PSD under finite signal energy and bandwidth

constraints. This approach has also been extended by Romero et al. [30] to consider non-

moving stochastic extended targets. Romero et al. also provided similar solutions when

mutual information is used as the performance metric [30]. Like Bell [31], they have found

that the optimal waveform for detection generally differs from the optimal waveform for es-

timation/classification. Further, the optimal waveform for detection is a function of SINR.

The main drawback of [28] and [30] is that neither approach addresses the constraints

placed on the waveform modulus and ambiguity function that commonly arise in practice.

One approach to designing radar waveforms that satisfy these constraints is to formulate the

optimal waveform and then minimize the the cost function subject to a set of constraints that

indirectly constrain certain radar related properties of the waveform, such as the waveform

modulus or autocorrelation sequence. This was done by Bergin et al. [32] by projecting

a template (or desired) waveforms into the low noise subspace of the interference-plus-

noise covariance matrix. Expanding on this work, Li et al. [33] devised an algorithm to

calculate the optimal waveform given a maximum Euclidean distance between the solution

and the template waveform. This similarity constraint has also been used by De Maio et

al. [34–36].

The algorithms used to solve the constrained optimization problems considered in this

dissertation are computationally expensive. As such, there is a perceived need for faster

approximate solutions. Lindenfeld [37] used penalty functions to independently design the

signal and receiver to enforce energy and autocorrelation constraints for the purpose of

sparse frequency transmission. This approach could be used for interference suppression

as well. Patton and Rigling [38] applied non-quadratic regularization in an attempt to

constrain the waveform autocorrelation sequence.
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1.2.3 Detailed Literature Review

Perhaps the most useful way to categorize the waveform optimization for target detection

literature is according to the type of target model employed. The earliest work assumed a

slowly varying point target with a narrowband approximation for Doppler, whereas a great

deal of the later work would consider extended targets modeled as linear time invariant

(LTI) systems. As we shall see, the earlier (point target) work was concerned primarily

with detection performance, whereas the later LTI work was concerned with target identifi-

cation. The research discussed in this dissertation is concerned with the detection of slowly

varying point targets. However, we include a discussion on the extended target literature

for completeness.

Point Target Models

Detection performance improvement via waveform optimization has been an ongoing topic

of research since at least 1965 when Harry Van Trees remarked

The most effective way (within the limitations of our model) to combat re-

verberation is through proper signal design. In fact, proper signal design is

more important than optimum receiver design. . . An ideal system should have

provision for continually measuring the scattering function and adapting the

transmitted signal shape and receiver to the current environment. [10]

The design of VanTrees’ ideal system can be seen as the subject of a flurry of work in

the mid nineteen-sixties and early nineteen-seventies.1 DeLong and Hofstetter [11, 12],

Rummler [13], Ares [14], Thompson [15], Spafford [16], and Kincaid [17, 18] indepen-

dently derived iterative algorithms for finding complex weights (amplitude and phase) for

a coherent train of uniformly spaced pulses and the associated receive filter (i.e., a signal/-

filter pair) that maximize SCIR at the time of target detection subject to a constraint on
1Note that waveform optimization for tracking performance improvement also began about this time [39].

However, we will not discuss this literature.
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signal and filter energy. Spafford also considered signal amplitude and phase constraints.

All of these algorithms iteratively solve a system of Fredholm integral equations by first

finding the optimal filter for a given signal, then finding the optimal signal for that filter,

and then finding the optimal filter for that signal, and so on.

In 1969, DeLong and Hofstetter [40, 41] derived a gradient method to design clutter

resistant waveforms subject to limits on dynamic range. However, they later returned to

the eigen-iterative approach [19] in order to address the design of radar signals/filter pairs

subject to average energy and implementation error constraints. In the first textbook to

describe adaptive radar waveform design, VanTrees [42, pp. 258] derived a coupled sys-

tem of differential equations that describes the optimal signal for the detection of a slowly

fluctuating point target in colored bandpass noise subject to energy and bandwidth con-

straints. Equations for an amplitude constraint are also discussed. However, solutions to

these systems of equations are not provided. Zelio [20] compared the eigen-iterative sig-

nal/filter pair design of [11], and found that there were significant gains to be had over a

traditional Tschebyscheff weighting. Lee [21, 22] developed an eigen-iterative algorithm

that accounts for the time-varying multipath and dispersive ocean medium and interference

environment with energy constraints on both the signal and filter. The resulting algorithm

was very similar to [11]. Mesiya and Mclane [23] later applied [11] in conjunction with a

least-squares approach to design signal/filter pairs, subject to a constant modulus constraint

on the the signal, for the purpose of either maximizing signal-to-interference ratio or min-

imizing average sidelobe levels. Cohen [24, 25] considered Rummler’s design procedure

with the added restriction that the weights must be real and belong to a given finite set. The

resulting nonlinear integer programming problem was solved efficiently using a branch and

bound method.

While the eigen-iterative algorithms discussed above do converge, and they appear to

provide performance improvement in simulation, they have not been proved to converge

to a local optimum. Furthermore, Sibul and Titlebaum would show in 1981 that such iter-
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ative algorithms are unnecessary when approached from a probability theoretic viewpoint

instead of the more ad hoc SCIR viewpoint. To quote Sibul and Titlebaum [26]:

The optimum (maximum-likelihood) receiver for detection of point targets in

general, Gaussian interference is uniquely determined by the transmitted sig-

nal, white noise intensity, clutter (reverberation), scattering function, and tar-

get Doppler shift. The only function which is fully under the system designers

control is the transmitted signal. Hence, the maximization of the detection

index, or equivalently, maximization of the probability of detection for fixed

false alarm probability, becomes a signal optimization problem. This is a diffi-

cult nonlinear optimization problem which requires a numerical solution. It is,

however, a simpler solution than simultaneous optimization of two functions –

the transmitted signal and receiver impulse response.

It should be noted that Balakrishnan [43] made a similar observation in 1968. However,

his result was not the only important early result that would go unnoticed. In 1968, Kooij

[29] reported an analytical solution to the problem of transmit signal optimization in the

presence of signal-dependent clutter plus white ambient noise. He employed a calculus of

variations approach to locally optimize the transmit signal power spectral density (PSD)

subject to an energy constraint, but he did not attempt to show that his analytic solution

was indeed a global maximum. This work by Kooij seems to have gone unnoticed until

2002 when Kay [27, 28] extended Kooij’s work to provide an analytical solution to the

problem of optimizing the transmit signal power spectrum to maximize the performance of

an optimal receiver detecting echos from a single nonmoving Gaussian point target in the

presence of signal-dependent clutter and colored ambient noise. Kay’s work also addressed

LTI target models. This will be discussed in the next section.

A unique early work (1969) was that of Holtzman [44] who proposed utilizing a weighted

ambiguity surface for the performance criteria. Noting that the volume of the ambiguity

function of a pulse train can be reduced if the pulses are non-uniformly modulated, Wong
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and Chung [45] took an approach similar to Holtzman [44] and considered the minimiza-

tion of the weighted distance of a multi-pulse ambiguity function from an ideal thumbtack

ambiguity function – that is, they considered how the volume of the AF should be dis-

tributed. Genetic algorithms were then used to find optimum phase and frequency modu-

lation for each pulse using weighted ambiguity volume [46] and average sidelobe volume

[47] cost functions. It should be noted that this work by Wong and Chung did not allow

arbitrary modulations, but only optimized certain parameters of the transmit waveform.

Similarly, Bonneau and Wicks [48] sought the optimal chirp bandwidth for decorrelation

with interference. In general, arbitrary waveform design should be more powerful, but

these parameter design approaches may be more computationally tractable.

Another unique, relatively early work (1983), was that of Vastola [49], who considered

the problem of uncertainty in clutter channel estimation. He devised a maximin approach to

maximize the worst case performance, and provided a closed form solution for a particular

clutter model.

In 2007, Sira et al. considered the adaptive design of radar waveforms for improved de-

tection of small targets in heavy sea clutter [9, 50]. The authors note that previous waveform

optimization work assumed the clutter returns were independent, and identically Gaus-

sian distributed. However, the Gaussian model fails to predict the increased observance of

higher amplitudes (spikes) for systems with spatial resolution fine enough to resolve the

structure of the sea surface. This prompted the authors to use a compound-Gaussian (CG)

model for sea clutter, which has (according to the authors) gained wide acceptance [51, 52]

and has been tested both theoretically [53] as well as empirically [54]. The authors used

clutter estimates to determine the autocorrelation lags at which the clutter was strong, and

then used gradient methods to synthesize phase only signals that had low ACS sidelobes at

those lags. This work was eventually extended [9] to the development of a particle filter

based tracker that uses the measurements obtained by the adaptive waveform. A simula-

tion study based on parameters derived from real sea clutter measurements demonstrated
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that the approach provided a significant reduction in the tracking root mean square error

(RMSE) when compared to a non-adaptive system.

The approach taken by Sira et al. [50] is “motivated by the fact that, in a radar, the signal

obtained after matched filtering at the [matched] receiver is a convolution of the ambiguity

function of the transmitted signal with the radar scene [55], which smears energy from

one range-Doppler cell to another. Therefore, the incorporation of information about the

clutter into the design of a waveform whose ambiguity function minimizes this smearing

in the region of interest, can improve the SCR and detection performance.” Thus, Sira et

al. took a suboptimal approach to waveform design by finding signals with a property that

is expected to characterize truly (i.e., provably) optimal waveforms. A similar kind of

approach was taken by Holtzman [44] and Wong & Chung [45–47].

Linear Time-Invariant Target Models

In 1986, a monograph by Gjessing [56] entitled “Target adaptive matched illumination”

was published. This book discussed the idea of matching the transmit waveform to the

particular target being illuminated by the radar. As would be expected, A great deal of a

priori information about the target is needed in order to apply matched illumination tech-

niques. As such, matched illumination techniques are more often proposed for target char-

acterization/identification than for detection.2 There is extensive literature on the topic of

matched illumination for target identification that began before Gjessing. Attempts at syn-

thesizing signals for the purpose of target discrimination have been made since at least 1981

with the introduction of Kennaugh’s K-pulse [58], which was soon followed by the E-pulse

and the S-pulse [59]. These methods are based upon the singularity expansion method

(SEM) in electromagnetics, which was introduced in 1971. SEM methods are interesting

because they offer an aspect-independent means of representing a target’s transient im-

pulse response. However, these methods do have many practical limitations. The reader is

2In a review of Gjessing’s book, Pell [57] states that the book might be more appropriately titled “target
characterization with matched illumination applications.”
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referred to [59] for a good review of SEM based methods of signal synthesis.

In 1991, E.T. Jaynes [60] applied probability theory to the problem of discriminating

between two targets with known deterministic impulse responses. He showed that “the

transmitted pulse that is optimal for purposes of target discrimination will then have its

spectrum concentrated near the frequency where [the absolute difference in target impulse

spectra] reaches its absolute maximum.” This idea was later expanded upon by Riggs et

al. [61] who compared this theory with the SEM techniques discussed in [59].

The nineteen-nineties saw the first adaptive waveform design patents, which continue to

be filed to this day [62–73]. Though not a target matched illumination scheme, Schreiber

[62] patented an “adaptive waveform radar” that transmits only in the interference-free

portion of the operating bandwidth. Target matched illumination for detection via SNR

maximization was patented by Grieve and Guerci in 1992 [63–65].

The following year Bell [31] published a seminal work that addressed the adaptive

waveform design algorithm using the information theoretic notion of mutual information.

Bell considered the optimal waveforms for two problems involving the sensing of dis-

tributed Gaussian targets in additive white Gaussian noise (AWGN). The first problem was

the design of the optimal detection waveform. The second problem was the design of

an optimal estimation waveform. Interestingly, it was shown that the optimal detection

waveform and the optimal estimation waveform (for the same distributed target) are quite

different. The optimal detection waveform results from maximizing the SNR of the re-

ceived signal whereas the optimal estimation waveform involves maximizing the mutual

information between the transmit waveform and the target response. Bell motivated his use

of mutual information as follows

The mutual information I(X; Y ) between two random vectors X and Y tells

us the quantity of information observation of Y provides about X ; that is,

I(X; Y ) is the amount of information that the measurement Y provides about

the object parameter vector X . The greater this mutual information is, the
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greater the quantity of information describing the object we obtain from our

measurement and the greater the reduction in the a priori uncertainty as a re-

sult of this measurement. Intuitively, we might expect that the greater the mu-

tual information between a measurement and the quantity being measured, the

more accurately we can classify or estimate the parameters characterizing the

entity we are trying to measure. Berger alludes to this idea when he makes the

statement: Rate distortion theory provides knowledge about how the frequency

of faulty categorization will vary with the number and quality of observations

[Berger, p. 91], since the rate distortion function relates the average distortion

or error to the minimum mutual information required to achieve that error.

Bell’s paper can be seen as the foundational work for all information theoretic waveform

design algorithms that were to follow.

It should be noted that the problem of target matched illumination for target identifi-

cation is a dual of the channel matched signal design problem in communications. (See

[74, 75] for an example.) The duality between the communications and radar problems

is most apparent in Sowelam and Tewfik [76], who in 1994 proposed a method of de-

signing a set of waveforms for the identification and subsequent imaging of targets with

known responses. The same basic idea was patented by Guerci [66] in 1995. Barrett [68]

patented target matched illumination with considerations to the effects of the transmission

medium. Gjessing [77] discussed target matched illumination for naval applications. Pillai

et al. [78, 79] [80, ch. 8], apparently unaware of the previous work on this topic [11–

13, 15–18, 22], developed an eigen-iterative algorithm for optimal signal/filter pairs for the

case in which the target and clutter can both be modeled as linear time invariant random

processes.

It was soon realized that the approach in [79] could be re-formulated for the target

identification problem by relating SCIR to the Mahalanobis distance [81–83]. Garren et

al. applied [79] to the target identification problem using synthetic (X-patch) target data.
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Specifically, they assumed perfect knowledge of the aspect-dependent transfer functions of

two targets (a T72 and an M1 battle tank), with [84, 85] and without [86] some uncertainty

in azimuth aspect. Their results showed that performance quickly degrades when aspect

is unknown. The approach in [79] was extended to the multichannel scenario by Pillai et

al. [87]. Again, Garren et al. applied the result using synthetic signature data [88]. Their

results seemed to indicate that the multichannel (in this case, polarization) extensions to the

algorithm does not aid much in the detection and identification of targets. The multi-target

identification problem was later discussed by Pillai et al. in [89], and eventually patented

[70, 71] in 2006. The multichannel approach was later re-cast for the MIMO waveform

design problem by Pillai et al. in 2003 [90].

Despite all of the extensions to [79], the proposed algorithm is neither guaranteed to

converge nor produce a locally optimal signal. Further, it is not clear that this algorithm

performs better than the earlier eigen-iterative algorithms, which were, incidentally, being

studied by Haykin et al. [91, 92] at about the same time. However, the efficacy of this

approach is a moot point because these iterative approaches were shown to be unnecessary

by Sibul and Titlebaum [26]. As Kay [27, 28] remarked:

The optimal receiver is usually defined as one which maximizes the proba-

bility of detecting a target in the presence of interference (i.e., reverberation

plus ambient noise) for a specified probability of false alarm. The solution

for the design of such an optimal receiver, given a statistical characterization

of the interference, is available in a number of standard texts [42, 93]. It can

be shown that the detection performance of the optimal receiver is a mono-

tonic function of the signal to interference ratio (SIR). When the interference

is white in frequency, the SIR depends only on the total energy of the transmit

signal. However, when the interference is not white, and furthermore, signal-

dependent, the design of the transmit signal can have a significant impact upon

the detection performance of the optimal receiver.
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It was pointed out two decades ago [26] that the performance of the optimal

receiver in detecting target echos from a point target in signal-dependent in-

terference depends only upon the channel power spectral density (PSD), the

ambient noise PSD, the Doppler frequency shift induced by the point target’s

motion, and the power spectrum of the transmit signal. When each of these

factors is specified, the solution to the design of the optimal receiver is deter-

mined. Of all these factors, the only one that is under the control of an active

sonar/radar system designer is the transmit signal.

In 2002, Kay [27, 28] extended Kooij’s 1968 work [29] to provide an analytical solution

to the problem of optimizing the transmit signal power spectrum to maximize the perfor-

mance of an optimal receiver detecting echos from a single nonmoving Gaussian point

target in the presence of signal-dependent clutter and colored ambient noise. It should

be noted that the restriction to Gaussian point targets was made for pedagogical purposes

only, with the extension to extended (LTI) targets like those previously considered being a

straight forward extension. Like previous work, Kay’s paper assumes the target and clutter

act as stochastic LTI systems. Kay remarked about the limitations of these LTI models

[28]:

The scattering model assumes that the signal-dependent noise is the output

of a random linear time invariant (LTI) filter, whose impulse response can be

assumed to be a realization of a wide sense stationary (WSS) random pro-

cess. The same model has been used before in [31] and more recently in [87].

It should be noted that this model does not allow for spectral spreading, as

would be inherent in a moving platform and/or intrinsic clutter motion situa-

tion. Hence, it differs from the standard one usually assumed [42].

However, subject to the limitations above, the advantage of such an LTI model is that 1)

an analytical solution for the optimal waveform is obtained, and 2) new insights into the

signal design problem are evident.
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In 2004, Tan and Zheng [94] considered a somewhat different version of the aforemen-

tioned problem, i.e., that of minimizing the estimation error of the target profile. They

used the Wiener filter to reconstruct the target profile in the MMSE sense, and the trans-

mit signal was optimized (subject to pulse energy constraint) to further minimize the mean

square error achieved by the Wiener filter. Like previous work, their model assumes a pri-

ori knowledge of the target and noise in the form of their power spectral densities. They

extend this work to multiple pulse transmission and deconvolution in that, after each pulse,

the a posteriori PSD is calculated and used as the a priori PSD of the next pulse.

In 2000, Sowelam and Tewfik [95] developed and information theoretic approach to

target identification based upon synthesis of a sequence of probing signals to maximize

classification performance. Their approach can essentially be treated in the context of

experimental design, which is an organized method for extracting as much information

as possible from a limited number of observations. The information theoretic sequential

hypothesis testing approach was also taken by Goodman et al. [96–98]. This approach was

extended by Butler and Goodman to bistatic MIMO scenarios [99, 100]. Romero, Bae,

and Goodman also compared SNR and MI-based waveform design in [30]. Like Bell, they

found that the SNR and MI-based waveforms are generally different for given target and

clutter impulse responses.

Constraint Satisfaction

The optimal PSD solutions of [28] and [30] are valid under finite signal energy and band-

width constraints. However, the resulting time domain representations of such waveforms

are not practical. First, the finite bandwidth constraint forces the signal to be of infinite du-

ration. Second, the energy constraint is insufficient to guarantee that the signal will satisfy

common envelope requirements. Even when stringent envelope requirements such as con-

stant modulus are not imposed, the peak power of the waveform must still be constrained

because scaling processes that takes place in the system can cause the otherwise optimized
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waveform to be detrimental to system performance. (See Ch. 2). Consistent with other

problem formulations (e.g., [31, 79]), the solutions of [28] and [30] assume that only a

single target is present in the scene, and that the target range and Doppler shift are known.

When this is not the case, the signal/filter cross-ambiguity function (CAF) becomes an

important driver of system performance. In general, the CAF is required to have a narrow

main lobe so that closely spaced targets can be resolved, and low side lobes to reduce clutter

returns and prevent weaker target returns from being masked by stronger ones [101–103].

(See Ch. 3).

One approach to designing radar waveforms that satisfy modulus constraints is to for-

mulate the optimal waveform and then minimize the the cost function subject to a set of

constraints that indirectly constrain certain radar related properties of the waveform, such

as the waveform modulus or autocorrelation sequence. This was done by Bergin et al. [32]

for the detection of known extended targets in colored interference. Their method was to

project a template (or desired) waveforms into the low noise subspace of the interference-

plus-noise covariance matrix. The reasoning behind this approach is that the resultant

waveform will be similar to the desired waveform in the sense that the two waveforms

are as close as possible in a Euclidean sense. Li et al. [33] later devised an algorithm that

provides the optimal waveform given a maximum Euclidean distance between the solution

and the template waveform. This similarity constraint has also been used by De Maio et

al. [34–36]. (See Ch. 4.)

In general, solutions to the constrained optimization problems considered here are com-

putationally expensive. That is, the time required to compute a solution may be longer than

the duration over which the statistical assumptions are valid. As such, there is a perceived

need for approximate solutions. Lindenfeld [37] used penalty functions to independently

design the signal and receiver to enforce energy and autocorrelation constraints for the pur-

pose of sparse frequency transmission. Note that his approach can be used for interference

suppression as well. Patton and Rigling [38] applied non-quadratic regularization in an
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attempt to constrain the autocorrelation sequence of a matched filtered signal.

1.3 Contributions

This dissertation advances the theory of adaptive transmit radar technology by address-

ing the satisfaction of modulus and ambiguity function constraints in the target detection

problem. Modulus constraints are addressed in Ch. 2. In Sec. 2.1, we demonstrate that

even when the transmitter does not require the waveform to have a constant envelope, the

waveform should still be optimized subject to peak power constraints. Algorithms that

ignore these constraints risk producing designs that can be detrimental to system perfor-

mance. These results were originally published in [104]. In Sec. 2.3, we consider the

problem of extending optimal designs such as [28] and [30] to handle duration and mod-

ulus constraints. We show that this is a problem of phase retrieval, which can be solved

via dynamic programming (i.e., gradient-based search methods) or the method of alternat-

ing projections. We extend current phase-retrieval techniques, and show that the alternating

projections approach can be an efficient alternative to dynamic programming. These results

were originally reported in [105].

In Ch. 3, we consider the multiple target detection problem, which requires the signal/-

filter cross-ambiguity function to be constrained. For simplicity, we explicitly deal only

the signal/filter cross-correlation sequence (XCS). However, extending these results to the

cross-ambiguity function is a conceptually simple exercise. We formulate the waveform

optimization problem for a number of receiver architectures, and we show that, unlike in

the single target detection problem, the Neyman-Pearson filter may not be the optimal re-

ceive architecture. These results were originally reported in [106].

When XCS constraints are involved, the algorithms for solving the waveform optimiza-

tion problem can be computationally demanding. In Ch. 4 we examine several formulations

that require fewer calculations. In Sec. 4.1, we consider six different formulations and find
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that a phase-only waveform design can provide nearly optimal results with a much reduced

computational complexity. We also show that the similarity constraint affords computa-

tionally efficient solutions, but at the cost of greatly reduced gains. These results were

originally reported in [107]. In Sec. 4.2, we design an algorithm for indirectly constraining

the waveform ACS in a phase-only design. This algorithm is capable of providing greater

gains than the similarity constraint approach, but at a greatly reduced computational burden

compared to the direct constraint approach in Ch. 3. These results were originally reported

in [108].

23



Chapter 2

Modulus Constraints

The variational solution in [28] and the SWORD solution in [33] both produce globally op-

timal waveforms for their respective constraint sets. However, neither approach constrains

the modulus (complex envelope) of the transmit waveform. This is problematic because

radar systems commonly require constant modulus (i.e., constant amplitude) waveforms

so as to efficiently utilize nonlinear power amplifiers. Furthermore, we show in Sec. 2.1

that the waveform modulus must be constrained even when linear amplifiers are used. This

analytic result is illustrated by a numeric example in Sec. 2.2.

After establishing the inextricable nature of modulus constraints in the waveform op-

timization problem, we dedicate the remainder of the chapter to extending the state of the

art in waveform design to accommodate modulus constraints. This amounts to finding a

waveform that satisfies the time domain constraints and has the optimal power spectral

density. In Sec. 2.3, we connect this problem to the problem of phase retrieval. We then

develop solutions based on dynamic programming and alternating projections (Sec. 2.4-

2.6). Numerical examples in Sec. 2.7 demonstrate that the alternating projections approach

can provide accurate solutions at a lower computational cost than dynamic programming

approaches. Concluding remarks for this chapter are given in Sec. 2.8.
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2.1 Waveform Scaling

The waveform optimization algorithms presently found in the literature will necessarily

be implemented on a digital computer, and the resulting waveforms will be converted to

analog form by a digital-to-analog converter (DAC). This conversion process is depicted in

Fig. 2.1. Let us assume that the amplifier is linear, and that the desired output voltage is

±A. Working backwards through the chain, we see that if the amplifier’s gain is G2, then

the input voltage to the amplifier must be±A/G2. Similarly, if the linear DAC has gain G1,

then the DAC input voltage must be ±A/(G1G2). If a waveform optimization algorithm

does not explicitly constrain the waveform to have a maximum amplitude of ±A/(G1G2),

then the optimized waveform must be scaled before being fed to the DAC. If we let s denote

the transmit waveform, then the scaled waveform is given by

s :=
A/(G1G2)

||s||∞
s. (2.1)

In order to illustrate the effects of waveform scaling on the performance of a waveform

optimization algorithm, consider the problem of detecting a known signal in the presence

of colored Gaussian noise using a matched filter detector. As we will see in Ch. 3, the

optimal waveform will maximize the post-filter signal to noise ratio, which is given by

SINR (s) =

∣∣sHs
∣∣2

sHKs
, (2.2)

where s ∈ CN is the transmit signal and K ∈ CN×N is the interference covariance matrix.

Furthermore, the performance of a waveform optimization algorithm is typically measured

by the gain it provides with respect to some baseline solution. Letting s0 denote the baseline

solution, we can write the gain as

GAIN (s) :=
SINR (s)

SINR (s0)
. (2.3)
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Figure 2.1: Functional block diagram of the waveform scaling process.

However, the true transmit waveform will be scaled, and the actual gain will be

SINR (s)

SINR (s0)
=
||s0||2∞
||s||2∞

GAIN (s) . (2.4)

From this equation we see that the optimized waveform will improve performance above

the baseline solution (i.e., the true gain will be greater than unity) only if

||s||∞ ≤ ||s0||∞
√

GAIN (s). (2.5)

This relationship can be interpreted as stating that the waveform can put less actual power

on the target if the gain provided by spectrum shaping is sufficiently large. In order to

ensure the optimized waveform satisfies (2.5), the optimization algorithm should instead

maximize the scaled gain. This is equivalent to maximizing

SINR (s) :=
1

||s||2∞
SINR (s) . (2.6)

Alternately, the algorithm could maximize the SINR in (2.2) subject to the constraint

||s||∞ ≤ ||s0||∞.

From the above discussion, we see that the scaling process imposes a maximum mod-

ulus (or peak power) constraint on the optimized waveform. Algorithms that do not in-
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corporate this constraint risk performance degradation because the scaled waveform may

put less than the expected energy on the target. If the waveform is not scaled, the output

of the DAC will be a clipped version of the input signal, and system performance will be

degraded because the transmit waveform will not be the same as the optimized waveform.

The deleterious effect waveform scaling can have on system performance demands it

be accounted for by the waveform design algorithm. However, many arbitrary waveform

design algorithms constrain only the energy of the transmit waveform. While an energy

constraint is reasonable, it is insufficient. This is because the amount of energy is con-

strained while the distribution of that energy throughout the pulse is not. This can lead to

designed waveforms with large modulus variations (i.e., large dynamic range), and scaling

can be particularly pernicious to these kinds of waveforms. We should note that nonlinear

RF power amplifiers are often used in radar systems, and these amplifiers require the input

signal to be constant modulus [102, 109]. The constant modulus constraint is even more

extreme than the peak power constraint discussed in this section, and it should be accounted

for by the waveform optimization algorithm.

2.2 Example: Ignoring Modulus Constraints

In order to illustrate the problems that can arise when the maximum modulus constraint

imposed by the scaling process is ignored, we simulate the scaling process applied to

waveforms generated by four waveform optimization algorithms found in the literature.

Specifically, we consider the three eigenvector-based solutions in [32] (denoted M1 −M3,

respectively), and the SWORD algorithm in [33]. These algorithms were designed for the

problem of detecting a known signal in the presence of wide-sense stationary colored Gaus-

sian noise using a Neyman-Pearson whitening filter detector (see Ch. 3). Each algorithm
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maximizes the post-filter SINR, which is given by

SINR (s) = sHK−1s (2.7)

when the whitening filter is used. The differences between the algorithms have to do with

the constraints to which this maximization is subjected. These constraints are not par-

ticularly relevant to our purposes here. So, we will not discuss the algorithms in detail.

However, we do note that each algorithm requires the waveform to have unit energy, but no

constraints are placed on the waveform modulus.

The performance of these methods when not subjected to scaling was simulated in [33]

for an example interference process consisting of a white Gaussian random process (i.e.,

the noise) added to an autoregressive random process (i.e., the interference) whose transfer

function is given by

H(z) =
1

(1− 1.5z−1 + 0.7z−2)4
. (2.8)

We have reproduced those simulations here. The results are shown in Fig. 2.2, which

depicts SINR improvement (gain) versus interference-to-noise ratio (INR) for the vari-

ous waveform design algorithms. For this example, the baseline solution was a critically

sampled complex-valued linear frequency modulated (LFM) waveform with unit energy.

Notice that, as expected, all methods provide positive gain when not subjected to scaling.

Fig. 2.3 shows SINR improvement versus INR for the same scenario with the exception

that the optimized waveforms were subjected to scaling. In this case, the maximum DAC

input, which we will denote by Min, was specified to be Min = 1/
√

N .1 Notice that

the scaled waveforms actually provide a negative gain when subjected to scaling. That is,

the non-optimized baseline solution provides better system performance. The reason for

1Note that this scaling forces the maximum modulus of the designed waveform to equal 1/
√

N . This
corresponds to unit energy for a constant modulus waveform. Also, for this simulation, N = 301.
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Figure 2.2: Gain vs. INR when waveforms were not subjected to scaling.

performance loss is clear when we examine Figs. 2.4 and 2.5, which depict the modulus

(complex magnitude) of each waveform for the INR = 20 dB case. Fig. 2.4 shows the

unit energy waveforms before scaling, and Fig. 2.5 shows the waveforms after scaling.

The black dashed line represents Min. For this example, the scaling process resulted in

a transmit power reduction of approximately 3, 20, 3, and 5 dB for M1, M2, M3, and

SWORD, respectively. These losses are significant compared to the gains resulting from

the optimization process (see Fig. 2.2), and the resulting performance is commensurate

with the relationship in (2.4).

2.3 Phase Retrieval for Radar Waveform Optimization

As we have already established, radar waveform optimization involves finding a transmit

waveform that optimizes system performance and satisfies system constraints. And, as

we have seen, there has been extensive work done on the design of waveforms for the
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minimization of mean squared error (MSE) in SAR image reconstruction [110], the max-

imization of signal-to-noise ratio for target detection [28, 79, 111], and the maximization

of mutual information [31, 98, 112] or Mahalanobis distance [86, 88] for target classifica-

tion. Furthermore, in each of the works cited above, it can be shown that when the only

constraints placed on the transmit waveform are finite energy and bandwidth, the transmit

waveform affects system performance only through its Fourier transform magnitude (FTM)

function.2 Convenient expressions for optimal FTMs do exist for such cases (e.g., [28]).

However, the inverse Fourier transforms of these FTMs are not practical radar waveforms.

This is because the finite bandwidth constraint forces the signal to be of infinite duration,

and the energy constraint is insufficient to guarantee that the signal will satisfy practical

envelope constraints that arise from the use of nonlinear amplifiers (i.e., constant modu-

lus constraints), or from the scaling processes discussed in the previous section (i.e., peak

power constraints). Some applications may even impose constraints (e.g., Doppler toler-

2That is, the magnitude of the Fourier transform.
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ance) that cannot be addressed by the finite energy/bandwidth constraints alone. Therefore,

it is desirable to find waveforms of the appropriate duration that satisfying the modulus con-

straints and minimize the MSE between the actual and optimal FTMs. These waveforms

may be practical for some applications, and will in any case provide better performance

bounds than the finite energy/bandwidth constrained waveforms.

The problem of finding waveforms of the appropriate duration that possess both the de-

sired time domain envelope and the optimal FTM is a problem of phase retrieval. Phase re-

trieval problems have been studied extensively in many fields such as electron microscopy,

wavefront sensing, astronomy, crystallography, signal processing, and image processing.

(See references in the works cited below for examples.) In the general phase retrieval prob-

lem, one knows the modulus of the Fourier transform of an “object,” as well as a set of a

priori constraints on that object. The problem is then to find the Fourier phase function that

produces an object satisfying those constraints. To put the problem in mathematical terms,

let F : H1 → H2 denote the Fourier transform from space H1 (known as the object do-

main) to space H2 (the image domain). Let A ⊆ H1 denote the object domain vectors that

satisfy all object domain constraints (e.g., constant modulus), and let B̃ ⊆ H2 denote the

image domain vectors that satisfy all image domain constraints (e.g., possess the optimal

FTM). The phase retrieval problem becomes that of finding an a ∈ A such that Fa ∈ B̃.

Note that a particular phase retrieval problem is completely characterized by the constraint

sets A and B̃. In practice, these sets are often inconsistent, meaning that there is no a ∈ A

such that Fa ∈ B̃. In this case, one often seeks an object whose Fourier transform comes

as close as possible to satisfying the image domain constraints.

In general, a phase retrieval problem will not admit a closed form solution, but it can

usually be solved using an iterative transform method (ITM). Iterative transform methods

repeatedly transform between the object and image domains, satisfying the constraints in

one domain before returning to the other [113]. While this approach is perhaps physically

intuitive, explaining its success over such a broad class of applications is still an open
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problem [114–119]. One thing appears clear, however, the effectiveness of ITMs is the

result of their alternating projections (AP) nature.

The phase retrieval problem with which we are concerned has arisen in other fields

under the names spectrum shaping [120], two-intensity measurement problem [113], and

phase-only pulse shaping [121]. In fact, the earliest ITM, called the Gerchberg-Saxton

algorithm (GSA), was developed specifically for this kind of problem [122]. Subsequent

development of ITMs, however, was motivated by issues of efficiency, solution quality,

and algorithm stability in another phase retrieval problem known as the single-intensity

measurement problem [113]. In a seminal work, Fienup [113] showed the GSA to be a

special case of the error reduction algorithm (ERA). He then used the ERA framework to

develop the basic input-output (BIO) algorithm for convergence time reduction, and the

hybrid input-output (HIO) algorithm to reduce the occurrence of convergence stagnations

[113]. Youla and Webb [123] recognized the role of alternating projections in iterative

transform algorithms, but their analysis was performed only for consistent problems in-

volving convex constraint sets. Levi and Stark [124] extended this approach to consider

nonconvex constraints, and implicitly addressed inconsistent problems as well. The AP ap-

proach was later used by Elser [125] to develop the difference map algorithm, by Bauschke

et al. [115] to develop the hybrid projection reflection (HPR) algorithm, and most recently

by Luke [117] to develop the relaxed averaged alternating reflection (RAAR) algorithm. It

should be noted that the spectrum shaping problem does not share the same stability issues

as the single-intensity measurement problem, which motivated the development of these

other algorithms [113]. Thus, these algorithms may provide little advantage over the GSA.

Furthermore, the GSA is parameter free, whereas the other algorithms require parameters

that cannot be determined a priori [117, 124]. For these reasons, the GSA is the most

practical ITM for the spectrum shaping problem.

Inconsistent phase retrieval problems can also be formulated as constrained optimiza-

tion problems, which can be solved using more broadly applicable techniques. For ex-
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ample, Fienup [113] found that the performance of the ERA, BIO and HIO compared

favorably to that of a constrained gradient descent (GD) approach for the single-intensity

measurement problem, and he demonstrated some similarities between the GSA and GD

for the spectrum shaping problem. Rundquist [121] compared the GSA to a genetic al-

gorithm for a spectrum shaping problem, and found that the GSA generally provided a

better solution while converging 10 to 100 times faster [121]. Hacker reports similar re-

sults with respect to a genetic algorithm and a combination of a downhill simplex method

and simulated annealing [126].

Several researchers have recently applied the GSA to the radar waveform synthesis

problem described above [127–129]. However, several important issues remain unad-

dressed. First, in typical discrete phase retrieval problems, the length of the time domain

vector is equal to the number of FTM samples. This need not be so in waveform synthesis,

but the case of unequal vector lengths has not been thoroughly studied, especially when the

length of the time domain waveform is greater than the length of the FTM vector. Second, it

is unclear how the GSA compares in terms of performance and efficiency to more standard

nonlinear programming methods (e.g., gradient descent or quasi-Newton methods) when

the time and frequency domain vectors are not of equal length. Both of these questions are

addressed in the present work.

In this chapter, we adopt the alternating projections framework to explain the success of

the GSA in previously studied cases, and to extend the algorithm for previously unstudied

scenarios. We explain convergence behavior for the general case of unequal vector lengths

by proving the so-called error reduction property, and we present numerical results demon-

strating that the alternating projections approach can provide nearly identical performance,

at a much lower computational cost, than competing nonlinear programming algorithms.

Further, the AP approach is simpler to implement than competing nonlinear programming

approaches, making it a convenient choice for many applications.

The remainder of this chapter is structured as follows. The alternating projections na-
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ture of the error reduction algorithm, of which the GSA is a special case, is discussed in

Sec. 2.4. This discussion motivates the algorithm development in Sec. 2.5. The discrete

FTM waveform synthesis problem is defined first, and we derive an alternating projections

equivalent of the GSA in Sec. 2.5.1. In Sec. 2.5.2, we derive an alternating projections algo-

rithm that is not equivalent to the GSA. The similarities between the alternating projections

algorithm and the gradient descent algorithm are discussed in Sec. 2.6. Section 2.6.3 con-

tains a brief discussion of the problem in which the signal’s power spectral density (PSD)

is of greater importance than its FTM. Numerical examples are presented in Sec. 2.7, and

Sec. 2.8 contains concluding remarks. Note that all proofs and derivations are relegated to

the Appendix.

2.4 The Error Reduction Algorithm

In this section, we discuss the alternating projections nature of the ERA so that we might

understand the convergence behavior of the GSA, and motivate the algorithm development

that follows. To begin, consider the inconsistent problem in which we seek an a ∈ A ⊆ H1

such that Fa ∈ B̃ ⊆ H2, but no such a exists. In such cases, one usually seeks an a ∈ A

whose Fourier transform Fa ∈ H2 is as close as possible to the image domain constraint

set B̃ ⊆ H2 [113, 124]. This is equivalent to minimizing the point-set distance d(Fa, B̃),

which is referred to as the error. The ERA seeks to iteratively minimize the error through

four steps: 1) Fourier transform the current object domain vector. 2) Make the minimum

changes to the transformed vector so that it satisfies the image domain constraints. 3)

Inverse Fourier transform the resulting vector. 4) Make the minimum changes to the inverse

transformed vector so that it satisfies the object domain constraints. These four steps are

repeated until convergence is achieved. The need for minimal changes in steps 2 and 4

implies that the ERA is only applicable if there exists projector mappings PA : H1 → A

and P eB : H2 → B̃ such that PA(x) ∈ ΠA(x) and P eB(x̃) ∈ Π eB(x̃) for all x ∈ H1
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and x̃ ∈ H2.That is, both constraint sets must have well defined projections from which

a single-valued selection can be made. Using this notation, we can write the ERA as in

Alg. 1. Here, algorithm lines 4-7 correspond directly to steps 1-4 above.

We now examine the ERA in terms of alternating projections to render a more succinct

update expression, and to also illustrate the error reduction property. Let B ⊆ H1 be the

set of object domain vectors whose Fourier transform satisfies the image domain constraint.

Since F is unitary, we have B̃ = FB and

d(ak, B) = d(Fak,FB) = d(Fak, B̃) (2.9)

Further, the mapping PB : H1 → B defined by

PB(x) = F−1P eB(Fx) (2.10)

satisfies the condition PB(x) ∈ ΠB(x) for all x ∈ H1. Upon examining (2.10), we observe

that lines 4-7 in Alg. 1 (i.e., the four steps of the ERA) can be replaced with the update rule

ak+1 ← (PA ◦ PB)(ak) (2.11)

Evidently, the ERA produces a sequence in the object domain by alternating projections

between A and B. All algorithms of the form described by (2.11) can be shown (Thm. A.1-

Algorithm 1 Error Reduction Algorithm
1: k ← 0
2: ak ← initialize
3: repeat
4: âk ← Fak

5: b̃k ← P eB(âk)

6: bk ← F−1b̃k

7: ak+1 ← PA(bk)
8: k ← k + 1
9: until convergence
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1) to produce a sequence {ak} such that3

d(ak+1, B) ≤ d(ak, B) (2.12)

Together, results (2.9) and (2.12) imply that the ERA is guaranteed to produce a sequence

with nonincreasing error – a property that is often referred to as error reduction [113, 124].

Since d is bounded below, the sequence {d(ak, B)}∞k=0 ⊆ R is guaranteed to converge.

In special cases, such as when A and B are convex sets, {d(ak, B)} can be shown to

converge to a local minimum of d(A, B). However, it remains an open problem to show

that {d(ak, B)} converges to a local minimum for the general case. Still, the empirical

success of the ERA has made it, and its variants, a commonly employed solution for phase

retrieval.

2.5 Error Reduction via Alternating Projections

The error reduction property of the ERA has only been proved for unitary F . Thus, for

the discrete waveform synthesis problem in which H1 = CN and H2 = CM , the ERA

property is proved to hold only for N = M . That is, error reduction is proved only when

the matrix representing the Fourier transform is square. In this section, we consider the

more general case of N 6= M . When N ≤ M , we will denote the transform matrix by

U, and we will require only UHU = I (left unitary). When N ≥ M , we will denote

the Fourier matrix by V, and require only VVH = I (right unitary). The theory will

hold for any U or V that meet these requirements. In the spectrum shaping problem for

radar waveform optimization, however, each [Ux]m or [Vx]m represents the discrete-time

Fourier transform (DTFT) of some vector x ∈ CN evaluated at a particular frequency

indexed by m. In App. A.2, we discuss how to choose frequency sets so that U and V

3Levi and Stark provide a more general treatment in [124], of which this result is a direct consequence.
However, for a simple proof, see Thm. A.1-1 in the Appendix.
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satisfy these requirements. This amounts to building matrices from appropriately selected

rows or columns from a DTFT matrix of appropriate dimensions.

2.5.1 Fewer Time Samples than Frequency Samples (N ≤M )

Jackson et al. [127] applied the ERA to the radar waveform synthesis problem in which the

number of time domain samples is less than the number of optimal FTM samples. However,

no analysis of convergence behavior or solution optimality was provided. Pillai et al. [129]

considered the error reduction property of the ERA for waveform synthesis, but did not

address the N 6= M case. We now prove that the Gerchberg-Saxton algorithm possesses

the error reduction property when N < M . The optimality of the solution is discussed in

the following sections.

In order to apply the ERA (Alg. 1) to this problem, we must define appropriate con-

straint sets and projection operators. Let us define the image and object domain constraint

sets by

A :=
{
x ∈ CN : |x| = p

}
(2.13)

and

B̃ :=
{
b̃ ∈ CM : |b̃| = q

}
(2.14)

respectively. Further, define the mappings PA : CN → A and P eB : CM → B̃ by

[PA(x)]n := pnexp (j∠xn) (2.15)[
P eB(x̃)

]
m

:= qmexp (j∠x̃m) (2.16)

respectively. It can be shown that PA(x) ∈ ΠA(x) and P eB(x̃) ∈ Π eB(x̃) for all x ∈ CN and

x̃ ∈ CM (Thm. A.1-2, A.1-3). The relationship between these sets is illustrated in Fig. 2.6.
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Figure 2.6: Relevant sets in the object and image domains when N ≤M .

This particular form of the ERA is known as the Gerchberg-Saxton Algorithm [113]. The

GSA is given in Alg. 2 where lines 3-6 correspond to lines 4-7 in Alg. 1.

The error reduction property of the ERA was proved only for unitary U (i.e., when

N = M ). In order to prove the error reduction property when N < M , we now consider

its alternating projections nature. Denote the image of set A under U by

Â := U(A) (2.17)

Algorithm 2 GSA for N ≤M

1: a← initialize
2: repeat
3: â← Ua
4: b̃← P eB(â)

5: b← UHb̃
6: a← PA(b)
7: until convergence
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and define the mapping P bA : CM → Â to be

P bA(x̃) := UPA

(
UH x̃

)
(2.18)

It can be shown (Thm. A.1-4) that P bA(x̃) ∈ Π bA(x̃) for all x̃ ∈ CM . Using these definitions,

Alg. 2 can be written in the equivalent alternating projections form given by Alg. 3. As an

AP algorithm, Alg. 3 has the property that d(âk+1, B̃) ≤ d(âk, B̃). Furthermore, it can be

shown (Thm. A.1-6) that this point-set distance is equal to the distance between the time

domain vector’s FTM and the desired FTM. Thus,

d2(â, B̃) = |||â| − q||2 (2.19)

From this relationship, we can see why the GSA is an effective algorithm. The nonincreas-

ing point set distance is a measure of the mean square error between the optimal FTM and

the FTM of the current estimate |âk|. As a practical matter, the algorithm can be initialized

by setting each entry of the initial phase function ∠xn equal to an i.i.d. random value dis-

tributed uniformly over [0, 2π), and program convergence can be determined by monitoring

the change in d(â, B̃).

2.5.2 More Time Samples than Frequency Samples (N ≥M )

Jackson et al. [127] state that the ERA cannot be applied when the number of samples in

the time domain is greater than or equal to the number of samples in the frequency domain,

Algorithm 3 Alternating Projections for N ≤M

1: a← initialize
2: â← Ua
3: repeat
4: â← P bA(P eB(â))
5: until convergence
6: a← UH â
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but an alternative algorithm is not provided. We take an alternating projections approach to

develop a new error reducing algorithm, which cannot be shown to be a special case of the

ERA. We begin by noting that if we simply replace U with V, as is done in Alg. 4, then

the resulting algorithm does not possess the error reduction property. This is because

P bA(x̃) := VPA

(
VH x̃

)
(2.20)

is not a member of the projection Π bA(x̃).

For N ≥ M , consider the set of all time domain vectors whose frequency domain

representation have the desired modulus, which we will denote

B :=
{
b ∈ CN : |Vb| = q

}
(2.21)

The relevant sets for the N ≥ M case are shown in Fig. 2.7. Next, define the mapping

PB : CN → B by

PB(x) := VHP eB(Vx) + (I−VHV)x (2.22)

It can be shown (Thm. A.1-5) that PB(x) ∈ ΠB(x) for all x ∈ CN . We can then write

the AP algorithm as listed in Alg. 5. Due to its AP nature, this algorithm possesses the

property that d(ak+1, B) ≤ d(ak, B). Furthermore, it can be shown (Thm. A.1-7) that

d(a, B) = |||â| − q|| for all a ∈ A. Thus, this algorithm has the same meaningful error

Algorithm 4 GSA for N ≥M

1: a← initialize
2: repeat
3: â← Va
4: b̃← P eB(â)

5: b← VHb̃
6: a← PA(b)
7: until convergence

41



Figure 2.7: Relevant sets in the object and image domains when N ≥M .

reduction property as in the case of N ≤M .

Alg. 5 can be written in the equivalent form shown in Alg. 6. This algorithm is similar

to the naive GSA formulation in Alg. 4. However, the two algorithms are not equivalent

due to the null space component (I−VHV)a in line 5. We note that when N ≤ M ,

we can recover the GSA (Alg. 2) from Alg. 6 by replacing V with U and observing that

UH â = UHUa = a. Thus, the GSA can be seen as a special case of this alternating

projections algorithm when N ≤M .

Algorithm 5 Alternating Projections for N ≥M

1: a← initialize
2: repeat
3: a← PA(PB(a))
4: until convergence
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Algorithm 6 Modified GSA for N ≥M

1: a← initialize
2: repeat
3: â← Va
4: b̃← P eB(â)

5: b← a−VH â + VHb̃
6: a← PA(b)
7: until convergence

2.6 Nonlinear Programming

2.6.1 Problem Formulation

The discrete-time spectrum shaping problem with which we are interested can be stated as

follows: Given p ∈ RN
+ and q ∈ RM

+ , find an x ∈ CN with |x| = p such that |x̂| is of

minimal Euclidean distance to q. For the waveform optimization problem, p represents

the desired time domain envelope, and q represents the desired FTM. If we define the cost

function J : CN → R to be

J(x) := |||x| − q||2 (2.23)

then the discrete-time spectrum shaping problem becomes that of solving the optimization

problem

inf
a∈A

J(a) (2.24)

where A is defined in (2.13). Each entry of the vector a is defined by an = pne
jφn where

φn ∈ R for all n. Thus, the constrained optimization problem in (2.24) can be converted

into an unconstrained problem by minimizing J with respect to φ = [φ1 . . . φN ]T instead of

a. A solution can be obtained by applying standard direct search methods such as gradient

descent or the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method [130].

The gradient of the cost function J with respect to the phase vector is provided in App. A.3.
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2.6.2 GD vs. AP

Fienup [113] showed the similarity between gradient descent and the GSA when N = M .

We continue that analysis for N ≤ M . The gradient descent and alternating projections

algorithms for the waveform synthesis problem are listed in full detail in Alg. 7 and Alg. 8,

respectively. Notice that for N ≤ M , the algorithms differ only in the phase update (line

12). For this case, when k is large such that the gradient descent algorithm is converging,

and thus, the phase is changing slowly, we can express the nth element of the updated phase

by

φn − αIm {anb
∗
n} = φn − α |pn| |b∗n| sin (φn − ∠bn) (2.25)

u φn − α |pn| |b∗n| [φn − ∠bn] (2.26)

= ∠bn + (1− α |pn| |b∗n|) φn (2.27)

Thus, when the phase is slowly changing, we can observe that the GSA behaves like gradi-

ent descent with variable step size

αn =
1

|pn| |b∗n|
(2.28)

This would suggest that the GSA converges to a local minimizer of J for the case of N ≤

M , though this conjecture has not been proved. This correspondence between the GSA and

gradient descent may help to explain the occurrence of what Levi and Stark call traps and

tunnels in the GSA [124]. Traps may correspond to local minima, whereas tunnels may

occur when J has long narrow valleys. The reader is referred to [124] for more detail.

The convergence behavior of the GD algorithm is very sensitive to the selection of the

step size α. In practice, there is no means of determining α a priori, and experience has

shown that the GSA can converge much faster than GD for poorly selected α. To remove

this sensitivity to step size, and to improve convergence time, one may implement a quasi-

44



Algorithm 7 GD with Fixed Step Size
1: φ← uniform random over [0, 2π)
2: a← p� exp (jφ)
3: â← Fa
4: Jnew ← |||â| − q||2
5: repeat
6: b̃← q� exp (j∠â)
7: if N ≤M then
8: b← FHb̃
9: else

10: b← FH(b̃− â)
11: end if
12: φ← φ− αIm {a� b∗}
13: a← p� exp (jφ)
14: â← Fa
15: Jold ← Jnew

16: Jnew ← |||â| − q||2
17: until |Jold − Jnew| < ε

Algorithm 8 Alternating Projections
1: φ← uniform random over [0, 2π)
2: a← p� exp (jφ)
3: â← Fa
4: Jnew ← |||â| − q||2
5: repeat
6: b̃← q� exp (j∠â)
7: if N ≤M then
8: b← FHb̃
9: else

10: b← a + FH(b̃− â)
11: end if
12: φ← ∠b
13: a← p� exp (jφ)
14: â← Fa
15: Jold ← Jnew

16: Jnew ← |||â| − q||2
17: until |Jold − Jnew| < ε

Newton method with inexact line search [131]. It should be noted that inexact line search

methods do require user parameters. However, algorithm behavior is generally insensitive

to the choice of these parameters.

2.6.3 The PSD Synthesis Problem

For some waveform optimization problems, it may be more desirable to find a waveform

of the appropriate duration that possesses the desired envelope in the time domain and a

power spectral density (PSD) that is as close as possible to the square of the optimal FTM

(e.g., [28, 112]). We shall refer to this problem as the PSD synthesis problem. Let

B̃2 :=
{
x̃ ∈ CM : |x̃|2 = q2

}
(2.29)

denote the set of waveforms satisfying the PSD requirement. Clearly, B̃2 = B̃. Thus,

the alternating projections approach can be used to find an a ∈ A such that â minimizes
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the distance from Â to B̃2. However, this point-set distance is not equivalent to the cost

function that is a true measure of error, namely, J2 : CN → R defined by

J2(x) :=
∣∣∣∣|x|2 − q2

∣∣∣∣2 (2.30)

As such, the alternating projections algorithm is not guaranteed to produce iterates such

that J2(ak+1) ≤ J2(ak). However, J and J2 are closely related, and it is not unreasonable

to expect the algorithm to produce useful waveforms. As before, we can formulate an

unconstrained nonlinear programming problem by minimizing J2 with respect to the signal

phase, and we can apply standard descent algorithms. (The gradient of J2 with respect to

the signal phase is provided in App. A.3.) We provide numerical examples comparing the

AP approach to descent methods in the following section.

2.7 Examples

2.7.1 Overview

In this section, we demonstrate the efficacy of the AP approach by solving example spec-

trum shaping and PSD synthesis problems using the AP algorithm, gradient descent with

fixed step size, and the BFGS quasi-Newton method with inexact line search described in

[131]. In each example, the time domain waveform is specified to have constant modulus

(i.e., p = 1), and the optimal FTM (i.e., q) is taken from [28]. The algorithms were run

100,000 times for each example, with each trial corresponding to a new random phase ini-

tialization as described in Sec. 2.5. All algorithms were given the same initialization at the

beginning of each trial. The average convergence behavior of each algorithm was assessed

by averaging the normalized cost at each iteration over all trials. By normalized cost, we
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mean the reduction in cost from the initial guess as measured by

J(ak) :=
J(ak)

J(a0)
or J2(ak) :=

J2(ak)

J2(a0)
(2.31)

depending upon the problem. The probability density function (pdf) of the normalized cost

at termination was also estimated by computing the normalized histogram. Note that the

gradient descent step size was determined manually for each example in order to produce

good convergence behavior.

2.7.2 Spectrum Shaping: N < M

Consider the problem of synthesizing a length N = 32 constant modulus waveform pos-

sessing an FTM close to the length M = 128 vector q shown in Fig. 2.8. The average

normalized cost as a function of iteration number is shown in Fig. 2.9 for the BFGS quasi-

Newton method with inexact line search (QN), the gradient descent algorithm (GD), and

the GSA. As expected, the quasi-Newton method converged to a solution in fewer iterations

than either the GD or GSA. However, all methods produced solutions of nearly identical

quality. This is apparent in Fig. 2.10, which shows the estimated pdf of the final normalized

cost. We emphasize that, while the performance and efficiency of the GD and GSA were

comparable, the GD step size was manually tuned to achieve this result. The quasi-Newton

method requires fewer iterations to converge to a solution, but each QN iteration requires

many more calculations than an iteration of GD or GSA. To illustrate this point, the simula-

tion was repeated with the exception that each algorithm was allowed to terminate a given

trial if the change in the cost function from time k to k + 1 was less than 0.15% for five

consecutive iterations. This stopping criteria was chosen so as to maintain the quality of

the final solution. With this stopping criteria, the QN method required an average of 40%

more CPU time than the GSA.
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Figure 2.8: Desired FTM (q) for the N < M example corresponding to N = 32, L = 4,
M = 128 and Γ = {0, 1, . . . , 127}.
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Figure 2.9: Average normalized cost vs. iteration number for the N < M spectrum shaping
example. GD step size equal to 0.5.
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Figure 2.10: Estimated pdf of normalized cost at termination for the N < M spectrum
shaping example. GD step size equal to 0.5.

2.7.3 Spectrum Shaping: N > M

Consider the problem of synthesizing a length N = 128 constant modulus waveform pos-

sessing an FTM close to the length M = 32 vector q shown in Fig. 2.11. The applicable

algorithms for this problem are QN, GD, and AP (Alg. 5). However, we also consider

the naive GSA (Alg. 4) to highlight its difference from AP when N > M . The aver-

age normalized cost as a function of iteration number is shown in Fig. 2.12, and the final

cost histograms are shown in Fig. 2.13. As expected, AP performs better than the naive

GSA, with average performance nearly equivalent to GD with a manually-tuned step size.

Again, the QN method performs better than the rest in terms of number of iterations to

convergence and quality of final solution. However, the quality of final solution may be

somewhat exaggerated in Fig. 2.13, as the QN method provided only an additional 0.05%

reduction from the initial cost. However, the difference in run time was more significant

than before. When the simulation was repeated using the termination criteria previously

described, the QN required an average of 800% more CPU time than the AP algorithm.
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Figure 2.11: Desired FTM (q) for the N > M example corresponding to N = 128,
L = 1/4, M = 32 and Γ = {0, 1, . . . , 31}.
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Figure 2.12: Average normalized cost vs. iteration number for the N > M spectrum
shaping example. GD step size equal to 0.5.
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Figure 2.13: Estimated pdf of normalized cost at termination for the N > M spectrum
shaping example. GD step size equal to 0.5.

2.7.4 PSD Synthesis: N < M

Consider the problem of synthesizing a length N = 32 constant modulus waveform pos-

sessing a power spectral density close to the length M = 128 vector q, the square root of

which is shown (in dB) in Fig. 2.8. As discussed in Sec. 2.6.3, the GSA is not guaranteed

to reduce the true error J2, and gradient methods are expected to perform better. This is

demonstrated in Figs. 2.14 and Fig. 2.15. It is notable that the GSA does substantially

reduce the normalized cost.

2.7.5 PSD Synthesis: N > M

Consider the problem of synthesizing a length N = 128 constant modulus waveform pos-

sessing a power spectral density close to the length M = 32 vector q, the square root of

which is shown (in dB) in Fig. 2.11. Again, we consider GD, AP (Alg. 5), and the naive

GSA (Alg. 4) for comparison purposes. The average normalized cost as a function of itera-

tion number is shown in Fig. 2.16, and the final cost histograms are shown in Fig. 2.17. As
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Figure 2.14: Average normalized cost vs. iteration number for the N < M PSD synthesis
example. GD step size equal to 0.5.
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Figure 2.15: Estimated pdf of normalized cost at termination for the N < M PSD synthesis
example. GD step size equal to 0.5.
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Figure 2.16: Average normalized cost vs. iteration number for the N > M PSD synthesis
example. GD step size equal to 0.05.
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Figure 2.17: Estimated pdf of normalized cost at termination for the N > M PSD synthesis
example. GD step size equal to 0.05.

53



expected, the GD algorithm has superior average convergence and performance properties.

However, AP substantially reduces the normalized cost, and performs nearly as well as the

GD algorithm. Also, as expected, the naive GSA reduces the normalized cost, but performs

worse than either of the other two algorithms.

2.8 Conclusion

We have considered the waveform synthesis problem found in radar waveform optimiza-

tion, and showed that for the spectrum shaping problem the alternating projections ap-

proach can be a convenient solution in that it is (a) parameter free, (b) easier to implement

than “parameter free” gradient methods, and (c) it can provide near optimal solutions with

lower computational cost. While we have proved its error reduction property, showing

convergence to a local minimum remains an open research problem.

The PSD synthesis problem appears frequently in the radar waveform optimization lit-

erature. This problem is related to the spectrum shaping problem, but the two problems

are not equivalent. As such the AP algorithm is expected to provide a suboptimal solution.

This was confirmed by two numerical examples. However, the difference between the opti-

mal GD algorithm and the suboptimal AP algorithm was not extreme in either example. As

such, the relative accuracy of solution, lack of user specified parameters, and computational

speed make the AP an applicable algorithm for the PSD synthesis problem as well.
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Chapter 3

Waveform-Optimized Performance and

Ambiguity Function Constraints

In the previous chapter, we showed that modulus constraints could be addressed by solving

a secondary optimization problem. However, for many applications the cross-ambiguity

function of the transmit signal and the receive filter must also be constrained. This occurs,

for example, when a radar must detect an unknown number of targets in colored noise. In

Sec. 3.1, we review the well studied problem of detecting a known signal in noise so that

the idea of waveform-optimized performance can be introduced. In Sec. 3.2, we formu-

late the waveform optimization problem for various receiver architectures in the multiple

unknown targets scenario, and we use the idea of waveform-optimized performance to an-

ticipate the efficacy of each approach. In Sec. 3.3, we present numerical examples that

demonstrate differences between the waveform-optimized performance of each receive ar-

chitecture. Concluding remarks for this chapter are given in Sec. 3.4.

3.1 Waveform-Optimized Performance

In this section, we use the well studied problem of detecting a known signal in additive

Gaussian noise to illustrate the idea of waveform-optimized performance. We emphasize
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that the results of Sec. 3.1.1 and 3.1.3 are not new. However, reviewing these results allows

us to easily formulate the joint signal/filter design problem in Sec. 3.1.2, and introduce

waveform-optimized performance in Sec. 3.1.4. The results of this section also allow for a

straightforward development of the multiple unknown targets scenario in Sec. 3.2.

3.1.1 Detecting a Known Signal

Consider the problem of detecting a deterministic real-valued signal in the presence of an

additive wide-sense stationary (WSS) Gaussian random process. Assume the signal is zero

for t /∈ [0, T ], and that it contains negligible energy at frequencies f /∈ (fc−B/2, fc+B/2),

where fc is the center frequency, and B is the bandwidth. This detection problem reduces

to choosing between the two hypotheses

H0 : x(t) = w(t) (3.1)

H1 : x(t) = s(t) + w(t) (3.2)

where x(t) is the observed signal, s(t) is the signal of interest, and w(t) is the Gaussian

interference.

It is often convenient to consider the case in which the complex envelope of the ob-

served signal has been recovered and time sampled. Therefore, assume the received signal

has been modulated to baseband from fc, and that both the in-phase and quadrature chan-

nels have been sampled over the interval [0, T ] at a rate of fs = B Hz. The hypotheses then

become

H0 : x = w (3.3)

H1 : x = s + w (3.4)

where x, s,w ∈ CN . Since w(t) is a WSS bandpass Gaussian random process, the discrete-
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time complex envelope vector w has a complex multivariate Gaussian probability density

function (pdf) [132, pp. 513-515]. This is denoted by

w ∼ CN (µ,K) (3.5)

where the mean µ ∈ CN and covariance matrix K ∈ CN×N are assumed known, and

K is assumed to be positive definite. For now, we shall assume only that the decision

between (3.3) and (3.4) is made by comparing the real part of a linear combination of the

observations to a known threshold. That is, the test is decided according to

Re
{
hHx

} H1

≷
H0

γ (3.6)

where h ∈ CN is the receive filter, and γ is chosen to maintain a specified probability of

false alarm (PFA). While this test statistic may seem arbitrary at first, we note that this is

the form of the two most widely studied detectors: the Neyman-Pearson detector and the

matched filter. Both of these detectors will be discussed subsequently, but for now we focus

on analyzing the general form given by (3.6).

Under either hypothesis, x is an affine transformation of a complex Gaussian random

vector, thus [132, pp. 505-507]

x ∼


CN (µ,K) underH0

CN (s + µ,K) underH1

. (3.7)

We also note that hHx represents a linear transformation applied to a complex Gaussian

random vector, and therefore [132, pp. 505-507]

hHx ∼


CN

(
hHµ,hHKh

)
underH0

CN
(
hH(s + µ),hHKh

)
underH1

. (3.8)
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Finally, the fact that hHx is a complex random variable implies

Re
{
hHx

}
∼


N
(
Re
{
hHµ

}
, hHKh

2

)
underH0

N
(
Re
{
hH(s + µ)

}
, hHKh

2

)
underH1

. (3.9)

An inspection of (3.6) and (3.9) reveals that if we consider only those h ∈ CN such that

Re
{
hHs

}
≥ 0, (3.10)

then our assumed scenario is an instantiation of the mean-shifted Gauss-Gauss problem

[93, pp. 70]. In a mean-shifted Gauss-Gauss problem, the test statistic T is a real Gaussian

random variable distributed according to

T ∼


N (µ0, σ

2) underH0

N (µ1, σ
2) underH1

, (3.11)

and the probability of false alarm (PFA) can be kept constant by choosing the detection

threshold according to

γ = Q−1 (PFA) σ + µ0, (3.12)

where Q is the complementary cumulative distribution function [93, pp. 21]. The proba-

bility of detection (PD) is then given by

PD = Q
(
Q−1 (PFA)−

√
d2
)

, (3.13)

where

d2 :=
(µ1 − µ0)

2

σ2
(3.14)
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is known as the deflection coefficient. Note that PD is a monotonically increasing function

of d2. Thus, the deflection coefficient is sufficient for characterizing detection performance,

and should be made as large as possible insofar as it is under the system designer’s control.

For the problem considered in this section, the deflection coefficient is given by

d2 =
2Re

{
hHs

}2

hHKh
(3.15)

From this we observe that (3.10) is not restrictive because h and −h give rise to the same

deflection coefficient for a given s and K.

3.1.2 Signal-Filter Optimization

Of the parameters that define the deflection coefficient (3.15), only the receive filter (h) and

transmit signal (s) are under a radar engineer’s control. Making this dependence explicit,

we can write the deflection coefficient as

d2(s,h) = (2E)
Re
{
ĥH ŝ

}2

ĥHKĥ
(3.16)

where ŝ and ĥ are unit vectors such that s =
√
E ŝ and h =

√
Ehĥ. Notice that d2 does

not depend upon the filter energy (Eh), but it is monotonic in signal energy (E). Thus, the

maximum of d2 with respect to ŝ and ĥ exists (i.e., the supremum is finite) only when E is

restricted to be less than or equal to some finite value, say E0. This value is always known

in practice, and the optimal signal will necessarily have energy equal to it.1 Therefore, to

optimize detection performance for a given K, we need only find the unit vectors ĥ and ŝ

that jointly maximize the deflection coefficient. The choice of E0 does not affect the optimal

unit vectors. Thus, we can choose the convenient value of E0 = 1/2, and write the system

1Proof by contradiction: Let
√
E∗ŝ∗ be the optimal waveform where E∗ ∈ [0, E0). Then, by definition,

d2(E∗, ŝ;h,K) ≥ d2(E0, ŝ;h,K). However, this implies E∗ ≥ E0, which is a contradiction.
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design problem as

arg max
(s,h) ∈ C

Re
{
hHs

}2

hHKh
(3.17)

where the constraint set C is defined by

C :=
{
(s,h) ∈ BN × CN : Re

{
hHs

}
≥ 0
}

(3.18)

Notice that we no longer use the “hat” notation because s is restricted to be in the unit ball

(BN ), and d2 does not depend on the filter energy. The solution to (3.17) is not necessarily

unique. However, one solution is given by

(s,h) = (u0,u0) (3.19)

where u0 is the eigenvector of K corresponding to the minimum eigenvalue of K.2 We

will refer to (3.19) as the eigen-optimal solution. In general, additional constraints will

be placed on the transmit signal (e.g., constant modulus). Let S ⊆ BN denote the set of

signals that satisfy these additional constraints, then we can write the optimization problem

as

arg max
(s,h) ∈ D

Re
{
hHs

}2

hHKh
(3.20)

where

D :=
{
(s,h) ∈ S × CN : Re

{
hHs

}
≥ 0
}

. (3.21)

2This result is obtained by observing that uH
0 Ku0 ≤ hHKh for all h ∈ BN , Re

{
hHs

}2 =
∣∣hHs

∣∣2 for
all (s,h) ∈ C, and

∣∣uH
0 u0

∣∣2 ≥ |u0s|2 for all s ∈ BN .
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In practice, additional constraints may be placed on the signal/filter pair. This will be

addressed in Sec. 3.2. For now, we assume (3.20) and (3.21) describe the signal/filter

design problem.

3.1.3 Waveform-Only Optimization

Let p(x;Hi) denote the pdf of a received signal x under hypothesisHi. Then the Neyman-

Pearson theorem [93, pp. 64] says that in order to maximize PD for a given PFA, one

should decide according to

L(x) :=
p(x;H1)

p(x;H0)

H1

≷
H0

γ (3.22)

where γ is found from

PFA =

∫
{x:L(x)>γ}

p(x;H0)dx (3.23)

It can be shown [93, pp. 478] that under the signal and interference assumptions made

in the previous section, the Neyman-Pearson detector in (3.22) reduces to (3.6) with h

replaced by

hnp = K−1s. (3.24)

This is known as the whitening filter. Note that because K is positive definite, so too is K−1.

This implies that Re
{
hH

nps
}

= sHK−1s > 0 for any s ∈ CN . As a result, (s,K−1s) ∈ D

for all s ∈ S. Thus, if (s?,h?) is a solution to (3.20), then so too is (s?,K
−1s?).3 As such,

we can simplify the optimization in (3.20) by solving only for the optimal waveform. The

3This is an immediate result of the Neyman-Pearson theorem. Another proof is to recognized that
Re
{
hH

nps
}

=
∣∣hH

nps
∣∣, and that for a given s?, the deflection coefficient is a generalized Rayleigh quotient

with hnp as the solution.
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resulting problem formulation is given by

arg max
s ∈ S

sK−1s (3.25)

where the deflection coefficient corresponding to the Neyman-Pearson detector has been

simplified to [93, pp. 479]

d2
np(s) := d2(s,K−1s) = sHK−1s (3.26)

By specifying the form of the receive filter we have significantly reduced the dimension

of the optimization problem. In what follows, we will also consider the matched filter case,

where the filter is given by

hmf = s. (3.27)

The matched filter is the Neyman-Pearson filter when the interference is white (i.e., K = I).

Again, we note that Re
{
hH

mfs
}

= ||s||2 ≥ 0 for all s ∈ CN . Thus, (s, s) ∈ D for all s ∈ S .

The corresponding deflection coefficient is given by [93, pp. 476]

d2
mf (s) := d2(s; s) =

||s||4

sHKs
. (3.28)

If S = BN , or if S is such that ||s|| is constant for all s ∈ S , then the resulting optimization

problem becomes

arg min
s ∈ S

sKs. (3.29)

Notice that this is a minimization as opposed to the maximization in (3.25).
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3.1.4 Waveform-Optimized Performance

If (s0,h0) denotes a solution to a particular optimization problem, then d2(s0,h0) is called

the waveform-optimized performance of the system. Let (sj,hj) denote a solution to the

joint signal/filter design problem (3.20), sn denote a solution to whitening filter problem

(3.25), and sm denote a solution to the matched filter problem (3.29). Then, regardless of

the constraint set S, we have

d2(sj,hj) = d2
np(sn) ≥ d2

mf (sm). (3.30)

That is, when the optimizations in (3.20), (3.25), and (3.29) are performed over the same

constraint set (S), then the waveform-optimized performance of the joint signal/filter de-

sign is no better than that of the whitening filter optimized design, and both designs are at

least as good as the matched filter optimized design.

Note that (sj,hj), sn, and sm must be global optimizers if they are to be considered

as solutions to their respective optimization problems. Global optimizers can be found in

the literature for some scenarios. For example, [28] and [30] address a scenario involving

the detection of a single non-moving point target at a known range and velocity in additive

Gaussian interference and linear time invariant clutter. In that work, a closed-form solution

to (3.25) is provided for a constraint set comprised of waveforms having a specified band-

width and energy. However, the problem becomes non-convex when additional constraints

are placed on the transmit signal (e.g., constant modulus), and only mathematical program-

ming algorithms have been proposed for solving the resulting optimization problem. The

output of such algorithms may be only locally optimal, and therefore, we have greater dif-

ficulty in predicting the waveform-optimized performance of each design. Furthermore,

(3.30) may not hold when additional constraints are placed on the signal/filter pair (e.g.,

CAF constraints) because the constraint sets may be different for each problem. Thus, for

highly constrained problems, the waveform-optimized performances of each architecture
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must be evaluated and compared in order to determine which architecture provides the best

performance. We present examples of this in the following sections.

3.2 Unknown Targets in Noise

In this section, we present a scenario in which the joint design, whitening filter design, and

matched filter design must each be optimized over a different constraint set. In Sec. 3.3,

we will solve for these problems and compare their respective waveform-optimized perfor-

mances.

3.2.1 Problem Formulation

Consider the scenario in which a radar system must determine the number of non-moving

point targets present in a scene.4 Assume that the radar transmits a signal s(t) with compact

support over [0, T ] and negligible energy at frequencies f /∈ (fc−B/2, fc+B/2), where fc

and B are the center frequency and bandwidth, respectively. Assume this signal is reflected

from each of the Nt point targets such that the combined return is given by

q(t) =
Nt∑
i=1

Ais(t− τi) (3.31)

where Ai and τi are, respectively, the reflectivity coefficient and two-way propagation delay

for target i. The received signal is given by

x(t) = q(t) + w(t) (3.32)

where w(t) is a WSS zero-mean additive Gaussian random process with known covariance

matrix.

4The omission of Doppler effects does not change the nature of our examples, and as we will see, ac-
counting for Doppler is conceptually straightforward, but computationally demanding. Thus, for simplicity,
we assume the targets have no radial velocity with respect to the radar.
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In contrast to the previous section, we assume that Ai and τi are unknown. The stan-

dard method of detecting targets in such a scenario is to collect the receive signal over

some longer period (T ′ > T ), convolve the received signal with a filter, and declare tar-

gets when the magnitude of the output exceeds a threshold. This correlation receiver is

a common architecture for radars employing pulse compression [103, ch. 4][133], and it

has a number of equivalent interpretations, such as 1) the generalized likelihood-ratio test

(GLRT) for a single target with unknown amplitude and range [103, ch. 6][93], and 2) as

an approximation to the inverse scattering problem involving multiple targets [134, ch. 4].

As before, we will assume that the receive signal is modulated to baseband, and that

both the in-phase and quadrature signals are time sampled at a rate of B Hz. The discrete-

time signal model is then x = q+w, where x,q,w ∈ CM . For simplicity, we assume that

each target delay is an integer multiple of the sampling period so that

qn =
Nt∑
i=1

Aisn−ki
(3.33)

where s ∈ CN is the baseband discrete time transmit signal, and for target i, Ai ∈ C is the

complex scattering coefficient, and ki is the delay. Assuming the filter is the same length

as the transmit signal, the cross-correlation (XCS) between the received signal (x ∈ CM )

and filter (h ∈ CN ) can be computed at each hypothesized range according to

Rk(x,h) =
N−1−k∑

n=0

xn+kh
∗
n. (3.34)

The test for target presence at range k is then given by

|Rk(x,h)|
H1

≷
H0

γk. (3.35)

where the range-dependent threshold (γk) may be chosen by any of a number of criteria,

such as cell-averaging CFAR [103, ch.7][135].
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We now wish to formulate the signal/filter design problem so that system performance

might be optimized. To do so, we must determine an appropriate objective function and

constraint set. If we assume for a moment that there is only a single target present in the

scene, then the post-filter signal-to-interference-plus-noise ratio (SINR) at the true target

delay is given by

SINR (s,h) =

∣∣hHs
∣∣2

E {|hHw|}2
=

∣∣hHs
∣∣2

hHKh
(3.36)

Further, when either the Neyman-Pearson filter or the matched filter are used, then
∣∣hHx

∣∣ =

Re
{
hHx

}
and SINR (s,h) = d2(s,h). As before, it can be shown that the probability of

detection is a monotonically increasing function of SINR [103, ch. 4]. Therefore, we

choose SINR as our objective function.

When multiple targets are present in the return signal (x), it is desirable for the cross-

correlation between s and h to have a narrow main lobe so that closely spaced target returns

can be resolved, and low side lobes so that weaker target returns are not masked by stronger

returns. One way of imposing these constraints is to force the magnitude of the normalized

XCS, given by

R̃k(s,h) =
Rk(s,h)

|hHs|
, (3.37)

to be below a masking sequence {mk} for |k| = 1, . . . , N−1. Note that we do not constrain

the XCS at k = 0 because R̃0(s,h) is always equal to unity. Attempting to constrain this

value will unnecessarily slow the optimization process. Also note that the XCS is computed

at negative lags by

R̃−k(s,h) = R̃∗
k(h, s). (3.38)

The masking sequence {mk} can be chosen so that the peak response is at k = 0, and so
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that the XCS has a specific main lobe width and a specific peak side lobe ratio (PSLR).

An example mask is presented in Sec. 3.3. Note that it is conceptually straightforward to

extend this masking approach to constrain the signal/filter CAF.

In choosing the PSLR for the XCS constraint mask, it is helpful to consider the expected

normalized XCS between the received signal and filter. This is given by

E

{∣∣∣R̃k(x,h)
∣∣∣2} :=

E
{
|Rk(x,h)|2

}
|hHs|2

(3.39)

=
|Rk(q,h)|2

|hHs|2
+

hHKh

|hHs|2
(3.40)

:=
∣∣∣R̃k(q,h)

∣∣∣2 +
1

SINR (s,h)
(3.41)

The first term in (3.41) is due to the target returns, whereas the 1/SINR (s,h) term is due

to the interference. We call the second term the XCS noise floor. If the PSLR is chosen too

low, then the domain of optimization may be overly restricted, and the subsequent reduction

in achievable SINR will manifest as an increase in the XCS noise floor. On the other hand,

if the PSLR is chosen too high, then the achievable SINR will be increased, and the noise

floor will reduce. However, weak target returns may then be masked by the side lobes of

stronger returns.

In addition to the XCS constraints, we assume that the transmit signal must be constant

modulus. This constraint can be explicitly addressed by designing only the phase function

of the transmit signal. Hereafter, the vector s should be understood as a function of the

phase vector φ, such that sn = anexp (jφn), where an ∈ R is the desired amplitude of the

signal at time n. For constant modulus, an = 1 for all n. The constraint set for the joint

signal/filter design can now be written as

Dj :=
{

(φ,h) ∈ RN × CN :
∣∣∣R̃k(s,h)

∣∣∣ ≤ m(k), k 6= 0
}

. (3.42)

Notice that the dependence of the transmit vector s on the phase vector φ is implicit. If we
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assume a whitening filter architecture, then we can write the constraint set as

Sn :=
{

φ ∈ RN :
∣∣∣R̃k(s,K

−1s)
∣∣∣ ≤ m(k), k 6= 0

}
. (3.43)

If a matched filter architecture is assumed, then the signal/filter XCS is symmetric about

k = 0, and the constraint set becomes

Sm :=
{

φ ∈ RN :
∣∣∣R̃k(s, s)

∣∣∣ ≤ m(k), k > 0
}

. (3.44)

The resulting optimization problems can now be written as:

arg max
(φ,h) ∈ Dj

∣∣hHs
∣∣2

hHKhH
(3.45)

arg max
φ ∈ Sn

sHK−1s (3.46)

arg min
φ ∈ Sn

sHKs (3.47)

We will call a solution to (3.45) the optimized joint design, a solution to (3.46) the whitening

filter optimized (WF-optimized) design, and a solution to (3.47) the matched filter optimized

(MF-optimized) design.

3.2.2 Remarks

Before proceeding to numerical examples, let us consider a few observations regarding the

optimization problems in (3.45)-(3.47). First, notice that all three problems can be thought

of as joint signal/filter optimizations, where the form of the filter is restricted in (3.46) and

(3.47), but not in (3.45). Second, the domain of optimization is different in each problem.

This is caused by the constraints imposed on the interaction between s and h. If we let
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(sj,hj) be an optimized joint design, and sn be a WF-optimized design, then clearly

SINR (sj,hj) ≥ SINR
(
sn,K

−1sn

)
. (3.48)

However, this result does not necessarily mean joint signal/filter design is preferable in all

circumstances. This is because problems (3.45)-(3.47) must be solved numerically, and

therefore, the choice of algorithm and initialization play an important role.

Problems (3.45)-(3.47) can each be solved using standard nonlinear programming al-

gorithms such as sequential quadratic programming (SQP) or interior point methods [131].

However, the results may not be global optimizers. Further, SQP and interior point meth-

ods can fail if they are not initialized with a feasible (i.e., interior) point. As we will show

in the next section, it will usually be easier to initialize (3.45) and (3.47) with a feasible

point than it is to initialize (3.46) properly. Examining constraint sets (3.42)-(3.44) we

see that the joint signal/filter design has 3N design variables (signal phase plus the real

and imaginary parts of the filter), whereas (3.46) and (3.47) each have only N design vari-

ables . Furthermore, (3.47) has only N − 1 constraints, whereas (3.45) and (3.46) have

2(N − 1). Finally, computing the the cost and constraint gradients is more expensive for

(3.45) than for (3.46) and (3.47). (See Appendix.) From these observations it appears that

the MF-optimized design is the most computationally tractable.

3.3 Examples

3.3.1 Overview

In this section we present solutions to problems (3.45)-(3.47) for two example interference

processes. For each example, the signal and filter were of length N = 64, and the signal

was constant modulus. Each problem was solved using the MATLAB Optimization Tool-

box [136]. In order to provide a fair comparison, each problem was solved using both the
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SQP algorithm [136, pp. 4-26] and the interior point algorithm [136, pp. 4-36]. Only the re-

sults for the most efficient algorithm are reported. The algorithms were allowed to perform

5000 major iterations before termination. Although, they were allowed to terminate early

if a local optimum was found, or a feasible design could not be achieved. Problem (3.45)

and (3.46) were solved most efficiently by the interior point algorithm, whereas (3.47) was

solved most efficiently by SQP. An initial barrier parameter of 0.1 was used for the interior

point algorithm. Note that all of the gradients and Jacobians required by these algorithms

are provided in the Appendix.

In order to assess the waveform-optimized performance of the three designs, we com-

pare their SINR to that of three baseline signal/filter pairs. The first baseline signal/filter

pair, which we shall refer to as the “LFM/MF” design, is a linearly frequency modulated

(LFM) waveform (sL) with 70% bandwidth, and the associated matched filter. The measure

of performance for each design is the amount of SINR provided in excess of the LFM/MF

SINR. This gain is calculated as

G(s,h) :=
SINR (s,h)

SINR (sL, sL)
(3.49)

We note that both the SQP and interior-point algorithms require initial points that are at

least close to feasible. In the examples that follow, the normalized XCS mask was cho-

sen so that the LFM/MF design was feasible. Problem (3.45) was initialized with (sL, sL),

whereas problems (3.46) and (3.47) were initialized with sL. Thus, the optimized joint

design and the MF-optimized design were initialized with feasible points, whereas the

WF-optimized design was not. A related feasibility problem could be solved in order to

initialize (3.46) with a point in Sn, but this would only add to the time required to solve for

the WF-optimized design.

The second baseline signal/filter pair that we consider consists of the LFM signal and

the corresponding whitening filter. We call this the “LFM/WF” design. The third signal/fil-
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ter pair is the eigen-optimal design given in (3.19). Together, the second and third baseline

solutions provide insight into the respective contributions of filtering and signal design to

the optimization process. When the interference has a spectrum that is dissimilar to the

baseline LFM, then it can be effectively filtered, and we expect the LFM/WF approach to

perform nearly as well as the eigen-optimal solution. For the same reason, we expect the

WF-optimized solution to perform well compared to the other solutions. When the inter-

ference is similar to the baseline LFM, then it cannot be easily filtered. In this case, the

eigen-optimal gain will be much higher than the LFM/WF gain, and one expects waveform

optimization to play a more significant role in performance improvement.

3.3.2 Dissimilar Interference

We now consider an example in which the interference is dissimilar to the baseline LFM.

Assume that the interference consists of a white Gaussian random process (i.e., the noise)

added to an autoregressive random process (i.e., the interference) whose transfer function

is given by

H(z) =
1

(1− 1.5z−1 + 0.7z−2)4
. (3.50)

Assume the two processes are scaled so that the interference-to-noise ratio (INR) is 40 dB

and the SINR is -15 dB. Hereafter, we shall refer to the noise-plus-interference as simply

the interference. The interference covariance matrix K can be found in closed form [137],

and we assume it is known.

The interference power spectral density is shown in Fig. 3.1 along with the PSDs of

the three baseline designs. Note that the receive filters in Figs. 3.1(b) and 3.1(c) have been

scaled so that
∣∣hHs

∣∣ = 1. Allowing for this scaling, one can observe that the whitening

filter shown in Fig. 3.1(b) is matched to the LFM at those frequencies at which the LFM

PSD is greater than the interference PSD. This is a well known result that can be explained
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by the fact that autocorrelation matrices can be diagonalized by the Fourier basis [138].

This also explains why the eigen-optimal solution shown in Fig. 3.1(c) places all of the

transmit energy into the low-noise portion of the band (corresponding to the low-noise

subspace of K).

As expected, filtering alone provides a great deal of gain for this example. The LFM/WF

solution provided 38.8 dB of gain, whereas the eigen-optimal solution provided only slightly

more at 41.5 dB. However, as shown in Fig. 3.2, neither of these baseline solutions has a

good XCS. Let us assume that the -20 db PSLR of the LFM/MF solution is acceptable.

How should the XCS mask be chosen for the optimized designs? To answer that question,

we note that the noise floors of the expected LFM/WF XCS and the expected eigen-optimal

XCS are, respectively, 38.8 dB and 41.5 dB below the noise floor of the expected LFM/MF

XCS. Further, the LFM/WF design is nearly feasible, with only the near-in sidelobes being

greater than -20 dB. As such, we do not expect a PSLR of -20 dB to be overly restrictive.

The XCS mask chosen for this example is shown in Fig. 3.3 along with the final signal/-

filter XCS for each optimized design. A feasible design was found for each problem, even

for (3.46), which was initialized with the infeasible design shown in 3.2(b). Each solution

provided at least 35 dB of gain above the LFM/MF. This translates into an expected XCS

noise floor of at least 35 dB below the expected LFM/MF noise floor. Thus, the -20 dB

PSLR was a prudent choice for this example.

The power spectral densities of the optimized solutions are shown in Fig. 3.4. Again,

the filters have been scaled so that
∣∣hHs

∣∣ = 1. As expected, the MF-optimized design

places its energy outside of the strong interference region, providing 38.4 dB of gain. The

WF-optimized design and the optimized joint signal/filter design have similar behavior,

with each design achieving the maximum gain of 41.3 dB. The performance improvement

over time for each optimized design is shown in Fig. 3.5. From this figure we can see that

the WF-optimized design not only provided maximum gain, but it did so in far less time

than the other solutions.
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Figure 3.1: The power spectral density of the dissimilar interference is shown along with the PSD of (a)
the baseline LFM, (b) the corresponding whitening filter, and (c) the minimum eigenvector. For this case, the
LFM/WF design provides 38.8 dB of gain above the LFM/MF, whereas the eigen-optimal design provides
41.5 dB of gain.
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(b) LFM/WF.
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(c) Eigen-optimal signal/filter.

Figure 3.2: The squared magnitude of the normalized signal/filter XCS for each baseline design in the
dissimilar interference case: (a) LFM/MF, (b) LFM/WF, (c) eigen-optimal signal/filter. In each subfigure,
(s,h) denotes the XCS between the transmit signal and filter, and E(s+w,h) denotes the expected XCS between
the received signal and filter. For this case, the LFM/WF design provides 38.8 dB of gain above the LFM/MF,
whereas the eigen-optimal design provides 41.5 dB of gain.
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(a) MF-optimized design.
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(b) WF-optimized design.
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(c) Optimized joint signal/filter design.

Figure 3.3: The -20 dB PSLR XCS mask is shown along with the squared magnitude of the normalized signal/filter XCS for each

optimized solution in the dissimilar interference case: (a) the MF-optimized design, (b) the WF-optimized design, and (c) the optimized

joint signal/filter design. In each subfigure, (s,h) denotes the XCS between the transmit signal and filter, and E(s+w,h) denotes the

expected XCS between the received signal and filter. For this case, the MF-opt. solution provides 38.4 dB of gain above the LFM/MF,

the WF-opt. design provides 41.3 dB, and the opt. joint signal/filter design provides 41.3 dB of gain.
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(a) MF-optimized design.
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(b) WF-optimized design.
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(c) Optimized joint signal/filter design.

Figure 3.4: The power spectral density of the dissimilar interference is shown along with the PSD of (a)
the MF-optimized design, (b) the WF-optimized design, and (c) the optimized joint signal/filter design. For
this case, the MF-opt. solution provides 38.4 dB of gain above the LFM/MF, the WF-opt. design provides
41.3 dB, and the opt. joint signal/filter design provides 41.3 dB of gain.

76



100 101 102
0

5

10

15

20

25

30

35

40

45

CPU Time (sec.)
G

ai
n 

ab
ov

e 
LF

M
/F

M
 (

dB
)

 

 

Eigen−opt. sig./filt.
LFM/WF
Invalid design
Valid design

(a) MF-optimized design.
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(b) WF-optimized design.
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(c) Optimized joint signal/filter design.

Figure 3.5: Performance improvement over time for the dissimilar interference case. Each subfigure shows the gain at each major

iteration for (a) the MF-optimized design, (b) the WF-optimized design, and (c) the optimized joint signal/filter design. The lower solid

line denotes the gain provided by the LFM/WF solution (38.8 dB), and the upper solid line denotes the gain provided by the eigen-

optimal solution (41.5 dB). Optimized designs that violate the constraints (i.e., invalid designs) are denoted by dots, whereas designs

that do not violate the constraints (i.e., valid designs) are denoted by squares.
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3.3.3 Similar Interference

We now consider an example in which the interference is similar to the baseline LFM.

Assume that the interference consists of a white Gaussian random process added to an-

other white Gaussian random process that has been band-pass filtered. As before, the two

processes are scaled to provide a 40 dB INR and a -15 dB SINR. For this example, the

interference covariance matrix (K) was estimated using one million realizations. The in-

terference power spectral density is shown in Fig. 3.6 along with the PSDs of the three

baseline solutions. Note that the filters in Figs. 3.6(b) and 3.6(c) have been scaled so that∣∣hHs
∣∣ = 1. As expected, we observe that the whitening filter is matched to the LFM at

those frequencies at which the LFM PSD is greater than the interference PSD. However,

because the interference is so similar to the baseline LFM, the whitening filter must reject

most of the signal energy. Therefore, while the deflection coefficient denominator hHKh is

made small, the numerator hHs is also small. This explains the large filter magnitude in the

low-noise portion of the band. For this example, the LFM/WF solution provided 11.5 dB of

gain above the LFM/MF solution. However, the eigen-optimal solution provided 41.7 dB

of gain. Thus, we expect waveform optimization to play a significant role in performance

improvement.

As before, the LFM/WF and eigen-optimal solutions have poor XCSs. (Fig. 3.7.) If we

assume that the -20 db PSLR of the LFM/MF solution is acceptable, how should the XCS

mask be chosen? The eigen-optimal noise floor (-41.7 dB) makes it conceivable that an

optimized solution could achieve a -20 dB noise floor. However, the LFM/WF noise floor

(-11.5 dB) is much higher, and the LFM/WF sidelobes are all greater than -20 dB. In this

case, it is not clear how the max PSLR should be chosen. So, we choose -20 dB.

The XCS mask for this example is shown in Fig. 3.8 along with the final signal/filter

XCS for each optimized solution. As can be seen, a feasible solution was found for the

MF-optimized and optimized joint signal/filter designs, but not for the WF-optimized de-

sign. Of the two feasible designs, the MF-optimized design provided only 5.2 dB of gain,
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whereas the optimized joint design provided 10.0 dB. The power spectral densities of the

optimized solutions are shown in Fig. 3.9. Notice that each design must place a significant

amount of energy in the interference portion of the band in order to satisfy the constraints.

This explains why the resulting gains are lower than in the previous example. The perfor-

mance improvement over time for each optimized design is shown in Fig. 3.10. As in the

previous example, the joint design appears to be as computationally efficient as the MF-

optimized approach. Also, we can see that the WF-optimized problem terminated without

ever providing a feasible design. This is a characteristic difficulty with the WF-optimized

approach: determining a feasible solution for initialization. Of course, one can attempt to

solve the relevant feasibility problem to find a suitable initial design, but this would only

add to the computational complexity of the solution.

3.4 Conclusion

The examples in the previous section demonstrate that the whitening filter is not always

the best choice when the transmit waveform is optimized for a particular interference envi-

ronment. In the dissimilar interference example, the WF-optimized solution achieved the

upper bound on gain in a minimal amount of time, despite the fact that the algorithm used

to solve the optimization problem was initialized with an infeasible design. However, in the

similar interference example, a feasible solution was never found for the whitening filter

architecture. This difficulty with initialization is a distinct disadvantage of the whiten-

ing filter approach. On the other hand, the extra degrees of freedom available in a joint

signal/filter design make it easier for the optimizing algorithm to satisfy the constraints.

Thus, a joint design is more likely to provide a superior solution. In both examples, the

joint signal/filter design provided more gain than the MF-optimized design, and it did so

at a comparable computational cost. For these reasons, a joint signal/filter design may be

preferable in many applications.
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(b) Whitening filter.
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Figure 3.6: The power spectral density of the similar interference is shown along with the PSD of (a) the
baseline LFM, (b) the corresponding whitening filter, and (c) the minimum eigenvector. For this case, the
LFM/WF design provides 11.5 dB of gain above the LFM/MF, whereas the eigen-optimal design provides
41.7 dB of gain.
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(a) LFM/MF.
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(b) LFM/WF.
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(c) Eigen-optimal signal/filter.

Figure 3.7: The squared magnitude of the normalized signal/filter XCS for each baseline design in the
similar interference case: (a) LFM/MF, (b) LFM/WF, (c) eigen-optimal signal/filter. In each subfigure, (s,h)
denotes the XCS between the transmit signal and filter, and E(s+w,h) denotes the expected XCS between the
received signal and filter. For this case, the LFM/WF design provides 11.5 dB of gain above the LFM/MF,
whereas the eigen-optimal design provides 41.7 dB of gain.
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(a) MF-optimized design.

−60 −40 −20 0 20 40 60
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

Lag

S
qu

ar
ed

 M
ag

ni
tu

de
 o

f S
ig

na
l/F

ilt
er

 X
C

S
 (

dB
)

 

 
mask
(s,h)
E(s+w,h)

(b) WF-optimized design.
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(c) Optimized joint signal/filter design.

Figure 3.8: The -20 dB PSLR XCS mask is shown along with the squared magnitude of the normalized signal/filter XCS for each

optimized solution in the similar interference case: (a) the MF-optimized design, (b) the WF-optimized design, and (c) the optimized

joint signal/filter design. In each subfigure, (s,h) denotes the XCS between the transmit signal and filter, and E(s+w,h) denotes the

expected XCS between the received signal and filter. For this case, the MF-opt. solution provides 5.2 dB of gain above the LFM/MF,

the WF-opt. design provides 4.6 dB, and the opt. joint signal/filter design provides 10.0 dB of gain.
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(a) MF-optimized design.
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(b) WF-optimized design.
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(c) Optimized joint signal/filter design.

Figure 3.9: The power spectral density of the similar interference is shown along with the PSD of (a) the
MF-optimized design, (b) the WF-optimized design, and (c) the optimized joint signal/filter design. For this
case, the MF-opt. solution provides 5.2 dB of gain above the LFM/MF, the WF-opt. design provides 4.6 dB,
and the opt. joint signal/filter design provides 10.0 dB of gain.
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(a) MF-optimized design.

101 102
0

5

10

15

20

25

30

35

40

45

CPU Time (sec.)

G
ai

n 
ab

ov
e 

LF
M

/F
M

 (
dB

)

 

 
Eigen−opt. sig./filt.
LFM/WF
Invalid design
Valid design

(b) WF-optimized design.

100 101 102
0

5

10

15

20

25

30

35

40

45

CPU Time (sec.)

G
ai

n 
ab

ov
e 

LF
M

/F
M

 (
dB

)

 

 
Eigen−opt. sig./filt.
LFM/WF
Invalid design
Valid design

(c) Optimized joint signal/filter design.

Figure 3.10: Performance improvement over time for the similar interference case. Each subfigure shows the gain at each major

iteration for (a) the MF-optimized design, (b) the WF-optimized design, and (c) the optimized joint signal/filter design. The lower solid

line denotes the gain provided by the LFM/WF solution (11.5 dB), and the upper solid line denotes the gain provided by the eigen-

optimal solution (41.7 dB). Optimized designs that violate the constraints (i.e., invalid designs) are denoted by dots, whereas designs

that do not violate the constraints (i.e., valid designs) are denoted by squares.
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Chapter 4

Computationally Efficient Formulations

In the previous chapter, we introduced a direct approach to constraining the signal/filter

XCS. However, the algorithms used to solve the resulting problem formulations might

be be too computationally expensive for some applications. This might occur when the

interference is not strictly WSS, but it can be approximated as such over a short interval.

As such, we seek suboptimal solutions that are less computationally intensive. To the best

of our knowledge, there are no other approaches for constraining the signal/filter XCS

other than the direct approach. However, if we assume a matched filter receiver, then we

must constrain only the autocorrelation sequence (ACS) of the transmit signal, and indirect

methods for constraining a waveform’s ACS do exist. One such indirect method uses a

similarity constraint, which forces the solution to be close in the Euclidean sense to some

other waveform that possesses a desirable ACS [33, 35]. This approach can be motivated

by Sussman’s work [139], which shows that the error (Euclidean distance) between the

ACSs of two waveforms decreases as the error between the two waveforms decreases. The

utility of the similarity constraint is explored in Sec. 4.1. In Sec. 4.2, we discuss another

indirect approach based on a parametrization of nonlinear frequency modulation. We note

that while only the waveform’s ACS is addressed explicitly, both approaches can be used

to constrain the waveform’s ambiguity function.
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4.1 ACS and Modulus Constraints

In this section, we investigate the efficacy of the similarity constraint when waveform mod-

ulus is also constrained. In Sec. 4.1.1 and 4.1.2, we describe two methods of constraining

the waveform ACS and three methods of constraining the waveform modulus. This results

in six possible nonlinear programming problems. Standard numerical algorithms are then

used to solve each formulation for an example interference process, and the results are

presented in Sec. 4.1.3. Concluding remarks for this section are given in Sec. 4.1.4.

4.1.1 Magnitude and Phase Design

In this section, we consider the design of both the real and imaginary parts of a complex-

valued waveform. This will allow for amplitude and phase modulation, as opposed to the

phase-only modulation described in the previous chapter. Since we assume a matched filter

architecture, the post-filter SINR is given by the functional F : CN → R defined by

F (s) :=

∣∣sHs
∣∣2

sHKs
, (4.1)

where s ∈ CN is the waveform to be optimized and K ∈ CN×N is a positive definite

matrix. Let R̃k : CN → R map a waveform to the kth lag of its normalized ACS. That is,

R̃k(s) :=
1

|sHs|

N−1−k∑
n=0

sn+ks
∗
n. (4.2)

As in Ch. 3, we can constrain the peak sidelobe height and mainlobe width of the normal-

ized ACS by forcing the intensity of R̃k(s) to be less than some value mk ∈ R+ at each lag

k. To do so, we define the kth ACS constraint functional Ak : CN → R to be

Ak(s) :=
∣∣∣R̃k(s)

∣∣∣2 −mk, (4.3)
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and we define a combined ACS constraint function A : CN → RN by

A(s) := [A1(s) . . . AN−1(s)]
T . (4.4)

Subjecting the maximization of (4.1) to the conditionA(s) � 0, where 0 is the zero vector,

will directly impose constraints on the waveform ACS. Note that we do not constrain the

ACS at k = 0. This is because R̃0(s) is always equal to unity, and constraining this value

will unnecessarily slow the optimization process.

As an alternative to the ACS mask approach, we can indirectly impose ACS constraints

on the maximization of (4.1) by using the similarity constraint functional S : CN → R

defined by

S(s) := ||sd − s||2 − ε (4.5)

where sd ∈ CN is a vector with a desirable ACS, and ε > 0 controls the Euclidean distance

of s from sd. Replacing the condition A(s) � 0 with S(s) ≤ 0 will constrain the ACS of

the minimizer of (4.1) to be close to the ACS of sd. Just how close depends on the similarity

constant ε. There is currently no formula for precisely relating ε to the distance between

autocorrelation sequences. Therefore, we must chose ε based on experimentation.1

It was shown in Ch. 2 that the peak power of the waveform must be constrained even

when the waveform is not restricted to be constant modulus. To control the maximum wave-

form modulus, we define the nth waveform modulus constraint functional Mn : CN → R

by

Mn(s) := |sn|2 − pn, (4.6)

1Sussman’s work relating the Euclidean distance between ambiguity functions in L2(R2) to the Eu-
clidean distance between signals in L2(R) might explain how the similarity constraint indirectly constrains
the waveform ACS when waveform energy is held constant [139]. However, an analytical method of deter-
mining the similarity constant has not been reported.
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where pn ∈ R+ represents the maximum allowable squared magnitude (i.e., peak power)

at time n. We then combine all modulus constraints into a single functionM : CN → RN

defined by

M(s) := [M0(s) . . . MN−1(s)]
T . (4.7)

The maximum modulus of the waveform can then be constrained by subjecting the maxi-

mization of (4.1) to the conditionM(s) � 0.

4.1.2 Phase-Only Design

If the waveform must be constant modulus, or the waveform must have some desired taper,

we can choose each pn appropriately, and replaceM(s) � 0 withM(s) = 0. In this case,

we need only find the optimal phase vector φ ∈ RN such that

sn =
√

pnexp (jφn) (4.8)

The numerator in (4.1) does not vary with φ. Thus, maximizing (4.1) is equivalent to

minimizing F̂ : RN → R defined by

F̂ (φ) := sHKs, (4.9)

where the dependence of s on φ is implicit. Similarly, the denominator in (4.2) does not

vary with φ. Therefore, by scaling each pn and mk appropriately, we can use the unscaled

ACS of s, which is given by

Rk(s) :=
N−1−k∑

n=0

sn+ks
∗
n. (4.10)
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We can then define the kth ACS constraint functional Âk : RN → R by

Âk(φ) := |Rk(s)|2 −mk, (4.11)

and the combined constraint function Â : RN → RN by

Â(φ) := [Â1(φ) . . . ÂN−1(φ)]T . (4.12)

Together, (4.11) and (4.12) can be used to directly constrain the waveform ACS. The simi-

larity constraint can be imposed by using

Ŝ := [S ◦ s](φ) (4.13)

where the dependence of s on φ has been made explicit. We note that a phase-only for-

mulation reduces the number of design variables by half while eliminating the N modulus

constraints altogether.

4.1.3 Numerical Example

The definitions in the previous subsection can be combined to form six different nonlinear

programming problems (programs). These programs, denoted P1 − P6, are listed in Table

4.1. The second column of the table describes the objective function, while the third and

fourth columns describe the ACS and modulus constraints, respectively. Programs P1 and

P4 represent a full waveform design (amplitude and phase), whereas P3 and P6 are true

phase-only designs. Programs P2 and P5 are hybrids in that the real and imaginary parts are

design separately, but they are constrained by the relationship Re {sn}2 + Im {sn}2 = pn.

Thus, P2 and P4 are essentially phase-only designs. We expect P2 and P4 to achieve the

same gains as P3 and P6, respectively, while requiring more time to converge due to the

additional constraints. We observe that P1 has the most degrees of freedom, and is therefore
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Subject to Number of

ID Maximize ACS Modulus Design Variables Constraints

P1 F (s) Ã(s) � 0 M(s) � 0 2N 2N − 1

P2 F (s) Ã(s) � 0 M(s) = 0 2N 2N − 1

P3 -F̂ (φ) Â(φ) � 0 − N N − 1

P4 F (s) S(s) ≤ 0 M(s) � 0 2N N + 1

P5 F (s) S(s) ≤ 0 M(s) = 0 2N N + 1

P6 -F̂ (φ) Ŝ(φ) ≤ 0 − N 1

Table 4.1: Various Nonlinear Programs.

expected to provide the greatest gain. On the other hand, P6 has half as many design

variables and only one constraint. Thus, it is expected to converge to a solution fastest.

Each of the programs in Table 4.1 was solved using the MATLAB Optimization Tool-

box [136] for the example interference process described in Sec. 3.3.2. In order to provide

a fair comparison, each problem was solved using both the SQP algorithm [136, pp. 4-26]

and the interior point algorithm [136, pp. 4-36]. However, only the results for the most

efficient algorithm are reported. The algorithms were allowed to run for 10 minutes before

termination, but they were also allowed to terminated early if a local optimum was found.

Programs P1 and P2 were solved most efficiently by the IP algorithm using an initial barrier

parameter of 1000. The remaining programs were solved more efficiently by SQP.

The ACS mask was constructed as described in Sec. 3.3.2 with the baseline waveform

defined by

sd(n) = exp

(
j

(
π

(N − 1)
n2 + πn

))
, n = 0, · · · , N − 1 (4.14)

for N = 128, and a peak side lobe ratio (PSLR) of -20 dB. In order to provide a fair

comparison between the direct and indirect ACS constraint methods, the similarity constant

ε was chosen so that the final waveforms did not violate the constraint mask. This value
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was found by trial-and-error to be ε = 0.01. The ACSs of the optimized waveforms for

each program are shown in Figs. 4.1 and 4.2. Notice that each design satisfies the ACS

constraint mask.

Figures 4.3 and 4.4 depict the evolution of gain over time for each program. Comparing

program P1 to P4, P2 to P5, and P3 to P6, we observe that use of the similarity constraint

significantly reduces convergence time, but at the cost of greatly reduced gain. Comparing

P2 to P3 and P5 to P6, we notice a significant reduction in convergence time for phase-only

design. Furthermore, comparing the gains of P1 to P3 and P4 to P6 suggests that amplitude

modulation may play a negligible role in cost function reduction. As such, phase-only

design may be a viable alternative to magnitude and phase design when modulus constraints

are imposed.

4.1.4 Conclusion

The results of this section suggest that the similarity constraint can be an ineffective means

of constraining waveform ACS when modulus constraints are also imposed. The results

also suggest that amplitude modulation may contribute only slightly to SINR maximization.

As such, the phase-only design approach, which has fewer design variables and constraints,

may be preferable. The IP and SQP algorithms used to obtain the results are extremely

computationally complex. As such, more computationally efficient approaches should be

investigated.
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(b) ACS of P2. Provided 38.26 dB of gain.
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(c) ACS of P3. Provided 38.24 dB of gain.

Figure 4.1: The -20 dB PSLR ACS mask is shown along with the squared magnitude of the final waveform ACS for programs (a)

P1 (b) P2 and (c) P3. P1 provided 39.9 dB of gain above the LFM/MF solution. P2 provided 38.3 dB, and P3 provided 38.2 dB of

gain.
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(a) ACS of P4 (ε=0.0100). Provided 2.49 dB of gain.
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(b) ACS of P5 (ε=0.0100). Provided 2.05 dB of gain.
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(c) ACS of P6 (ε=0.0100). Provided 2.05 dB of gain.

Figure 4.2: The -20 dB PSLR ACS mask is shown along with the squared magnitude of the final waveform ACS for programs (a)

P4 (b) P5 and (c) P6. P4 provided 2.5 dB of gain above the LFM/MF solution. P5 provided 2.0 dB, and P6 provided 2.0 dB of gain.
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Figure 4.3: Learning curves for programs P1-P3.

100 101 102
−10

−5

0

5

10

15

20

25

30

35

40

CPU Time (sec.)

G
ai

n 
ab

ov
e 

LF
M

/F
M

 (
dB

)

 

 
Upper Bound
P

4
 Invalid

P
4
 Valid

P
5
 Invalid

P
5
 Valid

P
6
 Invalid

P
6
 Valid

Figure 4.4: Learning curves for programs P4-P6.
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4.2 NLFM for Waveform Optimization

In the previous section, we showed that a phase-only design can provide near optimal gain

at a much lower computational cost, and indirectly constraining the waveform ACS via

a similarity constraint can over restrict the feasible region of optimization. In this sec-

tion, we consider another indirect approach that requires significantly fewer calculations

than the direct ACS constraint approach while providing more gain than the similarity con-

straint method. Our approach is to represent the phase of the waveform by a parametrized

approximation. We then relate this approximation to the ACS of the signal to demonstrate

that the ACS can be indirectly constrained by limiting the magnitudes of the approximation

parameters. The optimization is then performed with respect to these parameters.

4.2.1 Problem Formulation

Consider the scenario in which an attenuated and delayed version of the transmit signal

(s) is received in the presence of a zero-mean additive complex Gaussian random process,

which is assumed to be independent of the transmitted signal. Note, this independence

assumption is made for convenience, as our results can be applied without modification to

the signal-dependent (i.e.., clutter/reverberation) case described in [28, 30, 79]. Assume

that the received signal-plus-interference is processed by a correlation receiver, in which

the receive filter is matched to the transmit signal [103, ch. 4]. Consider the functional

J : CN → R given by

J(s) := sHKs (4.15)

where s ∈ CN is the waveform to be optimized, and K ∈ CN×N is the interference co-

variance matrix, which is assumed to be positive definite. It was shown in Ch. 3 that the

deflection coefficient (i.e., post-filter signal-to-noise ratio) for the matched filter receiver

is equal to ||s||4 /J(s). Thus, minimizing J(s) maximizes the deflection coefficient, and
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consequently, the probability of detection as well [103][106][132]. When subject only to

the energy constraint ‖s‖2 = 1, the minimizer of (4.15) is given by s = φ0, where φ0 is the

eigenvector of K corresponding to the minimum eigenvalue λ0. Unfortunately, this pre-

scription for the transmitted signal is not amenable to practical transceiver architectures,

because φ0 will not possess, in general, the required magnitude function (i.e., constant

modulus). Moreover while φ0 minimizes J , its autocorrelation sequence may suffer from

high side lobes and a broadened or fractured main lobe. We propose to design a phase-only

waveform, thereby automatically satisfying any magnitude function requirement, and we

propose to indirectly control the ACS by constraining the waveform parameters that mini-

mize J . It should be noted that this approach can be easily extended to design waveforms

having any magnitude function, not just constant modulus.

We select the linear frequency-modulated (LFM) pulse defined by

sL(n) = exp
(
j(γn2 + σn)

)
, n = 0, · · · , N − 1 (4.16)

as our starting point because of the spectral flatness it provides. Nonlinear perturbation

of the phase of this waveform will provide spectral selectivity by sweeping through some

frequencies faster or slower than others. This will also affect the ACS shape. We note that

the idea of nonlinear frequency modulation (NLFM) is by no means new, having already

been employed for applications such as side lobe control [109].

Following the paradigm of [109, Section 10.4], a Fourier series phase perturbation is

selected, giving the signal model

s(n) = sL(n)exp

(
j

M−1∑
k=1

aksin (ωkn) + bkcos (ωkn)

)
(4.17)

where ωk = πk/M . We can now derive the ACS of (4.17) by introducing limited approxi-
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mations. By definition, the ACS of (4.17), evaluated at lag l, is given by

r(l) :=
N−l−1∑

n=0

s(n)s∗(n− l) (4.18)

Expanding this expression, applying standard trigonometric identities, and simplifying re-

sults in

r(l) =
N−l−1∑

n=0

exp (j (2γnl + φ))

× exp

(
j2

M−1∑
k=0

sin

(
ωkl

2

)[
akcos

(
ωk

(
n +

l

2

))
− bksin

(
ωk

(
n +

l

2

))])

where φ = γl2 + σl. When the argument of the second exponential is small, we can

approximate the above by

r̂(l) =
N−l−1∑

n=0

exp (j (2γnl + φ))

×

(
1 + 2j

M−1∑
k=0

sin

(
ωkl

2

)[
akcos

(
ωk

(
n +

l

2

))
− bksin

(
ωk

(
n +

l

2

))])

Rearranging the summations, applying Euler’s identity and the geometric series formula,

and simplifying yields

r̂(l) = ζ(l)Dl (γl) + ζ(l)
M−1∑
k=0

{
αkDl

(
γl +

ωk

2

)
+ βkDl

(
γl − ωk

2

)}
(4.19)

where

ζ(l) = exp (j(γl(N − 1) + σl)) (4.20)

Dl (Ω) =
sin ((N − l)Ω)

sin (Ω)
(4.21)
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and

αk = sin

(
ωkl

2

)
exp

(
j

(
γl +

ωkl

2

)
(N − 1)

)
(akj − bk) (4.22)

βk = sin

(
ωkl

2

)
exp

(
j

(
γl − ωkl

2

)
(N − 1)

)
(akj + bk) (4.23)

The first term in (4.19) can be recognized as the ACS of the LFM (sL). Thus, the approxi-

mate increase in side lobes is given by

r̃(l) = ζ(l)
M−1∑
k=0

{
αkDl

(
γl +

ωk

2

)
+ βkDl

(
γl − ωk

2

)}
, (4.24)

and we see that by constraining the Fourier coefficients ak and bk to be small, we constrain

the ACS error to be small as well.

While the result of (4.24) is informative, it does not provide an exact method of pre-

dicting increased side lobes in the presence of sinusoidal phase perturbations. We therefore

define the waveform optimization problem:

min
{ak,bk}

sHKs (4.25a)

subject to |ak| < amax, k = 0, . . . , N − 1 (4.25b)

|bk| < amax, k = 0, . . . , N − 1 (4.25c)

where the waveform s is defined by (4.17), and amax controls the maximum allowable

side lobe increase. For a given number of coefficients (2M ), the parameter amax controls

the size of the feasible region of optimization. As amax is increased, greater nonlinear

phase perturbations will be permitted. This will allow increased performance improvement,

but this improvement will be at the expense of higher ACS side lobes. The optimization

problem defined in (4.25) can be initialized with ak, bk = 0 for all k, and the optimization

can be performed efficiently by any number of constrained optimization algorithms such
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as sequential quadratic programming (SQP) or interior point methods [131]. An efficient

method for calculating the gradient of the cost function with respect to the parameter vector

[a0 . . . aN b1 . . . bN ] is provided in the Appendix.

4.2.2 Simulation Results

In order to illustrate the effectiveness of the NLFM-optimized approach (4.25), we compare

its performance to that of the direct and similarity constrained approaches for the example

interference process shown in Fig. 4.5. This interference process can be generated by

filtering circularly symmetric complex-valued white Gaussian noise with the filter

H(z) =
1

(1− 1.5z−1 + 0.7z−2)4
(4.26)

(i.e., an autoregressive process), and then adding the result to another circularly symmet-

ric complex-valued white Gaussian random process such that the resulting interference-

to-noise ratio is 40 dB, and the resulting signal-to-interference-plus-noise ratio is -5 dB.

However, for the following examples, we assume perfect knowledge of the interference

covariance matrix K, which can be calculated in closed form [137].

If we define the transmit signal as sn := exp (jφn), then the directly constrained design

can be found by solving the optimization problem

min
{φn}

sHKs (4.27a)

subject to |r(l)|2 ≤ ml, l = 0, · · · , N − 1 (4.27b)

where ml is the allowable squared magnitude of the waveform ACS at lag l. The actual

values for the mask will be discussed later. The similarity constrained design can be found
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Figure 4.5: Power spectral density of interference and baseline LFM.

by solving

min
{φn}

sHKs (4.28a)

subject to ||sL − s||2 ≤ ε (4.28b)

where sL is a waveform with a desirable ACS, and ε is the similarity constant. Designs

(4.27) and (4.28) were discussed in the previous section. For each design, the length of

the waveform was specified to be N = 128. The template waveform sL in (4.28) was

chosen to be the LFM defined in (4.16), with γ = π/(N − 1) and σ = π. Both indirect

approaches require user parameters: M and amax for the NLFM approach, and ε for the

similarity approach. In order to make a fair comparison between the three designs, we

set M = N/2, and then manually found the largest amax and ε such that the ACSs of the

optimized waveforms did not violate the constraint mask m. This way, each design was

given the same number of design variables and the same ACS constraints.

Algorithm performance is measured in two ways. The first is the gain of the solution
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with respect to the initial waveform sL. This value is given by

G(s) :=
J(sL)

J(s)
=

sH
L KsL

sHKs
(4.29)

For the spectrum shown in Fig. 4.5, the maximum achievable gain for a unit energy wave-

form, without regard for ACS or modulus constraints, is

G(φ0) =
sH
L KsL

λ0

= 40 dB. (4.30)

The second measure of algorithm performance is the time required to compute the solution.

Each optimization problem was solved using the MATLAB Optimization Toolbox [136].

In order to make a fair comparison, each problem was solved using the sequential quadratic

programming (SQP) and the interior-point algorithms, and an effort was made in each case

to find the algorithm options that resulted in the fastest convergence time. Problem (4.27)

was solved the fastest using the SQP algorithm [136, pp. 4-26], whereas (4.28) and (4.25)

were solved more efficiently by the interior-point algorithm [136, pp. 4-36]. Only the

results from the fastest algorithm for each problem are reported.

The first comparison between the three designs was performed for the ACS mask de-

picted in Figs. 4.6(a)-4.6(c), which also show the final solution ACSs. This mask limits

the ACS peak side lobe ratio (PSLR) to -20 dB, and we note that each design satisfies the

ACS constraint. The evolution of gain over time (seconds) is shown in Fig. 4.7 for each

optimization problem. Notice that the NLFM approach provides higher gain than the simi-

larity constraint at each epoch. However, the direct approach begins to provide higher gain

at approximately 1.5 seconds, continuing to improve until reaching a substantially higher

gain. This example shows that the NLFM-optimized approach can be beneficial for scenar-

ios in which little time is available to compute the solution. This may occur in applications

involving nonstationary interference that can be assumed stationary over a short interval of

time.
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(a) Directly constrained solution. Run time of 30.33 sec-
onds resulted in 37.73 dB gain and -20.00 dB PSLR.
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(b) NLFM solution (M=64, amax=0.0588). Run time of
2.88 seconds resulted in 5.31 dB gain and -20.01 dB PSLR.
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(c) Similarity constrained solution (ε=0.0103). Run time
of 1.21 seconds resulted in 2.08 dB gain and -20.03 dB
PSLR.

Figure 4.6: The -20 dB PSLR ACS mask is shown along with the squared magnitude of the
final waveform ACS for all three methods.
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Figure 4.7: Gain versus CPU time for the -20 PSLR example.
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Figure 4.8: Gain versus CPU time for the -15 PSLR example.
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In order to illustrate the trade between gain and PSLR that occurs with increasing amax,

we consider the case in which the PSLR was constrained to be less than -15 dB. The ACS

mask for this example is shown in Figs. 4.9(a)-4.9(c), which also depict the final solution

ACSs. Again, we note that each solution satisfies the ACS mask constraint. The evolution

of gains over time for this example is shown in Fig. 4.8. The increase in gain resulting

from the relaxed ACS constraints was negligible for the direct approach, but significant for

both indirect approaches. As before, the NLFM approach provides higher gain than the

similarity approach at each epoch. However, the direct ACS begins to provide higher gain

at approximately 2.5 seconds, continuing until a substantially higher gain is achieved. This

example illustrates that the NLFM approach provides a mechanism for trading between

gain and PSLR.

4.2.3 Conclusions

Practical waveform design algorithms must seek to improve system performance while

maintaining good ACS properties and satisfying modulus requirements for implementa-

tion. In this section, we described a phase-only waveform optimization process that allows

simple indirect constraints to be placed on ACS side lobe levels, providing a straightfor-

ward means to trade gain for increased side lobes. This approach outperforms the similar-

ity constraint method in terms of gain and convergence time. Furthermore, it can provide

greater gain than the directly constrained approach in applications for which only a minimal

amount of time is available to compute the solutions, but as the allowed computation time

is extended, the NLFM performance gain plateaus due to the over constrained feasibility

region.
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(a) Directly constrained solution. Run time of 26.19 sec-
onds resulted in 37.81 dB gain and -15.76 dB PSLR.

−100 −50 0 50 100
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Lag Index

N
or

m
al

iz
ed

 A
C

S
 (

dB
)

 

 
Mask
LFM
Solution

(b) NLFM solution (M=64, amax=0.1250). Run time of
18.96 seconds resulted in 15.31 dB gain and -14.65 dB
PSLR.
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(c) Similarity constrained solution (ε=0.0710). Run time
of 2.94 seconds resulted in 6.46 dB gain and -15.06 dB
PSLR.

Figure 4.9: The -15 dB PSLR ACS mask is shown along with the squared magnitude of the
final waveform ACS for all three methods. 105



Chapter 5

Closing Remarks

In this chapter, we summarize the contributions made by this dissertation (5.1) and elabo-

rate on how this research can be extended (5.2).

5.1 Contributions

Prior to our work, the waveform optimization literature consisted of incomplete problem

formulations that did not capture all of the constraints that would actually be imposed on

the transmit waveform by a radar system. Thus, for most practical scenarios, those results

cannot be used to design an actual ATx system. We have addressed this shortcoming, by

1) identifying the critical constraints (i.e., waveform modulus and ambiguity function),

and 2) providing at least baseline solutions to the resulting optimization problems. Thus,

our results represent significant advances in ATx technology – advances that move this

technology toward implementability. We will now discuss the individual contributions of

this dissertation in more detail.

Modulus Constraints: (Ch. 2.) It has long been appreciated that the waveform opti-

mization algorithms found in the literature do not incorporate constant modulus constraints.

These constraints are non-convex, and are therefore difficult to satisfy in otherwise convex

formulations. As a result, many works assume that a linear power amplifier is used instead
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of a nonlinear amplifier; this is the case for the state of the art solutions of [33] and [28].

However, we demonstrated that the waveform modulus must still be constrained when a

linear amplifier is used. Further, we have shown that any algorithm that does not do so

may actually degrade system performance. This result may impact the field of waveform

optimization by leading future algorithm designs to account for modulus constraints.

Modulus Constraint Satisfaction: (Ch. 2.) Having established the inextricable na-

ture of modulus constraints, we went on to consider how the state of the art in waveform

optimization could be extended to satisfy them. Our contribution was to 1) establish the

connection between this problem and the problem of phase retrieval, 2) make advances in

the convergence analysis of applicable algorithms, 3) derive a novel algorithm for a spe-

cific case (when the number of degrees of freedom in the time domain exceeds those in

the frequency domain), and 4) demonstrate that the alternating projections approach is a

computationally efficient alternative to “parameter free” nonlinear programming methods.

Multi-Target Detection: (Ch. 3.) Heretofore, the waveform optimization literature

only considered the detection of a single target. When multiple targets are present at un-

known ranges/velocities, which is by far the most common radar scenario, the algorithms

in the literature are not applicable because they do not consider the ambiguity function of

the transmit waveform. Our contribution was to 1) formulate the waveform optimization

problem for a variety of receiver architectures, 2) introduce the direct method of constrain-

ing the waveform ambiguity/cross-ambiguity function, and 3) provide an investigation of

applicable nonlinear programming algorithms. Our solutions are the state of the art for the

design of interference-suppressing waveforms in the multi-target detection problem.

Efficient Formulations, Similarity Constraint: (Ch. 4.) The direct ambiguity func-

tion constraint approach is computationally demanding. Thus, additional contributions of

this dissertation are that we 1) introduced alternate formulations involving phase-only de-

signs and similarity constraints on phase-only designs, and 2) we demonstrated that the

similarity constraint is an inefficient means for constraining the waveform ambiguity func-
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tion. This result is significant because the similarity constraint (for magnitude and phase

design) has been proposed in other works without considering the effect on optimality.

Efficient Formulations, NLFM: (Ch. 4.) Another contribution of this dissertation was

that we introduced a novel approach to constraining a waveform’s ambiguity function via a

parametrization of nonlinear frequency modulation. This approach provides gains greater

than the similarity constraint, but at a computational cost much less than than the direct

constraint approach.

5.2 Future Research

There are perhaps two issues that must be addressed before ATx technology can be im-

plemented in a real system. The first involves constraining the bandwidth of the transmit

signal. Our nonlinear programming approach can be extended to handle these constraints

in a straightforward manner. Secondly, many applications will require the fast computa-

tion of solutions. It is not yet clear if our efficient formulations are fast enough. This

will be known only after a specific application has been chosen, and a prototype system is

designed.

We note that clutter has not been explicitly considered in this work. It is a straight-

forward matter to augment our cost functions to account for the LTI clutter model that

is prevalent in the literature. However, if the delay-frequency distribution of the clutter

is known, then the direct ambiguity function constraint method can be used to make the

AF response low in the portion of the delay-frequency plane occupied by the clutter. This

approach should be investigated in future work.



Appendix A

Appendix for Chapter 2

A.1 Relevant Proofs

Theorem A.1-1 (Point-set distance is nonincreasing for alternating projections). Let S and

T be subspaces of metric space (X, d) with projections ΠS and ΠT , respectively. As-

sume mapping PS : X → S and PT : X → T are well defined such that PS(x) ∈

ΠS(x) and PT (x) ∈ ΠS(x) for all x ∈ X , and define the sequence {sk}∞k=0 such that

sk+1 = (PS ◦ PT )(sk) for k > 0. Then, d(sk+1, T ) ≤ d(sk, T ).

Proof. Define the sequence {tk}∞k=0 by tk = PT (sk), and note that sk+1 = PS(tk). Then,

by the properties of a projection, and the symmetry of the metric d, we have

d(sk+1, T ) ≤ d(sk+1, tk) (A.1)

= d(tk, sk+1) (A.2)

= d(tk, S) (A.3)

≤ d(tk, sk) (A.4)

= d(sk, tk) (A.5)

= d(sk, T ) (A.6)
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Theorem A.1-2. Let set A be defined by (2.13) with projection operator ΠA. Let PA : CN → A

be defined by (2.15). Then PA(x) ∈ ΠA(x) for all x ∈ CN .

Proof. Note that ||a||2 = ||p||2 for all a ∈ A. Thus, for any arbitrary but fixed x ∈ CN and

a ∈ A, we can write

||x− a||2 = ||x||2 + ||p||2 − 2Re
{
xHa

}
(A.7)

Therefore,

ΠA(x) := arg inf
a∈A

||x− a||2 = arg sup
a∈A

Re
{
xHa

}
(A.8)

By definition of A, we have

Re
{
xHa

}
=

N−1∑
n=0

pn |xn| cos (∠xn − ∠an) ≤
N−1∑
n=0

pn |xn| (A.9)

Thus, the minimum distance is achieved PA(x) defined by [PA(x)]n = pnexp (j∠xn).

(Note that ΠA(x) is set valued in general because the phase of a ∈ ΠA(x) can take on any

value wherever xn = 0. Thus, PA 6= ΠA.)

Theorem A.1-3. Let set B̃ be defined by (2.14) with projection operator Π eB. Let

P eB : CM → B̃ be defined by (2.16). Then P eB(x) ∈ Π eB(x) for all x ∈ CM .

Proof. Replace A with B̃, N with M and p with q in the proof of Thm. A.1-2.

Theorem A.1-4. Let A ⊆ CN have projection ΠA, and assume there exists a mapping

PA : CN → A such that PA(x) ∈ ΠA(x) for all x ∈ CN . Let U ∈ CM×N be such that

UHU = I, and denote the image of A under U by Â. Then the mapping P bA := UPAUH

is such that P bA(x̃) ∈ Π bA(x̃) for all x̃ ∈ CM .
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Proof. Every x̃ ∈ CM has a unique orthogonal decomposition x̃ = x̂ + x̃n where

x̂ = UUH x̃ ∈ R (U) and x̃n ∈ N
(
UH
)
. Let x̃ ∈ CM and â ∈ Â be arbitrary but fixed.

Then,

||x̃− â||2 = ||x̃n||2 + ||x̂− â||2 (A.10)

= ||x̃n||2 +
∣∣∣∣U(UH x̃−UH â)

∣∣∣∣2 (A.11)

= ||x̃n||2 +
∣∣∣∣UHx−UH â

∣∣∣∣2 (A.12)

The point UHx must be at least as close to its projection onto A than it is to the point

UH â ∈ A. Thus,

||x̃− â||2 ≥ ||x̃n||2 +
∣∣∣∣UH x̃− PA(UH x̃)

∣∣∣∣2 (A.13)

= ||x̃n||2 +
∣∣∣∣U(UH x̃− PA(UH x̃))

∣∣∣∣2 (A.14)

= ||x̃n||2 +
∣∣∣∣x̂−UPA(UH x̃)

∣∣∣∣2 (A.15)

=
∣∣∣∣x̃n + x̂−UPA(UH x̃)

∣∣∣∣2 (A.16)

=
∣∣∣∣x̃− P bA(x̃)

∣∣∣∣2 (A.17)

Thus,
∣∣∣∣x̂− P bA(x̃))

∣∣∣∣ ≤ ||x̃− â||, and since P bA(x̃) ∈ Â, we have P bA(x̃) ∈ Π bA(x̃).

Theorem A.1-5. Let B̃ ⊆ CM have projection Π eB, and assume there exists a mapping

P eB : CM → B̃ such that P eB(x̃) ∈ Π eB(x̃) for all x̃ ∈ CM . Let V ∈ CM×N be such that

VVH = I. Let B ⊆ CN denote the pre-image of B̃, that is, those x ∈ CN with Vx ∈ B̃.

Then the mapping PB : CN → B defined by PB(x) := VHP eB(Vx)+(I−VHV)x is such

that PB(x) ∈ ΠB(x) for all x ∈ CN .

Proof. (Note, this proof is similar to A.1-4, but not equivalent.) Every x ∈ CN has a unique

orthogonal decomposition x = xr + xn where xr = VHVx ∈ R
(
VH
)

and xn ∈ N (V).
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Let x ∈ CN and b ∈ B be arbitrary but fixed. Then,

||b− x||2 = ||br − xr||2 + ||bn − xn||2 (A.18)

≥ ||br − xr||2 (A.19)

=
∣∣∣∣VH(Vb−Vx)

∣∣∣∣2 (A.20)

= ||Vb−Vx||2 (A.21)

By definition, Vb ∈ B̃. Thus,

||b− x||2 ≥
∣∣∣∣P eB(Vx)−Vx

∣∣∣∣2 (A.22)

=
∣∣∣∣VH(P eB(Vx)−Vx)

∣∣∣∣2 (A.23)

=
∣∣∣∣VHP eB(Vx)−VHVx

∣∣∣∣2 (A.24)

=
∣∣∣∣VHP eB(Vx) + (I−VHV)x− x

∣∣∣∣2 (A.25)

= ||PB(x)− x||2 (A.26)

Thus, ||x− PB(x))|| ≤ ||x− b||, and since PB(x) ∈ B, we have PB(x) ∈ ΠB(x).

Theorem A.1-6. Let sets Â and B̃ be defined be defined by (2.17) and (2.14), respectively,

and define the mappings P bA and P eB by (2.18) and (2.16), respectively. Let J be defined by

(2.23), and assume UHU = IN . Then, d2(â, B̃) = J(UH â) for all â ∈ Â.
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Proof. Let â ∈ Â be arbitrary but fixed. Then, â = UUHa, and we have

d2(â, B̃) :=
∣∣∣∣â− P eB(â)

∣∣∣∣2 (A.27)

=
M−1∑
m=0

|(|âm| − qm) exp (j∠am)|2 (A.28)

=
M−1∑
m=0

||âm| − qm|2 (A.29)

= |||â| − q||2 (A.30)

= J(UH â) (A.31)

Theorem A.1-7. Let sets A and B be defined be defined by (2.13) and (2.21), respectively,

and define the mappings PA and PB by (2.15) and (2.22), respectively. Let J be defined by

(2.23), and assume VVH = IM . Then, d2(a, B) = J(a) for all a ∈ A.

Proof. Let a ∈ A be arbitrary but fixed. Then,

d2(a, B) :=
∣∣∣∣VHP eB(Va) + (I−VHV)a− a

∣∣∣∣2 (A.32)

=
∣∣∣∣VHP eB(Va)−VHVa

∣∣∣∣2 (A.33)

=
∣∣∣∣VH(P eB(Va)−Va)

∣∣∣∣2 (A.34)

=
∣∣∣∣P eB(Va)−Va

∣∣∣∣2 (A.35)

= |||â| − q||2 (A.36)

= J(a) (A.37)

where (A.36) follows from (A.27)-(A.30) in Thm. A.1-6.
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A.2 Valid DTFT Operators

A.2.1 A General Discrete-Time Fourier Transform

In the spectrum shaping problem for radar waveform optimization, a desired Fourier trans-

form magnitude (FTM) is specified at a finite number of frequencies. As such, the transfor-

mation matrix F should compute the discrete-time Fourier transform of the input vector at

just those frequencies of interest. In this Appendix, we discuss ways in which frequencies

can be chosen so that F satisfies FHF = IN or FFH = IM . As we will see, this amounts to

building F from appropriately selected rows or columns of a DTFT matrix of appropriate

dimensions.

Consider the set of uniformly spaced frequencies

Ω :=

{
2πk

LN
: k = 0, 1, . . . , LN − 1

}
(A.38)

which is completely specified by any nonnegative integer N and rational L such that LN

is an integer greater than 1. Assume we are interested in an integer number M ≤ LN of

these frequencies, specified by the finite sequence

Γ := {γ0, γ1, . . . , γM−1} (A.39)

where 2πγm

LN
∈ Ω. (Note that the entries of Γ do not necessarily correspond to adjacent

frequencies.) We can now construct a linear operator that accepts a time domain vector and

returns the DTFT of that vector evaluated only at the frequencies of interest. This operator

is given by F ∈ CM×N with

[F]m,n :=
1

η
exp

(
−j

2πΓ(m)n

LN

)
(A.40)

where the normalization constant η is determined by the relationship between L, N , and
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M . (More on this later.) The frequency domain representation of a vector x ∈ CN is

defined to be x̂ := Fx with

x̂m :=
1

η

N?−1∑
n=0

xnexp

(
−j

2πΓ(m)n

LN

)
(A.41)

where N? = min {N, LN}. Similarly, the inverse transform of x̃ ∈ CM is defined by FH x̃

with

[
FH x̃

]
n

:=
1

η

M−1∑
m=0

x̃mexp

(
j
2πΓ(m)n

LN

)
(A.42)

Note that the unitary DTFT matrix can be constructed by letting L = 1, N = M , and

η = N .

In practice, the length (N ) of the time domain signal is fixed, and the FTM is specified

at number of different frequencies in [0, 2π). We can choose L so that the frequencies of

interest in [0, 2π) are arbitrarily close to points in Ω. When L ≥ 1, the operator F can

then be seen as appending LN − N zeros to the input vector, computing the LN -point

DTFT of the zero-padded vector, and then selecting the M coefficients corresponding to

the frequencies of interest. When L ≤ 1, F effectively truncates the last N − LN entries

of the input vector, computes the LN -point DTFT of the truncated vector, and select the

M coefficients of interest. In either case L may have to be chosen so that Ω contains

frequencies not of interest. As we will see, not every subset of Ω will result in an F that

satisfies the requirements discussed in Sec. 2.5. So we choose the Γ ⊆ Ω that contains the

fewest superfluous frequencies, and we construct F according to A.41. This framework

for computing DTFT samples provides great flexibility in application. In the following

sections, we discuss how to choose Γ so that F is valid.
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A.2.2 Γ when N ≤M

The condition FHF = IN holds iff the inner product of any two columns of F satisfies

1

η2

M−1∑
m=0

exp

(
−j

2πΓ(m)∆n

LN

)
=


1 ∆n = 0

0 otherwise

(A.43)

for all ∆n ∈ {0, 1, . . . , N − 1} (i.e., orthonormal columns). This condition will hold for

all ∆n when η =
√

M , M is a divisor of LN , and Γ is of the form

Γ(m) = m0 +
LN

M
m (A.44)

where m0 is an integer [140, pp. 356]. The definition of Γ in (A.39) implies

max {Γ} = Γ(M − 1) ≤ LN − 1. Thus, m0 must also satisfy

m0 ≤
LN

M
− 1 (A.45)

Therefore, Γ constructed according to (A.44) and (A.45) will satisfy FHF = IN .

A.2.3 Γ when N ≥M

The condition FFH = IM holds iff the inner product of any two rows of F satisfies

1

η2

N?−1∑
n=0

exp

(
−j

2π∆Γn

LN

)
=


1 ∆Γ = 0

0 otherwise

(A.46)

for all ∆Γ, where ∆Γ can equal the difference between any two elements in Γ (i.e., or-

thonormal rows). The η and Γ that satisfy (A.46) depend on the value of L. When L ≥ 1,

we have N? = N , and condition (A.46) will hold for all ∆Γ if η =
√

N and Γ is of the
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form

Γ(m) = m0 + ALm (A.47)

where m0 and A are integers. The condition Γ(M − 1) ≤ LN − 1 implies A and m0 must

also satisfy the relationship

A ≤ LN − 1−m0

L(M − 1)
(A.48)

When L ≤ 1, we have N? = LN , and condition (A.46) will hold for all ∆Γ if η =
√

LN

and Γ is of the form

Γ(m) = m0 + Am (A.49)

The condition Γ(M − 1) ≤ LN − 1 implies A and m0 must also satisfy the relationship

A ≤ LN − 1−m0

(M − 1)
(A.50)

Therefore, Γ constructed according to (A.47) and (A.48) when L ≥ 1, or according to

(A.49) and (A.50) when L ≤ 1, will satisfy FFH = IM .
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A.3 Derivation of Gradients

A.3.1 Preliminaries

Recall that each entry of the time vector a is a function of the phase vector φ whereby

an = pne
jφn . For notational convenience, we shall suppress the dependence of a and â on

φ. Clearly,

∂an

∂φs

=


jas s = n

0 otherwise

(A.51)

and

∂a∗n
∂φs

=

[
∂an

∂φs

]∗
(A.52)

Defining the LN th root of unity to be

WLN := e−j 2π
LN (A.53)

we find that

∂âm

∂φs

=
∂

∂φs

1

η

N?−1∑
n=0

anW
nΓ(m)
LN (A.54)

=


j
η
asW

sΓ(m)
LN s < N?

0 otherwise

(A.55)

which makes use of the definition of âm given in (A.41). Similarly, we can show

∂â∗m
∂φs

=

[
∂âm

∂φs

]∗
(A.56)
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When âm 6= 0, we have

∂

∂φs

|âm| =
∂

∂φs

(â∗mâm)
1
2 (A.57)

= Re

{
â∗m
|âm|

∂âm

∂φs

}
(A.58)

= −Im

{
â∗m
|âm|

as

η
W

sΓ(m)
LN

}
(A.59)

Note that x/ |x| = ejφ for any x ∈ C of the form x = αejφ with α > 0. Thus, x/ |x| → ejφ

as α→ 0 from the right. As such, we shall let

â∗m/ |âm| = e−j∠bam (A.60)

when |âm| = 0. The partial of |âm| is then

∂

∂φs

|âm| = −Im

{
as

η
e−j∠bamW

sΓ(m)
LN

}
(A.61)

A.3.2 Spectrum Shaping Problem

Note that the cost function J defined in (2.23) can be written as

J(φ) = ||q||2 +
M−1∑
m=0

|âm|2 − 2qm |âm| (A.62)

As such,

∂J

∂φs

(φ) =
M−1∑
m=0

∂

∂φs

|âm|2 − 2qm
∂

∂φs

|âm| (A.63)

= 2Im

{
as

η

M−1∑
m=0

(
qme−j∠bam − â∗m

)
W

sΓ(m)
LN

}
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which implies

∇T
φJ = 2Im

{
a�

[
FH
(
P eB(Fa)− Fa

)]∗}
(A.64)

Note that FHF = IN when N ≤M . In this case, the gradient becomes

∇T
φJ = 2Im

{
a�

[
FHP eB(Fa)

]∗}
(A.65)

A.3.3 PSD Synthesis Problem

The cost J2 defined in (2.30) can be written as

J2(φ) =
∣∣∣∣q2

∣∣∣∣2 +
M−1∑
m=1

|âm|4 − 2q2
m |âm|2 (A.66)

As such,

∂J2

∂φs

(φ) =
M−1∑
m=0

∂

∂φs

|âm|4 − 2q2
m

∂

∂φs

|âm|2 (A.67)

= 4
M−1∑
m=0

(
|âm|3 − q2

m |âm|
) ∂

∂φs

|âm| (A.68)

= 4Im

{
as

η

M−1∑
m=0

(
q2
m − |âm|2

)
â∗mW

sΓ(m)
LN

}

Which implies

∇T
φJ2 = 2Im

{
a�

[
FH
((

q2 − |Fa|2
)
� Fa

)]∗}
(A.69)
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Appendix B

Appendix for Chapter 3

B.1 SINR Gradients

B.1.1 SINR for Joint Design

For the joint signal/filter design, SINR (3.36) is a function of both the signal phase vector

φ ∈ RN and the filter h ∈ CN . Consider the partial of (3.36) with respect to the pth element

of the signal phase vector φ. This is given by

∂

∂φp

SINR (s,h) =

∂
∂φp

∣∣hHs
∣∣2

hHKh
. (B.1)

To evaluate the numerator, note that

∂sn

∂φp

=


jsp p = n

0 otherwise

(B.2)

and

∂s∗n
∂φp

=

[
∂sn

∂φp

]∗
(B.3)
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Then,

∂

∂φp

∣∣hHs
∣∣2 =

∂

∂φp

[
(hHs)(hHs)∗

]
(B.4)

= 2Re

{
(hHs)

∂

∂φp

sHh

}
(B.5)

= 2Im
{
(hHs)hps

∗
p

}
(B.6)

The gradient of (3.36) with respect to the signal phase vector can then be found by substi-

tuting (B.6) into (B.1), and then stacking all the partials into a vector. This results in

∇T
φSINR (s,h) =

2Im
{
(hHs)(h� s∗)

}
hHKh

. (B.7)

Next, consider the partial of (3.36) with respect to the pth element of the filter h. Applying

the quotient rule yields

∂

∂hp

SINR (s,h) =

(
hHKh

)
∂

∂hp

∣∣hHs
∣∣2 − ∣∣hHs

∣∣2 ∂
∂hp

hHKh

(hHKh)2 (B.8)

Evaluating the partials in the numerator, we find

∂

∂hp

∣∣hHs
∣∣2 =

N−1∑
n=0

N−1∑
m=0

smh∗ms∗n
∂hn

∂hp

(B.9)

= s∗p

N−1∑
m=0

smh∗m (B.10)

= s∗p(h
Hs). (B.11)

and
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∂

∂hp

hHKh =
N−1∑
n=0

N−1∑
m=0

h∗n[K]n,m
∂hm

∂hp

(B.12)

=
N−1∑
n=0

h∗n[K]n,p (B.13)

= hHkp. (B.14)

where kp denotes the pth column of K. Substituting (B.11) and (B.14) into (B.8), and then

stacking all the partials into a vector yields the gradient of the SINR with respect to the

filter. This is given by

∇hSINR (s,h) = αsH − |α|2 hHK (B.15)

where α := hHs/hHKh.

B.1.2 SINR for WF and MF Designs

For both the whitening filter (i.e., Neyman-Pearson) and matched filter designs, the SINR

is a function only of the signal phase vector φ. Let K := [k1 · · ·kN ] be a Hermitian matrix.

Then,

∂

∂φp

sHKs =
N−1∑
n=0

M−1∑
m=0

[K]n,m
∂

∂φp

(s∗nsm) (B.16)

= (jsm)
N−1∑
n=0

[K]n,ps
∗
n + (−js∗p)

N−1∑
m=0

[K]p,msm (B.17)

= 2Re
{
(−js∗p)k

H
p s
}

(B.18)

= 2Im
{
s∗pk

H
p s
}

(B.19)
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Stacking the partials into a vector yields the gradient of the matched filter design objective

function in (3.47). This gradient is given by

∇T
φsHKs = 2Im {s∗ � (Ks)} . (B.20)

Similarly, the gradient of the whitening filter design objective function in (3.46) is

∇T
φsHK−1s = 2Im

{
s∗ � (K−1s)

}
. (B.21)

B.2 Normalized XCS Jacobians

B.2.1 Normalized XCS for Joint Design

For the joint signal/filter design problem, the normalized XCS is a function of both the

signal phase vector φ ∈ RN and the filter h ∈ CN . Let k ≥ 0, and consider the partial of

the squared magnitude of the normalized XCS at lag k with respect to the pth element of

the signal phase. By the quotient rule we have

∂

∂φp

∣∣∣R̃k(s,h)
∣∣∣2 =

∣∣hHs
∣∣2 ∂

∂φp
|Rk(s,h)|2 − |Rk(s,h)|2 ∂

∂φp

∣∣hHs
∣∣2

|hHs|4
(B.22)

In order to evaluate the numerator, we first note that

∂

∂φp

Rk(s,h) =
N−k−1∑

n=0

h∗n
∂

∂φp

sn+k (B.23)

=


jsph

∗
p−k k ≤ p

0 otherwise

(B.24)

= jsph
∗
p−ku(p− k) (B.25)
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where u denotes the unit step function with u(n) = 1 for n ≥ 0 and u(n) = 0 for n < 0.

Also,

∂

∂φp

R∗
k(s,h) =

[
∂

∂φp

Rk(s,h)

]∗
. (B.26)

Using this conjugate symmetry, one can show

∂

∂φp

|Rk(s,h)|2 = 2Im
{
Rk(s,h)s∗php−k

}
u(p− k) (B.27)

Substituting (B.6) and (B.27) into (B.1), and then simplifying, yields

∂

∂φp

∣∣∣R̃k(s,h)
∣∣∣2 = 2Im

{
s∗php−k

|hHs|
R̃k(s,h)u(p− k)−

s∗php

(hHs)∗

∣∣∣R̃k(s,h)
∣∣∣2} . (B.28)

Stacking the partials into gradient vectors, and then combining the gradients to form the

Jacobian, yields

JT
φ

∣∣∣R̃k(s,h)
∣∣∣2 = 2Im

{
R�H

|hHs|
− (h� s∗)⊗ rT

(hHs)∗

}
(B.29)

where

[R]p,k := R̃k(s,h) (B.30)

[H]p,k :=


s∗php−k k ≤ p

0 otherwise

(B.31)

[r]k :=
∣∣∣R̃k(s,h)

∣∣∣2 (B.32)
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Similarly, the Jacobian of the squared magnitude of the normalized XCS evaluated at the

negative lags is given by

JT
φ

∣∣∣R̃−k(s,h)
∣∣∣2 = 2Im

{
R̂� Ĥ

|hHs|
− (h� s∗)⊗ r̂T

(hHs)∗

}
(B.33)

where

[R̂]p,k := R̃−k(s,h) (B.34)

[Ĥ]p,k :=


s∗php+k p < N − k

0 otherwise

(B.35)

[̂r]k :=
∣∣∣R̃−k(s,h)

∣∣∣2 (B.36)

Consider the partial of the squared magnitude of normalized XCS at lag k with respect

to the pth filter element. By the quotient rule we have

∂

∂hp

∣∣∣R̃k(s,h)
∣∣∣2 =

∣∣hHs
∣∣2 ∂

∂hp
|Rk(s,h)|2 − |Rk(s,h)|2 ∂

∂hp

∣∣hHs
∣∣2

|hHs|4
(B.37)

In order to evaluate the numerator, we first note that

∂

∂hp

Rk(s,h) =
N−k−1∑

n=0

sn+k
∂h∗n
∂hp

= 0 (B.38)

and (continued overleaf )
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∂

∂hp

R∗
k(s,h) =

N−k−1∑
n=0

s∗n+k

∂hn

∂hp

(B.39)

=


s∗p+k p < N − k

0 otherwise

(B.40)

= s∗p+ku(N − k − p) (B.41)

Thus,

∂

∂hp

|Rk(s,h)|2 =
∂

∂hp

(R∗
k(s,h)Rk(s,h)) (B.42)

= Rk(s,h)s∗p+ku(N − k − p) (B.43)

Substituting (B.11) and (B.43) into (B.37), and then simplifying, yields

∂

∂hp

∣∣∣R̃k(s,h)
∣∣∣2 =

s∗p+k

|hHs|
R̃k(s,h)u(N − k − p)−

( sp

hHs

)∗ ∣∣∣R̃k(s,h)
∣∣∣2 (B.44)

By stacking the partials into gradient vectors, and then combining the gradients to form the

Jacobian, the corresponding Jacobian can be computed as

JT
h

∣∣∣R̃k(s,h)
∣∣∣2 =

R� S

|hHs|
− s∗ ⊗ rT

(hHs)∗
(B.45)

where R and r are defined in (B.30) and (B.32), respectively, and

[S]p,k :=


s∗p+k p < N − k

0 otherwise

. (B.46)
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In a similar way, it can be shown that

JT
h

∣∣∣R̃−k(s,h)
∣∣∣2 =

R̂� Ŝ

|hHs|
− s∗ ⊗ r̂T

(hHs)∗
(B.47)

where R̂ and r̂ are defined in (B.34) and (B.36), respectively, and

[Ŝ]p,k :=


s∗p−k k ≤ p

0 otherwise

. (B.48)

B.2.2 Normalized XCS for WF Design

For the whitening filter optimization problem in (3.46), the normalized XCS is a function

of the signal phase vector φ ∈ RN only. Let k > 0, and consider the partial of the squared

magnitude of the normalized XCS at lag k with respect to the pth element of the phase

vector. For simplicity, replace K−1 with an arbitrary positive definite matrix F. Then, by

the quotient rule

∂

∂φp

∣∣∣R̃k(s,Fs)
∣∣∣2 =

∣∣sHFs
∣∣2 ∂

∂φp
|Rk(s,Fs)|2 − |Rk(s,Fs)|2 ∂

∂φp

∣∣sHFs
∣∣2

|sHFs|4
(B.49)

The partial of the XCS with respect to the pth element of the phase vector φ is given by

∂

∂φp

Rk(s,Fs) =
∂

∂φp

N−k−1∑
n=0

sn+k[Fs]∗n (B.50)

=
∂

∂φp

N−k−1∑
n=0

sn+k

[
N−1∑
m=0

[F]n,msm

]∗
(B.51)

=
N−k−1∑

n=0

N−1∑
m=0

[F]∗n,m

∂

∂φp

(s∗msn+k) (B.52)

=
N−k−1∑

n=0

[F]∗n,psn+k(−js∗p) +
N−1∑
m=0

[F]∗p−k,ms∗m(jsp)u(p− k) (B.53)

= (−js∗p)Rk(s, fp) + (jsp)[Fs]∗p−ku(p− k) (B.54)
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where fp ∈ CN is the pth column of F. In a similar way, one can show that

∂

∂φp

R∗
k(s,Fs) =

[
∂

∂φp

Rk(s,Fs)

]∗
. (B.55)

Using this conjugate symmetry, we have

∂

∂φp

|Rk(s,Fs)|2 = 2Im
{
R∗

k(s,Fs)
(
s∗pRk(s, fp)− sp[Fs]∗p−ku(p− k)

)}
(B.56)

Since, F is positive definite, then

∂

∂φp

(
sHFs

)
=

[
∂

∂φp

sHFs

]∗
. (B.57)

This result, along with (B.19), implies

∂

∂φp

∣∣sHFs
∣∣2 = 2Re

{(
sHFs

) ∂

∂φp

sHFs

}
(B.58)

= 4
(
sHFs

)
Im
{
s∗pf

H
p s
}

(B.59)

Substituting (B.56) and (B.59) into (B.49), applying the substitution h = Fs, recognizing

that fH
p s = hp, and simplifying, yields

∂

∂φp

∣∣∣R̃k(s,Fs)
∣∣∣2 =

2Im

{
R̃∗

k(s,h)
(
s∗pRk(s, fp)− sph

∗
p−ku(p− k)

)
− 2

∣∣∣R̃k(s,h)
∣∣∣2 s∗php

}
hHs

.

(B.60)

The corresponding Jacobian can be computed as

JT
φ

∣∣∣R̃k(s,Fs)
∣∣∣2 =

2Im
{
R∗ (T−H∗)− 2 (h� s∗)⊗ rT

}
hHs

(B.61)
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where R, H, and r are defined in (B.30), (B.31), and (B.32), respectively, and

[T]p,k := s∗pRk(s, fp). (B.62)

Similarly, it can be shown that

JT
φ

∣∣∣R̃−k(s,Fs)
∣∣∣2 =

2Im
{
R̂∗
(
T̂− Ĥ∗

)
− 2 (h� s∗)⊗ r̂T

}
hHs

(B.63)

where R̂, Ĥ, and r̂ are defined in (B.34), (B.35), and (B.36), respectively, and

[T̂]p,k := s∗pR−k(s, fp). (B.64)

B.2.3 Normalized XCS for MF Design

For the matched filter optimization problem in (3.47), the normalized ACS is a function

of the signal phase vector φ ∈ RN only. Furthermore, we shall assume ||s|| = 1 so that

R̃k = Rk. Let k > 0, and consider the partial of the squared magnitude of the ACS at lag

k with respect to the pth element of the phase vector. This is given by

∂

∂φp

Rk(s, s) =
N−k−1∑

n=0

∂

∂φp

(sn+ks
∗
n) (B.65)

= (jsp)
∗sp+ku(N − k − p) + (jsp)s

∗
p−ku(p− k) (B.66)

Similarly, one can show that

∂

∂φp

R∗
k(s, s) = [R∗

k(s, s)]
∗ (B.67)
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Using this conjugate symmetry, we find

∂

∂φp

|Rk(s, s)|2 = 2Im
{
Rk(s, s)

(
s∗psp+ku(N − k − p)− sps

∗
p−ku(p− k)

)}
(B.68)

The corresponding Jacobian can be computed as

JT
φ |Rk(s, s)|2 = 2Im

{
R(Ĥ−H∗)

}
(B.69)

where by recognizing that h = s, we can define R, H, and Ĥ by (B.30), (B.31) and (B.35),

respectively. Note that due to ACS symmetry, only the positive lags need to be constrained.
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Appendix C

Appendix for Chapter 4

C.1 Gradients for Magnitude and Phase Design

C.1.1 SINR Gradient

In order to find the partial of (4.1) with respect to the pth entry in the waveform s, we apply

the quotient rule to find

∂

∂sp

F (s) =
sHKs

(
∂

∂sp

∣∣sHs
∣∣2)− ∣∣sHs

∣∣2 ( ∂
∂sp

sHKs
)

(sHKs)2 . (C.1)

Evaluating the numerator, we have

∂

∂sp

∣∣sHs
∣∣2 =

∂

∂sp

(sHs)∗(sHs) (C.2)

= (sHs)∗
∂

∂sp

(sHs) + (sHs)
∂

∂sp

(sHs)∗ (C.3)

= 2(sHs)
∂

∂sp

(sHs) (C.4)

= 2(sHs)
N−1∑
n=0

∂

∂sp

(s∗nsn) (C.5)

= 2
∣∣sHs

∣∣ s∗p (C.6)
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and

∂

∂sp

sHKs =
N−1∑
n=0

N−1∑
m=0

∂

∂sp

[K]n,ms∗nsm = sHkp (C.7)

where kp is the pth column of K. Substituting (C.6) and (C.7) into (C.1), we have

∂

∂sp

F (s) = 2

∣∣sHs
∣∣

sHKs
s∗p −

∣∣sHs
∣∣2

(sHKs)2
sHkp. (C.8)

Arranging all of the partial into a vector yields the gradient

∇sF (s) = 2

∣∣sHs
∣∣

sHKs
sH −

∣∣sHs
∣∣2

(sHKs)2
sHK. (C.9)

C.1.2 ACS Constraint Jacobian

The partial of the normalized ACS in (4.3) with respect to the pth element of the vector s

can be found by applying the quotient rule, which yields

∂

∂sp

∣∣∣R̃k(s)
∣∣∣2 =

∂

∂sp

|Rk(s)|2

|sHs|2
(C.10)

=
1

|sHs|4

(∣∣sHs
∣∣2 ∂

∂sp

|Rk(s)|2 − |Rk(s)|2
∂

∂sp

∣∣sHs
∣∣2) (C.11)

We note that

∂

∂sp

Rk(s) =
N−k−1∑

n=0

(
∂

∂sp

sn+k

)
s∗n = s∗p−ku(p− k) (C.12)

and

∂

∂sp

R∗
k(s) =

N−k−1∑
n=0

s∗n+k

(
∂

∂sp

s∗n

)
= s∗p+ku(N − k − 1− p) (C.13)
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where u : R → R is the unit step function (i.e., u(t) is equal to zero except when t ≥ 0).

We can use (C.12) and (C.13) to evaluate the first partial in the numerator of (C.11).

∂

∂sp

|Rk(s)|2 =
∂

∂sp

R∗
k(s)Rk(s) (C.14)

= R∗
k(s)

∂

∂sp

Rk(s) + Rk(s)
∂

∂sp

R∗
k(s) (C.15)

= R∗
k(s)s

∗
p−ku(p− k) + Rk(s)s

∗
p+ku(N − k − 1− p) (C.16)

Substituting (C.16) and (C.6) into (C.11), and simplifying, yields

∂

∂sp

∣∣∣R̃k(s)
∣∣∣2 =

1

|sHs|

(
R̃∗

k(s)s
∗
p−ku(p− k) + R̃k(s)s

∗
p+ku(N − k − 1− p)

)
(C.17)

− 2

|sHs|

∣∣∣R̃k(s)
∣∣∣2 s∗p

Arranging the N partials of the N functions into a matrix yields the Jacobian:

JT
s

∣∣∣R̃k(s)
∣∣∣2 =

M + N− 2
(
s∗ ⊗ rT

)
|sHs|

, (C.18)

where the matrices M,N ∈ CN×N and the vector r ∈ RN
+ are defined as

[M]p,k :=


R̃∗

k(s)s
∗
p−k k ≤ p

0 otherwise

(C.19)

[N]p,k :=


R̃k(s)s

∗
p+k p ≤ N − k − 1

0 otherwise

(C.20)

[r]k :=
∣∣∣R̃k(s)

∣∣∣2 . (C.21)

134



C.1.3 Similarity Constraint Gradient

Consider the similarity constraint function in (4.5). Neither sd nor ε depend on s. Thus,

∇sS = ∇s

[
(sd − s)H(sd − s)− ε

]
(C.22)

= ∇s

[
sH
d sd − sH

d s− sHsd + sHs− ε
]

(C.23)

= (s− sd)
H (C.24)

C.1.4 Modulus Constraint Jacobian

Consider the nth modulus constraint function defined in (4.6). Since p does not depend on

s, we have

∂Mn

∂xp

(s) =
∂

∂xp

(s∗nsn − pn) =


s∗p n = p

0 n 6= p

(C.25)

Thus, the gradient becomes

∇sMn = [0 0 . . . 0 s∗n 0 . . . 0] (C.26)

which is a row vector of zeros with s∗n in the nth position. The Jacobian ofM in (4.7) is

then given by

JM = diag
{
sH
}

(C.27)

which is a matrix of zeros with sH on the diagonal.
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C.2 Gradients for Phase-Only Design

C.2.1 SINR Gradient

Following the derivation in Sec. B.1.2, the gradient of (4.9) with respect to the phase vector

φ ∈ RN is given by

∇φF̂ (φ) = 2Im {s∗ � (Ks)} . (C.28)

C.2.2 ACS Constraint Jacobian

Following the derivation in Sec. B.2.3, we have

JT
φ |Rk(s, s)|2 = 2Im

{
R(Ĥ−H∗)

}
(C.29)

where by recognizing that h = s, we can define R, H, and Ĥ by (B.30), (B.31) and (B.35),

respectively.

C.2.3 Similarity Constraint Gradient

Let s be the mapping from RN into CN defined by sn =
√

pnexp (jφn) where p ∈ RN
+ and

φ ∈ RN . For convenience, we suppress the dependence of s on φ. Then,

∂sn

∂φp

=


jsp n = p

0 n 6= p

and
∂s∗n
∂φp

=


−js∗p n = p

0 n 6= p

(C.30)

For any composition of the form Ĝ = G ◦ s with G : CN → R, the conjugate symmetry

in (C.30) and the conjugate symmetry between (4) and (5) for real-valued functions of

real variables can be used to find the partial of Ĝ with respect to φp. Beginning with an
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application of the multivariate chain rule, we have

∂Ĝ

∂φp

=
N∑

n=1

{
∂G

∂sn

dsn

dφp

+
∂G

∂s∗n

ds∗n
dφp

}
(C.31)

=
N∑

n=1

{
∂G

∂sn

dsn

dφp

+

[
∂G

∂sn

dsn

dφp

]∗}
(C.32)

=
N∑

n=1

2Re

{
∂G

∂sn

dsn

dφp

}
(C.33)

= 2Re

{
∂G

∂sp

dsp

dφp

}
(C.34)

= −2Im

{
sp

∂G

∂sp

}
(C.35)

This implies

∇φĜ = −2Im
{
sT �∇sG

}
(C.36)

Applying result (C.24) to (C.36) yields

∇φŜ = −2Im
{
sT �∇sS

}
(C.37)

= 2Im
{
sT � (sd − s)H

}
(C.38)

C.3 SINR Gradient for NLFM

The gradient of the cost function (4.15) with respect to the phase parameters (Fourier coef-

ficients) can be efficiently calculated as follows. First, note that

d

dap

s(n) =
d

dap

exp

(
j

(
φn +

M∑
k=0

aksin (ωkn) + bkcos (ωk)

))
(C.39)

= jsin (ωpn) s(n) (C.40)
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and define the vector x(p) by x
(p)
m = sin (ωpm). Then,

d

dap

J(s) =
d

dap

sHKs (C.41)

=
d

dap

N−1∑
n=0

N−1∑
m=0

[K]n,m s∗nsm (C.42)

=
N−1∑
n=0

N−1∑
m=0

[K]n,m

(
s∗n

d

dap

sm + sm
d

dap

s∗n

)
(C.43)

= j
N−1∑
n=0

N−1∑
m=0

[K]n,m (s∗nsmsin (ωpm)− sms∗nsin (ωpn)) (C.44)

= jsHK
(
x(p) � s

)
− j

(
x(p) � s

)H
Ks (C.45)

= 2Re
{
−j
(
x(p) � s

)H
Ks
}

(C.46)

= 2Im
{(

x(p) � s
)H

Ks
}

(C.47)

And therefore,

∇aJ(s) = 2Im {S (s∗ �Ks)} (C.48)

where [S]n,m = sin (π(m− 1)(n− 1)/M). Similarly,

∇bJ(s) = 2Im {C (s∗ �Ks)} (C.49)

where [C]n,m = cos (π(m− 1)(n− 1)/M).
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