MODULA AND THE DESIGN OF A
MESSAGE SWITCHING
COMMUNICATIONS SYSTEM

Gregory R. Andrews
TR 78-329

Department of Computer Science
Cornell University
Ithaca, NY 14853

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1979 2. REPORT TYPE 00-00-1979 to 00-00-1979
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Modula and the Design of a M essage Switching Communications System | .\ \r N\UMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Cornell University,Ithaca,NY,14853 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 141
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

s

MODULA AND THE DESIGN OF A MESSAGE
SWITCHING COMMUNICATIONS SYSTEM

Gregory R. Andrews
Department of Computer Science
. Cornell University

This work was supported by the Scientific Services Program of
Battelle Columbus Laboratories, Durham, and was authorjzed by
the U.S. Army Research Office under Contract DAAG29-76-D-0100.

ABSTRACT

This report describes the functions of a message
switching communications system and presents an implemen-
tation in terms of the Modula programming language. In
particular, the report: (1) describes a representative
application of the proposed ﬂew Department of Defense high
order language; (2) presents a design techniqﬁe for soft-
ware specification; (3) develops Modula prograns for each
of the message switching components; and (4) evaluates the
utility of Modula as a language for the design of large

parallel systems.

1.0

2.0

TABLE OF CONTENTS

Introduction

System Specifications
2.1 Hardware

2.2 System Functions
2.3 IO Interfaces

System Structure
3.1 Summary of Modula
3.2 System Organization

Process Actions and Control Paths

Program Listings

5.1 Global Data Types

5.2 Systen Clock Group

5.3 MEMORY Interface Module
5.4 ACTIVE-ARCHIVE Module
5.5 10 Control - SWITCH Interface Modules
5.6 Subscriber Groups

5.7 Trunk Groups

5.8 SWITCH Process

5.9 Ogeratocr Group

5.10 System Initialization

Summary and Evaluation

Bibliography

26

34
36
38
38

56
63
8l

110
121

127

135

1.0 Introduction

The unmistakable trend in recent years has been toward
the use of high level languages for systems programming. In
an effort to improve upon available tools, three new lang-
uages have been designed: Concurrent Pascal (1] and Modula
[(8) were developed to aid in the design arnd implementation
of multiprogramming systems while Euclid [4] is intended for
the programming of verifiable, sequential systems. All three
borrow heavily from the work of Wirth in the design of Pascal
[7). Although intended primarily for the development of
small operating systems, both Concurrent Pascal and Modula
are applicable to parallel_systems in general. In this
paper, the design of one specific example, a message switching
communications system, is developed and programmed in Modula.
Our purpose is to show both (1) that a communicaticn system
can and should be viewed as a special purpose operating
system and (2) that a language such as Modula is an ideal
tool for its design. Modula was chosen as the target lang-
uage because it is well documented, provides facilities for
accessing machine hardware, and appears to be efficiently
implemented [10].

gt present, the Department of Defense is involved in a
concerted effort to develop a new language (or family of
languages) for use in implementing their software systems
[2]. A message switching communications system is one

example of such an application [5]; and Modula is a language

which meets many of the DoD‘requirements, specifically in
the areas of parallel processing and device control. A
message switch consists of a number of switching nodes, each
having local subscribers, connected via trunk lines. Its
function is to route messages from one subscriber to one or
more other subscribers connected to either the same switching
node or to another, remote switching node. Each switching
node accepts input messages from subscribers or trunks,
stores the mcssages on temporary storage and then forwards
complete messages to output destinations (cither local
subscribers or trunks). This type of communication system
is often called a ‘store-and-forward message switching system.
This report presents a detailed design in Modula of
the software for a switching node. (Each switching node
in a communications network would execute the same soft-
ware). In particular, the report:

(1) Develops one completely specified, typical
application of the proposed Department of
Defense language;

(2) 1Illustrates the use of top down design and
presents a descriptive technique for the
specification of parallel software systems; and

(3) Evaluates the utility of Modula for the
design of large parallel systems such as
the one presented.

Overall Modula proved to be a superb tool, although it

-3

did present a few problems (enumerated in Chapter 6). As
testimony to its power, the entire design described here
was developed in thirty days (in¢luding the writing of
this report). Much progress has been made since the early
days of exclusive assembly language coding - and even if
assembly language must still be used (in hopefully few
places), we hope that this report provides justification
for the use of a high-level language such as Modula as a
tool for initial specification and subsequent documentation.
The next chapter gives the specifications of the hard-
ware, user interface, and fuctions of the communication
system. Chapter 3 contains a brief summary of Modula, and
block diagrams of the communication system components. Be-
fore delving into detailed programs of each component, the
different message processing phases are described in Chapter
4. Chapter 5 contains program listings and detailed descrip-~
tions of each component. Finally, Chapter 6 summarizes

the design and evaluates the utility of Modula.

-4-

2.0 System Specifications

In this section, the hardware confiquration and processing
requirenents of a typical message switching communication
systen are specified. The hardware is discussed at this point
in order to give a feel for the size and nature of the switching
system under consideration. The most important part of the
specification of this or any system, however, is defining the
formats of input and output message and the functions the

system nust perform on the messages (see (5] for more detail).
2.1 Hardware

The switching system considered consists of a network of
switching nodes each connected to one or more other switching
nodes via trunk lines. Connected to each node are a number
of local subscribers, one special subscriber called the op-
erator, archive tapes, and auxiliary memory for messages.

A representative configuration is shown in Figure 2.1.
Typically, a switching node has up to 50 subscribers and
from 1 to 3 trunk connections to other nodes. Our design

is independent of the number of subscribers and/or trunks,
however. We also assume that there are four tape controllers,
two for recording input messages and actions on the messages
and two for retrieval of data or actions from previously
processed messages. For temporary storage of input messages,
each node has some auxiliary memory such as a disk.

Subscribers, as well as the operator, use terminals to

interface to their local node. Each terminal is assumed to

-5-

Figure 2.1

Communication Hardware

subscriber operator

auxiliary
memory

subscriber

trunk

trunk

subscriber: terminal

operator: terminal

switching node: processor
archives: tapes

auxiliary memory: drum or disk

trunk: communication lines

operator

'y

switching
node

subscriber

!
_J subscribe

\\ﬂ archive

auxiliary
memory

be a character oriented device, namely it transmits and
receives data one character at a time. All terminals are
full duplex so that input and output can proceed simultan-—
eously.

Trunks are more complicated. Each consists of a bundle
of pairs of sending and receiving lines. Information is
transniééed along trunks in 84 character blocks. (The format
of trunk messages is described in Section 5 when the trunk
program is described.) Control signals are also passed along
trunks to synchronize information transmission: We will
assume that trunks transmit information at a periodic rate,
namely information can be sent or received at fixed intervals
rather than asynchronously as with other IO devices. Trunk

lines are also assumed to be full duplex.
" 2.2 System Functions

The basic function of each switching node is to accept
input from subscribers and route it to output destinations
named in the headers of input messages. There are three
phases involved in processing each message: input, switch,
and output. 1In addition, the operator can request special
functions, and is notified when exceptions are detected
by the switching node.

The input phase involves receiving input from a sub-
scriber or trunk, storing the message on auxiliary memory,
and recording the input in an archivé tape. Each message

containg a header, a body, and an end marker. Once an

-7-

entire message has been stored, the switch function is
invoked.

In the switch phase, two major actions are taken.
First, acknowledgement of receipt of the message is recorcded
in an action archive and is output on the local operator's
terminal. Second, the message header is examined to determine
the output destinations. For each destination, the switch
module selects an appropriate output line (either a local
subscriber or a trunk) and starts the output phase. If a
message is sent to more than one destination, each receives
a copy. All messages are eventually output to subscribers
(unless cancelled).

In the output phase, a message is retrieved from the
auxiliary memory and transmitted to each destination. For
trunk destinations, the message is sent as a sequence of
blocks. For local subscriber destinations, the message
is output as a sequence of characters. Each message con-
tains a precedence and classification. At all times, the
highest precedence message for each destination is output.
If pre-empted, a message is later retransmitted in its
entirety. The classification of each message is checked
when it is output to a subscriber; it must be no greater
than the current classification of the subscriber terminal.

Each switching node has one operator terminal. The
operator can send and receive messages like any subscriber.

In addition, the operator monitors and controls the activity

of the local node. The operator can request that the
switching node perform certain actions (é.g. cancel a

ﬁessage, or retrieve a previously sent message). The
operator also is notified of any exceptions or special actions
occurring within the switching node (e.g. occurrence of a

pre-emption, or need to mount an archive tape).
2.3 10 Interfaces

The main function of the switching node is to process
input and output messages. The specific formats of sub-
scriber and trunk IO messages are shown in Figures 2.2 and
2.3, respectively. Input header fields have the following

values:

originator code - the number of the line originating
the message
destinations - the number and identity of each intended
output destination where the identity is.
a (switching node #, line #) pair
identification ~ the date and time of input; together
with the originator code this uniquely
identifies a message
precedence - emergency, routine, or deferred; emergency
pre-enpts the other two on output
classification - classified or not classified (could
use more levels in general)
local sequence number -

subscribers - value N meaning Nth input message

-9

Figure 2.2

Subscriber Interface

Subscriber Input

header:

body:

end:

SOH code

originator code
destinations

identification (date - time)
precedence

classification

local sequence number

EOH

sequence of characters

EOM code or
cancel sequence, EOM code

Subscriber Output

header:

body:

end:

originator of message
identification (date - time)
precedence

classification

local sequence number

sequence of characters

EOM

Trunk Input

header:

body:

end:

Trunk Output
header:
body:

end:

-10-

Figure 2.3
Trunk Interface

SOH code, SEL code

originator

destinations

identification (date - time)

precedence

classification

list of switching nodes who have processed
message

ETX code, block parity

STX cocde, DEL code

80 characters

ETB code, block parity

ETX code, block parity (at end of block) or
cancel sequence (inside block)

same as above
same as above

same as above

=11~

of the day
trunks - sequence of numbers naming the switching

nodes which have processed this message

When a message is output, it basically contains the same
information as for input. Two differences exist for subscribers,
though. First, the destination no longer needs to be speci-
fied. Second, the local sequence number is changed to a count
of the number of output messages sent from éhe switching ncde

to the subscriber. We leave unspecified the actual length

and encoding of each header component; the program for ‘the
system refers to fields by name.

Operators, as subscribers, can send and receive messages.
They have the same format as subscriber messages. In addition,
the operator of each node can make certain requests and receives
exceptions and other notices. The types of requests and
notices are enumerated in Figure 2.4. We assume that requests
have a starting code which enables them to be distinguished

from normal input messages.

~12-

Figure 2.4
Operator Interface

Operator Input
messages: same format as for subscriber input

requests: start of request code
body of request
key
values (up to four)
end of request code

key value(s)

"status"” types of status to retrieve

"cancel"” rnessage identification

"wait” line number

"restart” line number

"alter directory" line number, new primary and
alternate destinations

"alter line status" line number, new status

"retrieve” type of retrieval, message
identification

“"cancel retrieve" -

Operator Output
messages: same format as for subscriber output
exceptions and notices: pre—emption, orbit, tape

mounts, cancellations, actions
on messages

-13-

3.0 System Structure

The message switch system has been programmed in Modula.
This section briefly summarizes Modula and gives block diagrams
of the system organization in terms of Modula constructs.
Succeeding sections refine the structure into greater levels

of detail.
3.1 Summary of Modula

Modula is a new programming language which is intended
primarily for programming dedicated software systems. It is
based on Pascal [7]. To the sequential language constructs
of Pascal it adds two constructs for multiprogramming:
processes and modules. It Also allows the specification of
so called device modules to control a computer‘'s particular
peripheral devices.

As an aid to the reader, a short summary of "sequential®

" Modula data types and control statements appears in Figure 3.1.
Figure 3.2 summarizes the process and module constructs which
will now be briefly discussed. For detailed information the
reader is referred to Modula‘'s defining document [g] and also
to the excellent papers describing its use, design and im-
plementation [(9,10]. Our purpose here is merely to give the
flavor of the language. In order to really understand the
programs in Chapter 5, [8] should be consulted.

Processes have the same structure as procedures. Namely,
they have parameters, local variables, and a set of statements.

They are also activated in the same manner as procedures. The

-]14-

Figure 3.1

"Sequential” Modula

DATA TYPES

Basic types:
Constants:
Types:

Enumeration:
Array:
Record:
Variables:

PROGPAM STATEMENTS

Assignment:
Procedure Call:
If:

Case:

while:
Repeat:
Loop:
Loop exit:

Boolean, char, integer, bits

const name = value

type name = identifier |enumeration]|
array|record

(identifier list)

array range of type

record fields end

var names: type;...

variable := expression

procedure name (parameters)

if Boolean expression then statement
list [elseif Boolean expr then state-
ment 13st]
[else statement list] end

case expression of -
Iabellz begin statement list,end

labeln: bégin statement listpend end

while Boolean expression do statements end

repeat statements until Boolean expr;
loop statements end
when Boolean expr do statements exit

~-15=

difference is that when a process is "called,” both the
process and the caller execute concurrently. In addition

to local variables, processes can access global variables and
call module operations.

Modules are like blocks in the Algol sense (they contain
declarations and statements). The difference is that a mod-
ule is a fence between the objects it declares and those
global to it. The purpose of a module is to make available
selectively those objects that represent an intended abstrac-
tion while hiding those objects that are considered details
of its representation. To specify the fencé, a module con-
tains a define list and, optionally, a use list. The defipe
list names those objects exported from the module, ramely
those objects accessible outside. Procedures, types, con-
stants, signals and read-only variables can be exported.

The use list names those global objects imported into the
module. If the use list is omitted, all global objects
are accessible; if it is present however, only global Qb-
jects namedin the use list are accessible. Modules also
contain statements to initialize local variabies.

Two special types of modules play a key role for multi-
programming: interface modules and device modules. Interface
modules, which correspond to menitors [3), are modules which
provide exclusive access to defined procedures. If one process
is executing an interface module procedure, no other process

can execute within the interface module. Since it is usually

-16-

Fiqure 3.2

MODULA: Processes and Modules

PROCESSES

pzocess SWITCH;
variables

begin

end SWITCH;

MCDULES

module m;

define names; (*exported types, vars, procedures*)
use names; (*"imported types, modules, etc.*)
declarations = variables, types, procedures
Eegin

initialization
end mn;

INTERFACE MODULES

modules with exclusive access to defined procedures
and with signal variables operated on by
wait(sig) and send(sig)

DEVICE MODULES
interface modules with internal device processes

which can have doIO statements to delay
execution until IO is complete

-17-

necessary for cooperating processes to synchronize their actions,
interface modules can contain signal variables. Signals are
sent by send(signal) and received by wait (sigral). When
a process waits for a signal it temporarily leaves the
module thus relinquishing its exclusive control. A send
results in a process switch if another process is waiting
for the signal; otherwise it has no effect.
Device modules are special kinds of interface modules.
In addition to defined, mutually exclusive procedures, a
device module contains device processes. A device.process,
or driver, interfaces to the IO hardware of a specific de-
vice. Therefore, there is one device process for each
addressible IO device. To représent time delays due to IO
processing, device processes can contain dolO statements.
Since device processes are within device modules, when ex-
ecuting they have exclusive access to the module's variables.
Device processes relinquish contcol by waiting or by executing
doXIO. They regain control when signalled or when 10 completes.
A Modula program is a module. Within this outer module
all (non-device) processes and other modules are declared
and the processes are activated. Process declarations can-
not be nested, with the exception of device processes which
are declared within device modules. Module declarations

can be nested, however.
3.2 System Organization

There are five basic components in the message switch

-18-

system. At the center is the SWITCH process which directs
activity and keeps track of the status of each message.
Message input and output is handled by the trunk and sub-
scriber gomponents. The auxiliary memory group is used for
storage of messages. The active-archive is used as a log
of the data in messages and the actions taken on messages.
Finally, the operator group processes messages (like the
subscribers) and handles operator requests and system ex-
ceptions. The components and their interconnection are
shown in Figure 3.3. The labels on the arcs indicate the
types of operations which are performed. The trunk/subscriber
groups, SWITCH process, and operator group direct activity.
The auxiliary memory and active-archive groups provide
services to the other three.

The specific organizations of each component, in terms of
Modula units, are shown in Figures 3.4-3.7.* Trunks and sub-
scribers are both organized in the same way; as will be seen
in their programs (Chapter 5) they differ only as a result
of the hardware difference between terminals and trunk lines.
Their organization and interface to the rest of the system
rmake differences transparent, however. Each consists of two
controlling processes, one for input and one for output, as
well as a device module for performing 10. Controller

processes send or receive hecaders and blocks of data to and

*Capital letters are used for the names of the processes and
nodules; circles denote processes and boxes denote modules.

-19~

Figure 3.3
System Components

z auxiliary memory {
- J4

create create .
store store
retrieve destroy retrieve

message P request

control < exceptions ;i Operator ?

actions data

trunks and
subscribers

v

active
archive

=20~

from the other components. The input control process in
both cases reads from the input device ;nd the output
control process writes to the device. Within the device
module are two IO drivers. Note that there are two control
processes and one device module for each terminal or trunk
line.

The trunk and subscriber input processes store a copy
of each input block on the ACTIVE ARCHIVE. The ACTIVE
ARCHIVE is implemented as a device module containing two
driver processes, one for data and one for actions. The
SWITCH process sends action messages to the ACTIVE ARCHIVE
which in turn stores them on an action tape.

The auxiliary memory group has an interesting organi-
zation. Each message input to a subscriber or trunk is
stored, by blocks, on auxiliary storage in a file created
when input started. During output, the message is read
back from auxiliary storage and, when output is completed,
the storage file is destroyed. The MEMORY interface module
provides operations (defined procedures) for create, destroy,
read and write. For read and write it uses an internal
device module to access auxiliary storage. This module
schedules the IO operation which is in turn performed by a
driver process.

The operator group also has an interesting organization.
The main component is the operator subscriber which is the

same a3 a normal subscriber (i.e. input and output control

-21-

Figure 3.4

Trunks and Subscribers

SINPUTi or

¢ header
~& blocks TINPUTi process
ead
UBSCRIBERi or TRU::Ki
device module
input output
process process
header >, write
& blocks SOUTPUT; or

TOU’I‘PUT1 process

Figure 3.5

Active Archive

write data
or action >

ACTIVE-ARCHIVE device module

action archive

process

process

~22~

Figure 3.6

Auxiliary Memory

MEMORY interface module

read .

|

create, || doI0

— Jestroy~
S

J

wTite

AUXMEN device module

driver
process

fetch

“N~\--‘\~

SUPERVISOR
interface module

A b4
exceptions \\\\\\

exceptions

Figure 3.7

Operator

OLD-ARCHIVE device module

action archivy
Rrocess

etrieves

SINPLToperator

rocess
process

SOUTPUT o rator
EIOCGSS

SUBSCRIBEROPerator
device module

-23-

processes and a device module). In addition to handling
normal messages, the operator receives exception messages
and can request retrieval of past messages. To do so,

the SUPERVISOR interface module is used. Exception messages
are put into the SUPIRVISOR module by the SWITCH process
and are handled by the operator's output control process
(SOUTPUT) . Retrievals are initiated by the ovperator's in-
put control process (SINPUT) and handled by the RETRIEVE
process. The RETRIEVE process reads from the OLD ARCHIVE
device module which contains driver processes for reading
action and data archive tapes.

Input and output control processes interact directly
with the ACTIVE—ARCHIVE and MEMORY interface modules. All
message blocks pass between the control processes and MEMORY.
Message headers, which contain all of the control information
for a message, pass between the IO control processes and the
SWITCH process. In addition, IO control processes and SWITCRH
exchange control signals. Interfacing the control processes
to the SWITCH requires a number of interface modules. A
diagram of the interface is shown in Fiqgure 3.8. Since
SWITCH is a process, it can only wait for one thing at a
time. Therefore it receives all requests (e.g. new message,
end of output, exception) from a NOTICE interface module.
For new messages,‘it gets the header from LINEINPUT and
stores it in HEADERS. At the end of input, it enters output

directives for each destination line in LINEOUTPUT. Once

-24~

the output is scheduled, LINEOUTPUT retrieves the header
from HEADERS and gives it to the appropfiate output control
process (one of the SOUTPUT or TOUTPUT processes). When
output is complete, SWITCH receives a NOTICE, deletes the
header from HEADERS and destroys the MEMORY file containing
the nessage. The other interface module in Figure 3.8,
REPLY, is used when input or output controllers need to wait
for the SWITCH to respond to a notice. The flow of headers
and control information between the IO controllers and

SWITCH is described in more detail in the next chapter.

-25-

Figure 3.8
Trunk/Subscriber - SWITCH Interface

blocks to memory and archive

end of input

headers LINEINPUT B

S~—— Rrepry Z headers
responses

read
message

—7

update \
headers @ | NOTIC

HEADER start
j \ output
headers
headers LINEOUTPUT

SOUTPUT &
TOUTPUT

write
message

control

blocks from memory

Q processes

interface modules

-26-

4.0 Process Actions and Control Paths

Before presenting programs for each process and module,
in this chapter we summarize the actions of the main processes
and describe the paths of messages through the system. The
main actions of a switching node are centered in three areas:
the input control processes, SWITCH, and the output control
processes. Figures 4.1 - 4.3 summarize the functions of
these three components in Shaw's flowchart-like notation
called path descriptions [6].

For each message, an input process parses the header,
groups the body of the message into blocks and finds the end
of message code. After a header has been found, a MEMORY
file is created and the header is sent to SWITCH via LINEINPUT.
Each subsequent block of the message is storqd in the MEMORY
file and a copy is also stored in the ACTIVE ARCHIVE. When
the end of the message is found, either a cancel or end of
input NOTICE is sent to SWITCH.

SWITCH receives notices of many kinds (Figure 4.2).

For now, three are important: header, end of input, and end
of output (done). The others come from the operator (d8iscussed
shortly) or indicate excepcions. On receipt of a header
NOTICE, SWITCH receives the header itself from LINEINPUT and
stores it in HEADERS. SWITCH then logs an action messages

on the ACTIVE-ARCHIVE and sends a REPLY to the input process
which sent the header. When SWITCH receives an end of input

NOTICE, it again logs an action message and then inserts one

Subscriber and
Trunk Input:

Build Header:

Build Block
of Message

End of J
Message —

-27-

Figure 4.1

Input Process Functions

repeat

—95\:11} Header ——»Build Blocks . Process end __J
of Message of Message

create MEMORY file
Find next send header to wait for
—5 header T > LINEINPUT —2>REPLY —
component end

Get next ol- end of block _ send block to ACTIVE-ARCH.
char ~ ° i and MEMORY -

cancel

> post cancel NOTICE

close MEMORY —, Post end NOTICE

2 file

normal

-28-

Figure 4.2

SWITCH Functions

. —~——sheader ——
SWITCH: —— recaeive NOTICE ——J—-———yond of input

- ydone with oﬁtput:

t———other notices

header: . receive enter in put status ﬁsend REPLY —>
——> LINEINPUT ~—2HEADERS ~~>in ARCHIVE .

end of input: put status insert in
7 in ARCHIVE ~—2 LINEOUTPUT 7
for destmations

éore with: put status delete ——, destroy MEMORY —3
output 7 in ARCHIVE > HEADERS file

other notices: ignora for now

=29~

output directive in LINEOUTPUT for each destination. When
output is complete, SWITCH receives a done NOTICE. It again
logs an action message, then deletes the header from HEADERS
and destroys the MEMORY file containing the message body.

Each output control process (Figure 4.3) gets headers
from LINEOUTPUT. On receipt of a header, it outputs the header
and then outputs the body of the message by reading blocks
from MEMORY and writing them on the output device (via the
device module). While one message is being output, another
message of higher precedence may be ready for output to the
same device. When this happens, LINEOUTPUT sets a pre-emption
flag. This flag is periodically examined by the output
process and, if set, writing stops and the process receives
the new header from LINEOUTPUT.

Figure 4.4 puts these three processes together. It
shows the order of the actions taken by each component in’
processing any message from input through to output. The
arrow on each arc indicates the direction of flow of infor-
mation and synchronization signals.

The other major functions in the system are those of
the operator. The operator handles both normal message in=-
put and output (in the same way as for subscribers and
trunks) and special input requests and output messages.

For retrieve, cancel, wait, restart, and alter reguests, the
operator posts a NOTICE for SWITCH. In the case of alter,

the operator passes the new table values to SWITCH via the

-30-

Figure 4.3

Output Process Functions

Subscriber.and : . receive header output output end
Trunk Output — from ———> header — “body of
LINEOUTPUT Message
’ , pre-emption
Output change to write on
Header g - output —=> device 2

format

Output Body: ! get block write on S end
rom MEMORY —? device I D ——

pre—emption

get next header
from LINEOUTPUT

-31-

Figure 4.4

IO Control - SWITCH Interface Timing

— | LINEINPUT

INPUT PHASE OUTPUT PHASE

1 send new header 11 insert output msg in LINEOUTPU
2 post new msg NOTICE 12 retrieve header

3 receive NOTICE 13 receive header

4 receive header 14 read message from MEMORY

5 store header 15 send done with output signal
6 send REPLY ’ 16 post done NOTICE

7 receive REPLY 17 receive done NOTICE ’
8 store message on MEMORY

9 send end of msg NOTICE
10 receive NOTICE

-32-

SUPERVISOR interface module. When SWITCH receives one of
these requests (via NOTICE) it takes café of it and sends a
response back to the operator. These responses, as well

as exceptions and special conditions (e.g. mount a new archive
tape), are sent to the operator output process via SUPERVISOR.
The control signal telling the operator that a response or
other message is waiting comes fronm LINEOUTPQT in the form

of a special header. Output processes get all their work
from LINEOUTPUT in the same way that SWITCH gets all its

work from NOTICE.

-33-

Figure 4.5

Operator Functions

—> retrieve status

Operator Input: get next —> cancel ———————
—» request —¢ Qi

—9 wait/restart ———

——alter tables

|l——> retrieve —

|——snew tape ——I|

retrieve, cancel, post NOTICE
wait/restarts ? for SWITCH
alter tables: send request to s post NOTICE
—2 SUPERVISOR T 2 for SWITCH —2
start

scnd doretrieve

retrieve: to SUPERVISOR

——————>send cancel retrieve —
cancel to SUPERVISOR

newtape: -5 tell archive tape is mounted —

Operator Output: ___ get operator output —p receive output write on _
notice from LINEOUTPUT msg from — terminal
SUPERVISOR

-34-
5.0 Program Listings

This chapter contains listings for each of the program
components comprising the message switching node. Figure 5.1
qiveg an outline of the program. Succeeding sections of this
chapter discuss each group in detail.

In order to make the listings more readable, three
conventions which are not in Modula have been used. First,
nuneric constants are often denoted by a character string in
qguotation marks; for example "pre-empt" or "inheader." These
could of course be represented in Modula by constant declara-

tions. Upper bounds of arrays are usually just specified as

max”™; the appropriate value to substitute is dependent on
the actual size of the system.

Second, module procedures are called by specifying both
the module name and procedure name. For example, SUBSCRIBER.read
c&lls the read operation of the SUBSCRIBER module. In Modula,
only the procedure name is used which requires that each pro-
cedure nare is unique.
Third, queucs have been added as an extension to the usual

Modula data types. They are declared as:

name: gueue maximum size of type
and can be operated on by three operations:
name.delete (entry)

name.igsert(entry)

name.size
This shortcut has been employed within interface modules in
order to decrease the length of the programs and, hopefully,
increase their readability.

Queues as used here can be readily implemented in Modula

in a variety of ways. The most obvious was is to use an array

X Sl

-35~

Figure 5.1

Program Outline

module MESSAGE-SWITCH;

global data types -~ header, block, actionmsg, operator
request, operator output

system clock group - TIMER device module, CLOCK process
MEMORY and ACTIVE ARCHIVE interface modules.
IO - SWITCH interface modules -
LINEINPUT, NOTICE, REPLY, HEADERS, LINEOUTPUT,
SUPERVISOR

Subscriber groups - SINPUT & SOUTPUT processes SUBSCRIBER
device module

Trunk groups - TINPUT & TOUTPUT processes TRUNK device
module

SWITCH process

Operxator group - OPINPUT & OPOUTPUT processes
OPERATOR device module, RETRIEVE process
OLD-ARCHIVE device module

begin activate all processes

end MESSAGE-SWITCH

-36-
and three control variables as follows:
name: qucue n of T becomes
name: arrav 1l ¢ n of T;
size, front, rear : integer;
size := 0; front := 1; recar := 1;
"The operations insert and delete then respectively add an elcment
of type T at the recar of the array and delete an element from
the front. The control variables are adjusted appropriately. '
The size operation of course just yields the value of size above.
The four variables (array plus controls) could also be grouped
into a record.
" Ancther implementation is to use a module which defines
the type of queue entries and the three operations insert, delete
and size. 1Inside the module, queues are then represented as ‘
above by an array and control variables. Although this approach
is feasible, a different module must be defined for cach type
of queue. Modula has no facility for so-called generic or poly-
morphic types. Since each of the queues used in the message
switch system has a unique type the module approach would re-

quire a distinct module for each queue.

5.1 Global Data Types

Five types of data are used throughout the system: header,
block, actionmsg, operator request, operatoroutput. They are i
declared in Figure 5.2. Type header contains all of the header ;
and control information for messages. Block is the unit
passed to and from MEMORY and the archives. An actionmsg is |
the type of information stored on the archive's action tapes.
Operator reguest and operatoroutput define the formats of

information passed to and from the SUPERVISOR module (which

-37-

Figure 5.2
Global Data Types

type header = rccord

origin: integer; (* line # of sender *)

outputcount: integer; (* no. of. destinations¥®)
dests: array l: "max" of integer;

prec, class: integer; (* precedence, classification®)
identity: integer; (* date-time-origin*)

seqcount: integer; (* sequence data*)

sequence: array l: "max" of integer;

size: integer; (* no. of blocks in msg*)

filename: integer (* MEMORY file*)

end;

block = array 1: "blocklength®” @f char; (* msg blocks*)

actionmsg = record (* actions stored on archive®*)
msgid, time, action: integer end;

operatorrequest = record key: integer; (* type of request®)
value: array l:4 of integer end;

operatoroutput = record size: integer; (* no. of chars?)
ata: array l: “max" of char erd;

-38~

interfaces SWITCH to the operator).
5.2 System Clock Group

In order to keep track of the time of day and synchro-

nize trunk 10, a TIMER device module and a CLOCK process

re employed. The TIMER contains a device process, clock
driver, which periodically receives (via dolO) a hardware
clock interrupt. It then increments the time of day and
sends a tick signal. The CLOCK process receives the tick
signal and, for each TRUNK process waiting for IO synchro-
nization (see Section 5.6), sends a trunk tick. If the
period of the trunk tick is a multiple of the period of the
hardware clock, the CLOCK process would accumulate clock
ticks until the period has passed and then send a trunk tick.
The TIMER and CLOCK are shown in Figure 5.3. The trunk and
hardware clock periods are assumed& to be equal for now. For
an intefesting discussion of hardware clock and Modula,

the reader is referred to page 81 of (10].
5.3 MEMORY Interface Module

The MEMORY module provides an interface between IO
control processes (subscribers and trunks) and auxiliary
mermory. It is organized as shown in Figure 3.6. A program
outline of the module is shown in Figure 5.4 and the program
is given in Figure 5.5. The MEMORY module manages free

space on the auxiliary storage device and dofines operations

-39=

Figure 5.3

System Clock Group

var trunktick : signal; (*synchronization for trunk I0*)

device module TIMER;
define time of day, tick;

var time of day : integer; ("number of hardware clock

interrupts since system initialization
tick : signal; (*signal for each hardware clock interrugp

process clockdriver;

begin loop dolO; (*wait for interrupt®)
inc(time of day):; send (tick)

end
end clockdriver;

begin time of day := 0; clockdriver
end TIMER;

process CLOCK;
use tick;

begin loop wait (tick);

while awaited (trunktick) do send (trunktick) end
end

end CLOCK;

-40-

Figure 5.4

Outline of MEMORY

interface module MEMORY;

variables - directory, free space, waiting processes
utility procedures - manage free space
defined operations - create, write, endwrite, read, destroy
device module AUXMEM;
variables - sector buffer, scheduling
utility procedures - IO scheduling
defined operation - IO
process driver
code to perform IO
end driver;
begin initialize AUXMEM
end AUXMEM
bagin initialize MEMORY

end MEMORY;

-41-

for managing files and performing IO. Five operations are
defined: create, write, endwrite, read, and destroy.

Create is called by input control processes. Its function
is to allocate storage space for the file and assign an in-
ternal name. The estimated size of the file is specified as
a parameter. If not enough space is currently available,
the user or sending trunk is notified and the input controller
waits. Once adequate space has been released (via destroy
or endwrite) the creating process continues.

Once created, a file is filled by calling write, speci-
fying the filename and dFta block. Write is in general called
many times. The write operation treats the file as a seguen-
tial file and writes into the next allocated external block.
Since auxiliary memory sectors are assumed to be larger than
data blocks, on most writes the old sector must be read, up-
dated, and then rewritten. Sectors of external memory are
allocated on denand and are linked together. The links are
stored in the directory of the file.

A file is “closed”™ by calling endwrite. The purpose
of endwrite is to tell the file system (i.e. MEMORY) how
much space was actually used. On creation, an estimate of
the maximum required space is specified, and MEMORY commits
that much space. Endwrite enables MEMORY to take back any
unused space and make it available for other files.

File reading is performed by input control processes
in subscribers and trunks. A call to the read operation

identifies the file, block number, and buffer to use.

-42-

MEMORY maps the file name and block number into a sector
address and calls AUXVMEM to perform the IO. The block
number must be specified on read because many processes
may simultaneously be reading different blocks from the
sare file (messages may have multiple destinations).

Once all processing on a file is completed, SWITCH
calls destroy. Destroy frees the space occupied by the
file and, if necessary, tries to awaken processes waiting
to execute create. Waiting processes are awakened in the
order in which they blocked regardless of how much space
they need.

AUXMEM is a device module which schedules and performs
read and write operations on auxiliary memory (if necessary).
Iobis actually performed by the driver process. The read
and write operations in MEMORY give IO requests to AUXMEM
by calli;g its IO operation. IO requests a turn, synchro-
nizes with the driver process and then releases its turn.
iRequest turn and releaseturn are scheduling procedures.

As defined in Figure 5.5, reguest turn and release turn use
a first-come, first-served strategy. Other scheduling
strategies, such as the elevator algorithm in []}, can

be readily implemented merely by changing the bodies of the
scheduling procedures.

The driver process synchronizes with the IO procedure
via startio and iodone signals. Notice that many procecsses

could be in IO at once, waiting to be scheduled (by request

turn). Only one process at a time can be waiting for iodone

-43-

however.

The code for MEMORY, which contains AUXMEM as a sub-
module, is shown in Figure 5.5. AUXMEM is contained with-
in MEMORY because it is part of the representation of MEMORY
and hence is not dir:ctly accessible to control processes.
MEMORY provides the abstraction of a file system. The abstrac-

tion, namely the file operations, are all that MEMORY's users

see,

-84~

Pigure 5.5

Auxiliary Memory Interface

interface module MEMORY;

define create, destroy, read, write, endwrite;

use NOTICE:

const sectorsize = nl; (* no. of blocks in sector*)
memorysize = n2; (* no. of sectors in memory*)
max # files = n3; (* maximum number of files*)

" tvoe file = record (* format of file descriptor®)
nane, claim, used, curblock: integer;

sectors: array l: maxfilesize of integer
end;

var directory: array l: max § files of file;
frce directories: queue max # files of integer;
(* empty directories*)
free space: gueue memorysize of integer;
comnitted: 1integer; (* no. of sectors claimed or
actually used *)
waitingdata: gqueue n of integer; (* queuve of

requested sizes for processes waiting
to create *) .

spacenowavail ¢ sigral; (* for processes waiting
to do create *)
i: integer; (* loop counter in initialization *)

procedure .spaceavail. (size: integer): Boolean; (* size is
estimated no. of sectors *)

beain
1f cormitted + Nnsecs <= memory size
“then spaceavail = true

else spaccavail - = false
end

end .spaceavail;

-q5=~

Figure 5.5 (Continued)
Auxiliary Memory Interface

procedure request (sector, filename: integer);

frecespace.remove (sector)
with directory (filename) do
inc (used); sectors(used):=sector end;

end request

procedure release (filename: integer);
var 1i: integer;

begin i:=1l; with directoxy(filename) do
repeat freespace.insert (sectors(i))
inc (i)
until i> used .
committed:=committed-used end

end release;

procedure create (msgid, size : integer; var filename : integer);
var nsecs : integer; (*estimated no. of sectors*)

begin nsecs := size div sectorsize;

if size mod sectorsize > 0 then inc(nsecs) end:

if freedirectories.size = 0 then
(*do something about the exception - e.g. send
NOTICE to SWITCH or wait for file to be destroyed*)

end
freedirectories.remove (filename);

with directory (filename) do

extname := msgid; claim := ngecs; used := 0
curblock := 0

end

-46-

'

Figure 5.5 (Continued)
Auxiliary Memory Interface

if not spaceavail (nsecs)

then

NOTICE.post ("stop”,line§) (*tell user to stop input*)

waitingdata.insert(nsecs);

wait (spacenowavail);

NOTICE.post ("restart”, line#) (*line # can be computed
from msgid which contains
the origin of the
message*)

end

committed := committed + nsecs;

end create;

procedure write(filename : integer; var buffer : block);

var S : integer;

begin

with directory(filename) do -
v if curblock=0 then (¥allocate new sector*)

freespace.remove (s);

inc (used);

sectors(used) := S;

AUXMEM.IO ("write™, buffer, S,0);

else
AUXMEM.IO("read/write”, buffer, sectors(used),
curblock);

end
inc (curblock) ;
if curblock > sectorsize then curblock := 0 end

end

end write;

-f 7=

Figure 5.5 (Continued)
Auxiliary Memory Interface

procedure endwrite(filename : integer)s;
var allocate : Boolean;
begin
with directory(filename)do
cormitted := committed-claim+used (*upcdate actual
amount of committed -
storage*)
end
(* see if waiting processes can now proceed*)
allocate := true;
while allocate do
if waitingdata.front <=memorysize-committed
then waiting data.remove; signal (spacenowavail)
else allocate := false end
end

end endwrite;

procedure read(filename,blnO : integer; var buffer : block):
var S,0 : integer;
begin

with directory(filename)do
S := blno div sectorsize; (*sector number?*)
O := blno mod sectorsize: (*offset in sector*) .
AUXMEM.I0("read", buffer, sectors(S),0)

end

end read;

-48-

Pigure 5.5 (Continued)
Auxiliary Memory Interface-

procedure destroy(filename : integer)

var allocate : Boolean;

begin

(*release file space*)

release(filename);

(* delete filename from directory*)
freedirectories.insert(filename)

(*awaken processes waiting to create files*)
allocate := true;

while allocate do
if waitingdata.front <= memorysize-committed
then waitingdata.remove;send (spacenowavail)
else allocate := false end
end

end destroy;

device module AUXMEM;
define IO;

use sectorsize

var (*communication with driver process*)
op,sec : integer; (*operation, sector*)
IO avail : Boolean; (*operation ready for driver*)
startiO, iodone : signal; (*driver synchronization*)

(*10 buffer for driver*)
sectorbuffer : array 1 : sectorsize of block;

(*variables for I0 scheduling*)
(*just use FCFS for now- could use elevator algorithm
of Hoare")
turn : signal;
deviceallocated : Boolean;

-§ 9~

Figure 5.5 (Continued)
Auxiliary Memory Interface

procedure requestturn(sector :. integer)

begin
(*schedule IO operations in an order which controls

latency and rotation delays*)

(*for now, will just use FCFS*)

if deviceallocated then wait(turn);
deviceallocated := true;

end requestturn;

procedure releaseturn(sector : integer)

begin
(*select next process to get its turn doing IO*)

deviceallocated := false;
send (turn)

end releascturn;

procedure IO (operation : integer; var buffer : block; sector,
offset : integer);

begin
requestturn (sector); (*wait to be scheduled*)

case operation of
"read"” : begin op := "read"; sec := sectox;
IOavail := true; send(startio):

wait (iOdone);
buffer := sectorbuffer[offset]

-50-

Figure 5.5 (Continued)
Auxiliary Memory Interface

"write” : begin op := "write":; sec := sector;
sectorbufferf[offset] := buffer;
IOavail := true; send(startiQ)
wait (i0done)
end
“"read/write” : begin
op := “"read”; sec := sector; (*read sector?*)
IOavail := true; send(startip):
wait (iodone):
sectorbuffer[offset] := buffer; (*update sector?®)
op := "write"; sec := sector; z'write it back*)
I0avail := false; send(startio):
wait (iOdone)

end
end; (*of case*)
releaseturn(sector) (*let next process be scheduled*)

end dolO;

.

process driver;

.

[
Q
o]
¢}

|

if not IOavail then wait(startip);

format operation on sector into or out of sector buffer;
dolO; :

IOavail := false; send(iodone)
end

end driver;

-51-

Figqure 5.5 (Continued)

Auxiliary Memory Interface

begin (*initialize AUXMEM*)
IOavail := false; deviceallocated := false;
driver

end AUXMEM;

(*initialization of MEMORY*)

begin
(*initialize all directories to free?*)
i :=1

repeat freedirectories.insert(i)
inc (i)

until i > max#files;

(*initialize free space*)
= 1

repeat freespace.insert(i)
inc (i)

until i > memorysize

end MEMORY;

-52~

5.4 ACTIVE-ARCHIVE Module

The ACTIVE-ARCHIVE module is organized as shown in
Figure 3.5. It provides an interface to the archive tapes.
All data blocks are stored on a data tape; all actions taken
on a message are stored on the action tape. To cause data
and action messages to be writen, the ACTIVE-ARCHIVE pro-
vides two operations, data and action (there are actually
three - resume is discussed below). Both operations store
their parameters (a block or actionmessage respectively)
in a buffer. When the buffer is full, it is output by
either the data archive or tape archive device process. For
efficiency, namely to reduce the space taken up by inter-
record gdps, messages are blocked before transmission to
the tape. Neither blocks or action messages are ordered by
the sender; data or action messages from different input
devices are in general interleaved. Each has an identifier
field however, in case it ever needs to be retrieved (see
Section 5.9).

The ACTIVE-ARCHIVE program is listed in Figure 5.6.
Its locgic is straightforward. The one exception occurs
when a tape has been filled. 1In this case, SWITCH is no-
tified (via NOTICE). SWITCH will subsequently tell the
operator to mount a new tape. Once it is mounted, the
operator's input process calls resume which allows writing

to cortinaue.

-53-

Figure 5.6

ACTIVE ARCHIVE

device module ACTIVE-ARCHIVE;

define action,data,resume;

use

NOTICE, block,actionmsgqg;

constant actiontapesize = my: (*# of records on action tape*!

var

datatapesize = m,: (*# of records on data tape®)
actionrecordsize = nyi (*# of msqgs in action record*)
datarecordsize = nyi (*# blocks in data record®*)

arno, drnO, abnO , dbnO : integer; (*current count of acti
data records and blocks*)

(*declare blocking buffers for tapes*)

actionbuffer : array 1 : actionrecordsize of actionmsg;

databuffer : array 1 : datarecordsize of record id :inte¢
info : block end;

outputaction,actiondone,outputdata,datadone,
tapemounted : signal; (*driver
synchronizatic

actionavail,dataavail : Boolean;

procedure action (act : actionmsg);

begin (*write actionmsg on action tape*)

inc(abn0); (*store action message®)
actionbuffer (abnO) := act;

if abnO = actionrecordsize
then actionavail := true; (*output action buffer*)
signal (outputaction);
wait (actiondone);
abnO := 0;
inc (arn0O) end;

-54-

Figure 5.6 (Continued)
ACTIVE ARCHIVE |

if arn0 = actiontapesize (*end of tape*)

then (*tell operator to mount new tape?*)
NOTICE.post ("exception", "mountactiontape");
wait (tapemounted):;
arnO := 0 end

end action;

procedure data (insgid : integer; bl : block); (*write msgid and

gin

—

block on data tape*)

inc (dbno) ; (*store block*)
databuffer (dbn0) .id := msgid;
databuffer (dbn0). info := bl;

if dbno = datarecordsize

then (*output data record buffer*)
dataavail := true;
signal (outputdata);
wait (datadone);
dbno := 0;
inc(drnO) end;

if drno = datatapesize (*end of tape¥*)

then (*tell operator to mount new tape®*)

end data;

NOTICE.post ("exception”, "mountdatatape”);
wait (tapemounted);
drnO := 0 end

-55=

Figure 5.6 (Continued)
ACTIVE ARCHIVE

procedure resume;
(*called by OPERATOR INPUT process when operator says that
a new tape has been mounted?*)

begin
signal (tapemounted)

end resume;

process dataarchive;

begin loon
if’ not dataavail then wait(outputdata) end;
initiate output of contents of data buffer;
doI0;
dataavail := false;
signal (datadone)
end

end dataarchive;

process action archive;

begin loop
if not actionavail then wait (outputaction) end:
initiate output of contents of action buffer;
doIO0; actionavail := false;
signal (actiondone)
end

end action archive;

(*initialize device module*)

begin arnO :-‘o; drnO := 0; abnO := 0; AbnO := 0;
dataavail := false; actionavail := false
dataarchive; actionarchive

oend ACTIVE-AKCHIVE)

-56~

5.5 IO Control - SWITCH Interface Modules

As shown in Figure 3.8, the subscriber and trunk IO
control processes interact with SWITCH via five interface
modules: LINEINPUT, NOTICE, REPLY, HEADERS, and LINEOUTPUT.
Modula programs for each of these modules are given in
Figqures 5.7 - 5.11.

LINEINPUT is shown in Figure 5.7. It defines two
operations, sendhead and receivehead. Sendhead is called
by input control processes; it stores a header in the headers
Ggueue and posts a NOTICE to tell SWITCH that a new header
has arrived. SWITCH calls receivehead once it receives the
NOTICE; it returns the first header. LINEINPUT acts like a
simple message passing module except that because SWITCH only
calls receivehead when it knows a header is available, receive-
head never causes SWITCH to wait.

The NOTICE interface module implements a bounded buffer
of notices for SWITCH. Notices are posted from a variety of
places whenever SWITCH needs to be told something. They are
only received by SWITCH, however. The program for NOTICE
is given in Figure 5.8. Each notice has a kind field to tell

what kind of data it contains. In Section 5.8 the different

-57-

Figure 5.7

LINEINPUT

interface module LINEINPUT;

define sendhead, receivehead;

use NOTICE, header;

var headers : gueue “max#” of header; (*sent headers*)
nonfull : signal; (*synchronization*)

procedure sendhead (hd : header);
begin
if headers.size = "max$#" then wait(nonfull) end;
headers.insert (hd);

NOTICE.post ("head",0)
end sendhead;

procedure receivehead (var hd : header);
begin
header.delete (hd);

signal (nonfull)
end ;

begin (*headers is initially empty*)
end LINEINPUT;

-58~

Figure 5.8

SWITCH Notices

interface module NOTICE;

define post,receive;
tvpe note = record k,d : integer end;

var nonempty, nonfull : signal; (*synchronization®*)
notices : gueue n of note; (*pending notices*)

procedure post (kind,data : integer):

var n : note;

. begin if notices.size = n then wait (nonfull) end;
n.k. = kind; n.d. = data;
notices.insert(n);
send (nonempty)

end post;

procedure receive (var kind,data : integer);
var n : note;
begin if notices.size = 0 then wait(nonempty) end;
notices.delete (n);
kind := n.k; data := n.d;
send (nonfull)
end receive i
begin (*notices is initially empty*)
end NOTICE;

-59=

values for kind and data are enumerated when SWITCH is
discussed.

REPLY is similar to NOTICE and is shown in Figure 5.9.

The main difference is that many processes can receive replies;
in particular all input and output control processes wait

at times for a REPLY. Consequently, REPLY uses an array of
signals, one per line number. The receive operation returns
an integer data value once it is available. Replies are

sent by calling the give operation and specifying the line
number and data.

The fourth interface module, HEADERS, provides storage
for the headers of all active messages. Its program is
shown in Figure 5.10. When SWITCH receives a new header
from LINEINPUT, it calls HEADERS.enter. Enter seclects a
free header "slot" and stores the header in it. The index
of the selected slot is returned to SWITCH and becomes the
internal identifier of the message. As the message corres-
ponding to the header is processed, the header is occassionally
updated by calling retrieve, changing some values, and then
calling update. Once the message has been output or can-
celled, the header is destroyed by calling delete. Initially
all header slots are put on the free queue.

The final interface module connecting IO control processes.
to SWITCH is LINEOUTPUT, shown in Figure 5.11. Its functions
are to schedule and control output activity. For each out-
put line, LINEOUTPUT has a linequeue record which is the

hcader of a list of output messages for that line. For each

-60~

Figure 5.9

IO Control Replies

interface module REPLY;

cdefine give,receive;

var replies : arrayv 1 : "#lines" of integer;
available : array 1 : "#lines" of signal;
i : integer;
procedure give (line, data : integer);
replies [line) := data;
send (available (line])
end give;

procedure receive (line : integer; var data : integer);
if replies[line) = 0 then wait (available[line]);
data := replies[line];
replies[line) := 0
end receive;

begin i :=1
reoeat replies[i] := 0; inc(i) until i > "§lines"”

end REPLY;

-61~-

Figure 5.10

Header Storage

interface module HEADERS;

define enter,retrieve,update,delete;
use header;

var hd : array 1 : "max #" of header; (*full headers'}
free : gueue "max$#" of integer; (*empty header slots*)

i : integer;

procedure enter (h : headeg,vat index : integer):

<

ar i : integer;

begin if free.size = 0 then error end;
free.delete(i); index := i;
hd(i) := h end enter;

procedure retrieve (var h : header; index : integer);

begin h := hd[index]) end retrieve;

procedure update (h : header;index : integer);

begin hd[index] := h end update;

procedure delete (index : integer);

begin free.insert(index) end delete;

begin i := 1; (*initialize free list*)
repeat free.insert(i); inc(i) until i > “"maxi”

end HEADERS;

-62~

output messaqe, the kind of message, its internal name
(HEADERS index) and precedence are stored. The msgs array
is the storage area for all output messages. Free message
slots are kept in the free queue. Each line queue stores
messages in decreasing order of precedence. That is, the
highest precedence output message is always kent at the head
of the list. Within any precedence level, output messages
are ordered by time of arrival. The other main variables
are a Boolean array of preemption flags set by insert
(discussed shortly) and an array of available signals used
to synchronize output control processes.

LINéOUTPUT provides four operations: insert, receive,
done, and cancel. 1Insert is called by SWITCH, once for each
destinaticn of an input message; it adds an outputmsg to
the appropriate output queue. If the output queue is empty,
the message goes at the front and available is signalled.

If the new output is of higher precedence than the one at
the f£ront of the queue, the new message is put at the

front and the pre-empt flag for the line is set. This will
cause the appropriate output control process to stop and
call LINEOUTPUT to receive the new, high precedence message.
If the new message is of equal or lower precedence than the
one at the front of the queue, it is inserted at the appro-
priate place.

The receive operation is called by output control
processes whcnever they are ready to output another message.

If none is available, the process waits. When a messaqge is

-63-

available the output controller receives the header of the
first output message on the linequeue. Some special messages,
which are merely directions to output processes, are also
sent via LINEOUTPUT. Since these do not have headers, only

a kind indicator is returned. Note that received messages
remain on the linequeue. In this way they can be received
again if pre-emptéd by higher precedence output.

Once output is complete, the output control process
calls done. Done merely deletes the first entry on the line-
queue and for regular messages (those having headers) notifies
SWITCH. For simplicity, done does not return the next avail-
able message if there is one. The output controller gets
the next one via receive.

The final operation is cancel. It is called by SWITCH
in order to cancel the output of a message (when directed to
do so by the operator). Because a message may be sent to
more than one destination and may be in different stages of
output to those destinations, cancel merely marks the messace
by setting kind to "cancel®™. Eventually each output destina-
tion controller will receive the message, process the cancel-

lation and call done.
5.6 Subscriber Groups

Each subscriber group provides an interface to a user
terminal. The organization of each group is the same and
was shown in Figuzé 3.4. The programs for an SINPUT and

an SOUTPUT process as well as a SUBSCRIBER device module

-64-

Figure 5.11

Line Output Queues

interface module LINEOUTPUT;

define pre-empt, insert, receive, done, cancel;

use HEADERS, NOTICE, header;

t

3

e outputmsg = (*output control information*)

|

record kind, index, pr : integer;
link : integer; end;

- linequeue = (*1list header for line%*)

record front, rear, size : integer; end ;

.

var msgs : array 1 : "max" of outputmsg (*storage for output
messages*)

free : queue "max#" of integer; (*free message slots*)

outqueue : array 1 : “"#lines"” of linequeue; (*queues of
available messages®*)

pre-empt : array 1 : “#lines" of Boolean; (*pre-emption

flags*)
available : array 1 : “#lines"” of signal; (*output
synchronization¥*)

i : integer; .
doinsert : array 1 = "#lines" of signal; (*pre-emption
synchronization®)

procedure insert (line, msgkind, msgindex, precedence : integer);
(*insert output message on outqueue (line) at appropriate
precedence®*)

var slot : integer
begin with outqueue(line) do
2edn Wi =

free.delete(slot) (*get empty slot-fill in values*)
with msgs[slot] do

kind := msgkind; index := msgindex;

pr := precedence, end

-65-

Figure 5.11 (Continued)
Line Output Queues

if pre-empt (line) then wait (doinsert(line]) end;
(*avoid pre-emption conflict*)

if size = 0 (*empty linequeue*)
then front := slot; rear := slot;
size := 1; msgs[slot) -link := 0;
send (available[line)) (*wake up output process®)

elseif precedence > msgs[front].pr (*pre-emption®)

then (*put new message at front*)

msgs[slot].link := front;

front := slot; inc(size);

pre-enpt[line] := true;

NOTICE.post (“pre-empt”, msgindex) . (*inform SWI1
of pre-emptic:

else (*put new message at appropriate spot in linequeue®*)
:= fronti

while i # 0 and precedence <= msgs[i}.pr do
j := 4; 1 := msgs[i).link end:;

. iti=o
then (*insert at end of linequeue¥*)
msgs[slot}.link := 0;
msgs[rear].link := slot;
rear := slot

else (*insert in middle*)
msgs. [slot).link := i;
msgs[j).link := slot

end
inc(size)
end (*of conditional¥)
end (*of with¥)

end insert;

-66~

Pigure 5.11 (Continued)

Line Output Queues

procedure receive (line : integer; var knd : integer; var
hd : header);

(*fetch first output message from outqueue (line)
as soon as one is available*)
var i : integer;
begin with outqueue[line]) do

if size = 0 then wait(available[line]) end;

(*retrieve first message*)
knd := msgs[front]).kind
if knd = "ncwmsg®" or "acknowledgeinput”
then HEADERS.retrieve (hd,msgs[front].index)

end

pre~empt(line] := false;
send (doinsert(line)); (*let another pre-emption*)
. (*occur if one is pending*)

end
end receive;

procecdure done (line : integer);
(*called when last received output message is finished*)

var £; i : integer;

beagin with outqueuelline]do

(*delete first entry on queuve - if pre-empt (line] then
€ := front; delete second entry*)
front := msgs[front).link;

if pre-empt(line] (*a pre-emption insert has occurred but
has not been recognized*)
then £ := front; front := msgs[front).link end

free.insert(f);
dec (size)
if rear = £ then rear = 0 end .

-67-

Figure 5.11 (Continued)

Line Output Queues

(*tell SWITCH output is complete for reqular messages®*)
i := msgs[f]).index;
if i > 0 then NOTICE.post(“done”,i) end

end

end done;

procedure cancel (ind : integer);
(*£ind and mark any output messages identified by
ind - the message may be in more than one linequeue -
for cach copy of the message set kind to "cancel:
and, if it is at the front of the qucue, set the

pre-cmpt flag*)

var & : integer; hd : header; cnt, ptr : integer;

begin
HEADERS.retrieve (ind,hd)
cnt := 1;
repeat (*for each output destination in header*)
2 := hd.dests[cnt); (*lined of destination®)
with outqueue([2]do
ptr := front;
while ptr <> 0 do
if msgs[ptr].index = ind)
then msgs(ptr].kind := “cancel®
if ptr = front then
pre-empt[1] := true end-
end
inc (ent);
until cnt > hd.outputcount

end cancel;

-68-

Figure 5.11 (Continued)

Line Output Queues

begin (*initialize LINEOUTPUT variables¥)
i =]1;
repeat pre-empt[i] = false

until £ > “"#lines";
i:=1
repeat free.insert(msgs[i])

until i > "max"

end LINEQUTPUT;

-69-

are shown in Figures 5.12 - 5.14. Because Modula does not
provide any means to declare processes or modules as types,
an actual system must contain one group of these three
components for each subscriber terminal.

An SINPUT process takes the actions shown in Figure 4¢.1.
Its role is to read characters from a terminal (via its
SUBSCRIBER device module) and group the characters into
headers and blocks. The program is shown in Fiqure 5.12.
SINPUT is organized as a loop repeated for each character.
First the character is read and then an action is taken
depending on the current status of input. There are three
states: find start, in head, and in body.

When no message is being processed, SINPUT is in "find
start" status and looks for a start of message sequence of
characters. Once the start has been found, status changes to
“in head". Subsequent characters are parsed (detailed code
is not shown since it depends on the exact message format)
and a hcader is built. When the end of the heacder input
is detected, a memory file is created, the header is archived,
the header is sent to SWITCH (via LINEINPUT) and status is
changed to "in body". The character sequence conprising
the body of the message is then processed. For each block,
MEMORY.write and ARCHIVE.data operations are called. Once
the end of the message is found, the last block is taken
care of and SWITCH is notified. If the message is cancelled,

SWITCH is told to cancel input. After detecting the end of

process

use

var

-70-

Figure 5.12

Subscriber Input Process

SINPUT; (*one SINPUT process for each line*)
header, block, blocklength, SUBSCRIBER, LINEINPUT,
REPLY, MEMORY, ACTIVE-ARCHIVE, NOTICE, HEADERS;

status : integer; (*where SINPUT is in the message*)

bl : block; (*buffer for building input message*)

hd : header; (*header built for new input*)

name : integer; (*internal msg identifier*)

msgid : integer; (*external msg identifier*)

filename : integer; (*name of MEMORY file*)

current integer; (*character pointer into bl¥)

nblocks integer; (*number of input blocks in a messge¥*)

H
3

begin (*initialize variable*)

status := "find start";

looo

SUBSCRIBER.read(ch); (*get next input char*)
case status of

*f£ind start": begin

look for start of message sequence of characters
keep record of where you are in sequence;

if entire SOM sequence has been received

then current = 1;
status := "in head"
end

end; (*of find start case*)

-71-

Figure 5.12 (Continued)
Subscriber Input Process

"in head" : begin
{¥*store character received*)

end;

*in body"

bl. [current] := ch;
inc (current);

find next header comporent in bl;
store it in hd;

if error then status := "find start”
NOTICE.post ("exception®, data) end:
if end of header found then (*tell SWITCH*)
LINEINPUT.sendhead (hd);
REPLY.receive (line# i, name); (*name is internal
name of message -

assigned by SWITCH*)
. (*create an auxiliary storage file*)

MEMORY.create (hd.identity, hd.size, filename);

(*filename is assigned by MEMORY*)
nblocks := 0;

ACTIVE-ARCHIVE.data(msgid,bl);

(*set current to start of block and start reading
of body of message*)

current := 1l; msgid := hd.identity;
status := "in body"

end (*of end of header condition*)

(*of in head case*)

: begin

(*store character received*)
bl (current) := ch; inc(current);

(*look for end of msg (EOM) or cancel sequence?®)

if end of message then fill rest of bl with blanks;
(*write block on ARCHIVE And MEMORY?*)
ACTIVE-ARCHIVE.data (msgid, bl);
MEMORY.write (filecname,bl); inc(nblocks):
MEMORY.endwrite (filename); (*close file®*)

(*store actual size and file name in heacder?)
HEADERS.retrieve (hd, naxme);

hd.size := nblocks;

hd.filename := filename;

HEADERS.update (hd, name);

-72-

Figure 5.12 (Continued)

Subscriber, Input Process

(*notify SWITCH of end of input*)
NOTICE.post ("end of input", name);
(*reinitiatize*)

status := "find start"

elseif cancel input sequence found then
(*archive block and notify SWITCH*)
ACTIVE-ARCHIVE.data (msg,bl);
NOTICE.post ("input cancel", name)
status := "find start"

elseif current = blocklength then (*write out block*)
ACTIVE-ARCHIVE.data (msgld,bl):
MEMORY.write (filename, bl); inc(nblocks);
current := 1
end

end (*of in body case*)
end (*of loop*)

end SINPUT;

-73-

message or cancel, SINPUT sets status to "find start” and
repeats the above actions.

The program for an SOUTPUT process is shown in Pigure
5.13. SOUTPUT also executes as a loop receiving an output
command from LINEOUTPUT, completely processing the command
and then repeating the process by getting another LINEGUTPUT
command. (See Figure 4.3) There are six kinds of output
commands: new message, acknowledge input, cancel, stop
input, restart input, and stop output.

New message is the most common type of command. It
is sent whenever SWITCH receives a new input message having
SOUTPUT's terminal as a destination. On receipt of a new
nmessage command, (which returns the header), SOUTPUT outputs
the header (appropriately reformatted) and then outputs each
block of the message. Blocks are read from MEMORY; they are
printed by calling SUBSCRIBER.write for each character.
Because new' input of higher precedence may be inserted in
LINEOUTPUT (by SWITCH) while SOUTPUT is writing out a message,
SOUTPUT needs to know when a preemption is to occur. LINE-
OUTPUT communicates with SOUTPUT by setting a pre-empt
flag. SOUTPUT periodically checks the flag and, if set,
exits the loop. This results in the new, higher precedence
message being received from LINEOUTPUT. As coded in Pigure 5.13,
SOUTPUT checks the pre-empt flag after each block of output.
This could readily be changed to character level pre-empticn
by moving the check (when statement) inside the inner repeat

t—

statement.

74~

The second kind of output command is acknowledge input.
This is sent by SWITCH to inform the user at a terminal that
an input message has been received. The action of SOUTPUT
is to send the set of characters "input X received" to the
SUBSCRIBER where X is the sequence numkter from the input
message header.

The cancel kind of output comes about when a normal
(new message) kind of output is cancelled. In this case,
SOUTPUT does not output the message but merely informs

the terminal user that outpmt was cancelled. Because of

the pre-emption mechanism, output in progress can be cancelled.

The stop input command is used to tell the terminal
user to stop sending input. (This command is issued by
MEMORY or the operator). At some later time, the restart
input command will be received by SOUTPUT who then tells
the user to restart input.

The final type of command is used to temporarily stop
output. SOUTPUT tells the user that output is being stopped
and then waits for a REPLY (from SWITCH). On receipt of
the RFPLY, SOUTPUT resumes.

After processing any output command, SOUTPUT calls
LINEOUTPUT.done and then loops back to receive the next
command from LINEOUTPUT.receive.

The final component of each subscriber group is a
SUBSCRIBER device module. It provides an interface to one
terminal by defining read and write operations called by
SINI'UT and SOUTPUT, respectively. To effect IO, SUBSCRIBER

containa two character bhuffers, one for input and one for

-75-

Figure 5.13

Subscriber Output Proces}

process SOUTPUT;

use header, blotk, LINEOUTPUT, MEMORY, SUBSCRIBER, NOTICE,
REPLY;

const 1line = § of output line i;

var kind : integer; (*kind of output message*)
hd : header; (*hcader of output message*)

nblocks : integer (*number of blocks to output?) i

cblocks : integer (*number of blocks currently being
output*)

bl : block (*block of data to output®*)

msgcount: integer (*count of messages cutput®*)
i, j : integer (*local counters*)

begin (*initialize variables*)
msgcount := 0;

loop loop (*inner loop is for each output message;outer loop is to
allow escape from inner loop when pre-emption occurs*)

LINEOUTPUT.receive (line,kind,hd):
case kind of
"new msg” : begin

(*hd contains header of message to output*)

nblocks := hd.size;

inc (msgcount) ;

(*format output header in bl*)

(*output header contains : origin of message
precedence,classification,
identity
local seguence number
(msgcount) *)

when hd.class is not valid for this terminal
do NOTICE.post ("exception”, invalid classification
on line);
LINEOUTPUT.done (line)

exit;

-76-

Figure 5.13 (Continued)

Subscriber Output Process '

bl := output header;

i :=1;
repeat (*output, header on terminal¥)
SUBSCRIBER.write (bl{i]); inc(i)
until i > blocklength;
(*output contents of message as long as no
pre-enption occurs*)
j = 1;
repeat
when pre-empt(line] do exit; (*go back to start
i of main loop*)
MEMORY.read (hd.filename, j, bl);
i = 1;
renaat (*output bl¥*)
SUBSCRIBER.write (bl[i));
inc (1)
until i > blocklength;
inc. (3)
until j > nblocks;

ernd; (*of new msg case*)

"acknowledge input” : begin
(*tell terminal subscriber that an input message has
been received by SWITCH- hd contains the huader of
the message*)

bl := "input X received”; (*X is hd.sequence(i)*)
i=1

rencat
SUBSCRIBER.write (bl[i]),
inc (i)

until i > # of character in bl;

end (*of acknowledge input case*)

-77-

Figure 5.13 (Continued)

Subscriber Output Process

“cancel” : begin
{*cancel output that was in progress - done
automatically via pre-emption - here merely
tell terminal operator that message was can-
celled and then tell LINEOUTPUT that action
is done*)
:= "output cancelled by supervisor®;
i:=1

SUBSCRIBER.write (bl[i]);
inc (1)
until i > # chars in bl;

end (*of cancel case¥*)

“stopinput" : begin

(*tell terminal operator to stop input?*)
bl := "stop input until told to restart”;
1= 1;
repeat
SUBSCRIBER.write (bl{il);
inc (i)
until i > # chars in bl;

end (*of stop input case*)

“restart input” : begin)
i'tell terminal operator to reatart input®)
bl := “restart input from point where stopped®)
i = 1;
repeat
SUBSCRIBER.write (bl([i]);
inc (i)
until i > #chars in bl;
end (*of restart input case*)

-78-

Figure 5.13 (Continued)

Subscriber Output Process

“stop output”™ : begin (*stop writing output; wait for REPLY

to signal proceed. Will restart output
at beginning of stopped message*)

bl := "stopping output”;
i :=1;
repeat
SUBSCRIBER.write (bl[i]);
inc (i)
until i > # chars in bl;
REPLY.receive (line,kind); (*wait¥)

end (*0f stop output case*)

end; (fof case statement*)
LINEOUTPUT.done (line)

end end (*of loops*)

end SOUTPUT;

=79~

Figure 5.14
Subscriber Device
device module SUBSCRIBER;
define read, write;

var inr,outr, nrf : integer; (*input buffer vars*)
non r full, non r empty : signal; (*input signals*)
rbuf : array 1 : n of char; (*input buffer*)

inw, outw, nwf : integer; (*write vars*)
nonwfull, nonwempty : signal; (*output signals*)
wbuf : array 1 : n of char; (*output buffer*)

procedure read (var ch : char);
begin (*retrieve next input character from rbuf*)

if nrf = 0 then wait (nonrempty) end;
ch := rbuf Toutr);

outr := (outr mod n) +1

dec (nrf);

send (nonrfull);

end read;

procedure write (var ch : char);
begin (*deposit ch in output buffer*)

if nwf = n then wait(nonwfull) end;
wbuf[inw] := ch; inw := (inw moc n) + 1;
inc(nwf); send (nonwempty)

end write

process input;
(*input chars as long as rbuf is not full®*)
begin

loop

if nrf = n then wait (nonrfull) end;
start read into buf(inr); dol0;
inr := (inr mod n) + 1
inc (nrf):;
send (nonrempty);

end
end {nput;

-80~

Figure 5.14 (Continued)

Subscriber Device

process output;
(*output chars as long as wbuf is not empty¥)

begin
loop
if nwf =0 then wait (nonwempty) end;

start output of buf(outw];
doIO;

outw := (outw mod n) + 1;
dec (nwf)

send (nonwfull);

end
end output
begin

nrf := 0; input;

inr := 1; outr := 1;
:= 1; nwf = 0; output

inw := 1; outw

end SUBSCRIBER;

-81-

output. The procedures and processes synchronize with each
other via counters, pointers and signals. Each buffer is
treated as a circular queue wﬁere characters are deposited
at one end and removed from the other. The SUBSCRIBER code

is shown in Figure 5.14.
5.7 Trunk Groups

A trunk group provides an interface to a trunk line
connecting one switching node to another. Each group has
the same organization as a subscriber group (Pigure 3.4).

It contains TINPUT and TOUTPUT processes and a' TRUNK device
module. Code for these components is shown in Figures

5.16 - 5.18., As with subscribers, an actual system must
contain one group for each trunk line.

The actions of each TINPUT and TOUTPUT process are
basically the same as those of the SINPUT and SOUTPUT
processes. The differences are that trunks transmit blocks
instead of characters and that numerous control characters
are used to control synchronization. Figure 5.15 defines
a type for a trunkblock and also defines the kinds of ccntrol
characters used for synchronization. Data blocks sent
along trunk lines are 84 characters long. The control
character ‘at the start of a block is SOH or STX for the first
and subsequent blocks of a message, respectively. The end
character is ETX or ETB for the last and all previous blocks,
respectively. Trunk blocks also contain a select character

which defines the code used (e.g. ASCII), a parity, and 80

-§2-

Figure 5.15

Trunk Blocks and Control Charactexs

type trunkblock
record control, sclect : char;

data : block; (*block = array of thars*)
$ end,parity : char end;

Control Characters to Synchronize Transmission:

Kind Mecaning
ACKl, ACK2 acknowledge.last block; alternate ACK1,
ACK2, ACKl, ACK2, etc.

NAK non—acknowledge of block

STOoP stop transmission

RESTART restart.transmission

SYN synchronize - used to keep line active
when no data is being
transmitted

CAN cancel transmission

INV invalid transmission

REP) repeat last block

rRA error - unable to frame block

Control Characters to Frame Blocks:

SOH start of header

STX start of non header block

ETB end of block but not end of message

ETX end of message

.83~

characters of data.

For each data block trahsmitted, at least one control
character is rcturned. Normally this acknowledges receipt
of the block (ACK lor ACK 2). Exceptions can occur, however,
and are indicated by the other control characters. In order
to understand this message protocol in detail, the code for
TINPUT and TOUTPUT should be studied carefully.

The TRUNK device module provides five operations: read,
write, write control, post control and wait control. Read
and write are used to transmit data blocks. The other opera-
tions are used to transmit and synchronize control characters.
Write control is used to output a control character; it is
called by TINPUT to respond to an input block. Waitcontrol is
called by TOUTPUT to wait for a response from the prior out-
put of a data block. The response is sent by the switching
node at the other end of the trunk line and consequently, is
received as input by TINPUT. Since TINPUT and TOUTPUT are
processe;, they can only communicate via an interface module.
Therefore TINPUT passes control characters to TOUTPUT by calling
the post control operation of TRUNK.

We now turn to the code of the processes. TINPUT
(Figure 5.16) receives a trunk block, processes the informa-
tion in the block and then loops. The TRUNK device module
determines the type of input in cach trunk block. There are
three input types handled by TINPUT: error, control, and
message. ‘

If an input error occurs, meaning that TRUNK read an

-84~

invalid first character, TINPUT writes an RM (unable to
frame) control character on the output line of the trunk by
calling TRUNK.writecontrol. The switching node at the other
end of the trunk will then send a cancel character to TINPUT.
(see the code for TOUTPUT, Figure 5.17, since the output
process at the other end of the trunk is in fact a TOUTPUT
process of the other switching node).

If TINPUT reads a control character, it looks at the
character and then takes an appropriate action. Characters
which are responses from output are sent to TOUTPUT by calling
TRUNK.writecontrol. A SYN character merely keeps the line
"alive" so TINPUT does nothing. A CAN (cancel) character
causes TINPUT to cancel input processing and notify SWITCH.

An INV (invalid) character indicates problems so SWITCH is
notified of an exception. Finally a REP (repeat) character
should rot occur so will be ignored.

The third type of input is message. This means that the
TRUNK device module read a data block beginning with an SOM or
STX control character. In this case, TINPUT processes the
block in the same manner as SINPUT: header blocks are
parsed and sent to LINEINPUT; a file is created for new mes-
sages; and blocks are written on MEMORY and the ACTIVE-ARCHIVE.
when the last block of a message is read, SWITCH is notified.

TOUTPUT has the same organization as SOUTPUT (Section 5.6,
Figure 5.13). Its program is given in Figure 5.17. TOUTPUT
receives an output command from LINEOUTPUT and processes the

command. There are five types of commands (the same ones as

-85~

Figure 5.16

Trunk Input Process

process TINPUT; (*one copy per trunk*)

use block, header, trunkblock, TRUNK, NGCTICE, REPLY,
MEMORY, LINEINPUT, ACTIVE-ARCHIVE, HEADERS;

var bl : block; (*data block for MEMORY¥)
head : header; (*hcader for input message*)
tbl : trunkblock; (*input block from TRUNK*)
cchar : char; (*input control charactecr®*)
intype : integer; (*type of input from TRUNKY)
status : integer; (*status of msg - £ind start or in boé
name : integer; (*internal message id¥)

filecname : integer; (*id of memory file*)
nblocks : integer; (*number of blocks in msg*)

acknO : integer; (*1 or 2 for ACXl or ACK2*)
msgid : integer; (*external id of message*)
begin (*initialize variables*)
status := "find start";
acknO := 1;

loop TRUNK.read (tbl, intype); (*get next input*)
case intype of

error : (*invalid first character in input - unable to
frame input®*)

begin TRUNK.writecontrol (*RM") end;
control : (*input is a control character*)
begin
cchar := tbl.control; (*fetch control character?®)
if cchar = "ACKl" or char = "ACK2" or char = "NAK"
or char = "STOP" or char = "RESTART"
then(*give TOUTPUT the control character®*)
TRUNK.postcontrol (cchar)
elseif cchar = "SynN"

then (*do nothing - merely lire synchronization
character so just do next read*)

-86-

Figure 5.16 (Continued)

Trunk Input Process

elseif cchar = "CAN"
then (*cancel input if in msg - otherwise ignore*)
if status = "inbody"
then (*tell SWITCH to cancel*)
NOTICE.post ("input cancel”,name);
status := "find start";
acknO := 1; end
elseif cchar = "INV"
then (*unsolicited answer*)

NOTICE.post ("exception", number)

elseif cchar = "REP"

then (*repeat character - will ignore for now -
will assume acknowledgement has been sent®)

else (*error*)
TRUNK.writecontrol ("RM")
end

end (*of control case*)

msg : (*input is a block of a message*)
(*it starts with an SOM or STX control character*)

Egsz%heck parity of trunkblock tbl and check control characters
if input is in error
then TRUNK.writecontrol ("NAK")
else (*acknow'edge receipt of’input*)

if acknO = 1 then TRUNK.writecontrol ("ACKl");
acknO := 2

else writecontrol ("ACK2"); acknO := 1 end;

-87-

Figure 5.16 (Continued)

Trunk Input Process

if tbl.control = "SOH"
then (*start of message header?*)

parse contents cof tbl to build head;

LINEINPUT.sendhead (head);

REPLY.receive (trunk line #, name);

(*name is internal msg id*)

(*create an auxiliary storage file*)

MEMORY. create (head,identity, hd.size,
.filename) ;

nblocks := 0:

status := "in body"

ACTIVE-ARCHIVE.data (hd.icdentity, tbl.data);

elseif tbl.control = "STX" and tbl.end = "ET3"

then (*block of mcssage - not end*)
bl := tbl.data; (*message itself*)
MLMORY.write (filename,bl);
ACTIVE-ARCHIVE.data (msgid,bl);
inc (nblocks)

elseif tbl.control = "STX" and tbl.end = "ETX"

then (*end of message®)
bl := tbl.data;
MEMORY.write (filename, bl);
MEMCRY.endwrite (filename);
inc (nblocks);
ACTIVE-ARCIIIVE.data (msgid,bl);
(*store file size and filename in header®)
HEADERS.retrieve (hd, name);
hd.size := nblocks;
hd.filename := filename;
HEADERS.update (hd, name);

(*notify SWITCH and reinitialize®)
NOTICE.post ("end of input”, name);
status := "find start”

acknO := 1;

end (*of conditional®*)
end (*of conditional*)

end (*of msg case*)
end (*of loop*) .

end TINPUT;

-88~

for SOUTPUT): new message, cancel, stop input, restart input,
and stop output.

Oon receipt of a new message command, TOUTPUT fetches and
outputs each block of the message. The header is first re-
formatted. Then TOUTPUT repeatedly writes a trunk block,
waits for a control character response (actually read by
TINPUT), checks for pre-emption and processes the control
character. Iteration continues until either outfut is pre-
empted, all blocks are written or an error occurs. If the
control character correctly acknowledges the previous write
then the next block (if any) is read from MEMORY. If the
previous TRUNK write is not acknowledged, output is re-tried
(up to some number, n, times). If the control character in-
dicates that the output was in error then output is cancelled
and SWITCH is notified.

The cancel, stop irput, or restart input commands re-
spectively cause a CANCEL, STOP, or RESTART control charactgr
to be written on the output line. The stop output command
causes TOUTPUT to wait for a REPLY.

After any command is processed, TOUTPUT calls LINEOUTPUT
to say that it is dcne. TOUTPUT then receives the next out-
put commarnd.

The final trunk component is the TRUNK device module.

As mentioned before, it defines five operations: read, write,
write control, post control, and wait control. Actual out-
put is carried out by driver processes named input and output.

Input fills a trunk block buffer for read. Output empties

-89~

Figure 5.17

Trunk OQutput Process

process TOUTPUT; (*one copy per trunk*)

use-header, trunkblock, block, LINEOUTPUT, MEMORY, NOTICE,
REPLY, TRUNK;

const line = # of output line for trunk;

var kind : integer; (*kind of output message®)
head : integer; (*header for output nmessage®)
nblocks : integer; (*number of blocks to output®*)
cblock : integex; (*number of block curreatly being

output®)

tbl : trunkblock; (*output to TRUNK*)
bl : block; (*data from XEMGRY*)
cchar : char; ’ (*control character*)
acknO : integer; (*1 or 2 for ACKl or ACK2*)
more : Boolcan; (*control for output loog*)
NAKtries : integer; (*number of tries at retransmissic
REPtries : integer; (*number of waits for response*)

begin (*initialize variables®*)

NAKtries ;= 0;
REPtries := 0

loop loop (*inner loop executed once per LINEOUT msg*)
(*outer loop allows escape on preempticn¥)
LINEOUTPUT.receive (line, kind, head);

case kind of
new msg : begin (*hcad contains header of message to output*)
nblocks := hd.size; (*no. of blocks to output*)

*format output header in tbl.data - origin of =message,
identity, precedence, classification seguence numbers*)

tbl.data := hcader contents as above;
tbl.control := "“SOH";

tbl.end := “ETB";

tbl.parity := block parity;

more := true; acknO ;= 1; cblock := 0;

-90-

Figure 5.17 (Continued)

Trunk Input Process

(*main output loop - executed once for each message block*)
while more do

TRUNK.write (tbl):
TRUNK.wait control (cchar);
(*check pre-emption*)

when pre-empt [line] do
TRUNK.writecontrol ("CAN") (*cancel*)

exit;
(*control may say to STOP; if so wait for restart®)
if cchar = “STOP" then while cchar ¥ "RESTART" do
TRUNK. waitcontrol (cchar) end
end;
(*take action depending on value of cchar*)
if (cchar = "ACK1" and acknO = 1) or
(cchar = "ACK2" and acknO = 2) then (*valid response*)

inc (cblock) ;
if cblock >nblocks then more := false (*output complete*)

else (*get rext block and build output block*)
MEMORY.read (head.filename, cblock, bl);
tbl.control := "STX"

if cblock = nblock
then tbl.end := "ETX"
clse tbl.end := "ETB" end;

tbl.data := bl;
tbl.parity := block parity;

if acknO = 1 then acknO := 2
2lse acknO := 1 end

end

elseif cchar = "NAK"

then (*do nothing - will retransmit same block - but
if done more than n times notify supervisor
and get next output?*)
inc (NAKtries);

-91-

Figure 5.17 (Continued)

Trunk Output Process

if NaKtries > n then NOTICE.post (“exception®, #)

NAKtries := 0;
more := false (*stop trying - go to next output®)

end

elseif cchar = "RM"
then (*unable to frame - send cancel and notify local
supervisor®*) -

TRUNK.writecontrol ("CAR");
NOTICE.post ("exception”, n0O);
more := false; (*get next output*)

else (*cchar = "NOUEZ" or is invalid®*)
(*TRUNK got no response in expected time - send
REP to other trunk*)

inc (REPtries);
if REPtries < 8
then (*ask again®*)
Trunki.wnitecontrol ("REP")

else (*cancel and tell supervisor?*)
Trunk.writecontrol ("CAN");
NOTICE.post (“exception®”, noO);
more := falsel
REPtries := 0

end
end (*of conditional statemecnt®*)
end (*of while loop?*)
(*end of message output®*)

end; (*of new msg case*)
cancel : (*cancel output in progress - requested by supervisor®)

begin
TRUNK.writeccontrol (“CAN");

end; (*of cancel case?*)

-92-

Figure 5.17 (Continued)

Trunk Output Process

stop input : (*tell output process on other end of the trunk to
stop sending input*)
begin
TRUNK.writecontrol (“STOP")

(]
Q

nd; (*of stop input case*)

restart input : (*tell output process on other end of trunk to restart
. sending input*)

egin
TRUNK.writecontrol ("RESTART")

nd; (*of restart input case*)

:

]

stop output: (*temporarily stop sending output - signalled by
the supervisor®*)

becin
(*wait for reply signal to proceed*)
REPLY.receive (line, kind)

end; (*of stop output case*)

end; (*of case statement*)

LINEOUTPUT.done (line) (*tell LINEOUTPUT that output message
has been processed*)

end end (*of loops*)
end TOUTPUT;

-93-

either the control character buffer filled.by writecontrol or a
trunk block buffer filled by write. Single buffers are used
so input and output synchronize with the operations via Boolean
and signal variables. The code of each part of TRUNK is
straightforward and is shown in Figure 5.18.

An interesting aspect of trunks is the timing of
physical input and output. Input is received one character
at a time until either a control character or entire block
has been read. Similarly output puts one character at a
time on the trunk's output line. We assume that trunks do
not give inﬁezrupts but instead provide or expect characters
to be periodically input or output. Therefore Modula's
doIO statement is not used. Instead, the drivers synchronize
by waiting for trunkticks which are periodically supplied by
the CLOCK process (Figure 5.3). This is quite different from

the interrupt drive IO used in a SUBSCRIBER (Pigure 5.14).
5.8 Switch Process

The SWITCH process controls all activity in the switching
node. It accepts new input from input control processes, gen=—
erates output commands, communicates with the operator, and
handles all exceptions. Its interface to other modules was
shown in Figure 3.8 and its actions were swummarized in Figure 4.2.
Its program is listed in Figure 5.19.

All communication to SWITCH is via the NOTICE interface
module. SWITCH repeatedly receives a notice and processes

it. At the start of Pigure 5.19, a large comment outlines

=94~

Figure 5.18

Trunk Device

cdevice module TRUNK; (*one per trunk line*)
define read,write,writecontrol,postcontrol,waitcontrol;
use trunkblock, trunktick;

var inbuf, outbuf : trunkblock;
T < intype : integer;
outcchar, postchar : char;
infull,outfull, outcfull, postfull : Boolean;

“doread, readdone : signal;
dopost, postavail : signal;
outbufempty, outccharempty : signal;

procedure read (var tbl: trunkblock; var kind : integer);

begin (*get next input from trunk line¥*)
2egin
if not infull then wait (readdone) end:

tbl := inbuf;

kind := intype; (*control, msg, or error*)
infull := false;

send (dorcad)

end read;

procedure write (tbl : trunkblock);

begin (*fill buffer - output process will test outfill®*)
if outfill then wait (outbufempty) end;

outbuf := tbl;
outfull := true

end write;

procedure writecontrol (c i char);

begin (*fill control character buffer*)
if outcfull then wait (outcchar empty) end;

outcchar := c;
outcfull := true

end writecontrol;

procedure

/

=95~

Figure 5.18 (Continued)

Trunk Device

postcontrol (c : char);

begin (*fill post character buffer®*)

if post full then wait (dopost) end;

postchar := c;
postfull := true;
send (postavail)

end postcontrol;

procedure waitcontrol (var ¢ : char);

begin (*get posted character when available*)

if not postfull then wait (postavail) end;

c := postchar;
postfull := false;
send (dopost)

end waitcontrol;

process input;

(*do trunk input into inbuf*)

: nch : integer; (*no. of character read*)

if infull then wait (doread) end:
(*get first character*)
wait (trunktick); (*clock synchronization®*)
inbuf.control = first character on line:;
if inbuf.control has evea parity
then (*control character*)
intype := "control®
elseif inbuf.control = "SOH" or
inbuf.control = "STX"
then (*message block®*)
intype := "msg”
elsc intype := “"error”

-96~-

Figure 5.18 (Continued)

Trunk Device

if intype = "msg" then (*input block¥)

wait (trunktick);
inbuf.select := next char;
nch := 1;

repveat wait(trunktick);

inbuf.data[nch] := next char;
inc (nch) '

until nch > blocklength;

wait (trunktick);
inbuf.end := next char;
wait (trunktick);
inbuf.parity := next ohar
end (*of block input*)
infull := false;
send (readdone)

ernd (*of loop*)
end input;

process output

(*output control characters from outcchar or blocks
£rom outbuf or, if both are empty, output a line
synchronization signal¥*)

var nch : integer; (*character count*)

wait (trunktick); (*clock synchronization®*)
if outcfull then (*output control character¥)

put contents of outcchar on line;
outcfull := false;
send (outcchar empty)

elseif outfull then (*output blockw*)
put outbuf.control on line;
wait (trunktick);

put outbuf.select on line;
nch = 1;

-9~

Figure 5.18 (Continued)

Trunk Device

repecat wait (trunktick):;

put outbuf.data [nch] on line;
inc (nch)

until nch > blocklength;

wait (trunktick);

put outbuf. end on line;
wait (trunktick);

put outbuf. parity on line;

outfull := false;
eend (outbufenmpty)

else (*output SYN character - there is no real output
so just keep line synchronized®*)

put “SYN" on line
end (*of conditional¥)
end (*of loop*)
end output;

begin (*initialize TRUNK¥*)

unfull := false; outfull := false; outcfull := false;
Rostfull := false;
input; output

end TRUNK;

98-

the program and enumerates the kinds of notices. The actions
SWITCH takes for each notice will now be discussed in the
order in which they appear in the program.

A "head"™ notice, sent by LINEINPUT, signals the presence
of a new header. SWITCH receives the header from LINEINPUT and
records control information for the new message. The header
is entered into HEADERS, a name table entry is constructed,
and an action message is sent to ACTIVE-ARCHIVE and the oper-
ator. Finally a REPLY is given to the input control process
which input the header.

The largest case SWITCH handles occurs when an input
control process sends an "end of input® notice. First,
the header is retrieved from HEADERS. Second, the "end of
input” action is recorded on the archive and sent to the
operator. Third, for input from local subscribers, an ack-
nowledgement is sent to the subscriber via LINEOUTPUT. Fourth,
potential message orbit is checked for. An orbit occurs if
a message ever comes back to a switching node which has pre-
viously pfocessed it. This could happen if directory entries
(see below) are erroneous or if trunk lines go down so two
switching nodes use each other as alternate routes to a third
node. An orbit is detected as follows. When a message is
output, SWITCH stores the local switching nodes' identity in
the sequence array of the message header. On input, SWITCH
looks to see if its identity is already in sequence. If so
an orbit has occurred and the operator is informed (he will

most likely cancel the messagc). The fifth action SWITCH

-99-

takes on "end of input” notices is to format output commands.
For each destination, the directory is consulted to find the
first line with "ok" status. If one is found, the header is
inserted in LINEOUTPUT. If none is found the operator is
informed. After all destinations have been processed, the
header is put back in HEADERS for future reference.

Once output completes at any destination, LINEOUTPUT
posts a “done" notice. SWITCH decrements the output count
(number of destinations) of the message. If the count be-
comes zero, SWITCH then archives an “output complete” action,
tells the operator, deletes the header from HEADERS and
destroys the message's MEMORY file.

The above three kinds of notices ("head", "end of input”,
and "done") pertain to normal message processing. The other
kinds should occur much less frequently since they pertain to
exceptions and operator requests.

The "stop" notice is issued by the operator or MEMORY
to stop input or output. SWITCH sends an output command to
the output controller for the line. To restart IO, a
"restart” notice is sent to SWITCH. Input is restarted by
sending an output command to the subscriber or trunk. Out-
put is restarted by giving a REPLY.

In order to allow the operator to monitor system status,
SWITCH also accepts a "status™ kind of notice. 1Its actions
are to retrieve the appropriate status value(s), format a
message, and send it to the operator. Details for each type

of status which might be uscful are left unspecified here.

-100-

If an input control process finds the cancel secquence
of characters in an input. message, it notifies SWITCH.
SWITCH cancels a message by deleting its header and destroying
its file. As usual, the archive and operator are informed.

Output can be cancelled at the request of the operator.
To cancel a message, first its internal name is looked up
in the names table. If it is not found the operator is in-
formed. If it is found, the message's header is retrieved.
If the message has previously been sent to LINEOUTPUT,
LINEOUTPUT.cancel is called. (The message may not have been
sent because an orbit might have occurred). Cancellation is
then archived, the header deleted, and the file destroyed.

The next case processes “"exception" notices. The types
of exceptions currently implemented deal with archive tapes.
Others would also exist in an actual implementation. For
each type of exception, a message is formatted and sent to
the operator.

"Alter"” notices are sent by the operator to alter the
contents of either the directory or the line status table.
SWITCH receives the new values from SUPERVISOR and stores
them in the appropriate table entry.

The final kind of notice signals a pre-emption. When
LINEOUT?UT sets a pre-empt flag (except on cancel), he
notifies SWITCH who in turn tells the operator.

The complete listing of SWITCH follows as Pigure 5.19.

.

-101-

Figure 5.19

Switch Progess

process SWITCH;

use NOTICE, LINEINPUT, LINEOUTPUT, HEADERS, REPLY, ACTIVE-

ARCHIVE, SUPERVISOR, timeofday, header, actionmsg, operator-
output, opcratorrequest

type name = record (*controls for active messages®)

var

msgid, intname : integer;
outputcount : integer
end;
destination = record (*trunk or subscriber line ro'‘s+)
primary, alt 1, alt 2 : integer)
end;

names : array 1 : max# activemsgs of name; (*of active xmes-
sages®)

directory : array 1 : #destinations of destinations;
linestatus : array 1 ; #lines of integer;

kind,data : integer; (*input from NOTICE*)

hd : header; (*local storage for input header®*
index : integer; (*internal mess:i-jc name®*)

actmsg : actionmsg; (*output to archiver)

line : integer; (*output line number?*)

c,d,i : inteyger; (*counters*)

orbit : Boolean; (*message in loop*)

opout : operatoroutput; (*output to SUPERVISCOR®)

opreq operatorrequest; (*input from SUPZRVISOR®*)

(ttt.t*ttﬁit‘t.lttﬁtt...
body of switch is a loop with a case statement for

each kind of NOTICE SWITCH receives - the kinds of
notices are the following:

loop NOTICE.receive (kind, data)

case kind of

*head" : data is 0 - new header from LINEINPU
"end of input” : data is intecrnalid - end of input
“done" : data is internalid - end of cutput
“stop" : data is line# - stop a lire
“restart® data is linc# - restart a line
“status" data is key for
type of status - send status to operator

"input cancel” : data is internalid - cancel message
“output cancel” : data is externalid - cancel message

=102~

Figure 5.19 (Continued)

Switch Process

“exception™ : data is key for
type of exception - print message on operator's
console
“"alter” : data is 0 - get operator request to
alter directory or line

. status from SUPERVISOR

“"pre-emption” : data is msgid - inform operator
end

end

Qii.".i."".....'iﬁ.t.ﬁ.)

begin (*initialize tables*)
(*details not shown?*)

loop NOTICE.receive (kind, data);
case kind of

“"head” : begin (*get new header*)

LINEINPUT.receivehead (hd);

hd.status := "in input” ;

HEADCRS.center (hd,index);
(*£il1l in name table*)

" with names(index) do
msgid ;= hd.idcentitys; intname := index;
count := hd.#destinations end;
(*archive receipt of header*)
with actmsg do
nsgid T= hd.identity; time := timeofday;
action := "header rcceived” end
ACTIVE-ARCHIVE.action (actmsg);
(*inform operator of action*)
SUPERVISOR.sendoutput (actmsg);
LINEOUTPUT.insert (operator, "output"”, o, low precedence);

(*tell input to proceed*)
REPLY.give (hd.origin, index)

end (*of head case%)

=103~

Figure 5.19 (Continued)

Switch Process

"end of input” : begin

index := data; (*internal msg identifier®*)
HEADERS.retrieve (hd, index);
(*archive end of input*)

with actmsg do

msgid := hd.identity; time := timeofday:;
action := "cnd of input” end;

ACTIVE-ARCHIVE.action (actmsg);
SUPERVISOR.sendoutput (actmsg);
LINEOUTPUT.insert (operator, “"output”, 0, low);
(*acknowledge receipt of input if sender is a
local subscriber?®)

if hd.origin is a subscriber

then LINEOUTPUT.insert (hd.origin, "acknowledge-
input”, index, low) end;

(*check for message orbit*)
with hd do

i := 1; orbit := false;
while (i <= segcount and not orbit)

do if sequence (i) = local switché
then orbit := true end;

inc (i) end;
end

£ orbit

then (*output message to operator®*)
format orbit message
SUPERVISOR.sendoutput (operator output)
LINEOUTPUT. insert (operator, “operatorcutput®,
0, low precedence)
hd.status := "orbit”; HEADERS.upcdate (hd, index)
else (*procecd to output message to each destination®)

with hd do status := "output”;
(*update seguence datat*)
inc(seqcount); sequence (seqcount) := local switchi
(*output to each destination*)
‘c := names (indcx).outputcount; (*#dests®)
i :=1;

-104-

Figure 5.19 (Continued)

Switch Process

repeat

d := destinations(i);

line := directory(d).primary;

if linestatus(line) # "ok"

then line := directory(d).alt 1

1f Tinestatus(line) # "ok"

then line := directory(d).alt 2

if linestatus(line) # ok

then format no good line message;
SUPERVISOR. sendoutput (message);
LINEOUTPUT.insert (operator, "operator

output”, O, low)

end end end;

if linestatus(line) = ok then
LINEOUTPUT.insert(line, “new msg®, index,
prec) end;

hd.dests (i) := line;
- inc (i)

until i > c;

(*update header®)
HEADERS.update (hd, index)

end (*of end of input case*)

“done” : begin (*output to one destination is complete™)

index := data; (*identifics message¥)
dec (names (index) .outputcount) ;

(*if output is all complete - archive completion
and delete message from system*)
if names (index).outputcount = 0
then
with actmsg do

msgid := names(index).msgid; time := timeofday;
action := “output complete" end;

-105-

Figure 5.19 (Continued)

Switch Process

ACTIVE-ARCHIVE.action (actmsg);
SUPERVISOR.sendoutput {(actnmsg);
LINCOUTPUT.insert (operator, "output®, O, low):;

(*delete header and destroy nmemory file*)
HEADERS.delete (index);
MEMORY.destroy (names (index).msgid)

end

end (*of done case*)

"stop" : begin (*stop IO on one line - done by sending a message
to the output process associated with the line -
If the line is an input 1line, its output partrer
will send a message to the human or other switchin
node telling it to stop input*)

line := data; (*identifies line #*)
if line is an input line
then line := output partner's line nO

LINEOUTPUT.insert (line, “stop-ingut“, O,
. highest preccedcnce)

else LINEOUTPUT.insert (line, "stocp-output®, O,
highest precedence)

end (*of stop case*)

“restart® : begin (*restartlIO - technique is same as above*)
ine := data;

if line is an input line
then line := output partner's line no.

LINEOQUTPUT.insert (line, “start-input®, 0,
Lighest prececdence)

else (*output process has gone to sleep because
of stop message*)
REPLY.give (line,0)

end

end (*of restart case¥)

-106~

Figure 5.19 (Continued)

Switch Process

“status” : begin .

(*data identifies type of status requested -
possible types are
1. status of line
2. directory entry
3. gueue lengths, etc. *)

(*for the status - SWITCH formats a message*)

opout.data :- contents of message;
opout.size := length of message;

(*send message to operator*)

SUPERVISOR. sendoutput (opout);

(*tell operator output process a message is in
SUPERVISOR for him*)

LINEOUTPUT.insert (operator, "output", 0, high)

end (*of status case*)

“"input cancel™ : begin (*sent by an input process to cancel
input of a message*)
index := data; (*identifies message®)

(*archive cancel action*,
with actmnsg do

msgid := names (index).msgid; time := timeofday;
action := "cancelled input" end;

ACTIVE-ARCHIVE.action (actmsg);

opout.data := "cancelled input";

opout.size := 15;

SUPERVISOR.sendoutput (opout);
LINEOUTPUT.in~ert (operator, "output”, 0, low):

{*delete header and destroy memory file*)
HEADERS.delete (index);
MEMORY.destroy (names (index).msgid)

end (*of input cancel case*)

-107-

Figure 5.19 (Continued)

Switch Process

"output cancel” : begin (*sent by operator to cancel output*)
(*data gives external message identifier®)

(*£ind internal name®*)
. i := 1; index = 0;

repeat
if names (i).msgid = data
then index := names(i),internal id end;
inc (i) ’
until index # 0 or i > max# activemessages;

if index = 0
then (*message not found*)

opout.data := "message not found"
opout.size := 17;
SUPERVISOR.sendoutput (opout);
LINBOUTPUT.insert (operator, “"output”,
0, high);
lse

HEADERS.retrieve (hd, index);

if hd.status = "output”
then (*tell each output destiration to

cancel by telling LINEOUTPUT?*)
LINEOUTPUT.cancel (index) end;

(*archive cancellation*)
with actmsg do

o

msgid. := names (index).internal id;

time := timeofday;

action := "output cancelled” end
ACTIVE-ARCHIVE.action (actmsg);
opout.data := "output cancelled®;
opout.size := 15;
SUPERVISOR. sendoutput (opout);
LINEOUTPUT.insert (operator, "output®,

0, low):

(*delete header and destroy menory £ile?*)

HEADERS.delcte (index):

MEMORY.destroy (names(index).msgid) -
end (*of conditional*)

end (*of output cancel cace®)

: -108-

Figure 5.19 (Continued)

Switch Process

"exception” : begin

(*print exception message on operator's console¥)
(*data identifies exception type*)

case date of
"=mountaction tape" : begin opout.data := "mount new action tape on
active archive";
opout.size := length of data end;

“mountdata tape"

o

begin opout.data := “mount new data tape on
active archivd";
opout.size := length of

data end;
"end. action tape" begin opout.data := “end of action tape on old
archive";
opout.size := length of

data end;

.

"end data tape" begin opout.data := "end of data tape on

old archive";
opout.size := length of
: data end;
erd (*of case statement¥)
SUPZRVISOR.sendoutput (opout);
LINEOUTPUT.insert (operator, "“output", 0, high)

end (*of exception case*)

"alter"” : begin (*get opcrator request from SUPERVISOR
2egin L : :
alter either directory or line status™)

SUPERVISOR.receivereq (opreq):
with opreq do
case key of

“alter directory": (*values give line# and new primary and alternate
destinations¥*)

begin with directory (value(l)) do
primary := value (2); altl := value (3);
alt2 := value (4) end

end;

-109-

Figure 5.19 (Continued)

Switch Process

*alter line status® : (*values give line# and new status*)
begin linestatus(value(l)):= value (2) grd
end (*of case*)
end (*of with*)
end (*of alter case*)

“preemption® : begin (*notify operator of pre-emption data
is internal msgid*)

index := data
opout.data := names(index).msgid; (*external
nane*)
opout.size.:= .
SUPERVISOR.sendoutput (opout);
LINEOUTPUT.insert (operator, “output”,
0, low)

end (*of pre~emption case*)

end (*of entire case statement®)

end (*of loop*)
end SWITCH;

-110-

5.9 Operator Group

The operator group consists of six components: input
control process, output control process, SUBSCRIBER device
rmodule, SUPERVISOR module, RETRIEVE process, and old archive
device module. The components are connected to each other
as was shown in Figure 3.7. The switching node operator
can send and receive messages in the same way as other sub-
scribers. The operator can also make certain requests and
receive control and exception output messages. Programs for
each of the operator group components are presented in this
section.

The operator is assumed to have an 10 terminal which is
identical with those for subscribers. Therefore the device
interface in the operator group is a SUBSCRIBER device mod-
ule identical to that in Figure 5.14.

The operatorinput control process is a slight modifica-
tion of the SINPUT process of subscribers (Figure 5.12).

The changes are shown in Figure 5.20; they result from the
fact that the operator can generate two types of input:
regular messages and operator requests. Regular messages
are handled in a manner identical to that for subscribers.
Operator requests are assumed to start with a distinguishing
seguence of control characters. Their body consists of a
key and up to four values. Once the start of an operator
request is found (in the "find start" case), SINPUT's status

is sct to "find requost.” Tho requast is then read

(1)
(2)

(3)

(4)

=111~

Figure 5.20

SINPUT Process for Operator

Make the following changés to SINPUT:
use: add SUPERVISOR, operatorrequest to use list

variables : add
opreq : operatorrequest; (*kind and values of
operatorrequest®)

*find start” case:
add a search for start of operator request sequence.
of control characters
if start operator request found
then current := 0;
status := "find request” end;
add "find request” case as follows:

"find request” :
begin (*build operator request*)

if current = 0 then opreq.key := ch;
inc(curreat)

else opreq.value(current) := ch;
inc(current)

end

if end of request then
case opreq.key of

"status” : begin
NOTICE.post ("status®, opreg.value (1))
end;
“"cancel” : begin
NOTICE.post (“"cancel®, opreq.valué (1))
end;
"wait® : begin
NOTICE.post ("wait®™, opreg.value (1))

[}
Q

n

.
‘

l

-112-

Figure 5.20 (Continued)

SINPUT Process for Opetatdt

.

“restart"™ : begin
NOTICE.post ("restart®, opreq.value (1))
end;

*alter" : begin

SUPERVISOR.sendreq (opreq):;
NOTICE.post (“alter", 0)

end;
"new tape” : begin
if opreg.value (1) = “active-archive"
then ACTIVE-ARCHIVE.resume
else OLD-ARCHIVE.newtape (opreq.value(l})
end;
“retrieve" : begin
SUPERVISOR.doretreive (opreq)
end;
“cancel retrieve" : begin
SUPERVISOR.cancelretrieve
end
end; (*of case statement*) .
status := “find start" (*find next operator request
or start of message®)

(*of find request case¥)

o
2
.~

-113-

and stored one character at a time. Once finished, a case
statement on the key is executed. Status, cancel, wait,

and restart requests post a NOTICE for SWITCH. Alter sends
the request data to SUPERVISOR and then posts a NOTICE
(there are more data values to pass than post can accept).
New tape requests signal that a new archive tape has been
mounted so the appropriate archive (ACTIVE or OLD) is called.
The retrieve request causes a retrieve message to be sent to
the RETRIEVE process (see below) via SUPERVISOR. Finally,

a retrieve can be cancelled by the cancel request. After
processing an operator request, SINPUT for the operator sets
status to "find start” to look for the next input.

The SOUTPUT process for the operator is only slightly
changed from SOUTPUT processes in subscriber groups (Figure
5.13). The changes are shown in Pigure 5.21. Since the
operator receives special output commands, the change is to
add one more case to process the one more kind of LINEOUT?UT.
The data for the operator comes from SUPERVISOR. . It is merely
written out by calling SUBSCRIBER;write.

The SUPERVISOR module (Figure 5.22) interfaces the
operator's SINPUT and SOUTPUT processes to SWITCH and RETRIEVE.
It defines seven operations: sendreq, receivereq, sendoutput,
receiveoutput, doretrieve, getretrigve, and cancelretricve.
Sendreq and receivereq are used to scnd opefator requests
from SINPUT to SWITCH. Available requests are stored within
SUPERVISOR in a requests queue. Sendoutput and receiveoutput

are used to send operator output messages froa SWITCH to

-114-

Figure 5.21

SOUTPUT Process for Operator

Make the following chanées to SOUTPUT

(1) use - add SUPERVISOR, operatoroutput

(2) variables - add
opout : operatoroutput

(3) add “"output” case as follows:

“output” : begin
(*fetch operator output data and write it out*)
SUPERVISOR.receiveoutput (opout);
i:=0;
repeat
SUBSCRIBER.write (opout.data(i])
until i = opout.size

end

-115-

SOUTPUT. They too are stored within SUPERVISOR in a queue.
Doretrieve and getretrieve are used to send retrieve requests
from SINPUT to RETRIEVE and are also gqueued within SUPERVISOR.
Cancelretrieve is called by SINPUT to cancel a retrieve. It
sets a flag which is exported from SUPERVISOR‘and exaninred
periodically by RETRIEVE. This flag (stopretrieve) serves
the same role as did the pre-empt flags in LINEOUTPUT. The
code for each of the seven SUPERVISOR operations is straight-
forward. Note that SUPERVISOR could be broken into three
separate interface modules since the operations work in

pairs. We Uid not do so, however, because it makes sense

to group all the SUPERVISOR interface operations together.

In this way, the entire interface between the operator and
other processes appears in one place.

The RETRIEVE process (Figure 5.23) processes retrieve
requests sent by the operator input controller via SUPERVISOR.
There are three kinds of retrieves: copy, retransmit, and
trace. The kind of request is indicated by opreq.value(l]
which is used as a case statement selector. The ccpy retrieve
causes all blocks of a message (identified by opreg.value ({2})
to be read from an old archive tape and printed on the
operator's terminal. The retrieved message is sent to the
operator as if it were a new message. Namely, RETRIEVE builds
a header, sends it to SWITCH via LINEINPUT, and then retrieves
each message block and stores it on a MEMORY file. When the
end of the retrieved message is found, SWITCH is notifiecd.

The tetransmit type of retrieve causes an archived

-116-

Figure 5.22

Supervisor Module

interface module SUPERVISOR;

use operatorreguest, operatoroutput; (*data types*)

define sendreq, receivereq, sendoutput, receiveoutput,
stopretrieve, doretrieve, get retrieve, cancelretrieve

var requests : gueue n of operatorrequest;
requestavail, requests not full : signal;

output : gqueue n of operatoroutput;
output not full : signal;

retrievals : queue n of operatorrequest;
retrieval not full, retrieveavail : signal;

stopretrieve : Boolean; (*signals RETRIEVE process to
stop a retrieval®)

procedure sendreq (opreq : operatorrequest);

—

begin (*called by SINPUT*)

if requests.size = n then wait (requests not full)

requests.insert (opreq):;
send (requestavail)

end

end sendreq;

procedure receivereq (opreq : operatorrequest);
begin (*called by SWITCH*)

if requests.empty then wait (requestavail) end;
opreq := requests.renove;
send (queue not full)

end receivereq;

procedure sendoutput (opout : operatoroutput);
begin (*called by SWITCH¥)

if output.size = n then wait (outputnotfull) end;
output.insert (operatoroutput)

end sendoutput;

.~

procedure

procedure

procedure

procedure

-117-

Figure 5.22 (Continued)

Supervisor Module

receiveoutput (opout : operatoroutput);

begin (*SOUTPUT knows message is available*)
output.remove (operatoroutput) i
send (outputnotfull)

end receiveoutput;

doretrieve (opreq : operatorrequest)
begin (*called by SINPUT*)

if retrievals.size = n then wait(retrievalnotfull}
end;
retrievals.insert (opreq),
send (retrieveavail)

end
end doretrieve;

getretrieve (opreq : operatorrequest);
begin (*called by RETRIEVE*)
stopretrieve := false; (*it may have been on*)

if retrievals.empty then wait (retrieveavail)
retrievals.remove (opreq);
send (retrievalnotfull)

end getretrieve;

cancelretrieve; (*called by SINPUTY¥)
begin stopretrieve := true
end cancelretrieve;

begin stopretrieve := false

end SUPERVISOR;

-1l18-~

message to be fetched and sent just as if it were a new
message. The message is processed in the same way as for
copy above except that the header used is the message's
original header. For the retransmit case RETRIEVE acts
exactly like an SINPUT process.

The final type of retrieval is the trace which causes
all actions taken on a message to be printed on the operator's
console. This is accomplished within RETRIEVE by building
a header to direct a message to the operator, reading actions
from OLD-ARCHIVE and storing each action as a block on MEMORY.
The only difference between copy and trace is that the former
retrieves the data in a message while the latter retrieves
actions taken on a message.

To retrieve data or actions from archived messages,
RETRIEVE calls the OLD-ARCHIVE device module (Figure 5.24).
OLD-ARCHIVE defines three operations /{retrieveaction,
retrievedata, and newtape) and contains two driver processes
(datatape and actiontape). Retrieveaction is called to
retrieve the next action with a given id from the currently
mounted action tape (a different action tape than the one
being filled by ACTIVE-ARCHIVE). It does so by searching
tape blocks for an actionmessage with the appropriate id.
Once an action message is found it is returned. When
retrieve action requires the next input block on the action
tape, it signals the actiontape driver and waits. 1If the
end of the action tape is reached, a notice is sent to

SWITCH which in turn informs tha operator. Onca the operator

-119-

Figure 5.23

Retrieve Process

process RETRIEVE;

use SUPERVISOR, stopretrieve, OLD-ARCHIVE, operatorreguest,

var

begin

“copy” :

operatoroutput, header, block, actionmessage, msgid, REPLY

opreq : opecratorrequest;

opout operatoroutput;

hd : header;

bl : block;

act : actionmessage;

id : msgid; result : integer; cnt : integer:

loop (*main loop - once per retrieval*)
SUPERVISOR.getretrieve (opreq):;

(*in opreq, value{l] names the type of reguest to
perform - they are : copy - print message on
operator's console
retransmit - re-send messace to
destination
trace = print all actions take
on rescage on cperator
console
value [(2) identifies the message to retrieve®*)

id := opreq.value [2];
case opreqg.value [1] of

begin (*copy entire message on operator's console®)

build new header in hd - treat retrieved nessage
as new input sent to operator:

put copy of header in bl;

LINEINPUT.sendhead (hd); REPLY.receive ("line#”,
MEMORY.create (id,size); result);
MEMORY.write(id, bl);

loop (*get body of message*)

OLD-ARCHIVE.retrievedata (id, bl);
MEMORY.write (id, bl); (*put block back on auxiliary
memory*)

when end of msg in bl or stop retrieve gé exit;
end

(*once end is found signal SWITCH*)

NOTICE.post ("ond”, id)

end (*of copy cauc*)

®"retransmit®

s

-120-

Figure 5.23 (Continued)

Retrieve Process

begin
(*this case is like copy except actual header is

used to direct the output*)

OLD-ARCHIVE.retrievedata (id, bl);
transfer items from bl to hd;
LINEINPUT.sendhead (hd);
REPLY.receive ("line", result);
MEMORY.create (id, size);
MEMORY.write (id, bl);

loop
OLD-ARCHIVE.retrievedata (id, bl);
MEMORY.write (id, bl);
when end of msg is in bl or stop retrieve do
exit :
end
NOTICE.post ("end", id)

end (*of retransmit case*)

"trace® :

end
end RETRIEVE;

begin

(*retrieve all actions taken on a message and print

them on the operator's console - build message out
of actions and route it as for normal messages*)

build header - destination is operator's console
LINEINPUT.sendhead (id);

REFLY.receive ("line", result);

MEMORY.create (id, size);

loop (*retrieve actions*)

OLD-ARCHIVE.retrieveaction (id, act);
copy act into bl;
MEMCRY.write (id, bl);

when last action on msg or stop retrieve do
exit
end
NOTICE.post (“end", id)

end (*of trace case¥*)
(*of main loop*)

-121~-

has mounted a new action tape, he inputs a new tape comtand
which causes the operator's SINPUT process to call OLD-
ARCHIVE.newtape. This reinitializes OLD-ARCHIVE variables
and causes the first tape block to be read. Once reading
is complete, retrieveaction is signalled and proceeds as

above.
With this scheme, the operator must maintain a catalogue

indicating which messages are on which archive tapes. It is
his responsibility to mount the appropriate tape before issuing
a retrieve request. OLD-ARCHIVE merely reads from where

he is on the currently mounted tape and informs the operator
when the end of tape is reached. The operator must then

mount the appropriate next tape.

The retrievedata operation is called by RETRIEVE to
fetch the next message block with a given id from the
currently mounted data tape. Its implementation is analogous
to that for retrieveaction.

The two driver processes in OLD-ARCHIVE read the neéxt
record from the data and action tapes when signalled to do so.
Their implementation is straightforward. The entire program

for OLD-ARCHIVE follows as Figure 5.24.
5.10 System Initialization

The code for each process and module of the message
switch system has now been described. All that remains to
complete the switching node program is code to initialize
the main processes. The initialization code is shown in

Figure 5.25.

-122-

Figure 5.24

01d Archive Device

device module OLD-ARCHIVE;

define retrieveaction, retrievedata, newtape;

use block, actionmsg

const actiontapesize = m,; (*same values*)
datatapesize = my: (*as in ACTIVE-ARCHIVEY)

actionrecordsize = nyi
datarecordsize = nyi
var arnO, drnO, abnO, dbnO : integer;
(*current count of records and blocks*)

actionbuffer : array 1 : actionrecordsize g£
actionmsg; (*record from action tape*)

databuffer : array 1 : datarccordsize of record id :

“integer; info : block end;
(*record from data tape*)
inputaction, actiondone, inputdata, datadone : signal;

actionavail, dataavail : Boolean;
actionstatus, datastatus : integer;

tapemounted : signal; (*end of tape synch.*)

procedure retrieveaction (id : integer; var msg : actionmsgqg);
(*retrieve next actionmsg with identifier id*)

begin

looo (*loop until find action*)
inc(abno);

while abno <= actionrecordsize do (*look at actions*)
when actionbuffer (abno).msgid = id (*got it*)

do msg := actionbuffer (abno);
result = "found it"

exit

inc(abno)

end;

-123-

Figure 5.24 (Continued)

0l1d Archive Device

(*end of record so fetch next one if possible®)
if arno = actiontapesize
then NOTICE.post ("exception®, "end of action tape®
wait (tapemounted) end

actionavail := true; signal (inputaction)
wait (actiondone);
inc (arno); abnO := 0 (*next record, first block®)
end (*of loop*)
end retrieve action;

procedure retrievedata (id : integer; var bl : block);
(*retrieve next block with identifier id*)

begin
loop (*until find data*)

inc(dbno) (*look in current record*)
while dbno <= datarecordsize do
when databuffer (dbno).id = iad

do bl := databuffer (dbno).info;
result := “found it" exit

inc (dbno)
end

(*end of record so fetch next one if possible*)
if drno = datatapesize

then NOTICE.post ("exception®, "end of data tape”)
wait (tapemounted) end;

dataavail := true; signal (inputdata);
wait (datadone);
inc(drno); dbno := 0; (*next record, first block?®)

end (*of loop*)
end retrievedata;

-124-

Figure 5.24 (Continued)

01d Archive Device

procadure newtape (kind : integer);

begin (*initialize and get first record from new tape*)
if kind = action
then arno := 0; abno := 0;

actionavail := true; signal (inputaction);
wait (actiondone);
inc (arno)

else drno := 0; dbno := 0;
dataavail := true; signal (inputdata);
wait (datadone);
inc (drno)

end
signal (tapemounted)
end newtape

process datatape;
begin loop
if not dataavail then wait (inputdata) end;

initiate read into databuffer
doIo

if error ther datastatus := “error"
else datastatus := 0 end;
dataavail := false; signal (datadone)
end
end data tape;

process actiontape;

(o)

begin loo
f not actionavail then wait (input action) end:

itiate read into action buffer; doIO;

-I...
D

error then actionstatus := "error"
else actionstatus := 0 end;
actionavail := false; signal (actiondone)
end
end actiontape

-125-

Figure 5.24 (Continued)

01d Archive Device

(*initialize device module*)
begin arn0O := 0; abnO := 0; drnO := 0; dbnO := 0;
dataavail := false; actionavail := false;
datatape ; actiontape

end OLD-ARCHIVE

-126-

Figure 5.25

System Initialization

begin (*activate each main process*)
for each subscriber group and the operator do

SINPUT:
SOUTPUT;

SWITCH;
RETRIEVE

end

=127~

6.0 Summary and Evaluation

The description of a representative message switching
communications system and its implemcntation in Modula have
now been completed. This chapter summarizes the presentation
and discusses its relation to the degign process. The utility

of Modula as a design language is then evaluated.
6.1 Summary of Design Technique -

The design presented here has been described in the
same order in which it was developed. It evolved from a
sequence of five steps. First,the basic system functions
were identified and described (in Chapter 2). System functicns
in this case were specified by communications people who use
message switching systems. My role at this stage, as the
designer, was to discuss the functions with intended users
so that we could both come to agreement on the purpose and
scope of the proposed system and become comfortable with
each other's vocabulary. 1In addition, it was (and generally
is) helpful to lay out a typical hardware configuration in
order to get a better fecel for the size and nature of the
system. The hardware need not be considered in detail at
this point, howecver.

The second step was to specify in detail the formats
of input and output messages. (This was also done in Chapter 2).
System functions describe how information is processed; this

step in the design describes what is processed. 1t completely

~128-

characterizes the user's view of the system.

The third step was to develop an organization, in
terms of Modula constructs, for a system having the functions
enurnerated in step one. Modula has processes and modules as
its basic building blocks for multiprogramming gystems.
Various organizations were considered at this stage, all in
terms of how the functions could be rcalized using processes
and modules. The organization settled on.was shown in Figure
3.3. Refinements of the groups in Figure 3.3 were shown in
Figures 3.4 - 3.8. The actual design procecded in exactly
this manner. First important groups of processes and modgles
were identified; in this case the groups implement IO inter-
faces and the central switching function. 1In general, a
similar correspondence of groups to IO devices and major
system functions should occur. Each group was in turn re-
fined into modules and rocesses. Finally, the interconnection
of groups, in this case the interface between I0 groups and
the SWITCH process, was organized in terms of modules.

The fourth step was to list the actions of each major
system comporient. This was presented in Chapter 4. 1In the
message switch there are four major components: input,
switch, output,and the operator. The first three correspond
to the phases’'which an individual message goes through as
it is processed by the system. For each of these components,
a path description of its actions was developed. Once this

was complete, an ordered list of the actions taken in pro-

-129-

cessing each message was compiled. (Figure 4.4). At this
point, the design was discussed in detail with the people
who had contracted for the work. This allowed misconceptions
and ambiguities about the system functions to be clarified.
It helped me to be sure of the direction I was headed and
helped the contractors to better understand the program they
would be getting.

The fifth step was to actually program each component.
No programming was done (or should never be done) until the
organization and . system actions were understood by myself, and
agreed to by the contractor. Once the organization of the
whole system is well understood, it becomes relatively easy
to program each component. This is not to say that creativity
is no longer needed though! Programming large components
(e.g. MEMORY or even LINEOUTPUT) is still a rewarding chal-
lenge.

These five steps - system functions, 10 interfaces,
organization, component actions, and programming - were
followed in order for the most part. The steps are not
completely independent, however, so some iteration occurred.
The program for MEMORY, for example, ended up diffefently
than had been originally envisioned. This caused a change
in the internal organization of the MEMORY group (step 3)
and in the way in which it was accessed (step S). of impor=
tance though is the fact that the change to MEMORY did not

affect any other aspect of the organization. The need for

-130-

and role of memory remained unchanged. The only external
effect of the reorganization was a change in the syntax

of statements which access the memory.
6.2 Evaluation of Modula

Overall, Modula proved to be an excellent tool for the
design of the message switching system. 1In at least four
respects, Modula made it easy to go from the specification
to the implementation of the system.

First, the building blocks of Modula - processes and
modules - were both appropriate and easy to use. The clarity
and reliability of an implementation is obviously affected
by the implementation language. In my opinion, Modula is
the best existing language for multiprogramming systems.
Interface modules provide exclusion of access to shared
variables and make it easy to pass dota as records. They
make it easy to both descriée process interfaces and reason
about the effect of process interaction. And device modules
provide a natural, encapsulated means for describing device
interfaces. The power of the language very definitely in-
creased my productivity and enabled me to program the entire
system in about 15 days. Without access to a compiler, I
have undoubtedly made numerous unintentional syntactic and
logical errors. Having described this design and implementa-
tion to numerous people however, I am convinced that no
major or global errors exist. To go from this report to a

working systcm should only require debugging each individual

-131-

component. Some changes may be required in order to tune
the system for good performance . but most of these charges
should occur only within device modules (e.g. changes to
buffer sizes). It is obviously a guess, but I think that
this system could be made operational in at most a very
few months, given a compiler.

The second value of Modula is the power of device
modules as a method for interfacing to IO devices. For
one, device modules provide users with a natural, pro-
cedural interface to devices. For example, the subscriber
control processes (SINPUT and SOUTPUT) input and output
characters by calling read and write procedures. Details of
buffer management, IO synchronization, and interrupts are
hidden from the user. It was also possible to schedule
future access to auxiliary memory (within AUXMEM) in parallel
with disk access. 1In fact, interface and device modules
made possible the clean separation of the file system functions
in MEMORY (e.g. management, memory mapping, and deadlock
prevention) from the device functions in AUXMEM (e.g. scheduling
and buffer management). A final advantage of device modules
is the ability to use differént device access methods in
SUBSCRIBERS and TRUNKS. The SUBSCRIBER modules used the dolO)
instruction because of the assumption that terminals give
interrupts. The TRUNK modules on the other hand used timing
signals to synchronize IO because of the assumption that
trunk lines periodically provide or expect characters. Pro-

gramming thosa differoencos is straightforward and they arec

-132-

hidden from users of SUBSCRIBERS and TRUNKS.

A third feature of Modula, the ability to export read
ornly variables from modules, made it easy to implement out-
éut pre-emption. The output control processes could test
for pre-emption by merely checking a flag set by LINEOUTPUT.
If this flag were not accessible outside of LINEOUTPUT, out-
put controllers would have had to call a LINEOUTPUT procedure
in order to interrogate the flag. In addition, note that
changing the grain of pre-emption, namely the frequency at
which the pre-empt flag is checked, merely involves moving
the when statement in output controllers. Also note that
LINECUTPUT can easily restart pre-empted messages because
they remain on a linequeue until completely processed.

The fourth and final positive aspect of Modula is its
apparent efficiency. The amount of storage and .execution
time required by the Modula kernel (which implements processes,
exclusion, signals, and IO completion) is minimal (10].

Most of the storage space and execution time used in the
message switch should result from functions in the system
itselsf.

In spite of its power, Modula is slightly deficient in
three respacts. First, because processes and modules cannot
appear in type declarations, subscriber and trunk components
must be declared for each terminal and trunk line. This
leads to a tremendous expansion in the size of the program

listing even though each subscriber group or each trunk group

-133-

is the same. Obviously, the same storage space is reqguired
in either case so efficiency is not affected. Readability
and clarity is, however. Along the same line, the systenms
as defined requires a very large number of processes - four
for each subscriber and trunk group. Since a typical system
has approximately 50 local subscribers and 3 remote trunk
lines, this results in over 200 processes. Hcw thi; could
affect efficiency is unknown.

A second, although minor, deficiency of Mcdula is the
lack of queues or a way to construct them easily. As pointed
out in the previous chépter, a queue can be implemented by
a module. But a separate module is required for each dif-
ferent type of queue. It would be nice to have generic
(polymorphic) procedures which operate on any type of gueue.
In parallel systems, queueing occurs frequently within inter-
face modules so a gencral queucing facility, or the tools
with which to construct one, would be guite useful.

The final deficiency of Modula as a language for de-
signing fairly large systems is the use phrase. In Modula,
use is optional; if omitted a module has access to all globally
defined objects not renamed in the module. At a minimum, how-
ever, use should be required. A module should explicitly
state what it is using so that a compiler can catch invalid
accesses. Better yet, use should be replaced by a grant
statement which specifies, when a process or module is de-

clared, which other objects can access it. At present, Modula

~134~

puts access control in the hands of the user of an object;

it should instead be put in the hands of the object's

declarer in order to insure that the object is adequately
controlled. This distinction has little effect in a small
system but in a large system, especially one implemented

by naﬁy people, it can have a great effect upon reliability.
When one object is changed, it should be clear, and explicitly
stated in the program, which other objects are affected by

the change.

The above three deficiencies of Modula can and should
be removed in a language for general system programming
such as that proposed for the Department of Defense. They
are relatively minor, however, and should not obscure the
fact that Modula is the most §owerfu1 tool currently avail-
able for the design and construction of structured multi-
programming systems. The message switching system in this

report is but one example of Modula's utility.
Acknowledgement

Sera Amoroso and Derek Morris conceived of this project
and served as sounding boards for the design as it was developed.

Their assistance is greatly appreciated.

=135~

Bibliography

1.

10.

Brinch Hansen, P. The programming language Coacurrent
Pascal. IEEE Trans on Software Engr SE 1, 2
(June 1975), 199-207.

Department of Defense. Requirements for high order
computer programming languages - revised "Ironman®,
July 1977.

Hoare, C.A.R. Monitors: an operating system structuring
concept. Comm, ACM 17, 10 (October 1974), 549-557.

Lampson, B.W. et al. Report on the programming language
Euclid. Sigplan Notices 12, 2 (February 1977), 1-79.

Morris, D., Amoroso, S. and Andrews, G. Comnmunications
software project. Centacs Report, Center for Tactical
Computer Sciences, ECOM, Ft. Monmouth, N.J., June 1977.

Shaw, A.C. Systems design and documentation using path.
descriptions. Proc. 1975 Sagamore Conf. on Parallel
Processing, summary, pp. 180-1381l.

Wirth, N. The programming language Pascal. Acta
Informatica 1 (1971), 35-63.

" Wirth, N. Modula: a language for modular multipregramming.

Software - Practice and Experience 7 (1977), 3-35.

Wirth, N. The use of Modula. Software - Practice ard
Experience 7 (1977), 37-65.

Wirth, N. Design and implementation of Modula. Sof:tware-
Practice and Experience 7 (1977), 67-84.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif
	pdftemp/0052.tif
	pdftemp/0053.tif
	pdftemp/0054.tif
	pdftemp/0055.tif
	pdftemp/0056.tif
	pdftemp/0057.tif
	pdftemp/0058.tif
	pdftemp/0059.tif
	pdftemp/0060.tif
	pdftemp/0061.tif
	pdftemp/0062.tif
	pdftemp/0063.tif
	pdftemp/0064.tif
	pdftemp/0065.tif
	pdftemp/0066.tif
	pdftemp/0067.tif
	pdftemp/0068.tif
	pdftemp/0069.tif
	pdftemp/0070.tif
	pdftemp/0071.tif
	pdftemp/0072.tif
	pdftemp/0073.tif
	pdftemp/0074.tif
	pdftemp/0075.tif
	pdftemp/0076.tif
	pdftemp/0077.tif
	pdftemp/0078.tif
	pdftemp/0079.tif
	pdftemp/0080.tif
	pdftemp/0081.tif
	pdftemp/0082.tif
	pdftemp/0083.tif
	pdftemp/0084.tif
	pdftemp/0085.tif
	pdftemp/0086.tif
	pdftemp/0087.tif
	pdftemp/0088.tif
	pdftemp/0089.tif
	pdftemp/0090.tif
	pdftemp/0091.tif
	pdftemp/0092.tif
	pdftemp/0093.tif
	pdftemp/0094.tif
	pdftemp/0095.tif
	pdftemp/0096.tif
	pdftemp/0097.tif
	pdftemp/0098.tif
	pdftemp/0099.tif
	pdftemp/0100.tif
	pdftemp/0101.tif
	pdftemp/0102.tif
	pdftemp/0103.tif
	pdftemp/0104.tif
	pdftemp/0105.tif
	pdftemp/0106.tif
	pdftemp/0107.tif
	pdftemp/0108.tif
	pdftemp/0109.tif
	pdftemp/0110.tif
	pdftemp/0111.tif
	pdftemp/0112.tif
	pdftemp/0113.tif
	pdftemp/0114.tif
	pdftemp/0115.tif
	pdftemp/0116.tif
	pdftemp/0117.tif
	pdftemp/0118.tif
	pdftemp/0119.tif
	pdftemp/0120.tif
	pdftemp/0121.tif
	pdftemp/0122.tif
	pdftemp/0123.tif
	pdftemp/0124.tif
	pdftemp/0125.tif
	pdftemp/0126.tif
	pdftemp/0127.tif
	pdftemp/0128.tif
	pdftemp/0129.tif
	pdftemp/0130.tif
	pdftemp/0131.tif
	pdftemp/0132.tif
	pdftemp/0133.tif
	pdftemp/0134.tif
	pdftemp/0135.tif
	pdftemp/0136.tif
	pdftemp/0137.tif
	pdftemp/0138.tif
	pdftemp/0139.tif
	pdftemp/0140.tif
	pdftemp/0141.tif

