
, .
. '\

MODULA AND THE DESIGN OF A
MESSAGE SWITCHING

COMMUNICATIONS SYSTEM

Gregory R. Andrews

TR 78-329

Department of Computer Science
Cornell University
Ithaca, NY 14853

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1979 2. REPORT TYPE

3. DATES COVERED
 00-00-1979 to 00-00-1979

4. TITLE AND SUBTITLE
Modula and the Design of a Message Switching Communications System

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Cornell University,Ithaca,NY,14853

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

141

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

MODULA AND THE DESIGN OF A MESSAGE

SWITCHING COMMUNICATIONS SYSTEM

Gregory R. Andrews
Department of Computer Science

Cornell University

This ~~rk was supported by the Scientific Services Program of
Battelle Colur.~us Laboratories, Durham, and was author; zed by
the U.S. A~y Research Office under Contract DAAG29-76-D-OIOO.

ABSTRACT

This report describes the functions of a message

switching communications system and presents an implemen­

tation in terms of the Modula progr~ing language. In

particular, the report: (1) describes a representative

application of the proposed new Department of Defense high

order language; (2) presents a design technique for soft­

ware specification; (3) develops Modula programs for each

of the message switching components; and (4) evaluates the

utility of Modula as a language f~r the design of large

parallel systems.

TABLE OF CONTENTS

1.0 Introduction

2.0 System Specifications
2.1 Hard·~are
2.2 Syste~ Functions
2.3 10 Interfaces

3.0 Syste~ Structure
3.1 S~~ary of Modu1a
3.2 System Organization

4.0 Process Actions and Control Paths

5.0 Progrw~ Listings
5.1 Global Data Types
5.2 SystC~ Cloer. Group
5.3 :'.S:·:OR'I Interface Module
5.4 ACTIVE-ARCHIVE ~odule
5.5 10 Control - SI"lITCH Interface
5.6 SUbscriber Groups
5.7 Trunk Groups
5.8 SWITCH Process
5.9 Operator Group
5.10 Syst~~ Initialization

6.0 S~~ry and Evaluation

Bibliography

Page

1

4
4
6
8

13
13
17

26

34
36
38
38
52

Modules 56
63
81
93

110
121

127

135

1.0 Introduction

The unmistakable trend in recent years has been toward

the use of high level languages for systems progra~ing. In

an effort to improve upon available tools, three new lang­

uages have been designed: Concurrent Pascal (1) and Xodula

(8) were developed to aid in the design and implementation

of multiprogramming systems while Euclid (4) is intended for

the programming of verifiable, sequential systems. All three

borrow heavily from the work of Wirth in the design of Pascal

(7). Although intended primarily for the development of

small operating systems, both Concurrent Pascal and Modula

are applicable to parallel ·systems in general. In this

paper, the design of one specific example. a message switching

communications system, is developed and programmed in Modula.

Our purpose is to show both (1) that a communicaticn system

can and should be viewed as a special purpose operating

system and (2) that a language such as Modula is an ideal

tool for its design. Modula was chosen as the target lang­

uage because it is well documented, provides facilities for

accessing machine hardware, and appears to be effi~iently

implemented (10).

At present. the Department of Defense is involved in a

concerted effort to develop a new language (or family of

languages) for use in implementing their software syste~s

[2]. A message switching communications system is one

example of such an application (5): and Modula is a language

-2-

which meets many of the DoD requirements, specifically 1n

the areas of parallel processing and device control. A

message switch consists of a number of switching nodes, each

having local subscribers, connccted via trunk lines. Its

function is to route messages from one subscriber to one or

more other subscribers connected to either the same switching

node or to another, remote switching node. Each switching

node accepts input messages from subscribers or trunks,

storcs the mesoages on temporary storage and then forwards

complete messages to output destinations (either local

subscribers or trunks). This type of communication system

is often called a 'store-and-forward message switching system.

This report presents a detailed design in Modula of

the software for a switching node. (Each switching node

in a co~~unications network would execute the same soft­

ware). In particular, the report:

(1) Develops one completely specified, typical

application of the proposed Department of

Defense language;

(2) Illustrates the use of top down design and

presents a descriptive technique for the

speCification of parallel software systemS1 And

(3) Evaluates the utility of Modula for the

design of large parallel systems such as

the one presented.

Overall Modula proved to be a superb tool, althOUgh it

-3-

did present a few problems (enumerated in Chapter 6). As

testimony to its power, the entire desiqn described here

was developed in thirty days (including the writing of

this report). Much progress has been made since the early

days of exclusive assembly language coding - and even if

assembly language must still be used (in hopefully few

places), we hope that this report provides justification

for the use of a high-level language such as Modula as a

tool Cor initial specification and subsequent documentation.

The next chapter gives the specifications of the hard­

ware, user interface, and fuctions of the co~~unication

system. Chapter 3 contains a brief s~~ary of Modula. and

block diagrams of the communication systeJII components. Be­

fore delving into detailed programs of each component, the

different message processing phases are described in Chapter

4. Chapter 5 contains program listings and detailed descrip­

tions of each component. Finally, Chapter 6 summarizes

the design and evaluates the utility of Modula.

-4-

2.0 System Specifications

In this section, the hardware configuration and processing

requir~~ents of a typical message switching communication

systen are specified. The hardware is discussed at this point

in order to give a feel for the size and nature of the switching

system under consideration. The most important part of the

specification of this or any system, however, is defining the

fo~~ts of input and output message and the functions the

syst~ ~ust perform on the messages (see (5) for more detail).

2.1 Hardware

The switching system considered consists of a network of

switching nodes each connected to one or more other switching

nodes via tr~~k lines. Connected to each node are a number

of local subscribers, one special subscriber called the op­

erato., archive tapes, and auxiliary memory for messages.

A representative configuration is shown in Figure 2.1.

Typically, a switching node has up to SO subscribers and

from 1 to 3 trunk connections to other nodes. Our design

is independent of the number of subscribers and/or trunks,

however. We also assume that there are four tape controllers,

two for recording input messages and actions on the messages

a~d two for retrieval of data or actions from previously

processed messages. For temporary storage of input messages,

each node has some auxiliary memory such as a disk.

Subscribers, as well as the operator, use terminals to

interface to their local node. Each terminal is assumed to

-5-

Figure 2.1

Communication Hardware

subscriber: terminal

operator: terminal

switching node: processor

archives: tapes

auxiliary memory: drum or disk

trunk I communication lines

subscriber

-6-

be a character oriented device, n~ely it transmits and

receives data one character at a time. All terminals are

full duplex so that input and output can proceed simultan­

eously.

Trunks are more complicated. Each consists of a bundle

of pairs of sending and receiving lines. Information is

trar.~itted along trunks in 84 character blocks. (The format

of trunk messages is described. in Section 5 when the trunk

prograD is described.) Control signals are also passed along

tr~~ks to synchronize information transmission: We will

ass~ that trunks transmit information at a periodic rate,

namely information can be sent or received at fixed intervals

rather than asynchronously as with other 10 devices. Trunk

lines are also assumed to be full duplex.

2.2 System Functions

The basic function of each switching node is to accept

input from subscribers and route it to output destinations

named in the headers of input messages. There are three

phases involved in processing each message: input, switch,

and output. In addition, the operator can request special

f~~ctions, and is notified when exceptions are detected

by the switching node.

The input phase involves receiving input from a sub­

scriber or trunk, storing the message on auxiliary memory,

and recording the input in an archive tape. Each message

c~ntains a header, a body, and an end marker. Once an

-7-

entire message has been stored, the switch function is

invoked.

In the switch phase, two major actions are taken.

First, acknowledgement of receipt of the message is recorded

in an action archive and is output on the local operator's

terminal. Second, the message header is examined to determine

the output destinations. FOr each destination, the switch

module selects an appropriate output line (either a local

subscriber or a trunk) and starts the output phase. If a

message is sent to more than one destination, each receives

a copy. All messages are eventually output to subscribers

(unless cancelled) •

In the output phase, a message is retrieved from the

auxiliary memory and transmitted to each destination. For

trunk destinations, the message is sent as a sequence of

blocks. For local subscriber destinations, the message

is output as a sequence of characters. Each message con­

tains a precedence and classification. At all times, the

highest precedence message for each destination is output.

If pre-empted, a message is later retransmitted in its

entirety. The classification of each message is checked

when it is output to a subscriber I it must be no greater

than the current classification of the subscriber terminal.

Each switching node has one operator terminal. The

operator can send and receive messages like any subscriber.

In addition, the operator monitors and controls the activity

-8-

of the local node. The operator can request that the

switching node perform certain actions (e.g. cancel a

message, or retrieve a previously sent message). The

operator also is notified of any exceptions or special actions

occurring within the switching node (e.g. occurrence of a

pre-emption, or need to mount an archive tape).

2.3 10 Interfaces

The main function of the switching node is to process

input and output messages. The specific formats of sub­

scriber and trunk 10 messages are shown in Figures 2.2 and

2.3, respectively. Input header fields have the following

values:

originator code - the number of the line originating

the message

destinations - the number and identity of. each intended

output destination where the identity is .

a (switching node I, line .) pair

identification the date and time of input; together

with ~~e originator code this uniquely

identifies a message

precedence - emergency, routine, or deferred; emergency

pre-ernpts the other two on output

classification - classified or not classified (could

use more levels in general)

local sequence number -

subscribers - value N meaning ~ input message

-9-

Figure 2.2

Subscriber Interfaee

Subseriber Input

header: SOH code
originator eo de
destinations
identification (date - time)
precedence
classification
local sequence number
EOH

body: sequence of characters

end: EOM code or
cancel sequence, EOM eode

Subscriber Output

header: originator of message
identification (date - time)
precedence
classification
local sequence number

body: sequence of characters

end: EOM

Trunk Input

-10-

Fiqure 2.3

Trunk Interface

header: SOH code, SEL code
ori9ina~or
destinations

body:

end:

Tru."1k OUtput

header:

body:

end:

identification (date - time)
precedence
classification
list of switching nodes who have processed

In'O!ssage
ETX code, block parity

STX code, DEL code
80 characters
ETB code, block parity

ETX code, block parity (at end of block) ~
cancel sequence (inside block)

same a s above

same as above

same as above

-11-

of the day

trunks - sequence of numbers naming the switching

nodes which have processed this message

When a message is output, it basically contains the same

information as for input. Two differences exist for subscribers,

though. First, the destination no longer needs to be s?Qci­

fied. Second, the local sequence number is changed to a count

of the number of output messages sent from the switching node

to the subscriber. We leave unspecified the actual length

and encoding of each header component: the program for ·the

system refers to fields by name.

Operators, as subscribers, can send and receive messages.

They have the same format as subscriber messages. In addition,

the operator of each node can make certain requests and receives

exceptions and other notices. The types of requests and

notices are enumerated in Figure 2.4. We assume that requests

have a starting code which enables them to be distinguis~ed

from normal input messages.

Operator Input

-12-

Figure 2.4

Operator Interface

messages: s~~e format as for subscriber input

requests: start of request code
body of request

key
values (up to four)

end of request code

~
·status"
"cancel"
"\o,'ait'"
"rest.art"
"alter directory"

"alter line status·
"retrieve"

·cancel retrieve"

Operator Output

valueCs)

types of status to retrieve
ncssagc identification
line number
line number
line number, new primary and

alternate destinations
line number, new status
type of retrieval, message

identification

messages: same format as for subscriber output

exceptions and notices: pre-emption, orbit, tape
mounts, cancellations, actions
on messages

-13-

3.0 System Structure

The message switch system has been programmed in Modula.

This section briefly summarizes Modula and gives block diagrams

of the system organization in terms of Modula constructs.

Succeeding sections refine the structure into greater levels

of detail.

3.1 Summary of Modula

Modula is a new programming language which is intended

primarily for programming dedicated software systems. It is

based on Pascal (7]. To the sequential language constructs

of Pascal it adds two constructs for multiprogr~~~g:

processes and modules. It also allows the specification of

so called device modules to control a computer's particular

peripheral devices.

As an aid to the reader, a short summary of ·sequential·

Modula data types and control stateoents appears in Figure 3.1.

Figure 3.2 summarizes the process and module constructs which

will now be briefly discussed. For detailed information the

reader is referred to Modula's defining document (s] and also

to the excellent papers describing its use, design and im­

plementation [9,10]. Our purpose here is merely to give the

flavor of the language. In order to really understand the

programs in Chapter 5, (s] should be consulted.

Processes have the same structure as procedures. Namely,

they have parameters, local variables, and a set of statements.

They are also activated in the same manner as procedures. The

-14-

Figure 3.1

·Sequential· Modula

DATA TYPES

Basic types:
Constants:
Types:

En'.:..~eration:

Array:
Record:
Variables:

PROGP~~ STATEMENTS

Assigrl."Ilent:
Procedure Call:
If:

Case:

"hlle:
Repeat:
LooD:
LoO? exit:

Boolean, char, integer, bits
const name - value
type narne ~ identifier I enumeration I

array I record
(identifier list)
array range of type
record fieldS-end
var names: type;:-••

variable :- expression
procedure name (parameters)
if Boolean expression then statement
-- list [elseif Boolean expr then state-

me nt 1 rsn- ----
{else statement list] end

case expression of ---
---rabel l : begin statement listlend

labeln : begin statement listnend ~

while Boolean expression do statements ~
repeat statements until Boolean expr:

000 statements end
~ Boolean expr-Qo statements exit

-15-

difference is thAt when a process is ·called,· both the

process and the caller execute concurrently. In addition

to local variables, processes can access global variables L~d

call module operations.

Modules are like blocks in the Algol sense (they contain

declarations and statements). The difference is that a mod­

ule is a fence between the objects it declares and those

global to it. The purpose of a module is to make available

selectively those Objects that represent an intende~ abstrac­

tion while hiding those objects that are considered details

of its representation. To specify the fence, a module con­

tains a define list and, optionally, a ~ list. The defi2e

list names those objects exported from the module, namely

those objects accessible outside. Procedures, types, con­

stants, signals and read-only variables can be exported.

The ~ list names those global objects imported into the

module. If the ~ list is omitted, all global Objects

are accessible; if it is present however, only global o.b­

jects namedin the ~ list are accessible. Modules also

contain statements to initialize local variables.

Two special types of modules play a key role for multi­

programming. interface modules and device modules. Interface

modules, which correspond to moni~ors (3), are modules which

provide exclusive access to defined procedures. If one p~ocess

is executing an interface module procedure, no other process

can execute within the interface module. Since it is usually

-16-

Fiquro 3.2

MOOULA: Processes and Modules

PROCESSES

MODULES

process SWITCH;
variables
be1in

end SWITCH;

module m;
-----aefine names; (*exported types, vars, procedures*)

use names; (*imported types, modules, etc. *)
acclarations - variables, types, procedures
begin

l.nitialization
end mi

INTERFACE MODULES

modules with exclusive access to defined procedures
and with ~ignal variables operated on by
wait(sig) and send(sig)

DEVICE MODULES

interface modules with internal device processes
which can have dOlO statements to delay
execution until IO is complete

-17-

necessary for cooperating processes to synch~onize their actions,

interface modules can contain signal variables. Signals are

sent by send(signa1) and received by wait(signa1). When

a process waits for a signal it temporarily leaves the

module thus relinquishing its exclusive control. A send

results in a process switch if another process is waiting

for the signal; otherwise it has no effect.

Device modules are special kinds of interface modules.

In addition to defined, mutually exclusive procedures, a

device module contains device processes. A device process,

or driver, interfaces to the IO hardware of a specific de­

vice. Therefore. there is one device process for each

addressible IO device. To represent time delays due to IO

processing. device processes can contain dolO statements.

Since device processes are ~ device modules, when ex­

ecuting they have exclusive access to the module's variables.

Device processes relinquish cont401 by waiting or by executing

dolO. They regain control when signalled or when IO completes.

A Modu1a program is a module. Within this outer module

all (non-device) processes and other modules are declared

and the processes are activated. Process declarations can­

not be nested, with the exception of device processes which

are declared within device modules. Module declarations

can be nested, however.

3.2 System Organization

There are five basic components in the message switch

-18-

system. At the center is the SWITCH process which directs

activity and keeps track of the status of each message.

X~ssage input and output 1s handled by ~he trunk and sub­

scriber ~o~ponents. The auxiliary memory group is used for

storage of ~essages. The active-archive is used as a log

o~ the data in messages and the actions taken on messages.

Finally, the operator group processes ~essages (like the

subscribers) and handles operator requests and system ex-

ceptions. The components and their interconnection are

shown in Figure 3.3. The labels on the arcs indicate the

types of operations which are performed. The trunk/subscriber

groups, ~dITCH process, and operator group direct activity.

The auxiliary memory and active-archive groups provide

services to the other three.

The specific organizations of each component, in terms of

Modula units, are shown in Figures 3.4-3.7.* Trunks and sub-

scribers are both organized in the same way; as will be seen

in their programs (Chapter 5) they differ only as a result

of the hardware difference between terminals and trunk lines.

Their organization and interface to the rest of the system

r~ke differences transparent, however. Each consists of two

controlling processes, one for input and one for output, as

well as a device module for performing 10. Controller

processes send or receive headers and blocks of data to and

·Capital letters are used for the n~~es of the processes and
modules; circles denote processes and boxes denote modules.

trunks and messaqe
subscribers control

data

-19-

Fiqure 3.3

System Components

auxiliary memory {

create
stcre
retrieve

/ request ~?erator J­
<.;;; exceptl.ons "L _

/'
r-__ ~ac_t_i_o~n~ d.,.

-20-

tro~ the other components. The input control proc~ss in

both cases reads from the input device and the output

control process ~~ites to the device. Within the device

~dule arc two 10 drivers. Note that there are two control

processes and one device module for each terminal or trunk

line.

The trunk and subscriber input processes store a copy

of each input block on the ACTIVE ARCHIVE. The ACTIVE

ARCHIVE is implemented as a device mOdule containing two

driver processes, one for data and one for actions. The

~wITCH process sends action messages to the ACTIVE ARCHIVE

~'hich in turn stores them on an actic:ln tape.

The auxiliary memory group has an interestinq organi­

zation. Each message input to a subscriber or trunk is

stored, by blocKs, on auxiliary storage in a file created

when input started. During output, the message is read

back from auxiliary storage and, when output is completed,

the storage file is destroyed. The MEMORY interface module

provides operations (defined procedures) for create, destroy,

read and write. For read and write it uses an internal

device module to access auxiliary storage. This module

schedules the 10 operation which is in turn performed by a

driver process.

The operator group also has an interesting organization.

The main co~?Onent is the operator subscriber which is the

same as a normal subscriber (i.e. input and output control

~ header
, blocks

header
, blocks

write data"
or actl.on /

-21-

Figure 3.4

Trunks and Subscribers

TOUTPUT i

Figure 3.S

Active Archive

ACTIVE-ARCHIVE ~ ~

read

creat.!..!_
-- destroy

-22-

Fi9Ure 3.6

Auxiliary Memory

module ~~ORY interface ___ _

dOIO~
AUXXEN

Fiqure 3.7

opera_t_o __ r __________ ~~;:~~~~~--------~
device ~ OLD-ARCHIVE

----.....

~ -S-U-B-S-C-R-I-B-E-R-o-p-e-r-a-t-olr

ice module dev . ___ _

-23-

processes and a device module). In addition to handling

normal messages, the operator receives exception ~ssages

and can request retrieval of past messages. To do so,

the SUPERVISOR interface module is used. Exception messages

are put into the SUP~RVISOR module by the SWITCH process

and are handled by the operator's output control process

(SOUTPUT). Retrievals are initiated by the operator's in­

put control process (SINPUT) and handled by the RETRI~VE

process. The RETRIEVE process reads from the OLD ARCHIVE

device module which contains driver processes for reading

action and data archive tapes.

Input and output control processes interact directly

with the ACTrvE-ARCHIVE and MEMORY interface modules. All

message blocks pass between the control processes and }~IORY.

Message headers, which contain all of the control infornation

for a message, pass between the 10 control processes and the

SNITCH process. In addition, 10 control processes and SWITCH

exchange control signals. Interfacing the control processes

to the SWITCH requires a number of interface modules. A

diagram of the interface is shown in Figure 3.8. Since

SWITCH is a process, it can only wait for one thing at a

time. Therefore it receives all requests (e.g. new message,

end of output, exception) from a NOTICE interface module.

For new messages, it gets the header from LINEINPUT and

stores it in HEADERS. At the end of input, it enters output

directives for each destination line in LINEOUTPUT. Once

-24-

the output is scheduled, LINEOUTPUT retrieves the header

from HEADERS and gives it to the appropriate output control

process (one of the SOUT?UT or TOUTPUT processes). When

output is co~plete, SWITCH receives a NOTICE, deletes the

header from HEADERS and destroys the MEMORY file containing

the message. The other interface module in Figure 3.8,

REPLY, is used when input or output controllers need to wait

for the SWITCH to respond to a notice. The flow of headers

and control information between the 10 controllers and

SWITCH is described in more detail in the next chapter.

-25-

Figure 3.8

Trunk/Subscriber - swrrca Interface

blocks to memory and archive

read
message _____ --=1'

write
message

o
D

r control

blocks from memory

processes

interface modules

end of input

...;..1 LI~EINPUT I

J headers
.----...

-26-

4.0 Process Actions ar.~ Control Paths

Before presenting programs for each process and module,

in this chapter ~~ summarize the actions of the main processes

and describe the paths of messages through the system. The

main actions of a switching node are centered in three areas:

the input control processes, SWITCH, and the output control

processes. Figures 4.1 - 4.3 s~~arize the functions of

these three components in Shaw's flowchart-like notation

called path descriptions [6].

For each message, an input process parses the header,

groups the body of the message into blocks and finds the en~

of reessage code. After a header has been found, a MEMORY

file is created and the header is sent to SWITCH via LINEINPUT.

Each subsequent block of the message is stor~d in the MEMORY

file and a copy is also stored in the ACTIVE ARCHIVE. When

the end of the message is found, eith~r a cancel or end of

input NOTICE is sent to SKITCH.

SWITCH receives notices of many kinds (Figure 4.2).

For now, three are important: header, end of input, and end

of output (done). The others come from the operator (fiiscusse~

shortly) or indicate exce~cions. On receipt of a header

NOTICE, SWITCH receives the header itself from LINE INPUT an~

stores it in HEADERS. SWITCH then logs an action messages

on the ACTIVE-ARCHIVE an~ sen~s a REPLY to the input process

which sent the hp.ader. When SWITCH receives an end of input

NOTICE, it again logs an action message an~ thon inserts one

Subscriber and
Trunk Input:

-27-

Figure 4.1

Input Process Functions

repeat

~ BUill Header ----7>Build Blocks
of Message

~Process end
of Message

t J create ~~ORY file
Build Header: Find next send header to wait for

Build Block
of Message

_1 End of
Message

I

_ header -- -- LINE INPUT ----:~,. REPLY --
component end

Get ~ext 1_---'e'"'n.:..;d;;,....;o;;.;f;;,....;b.:..;1~O~C;;;k"'__~ send block to ACTIVE-ARCH:
--, char ---. and ~V.ORY

cancel
~ post cancel NOTICE

Nom.J--close MEMORY -, post end
7 file

normal

SWITCH I

header:

-28-

Figure 4.2

S~TCK Functions

~ receive NOTICE

receive enter in put status --> send REPLY --;:.
--7 LINE INPUT -->HEADI::RS -~ in ARCHIVE

end of input, put status insert in
--" LINEOUTPUT ---? in ARCHIVE

for dest:mations

cor.e with:
output

put status delete
~ in ARCHIVE ---? HEADERS

____ ;>"::> destroy MEMORY -?>
file

other notices: iqnore for now

-29-

output directive in LINEOUTPUT for each destination. ~~en

output is complete, SI-lITCIl rqcoives a dono NOTICE. It again

logs an action message, then deletes the header from HEADERS

and destroys the MEMORY file containing the message body.

Each output control process (Figure 4.3) gets headers

from LINEOUTPUT. On receipt of a header, it outputs the header

and then outputs tho body of the meSSAge by reading blocks

from MEMORY and writing them on the output device (via the

device module). While one message is being output, another

message of higher precedence may be ready for output to the

same device. When this happens, LINEOUTPUT sets a pre-emption

flag. This flag is periodically examined by the output

process and, if set, writing stops and the process receives

the new header from LINEOUTPUT.

Figure 4.4 puts these three processes together. It

shows the order of the actions taken by each co~ponent in

processing any message from input through to output. The

arrow on each arc indicates the direction of flow of infor­

mation and synchronization signals.

The other major functions in the system are those of

the operator. The operator handles both normal message in­

put and output (in the same way as for subscribers and

trunks) and spocial input r~quests and output messages.

For retrieve, cancel, wait, restart, and alter requests, the

operator posts a NOTICE for SWITCH. In the case of alter,

the operator passos the new table values to SWITCH via the

Subscriber. and
Trunk Output

-30-

Figure 4.3

Output Process Functions

1
I

receive header output
from --';> header

LINEOUTPUT

change to

output end
-'?bodyof

Message I pre-emption

Output
lieacer: -..,. output -

• format

write on
device -

Output Body: J:1et block
rom MEMORY

end write on 1
--, device --- I--------~~

~ pre-emption

get next header
from LINEOUTPUT

-----_._----

-31-

Figure 4.4

10 Control - SWITCH Interface Timinq

1

2

3

4

5

6

7

INPUT PHASE

send new header

post new msg NOTICE
receive NOTICE

receive h<'!ader
store header

send REPLY

receive REPLY

8 store message on MEMORY
9 send end of msg NOTICE

10 receive NOTICE

11

12
13

14

15
16

17

OUTPUT PHASE

ins~rt output nsg in LISEOL7PCT

retrieve header
receive header

read message from ME~ORY

send done with output signal
post done NOTICE

receive done NOTICE

-32-

SUPERVISOR interface module. lihen SWITCH receives one of

tt.ese requests (via NOTICE) it takes care of it and sends a

response back to the operator. These responses, as well

as exceptions and special conditions (e.g. mount a new archive

tape), arc sent to the operator output process via SUPERVISOR.

The control signal telling the operator that a response or

other message is waiting comes from LINEOUTPUT in the form

of a special header. Output processes get all their work

from LINEOUTPUT in the same way that SWITCH gets all its

work from NOTICE.

-33-

Figure 4.5

Operator Functions

retrieve status ____

Operator Input: get next cancel-------
--? request ----41

---9 wait/restart

~alter tables-

_ retrieve ------1
new tape

retrieve, cancel, post NOTICE--,,;>
wait/restart: ---9 for SWITCH

alter tables:.

retrieve:

send request to ~ post NOTICE
--..,. SUPERVISOR -- for SWITCH --=i>

~~~n~~~~~~~~:ve ~ 

ca~send cancel retrieve ~--~ 
to SUPERVISOR 

newtape: _ tell archive tapa is lIIOunted ~ 

Operator Output: .~ qet operator output _ receive output write on 
notice from LINEOU'rPU'l' msq frolll - terminal -

SUPERVISOR 



-34-

5.0 Program Listings 

This chapter contains listings for each of the program 

components co~prising the message switching node. Figure 5.1 

qives an outline of the program. Succeediog sections of this 

chapter discuss each group in detail. 

:n order to make the listings more readable, three 

conventions which are not in Modula have been used. First, 

n~~cric constants are often denoted by a character string in 

quotation marks; for example "pre-empt" or "inheader." These 

could of course be represented in Modula by constant dec lara-

tions. Upper bounds of arrays are usually just specified as 

"::lax·; the appropriate value to subst"itute is dependent on 

the actual size of the system. 

Second, module procedures are called by specifying both 

the module name and procedure name. For example, SUBSCRIBER. read 

calls the read operation of the SUBSCRIBER module. In Modula, 

onll, the procedure name is used which reqUires that each pro-

cedure naoe is unique. 

Third, queues have been added as an extension to the usual 

Modula data types. They are declared as: 

na~e: queue maximum size of type 

and can be operated on by three operations I 

name.delete(entry) 
na~e.insert(entry) 
name. size 

This shortcut has been employed within interface modules in 

order to decrease the length of the programs and, hopefully, 

increase their readability. 

Queues as used here can be readily implemented in Modula 

in a variet}' of ways. The most obvioull was is to usa an arr:ay 



c.t.-

-35-

Figure 5.1 

Program Outline 

~ MESSAGE-SWITCH; 

global data types - header, block, actionmsg, operator 
request, operator output 

system clock group - TIMER device module, CLOCK process 

MEMORY and ACTIVE ARCHIVE intertace modules. 

10 - SWITCH interface modules -
LINEINPUT, NOTICE, REPLY, HEADERS, LINEOUTPUT, 
SUPERVISOR 

Subscriber groups - SINPUT , SOUTPUT processes SL~SCRIBER 
device module 

Trunk groups - TINPUT , TOUTPUT processes TRUNK device 
module 

SWITCH process 

Operator group - OPINPUT , OPOUTPUT processes 
OPERATOR device module, RETRIEVE process 
OLD-ARCHIVE device module 

begin activate all processes 

~ MESSAGE-SWITCH 



-36-

and three control variables as follows: 

nam~: ~ n 2f T becomes 

na.."Ca: ~ 1 : n of T: 
Slze, front,-rear : integer; 
size :- 0; front :- 1: rear :- 11 

The operations insert and delete then respectively add an element 

of typ~ T at the rear of the array and delete an clement from 

the front. The control variables are adjusted appropriately. 

~he size operation of course just yields the value of size above. 

The four variables (array plus controls) could also Be grouped 

into a record. 

Another implementation is to use a module which defines 

the type of queue entries and the three operations insert, delete 

and size. Inside the module, queues are then represented as 

above by an array and control variables. Although this approach 

is feasible, a different module must be defined ~ ~ ~ 

of queue. Modula has no facility for so-called generic or poly­

aorphic types. Since each of the queues used in the message 

switch system has a unique type the module approach would re-

quire a distinct ~odule for each queue. 

5.1 Global Data Types 

Five types of data are used throughout the system: header, 

block, actio~~sg, operator request, operatoroutput. They are 

declared in Figure 5.2. Type header contains all of the header 

and control information for messages. Block is the unit 

passed to and from MEMORY and the archives. An actionmsg is 

tr.e type of information stored on the archive's action tapes. 

Operator request and operaeoroutput define the formats of 

information passed to and from the SUPERVISOR module (Which 



-)7-

Figure 5.2 

Global Data Types 

~ header a record 

origin: integer; (* line' of sender *) 
outputcount: integer; (* no. of. destinations*) 
dests: arrav 1: "max" of integer; 
prec, class:-integer; ('-precedence, classification-) 
identity: integer; (* date-time-origin*) 
seqcount: integer; (* sequence data*) 
sequence: array 1: "max" Qf integer; 
size: integer; (* no. of blocks in ~~g*) 
filename: integer (* ML~ORY file*) 
end; 

block - array 1: "blocklength" 2t char; (* msg blocks*) 

actionmsg - record (* actions stored on archive*) 
magid, time, action: integer ~; 

operatorrequest - record key: integer; (* type of request·) 
value: array 1:4 2! integer ~; 

operatoroutput - record size: integer, C* no. of chars*, 
data: array 1: "max· 2! char !E!: 



-38-

interfaces SWITCH to the operator). 

5.2 System Clock Group 

In order to keep track of the time of day and synchro­

nize trunk IO, a TIMER device module and a CLOCK process 

are e~ployed. The TIMER contains a device process, clock 

driver, which periodically receives (via dolO) a hardware 

clock interrupt. It then increments the time of day and 

sends a tick signal. The CLOCK process receives the tick 

signal aftd, for each TRUNK process waiting for IO synchro­

nization (see Section 5.6), sends a trunk tick. If the 

period of the trunk tick is a multiple of the period of the 

hardware clock, the CLOCK process would accumulate clock 

ticks until the period has passed and then send a trunk tick. 

The TIXER and CLOCK are shown in Figure 5.3. The trunk and 

hardware clock periods are assumed to be equal for now. For 

an interesting discussion of hardware clock and Modula, 

the reader is referred to page 81 of (lOJ. 

5.3 M~~ORY Interface Module 

The }ffiMORY module provides an interface between IO 

control processes (subscribers and trunks) and auxiliary 

me~ory. It is organized as shown in Figure 3.6. A program 

outline of the module is shown in Figure 5.4 and the program 

is given in Figure 5.5. The ~ffiMORY module manages free 

space on the auxiliary storago device and definoD oporations 



-39-

Figure 5.3 

System Clock Group 

---

~ trunktick : signal; (*synchronization for trunk 10*) 

~~TlMER; 

~ time of day, tick, 

time of day : integer, (*number of hardware clock 
interrupts since systee initialization 

tick : signal, (*signa1 for each hardware clock interruF 

process clockdriver; 
begin loop dolO; (*wait for interrupt*) 

inc (time of day); send (tick) 

~ 
end clockdriver; 

begin time of day I- 0; clockdriver 
end Tll1ER, 

process CLOCK; 

~ tick; 

begin ~ wait (tick), 

~ awaited (trunktick) ~ send (trunktickt ~ 

~ 

!ill! CLOCK; 



-40-

Figure 5.4 

Outline of MEMORY 

interface module HE-'IORYI 

variables - directory, free space, waiting processes 

utility procedures - manage free space 

defined operations - create, write, endwrite, read, destroy 

~ module AUX.'IE.'I; 

variables - sector buffer, scheduling 

utility procedures - IO scheduling 

defined operation - 10 

orocess d:-iver 
code to perform IO 
er.d driveq 

begin initialize AUXMEM 

er.d AUX.'U:.'1 

b;gin initialize ~~ORY 



-41-

for managing files and performing 10. Five operations are 

defined: create, write, endwrite, read, and destroy. 

Create is called by input control processes. Its function 

is to allocate storage space for the file and assign an in-

ternal name. The estimated size of the file is specified as 

a parameter. If not enough space is currently available, 

the user or sending trunk is notified and the input controller 

waits. Once adequate space has been released (via destroy 

or endwritel the creating process continues. 

Once created, a file is filled by calling write, speci-

fying the filename and data block. Write is in general called , 
many times. The write operation treats the file as a sequen-

tial file and writes into the next allocated external block. 

Since auxiliary memory sectors are assumed to be larger than 

data blocks, on most writes the old sector must be read, up-

dated, and then rewritten. Sectors of external me~ory are 

allocated on d~"and and are linked together. The links are 

stored in the directory of the file. 

A file is "closed" by calling endwrite. The purpose 

of endwrite is to tell the file syste~ (i.e. MEY.ORY) hew 

much space was actually used. On creation, an esti~ate of 

the maximum required space is specified, and ME~ORY commits 

that much space. Endwrite enables MEMORY to take back any 

unused space and make it a~ailable for other files. 

File reading is performed by input control processes 

in subscribers and trunks. A call to the read operation 

identifies the file, block number, and buffer to use. 



-42-

MEMORY maps the file name and block number into a sector 

address and calls AU~V~ to perform the 10. The block 

n~~er ~ust be specified on read because many processes 

may simultaneously be reading different blocks from the 

s~e file (messages may have multiple destinations). 

Once all processing on a file is completed, SWITCH 

calls destroy. Destroy frees the space occupied by the 

file and, if necessary, tries to awaken processes waiting 

to execute create. Waiting processes are awakened in the 

order in which they blocked regardless of how much space 

they ~eed. 

AUXM~ is a device module which schedules and performs 

read and write operations on auxiliary memory (if necessary). 

10 is actually performed by the driver process. The read 

and write operations in M&Y.ORY give IO requests to AU~~EM 

by calling its 10 operation. IO requests a turn, synchro­

nizes with the driver process and then releases its turn. 

Request turn and releaseturn are scheduling procedures. 

As defined in Figure 5.5, request turn and release turn use 

a first-corne, first-served strategy. Other scheduling 

strategies, such as the elevator algorithm in I, can 

be readily implemented merely by changing the ~ of the 

scheduling procedures. 

The driver process synchronizes ~ith the 10 procedure 

via startio and iodone signals. Notice that many processes 

could be in 10 at once, waiting to be scheduled (by request 

turn). Only one process at a time can be waiting for iodone 



-43-

however. 

The code for MEMOR¥. which contains A~t as a s~­

module. is shown in Figure 5.5. Au~mM is contained with-

in MEMORY because it is part of the representation of M~~ORY 

and hence is not di~~ctly accessible to control processes. 

MEMORY provides the abstraction of a file system. The abstrac­

tion. namely the file operations. are all that ME~ORY's users 

see. 



-44-

Figure 5.5 

Auxiliary Memory Interface 

inter!~~e module ~~ORY; 

define create, destroy, read, write, endwrite; 

~ NOTICE; 

const sectorsize - nl; (. no. of blocks in sector·) 
rnemorysize • n2; (. no. of sectors in memory·) 
max • files n3; (* maximum number of files·) 

file R record (* format of file descriptor·) 
na~e, claim, used, curblock: integer; 
sectors: array 1: maxfilesize of 'integer 
end; 

directory: array 1: max I files of file; 
free directorIeS? 1uel1c max' files Qi integer; 

- em?ty directories*) 
free space: Queue memorysize Q.f integer; 
co~~itted: tnteger; (* no. of sectors claimed or 

actually u5ed -) 
waitingdata: ~ n of integer; (* queue of 

requested sizes for processes waiting 
to create *) 

spacenowavail signal; (* for processes waiting 
to do create *) 

i: integer: (* loop counter in initialization *) 

procedure .spaceavail. (size: integer): Boolean; (* size is 
estimated no. of sectors .) 

bCfJ'in 
~ committed + nsecs <- memory size 

-then s::>aceavail true 
a1 se spaceavail - false 
end 

~ .s?aceavail; 



-45-

Figure 5.5 (Continued) 

Auxiliary Hemory Interface 

procedure request (sector, filename: integer); 

~in ' 
frcespace.remove(sector) 
with directory (filename) do 
---- inc(used); sectors(usea):-sector~; 

end request 

procedure release (filename: integer), 

~ i: integer; 

begin i:-l; with directory(filename) do 

repeat freespace.insert (sectors(i» 
inc (i) 

until i> used 
committed:=committed-used end 

end .release; 

procedure create (msgid, size: integer; ~ filename: integer)r 

~ nsecs: integer; (*estimated no. of sectors*) 

begin nsecs := size div sectorsize; 

if 

if size ~ sectorsize > 0 ~ inc (nsecs) end; 

freedirectories.size a 0 then 
(*do something about the exception - e.g. send 

NOTICE to SIHTCH or wait for file to be destroyed*) 

end 

freedirectories.remove(filename); 

~ directory (filename) do 

extname :- msgid, claim :- nseCSl used :- 0: 
curblock :- 0 



/ 

-46-

Figure 5.5 (Continued) 
Auxiliary Me~ory Interface 

if not spaceavailCnsecs) 

then 
--NOTICE.post("stop",linef) C·tell user to stop input·) 

waitingdata.insertCnsecs)1 

~ 

wait (soacenowavail)1 
I;OTICE:post C"restart", linet) C*line' can be computed 

fro~ msgid which contains 
the origin of the 
message·) 

committed :- committed + nsecs; 

procedure write(filename integer 1 ~ buffer block), 

var 5 : integer; 

with directory(filename) do 
~-- if curblock-O ~ (-allocate new sector·) 

freespace.removeCs)1 
incCused); 
sectorsCusedJ :a 5; 
AUX;£}!.IOC"write", buffer, 5,0); 

else 
---AU~~~.IOC"read/write·, buffer, sectors(used), 

curblockJ; 

~ 
incCcurblock)1 
if curblock > sector size then curb lock :- 0 ~ 



-47-

Fiqure 5.5 (Continued) 
Auxiliary Me~ory Interface 

procedure endwrite(filename : integer), 

~ allocate : Boolean, 

begin 

with directory(filename)do 
---- committed :- committed-claim+used (·u~ate actual 

il."!Iount of co=itted 
storage*) 

end 
(* see-If waiting processes can now proceed*) 

allocate :- true; 

~ allocate do 

~ 

if waitingdata.front <amenorysize-committed 

then waiting data.remove; signal (spacenowavail) 

~ allocate :- false end 

~ endwriter 

procedure read(filename,blnO integer, ~ buffer block) , 

~ 5,0 : integer: 

begin 

with directory(filename)do 
---- 5 :- blno div sectorsize, (*sector number·) 

~ 

o := blno mod sector size: C·offset in sector·) 
AUXMEM. 10 (wread" , buffer, sectors(S),o) 

~ read, 



-49-

Figure !i.:; (Continued) 

Auxiliary ~e~ory Interface-

procedure destroy(filename : integer) 

var allocate : Boolean; 

(*release file space*) 
release(filename); 
(* delete filename from directory·) 
freedirectories.insert(filename) 
(*a\o.·aken processes waiting to create files·) 
allocate :- true; 

while allocate do 

end 

if waitingdata.front <- rnemorysize-committed 

then waitingdata.remove:send(spacenowavail) 

else allocate :- false end 

~ destroy: 

de!ine IO: 

use sectorsize 

var (*co~unication with driver process*) 

op,sec : integer: (*operation, sector·) 

IO avail : Boolean: (*operation ready for driver·) 

startio, iodone : signal: (*driver synchronization·) 

(*IO buffer for driver*) 

sectorbuffer : array 1 : sector size of block: 

(·variables for IO scheduling*) 
(*just use FCFS for now- could use elevator algorithm 

of Hoare-) 

turn : signal: 

deviceallocated Boolean: 



-49-

Figure 5.5 (Continued) 

Auxiliary :·!elllory Interface 

procedure requestturn(sector integer) 

(*schedule 10 operations in an order which controls 
lat~ncy and rotation delays*) 

(*for now, will just use FCFS*) 

if dcviccallocated then wait(turn}; 
deviceallocated :- true; 

~ requestturn; 

procedure releaseturn(sector integer) 

(*select next process to get ita turn doing IO*) 

deviceallocated :- false; 
send (turn) 

~ release turn; 

procedure IO(operation : integer; ~ buffer 
offset: integer); 

begin 

block; sector, 

requestturn(sector); (*wait to be scheduled*) 

"read" 

~ operation of 

begin op :- "read"; sec :- sector, 

IOavail :- true; send(startiO); 
wait(iOdone); 

buffer :- sectorbuffer[offset] 



"write" 

-50-

Figure 5.5. (Continued) 
Auxiliary Hemory Interface 

begin op :- "write": sec :- sector, 
sectorbuffer[offsetl :- buffer, 
IOavail :- true: send (startiO) 
wait (iOdone) 

"read/write" : begin 
op :- "read": sec :- sector, (*read sector*) 
IOavail :- true: send(startio): 
'W<1 i t Ci o:ione) ; 
sectorbufferloffsetl :a buffer; (*update sector*) 
01' :- "write"; sec :- sector: ("write it back*) 
IOavail :- false: send(startio): 
wait (iOdone) 

!!!!!: (*of case*) 

releaseturn(sector) (*let next process be scheduled·) 

~ dolO: 

process driver: 

~ !! not IOavail ~ wait (startiQ) , 

format operation on sector into or out of seetor buffer, 
dOlO: 

IOavail :- false; sendCiodone) 

end driver; 



-51-

Figure 5.5 (Continued) 

Auxiliary Memory Interface 

begin (*initialize AUXMEM*) 

IOavail :- false: deviceallocated 1- falser 

driver 

(*initialization of MEMORY*) 

begin 

(*initialize all directories to free*) 
i :'" 1 

repeat freedirectories.insert(l) 
inc (i) 

until i > maxtfiles: 

(*initialize free space*) 

i := 1 

repeat freespace.insert(i) 
inc (i) 

until i > memorysize 

end MEMORY; 



-52-

5.4 ACTIV~-ARCHlVE Module 

The ACTIVE-ARCHIVE module is organized as shown in 

Figure 3.5. It provides an interface to the archive tapes. 

All data blocks are stored on a data tape; all actions taken 

on a cessage are stored on the action tape. To cause data 

and action messages to be writen, the ACTIVE-ARCHIVE pro­

vides two operations, data and action (there are actually 

three - res~~e is discussed below). Both operations store 

their para~eters (a block or actionmessage respectively) 

in a buffer. ~~en the buffer is full, it is output by 

eitr.er the data archive or tape archive device process. For 

efficiency, n~~ely to reduce the space taken up by inter­

record gaps, messages are blocked before transmission to 

the tape. Neither blocKs or action messages are ordered by 

the sender; data or action messages from diff~rent input 

devices are in general interleaved. Each has an identifier 

field however, in case it ever needs to be retrieved (see 

Section 5.9). 

The ACTIVE-ARCHIVE program is listed in Figure 5.6. 

Its logic is straightforward. The one exception occurs 

wr.en a tape has been filled. In this case, SWITCH is no­

tified (via NOTICE). SWITCH will subsequently tell the 

operator to mount a new tape. Once it is mounted, the 

operator's input process calls resume which allows writing 

to continue. 



-53-

Figuro 5.6 

ACTrvE ARCHIVE 

~ ~ ACTIVE-ARCHIVE; 

~ ~ction,data,resume; 

use NOTICE, block,actionmsg; 

constant actiontapesize - ml, (*1 of records on ~ction t~pe*: 

dat~tapesize = m2; (-I of records on data tape·) 

actionrecordsize n l ; (*1 of rnsqs in action record*) 

datarecordsize z n 2 ; (-, blocks in dat~ record·) 

~ arno, drnO, abnO, dbnO : integer; (*current count of.acti 
d~ta records and blocks·) 

(*declare blocking buffers for tapes*) 

actionbuffer : array 1 : ~ctionrecordsize o~ actior~sg; 

databuffer: array 1 : datarecordsize of record id :inte~ 
info: block ena;------

output~ction,actiondone,outputdata,datadone, 
tape~ounted signal; (-driver 

synchronizatic 

actionavail,dataavail Boolean; 

procedure action (act: actionmsg); 

begin (*write actionmsg on action t~pe*) 

inc(abnO); (*store action message*) 

actionbuffer(abnO) := ~ct; 

if ~bnO c actionrecordsize 

~ actionavail :e true; 

signal (outputaction) 1 

wait(actiondone); 

abnO :- 0; 

inc (arnO) end; 

(*output action buffer*) 



-54-

Figure 5.6 (Continued) 
ACTIVE ARCHIVE 

if arnO - actiontapesize (*end of tape*) 

~ (*tell operator to mount new tape·) 

NOTICE.post ("exception", "mountactiontape"), 

wait (tapemounted); 

arnO :- 0 ~ 

~ action; 

Drocedure data (insgid integer; bl block); (*write msgid and 
block on data tape*) 

~ 

inc (dbnO); (*store block*) 

databuffer(dbnO).id :- msgid; 

databuffer(dbnO).info :z bl; 

if dbno - datarecordsize 

~ (*output data record buffer*) 

dataavail :- true; 

signal (outputdata); 

wait (datadone); 

dbno :- 0; 

inc (drnO) end; 

if drno - datatapesize (*end of tape*) 

then (*tell operator to mount new tape*) 

NOTICE.post ("exception", "mountdatatape"), 

wait (tapemounted); 

drnO :- 0 ~ 

~ data; 



i 

~----~----------

-55-

Figure 5.6 (Continued) 
ACTIVE ARCHIVE 

procedure resume; 

(*called by OPERATOR INPUT process when operator says that 
a new tape has been mounted*) 

signal (tapemounted) 

~ resume; 

process dataarchive; 

begin ~ 
if· !!.2!. dataavail ~ wait (outputdata) ~; 

initiate output of contents of data buffer; 
dolO; 

dataavail :- false: 
signal (datadone) 

end 

~ dataarchive; 

process action archive; 

begin loop 

if not actionavail ~ wait (outputaction ) ~; 

initiate output of contents of action buffer; 

dolO; actionavail :- false: 

signal (actiondone) 

end 

end action archive; 

(*initialize device module·) 

begin arnO :0 0; drnO :- 0; abnO :- 0; dbnO :- 0; 
dat~avail :& false; actionavail :- false 
dataarchivo; actionarchivo 



-56-

5.5 IO Control - SWITCH Interface Modules 

As shown in Figure 3.8, the subscriber and trunk IO 

control processes interact with SWITCH via five interface 

modules: LINEINPUT, NOTICE, REPLY, HEADERS, and LINEOUTPUT. 

Modula programs for each of these modules are given in 

Figures 5.7 - 5.11. 

LINEI~PUT is shown in Figure 5.7. It defines two 

operations, sendhead and receivehead. Sendhead is called 

by input control processes; it stores a header in the headers 

que~e and posts a NOTICE to tell SWI~H that a new header 

has arrived. SWITCH calls receivehead once it receives the 

NO~ICE; it returns the first header. LINEINPUT acts like a 

simple message passing module except that because SWITCH only 

calls receivehead when it knows a header is available, receive­

head never causes SWITCH to wait. 

The NOTICE interface module implements a bounded buffer 

of notices for SWITCH. Notices are posted from a variety of 

places whenever SWITCH needs to be told something. They are 

only received by SWITCH, however. The program for NOTICE 

is given in Figure 5.8. E~ch notice has a kind field to tell 

_~at kind of data it contains. In Section 5.8 the different 



-57-

Figure 5.7 

LINEINPU'l' 

interface module LINEINPUTi 

~ sendhead, receiveheadi 

~ NOTICE, header; 

~ headers : ~ "max'" of header; (*sent headers*) 
non full : signali (*synchronization-) 

procedure sendhead (hd : header), 

begin 

if headers. size - "max'-~ wait (nonfull) ~; 
headers. insert (hd); 
NOTICE.post ("head·,O) 
end sendheadi 

procedure receivehead (~hd 

begin 
header.delete (hd)~ 

signal (nonfull) 

header) , 

begin (*headers i. initially empty*) 
~ LINEINPU'l'; 



-58-

Figure 5.8 

SWITCH Notices 

interrace module NOTICE1 

define post,receive: 

~ note = record k,d : integer ~1 

var nonempty, non!ull : signal; (*synchronization*) 

notices : Queue n or note; (·pending notices*) 

procedure post (kind,data integer) ; 

var n : note: 

begin if notices. size - n ~ wait (nonfull) ~I 

n.k. R kind: n.d •• data; 

notices.insert(n), 

send (nonempty) 

end post; 

procedure receive (~kind,data integer) ; 

var n : note; 

~ if notices. size 0 ~ wait (nonempty) ~: 

noticcs.delete(n); 

kind :- n.k: data :- n.d: 

send (non full) 
end receive 

~ (-notices is initially empty*) 

~ NOTICE: 



-----------------------

-59-

values for kind and data are enumerated when SWITCH is 

discussed. 

REPLY is similar to NOTICE and is shown in Figure 5.9. 

The main difference is that many processes can receive replies: 

in particular all input and output control processes wait 

at times for a REPLY. Consequently, REPLY uses an array o! 

signals, one per line number. The receive operation returns 

an integer data value once it is available. Replies are 

sent by calling the give operation and specifying the line 

number and data. 

The fourth interface module, HEADERS, provides storage 

for the headers of all active messages. Its program is 

shown in Figure 5.10. When SWITCH receives a new header 

from LINEINPUT, it calls HEADERS.enter. Enter selects a 

free header ·slot" and stores the header in it. The incex 

of the selected slot is returned to SWITCH and becomes the 

internal identifier of the message. As the message corres­

ponding to the header is processed, the header is occassionally 

Updated by calling retrieve, changing Gome values, and then 

calling update. Once the message has been output or can­

celled, the header is destroyed by calling delete. Initially 

all header slots are put on the free queue. 

The final interface module connecting 10 control processes 

to SWITCIl is LINEOUTPUT, shown in Figure 5.11. Its functions 

are to schedule and control output activity. For each out­

put line, LINEOUTPUT has a linequeue record which is the 

hoador of • liRt of output mesRnqes for thnt lino. For each 



-60-

Figure 5.9 

10 Control Replies 

interface module REPLY; 

define give. receive; 

var replies : ~ 1 ",lines" 2! integer; 

available : ~ 1 : "flines· of siqnal; 

i : integer; 

oroced~re give (line. data: integer); 

replies [line) :- data; 

send (available [line)) 

end give; 

procedure receive (line integer; ~ data: integer); 

if replies[line) - 0 ~ wait (available(linel); 

data :~ replies(line]; 

replies[line) :- 0 

end receive; 

begin i;- 1 

~ replies!i) :- 0; inc (i) ~ i > ·,lines" 

~ REPLY; 



-61-

Figure 5.10 

Header Storage 

interface module HEADERS; 

~ enter,retrieve,update,delete; 

~ header; 

~ hd : array 1 : "max t" of header; (*full headers·) 

free : queue "max'" of integer; (*empty header slots*) 

i : integer; 

procedure enter (h : heade7~ index 

~ i : integer; 

integer); 

begin if free. size - 0 then error ~; 

free.delete(i); index :- i; 

hd(i) := h ~ enter; 

procedure retrieve (~h : header: index 

begin h :Q hd(index] ~ retrieve; 

integer); 

procedure update (h : header;index : integer); 

begin hd[index] :- h end update; 

procedure delete (index: integer): 

begin free.insert(index) ~ delete: 

begin i:- 1: (*initialize free list·) 

repeat free.insert(i); incei) ~ i > "maxi" 

~ HEADERS; 



-62-

output message, the kind of message, its internal name 

(HEADERS index) and precedence are stored. The msgs array 

is the storage area for all output messages. Free message 

slots are kept in the free queue. Each line queue stores 

messages in decreasing order of precedence. That is, the 

highest precedence output message is always ke~t at the head 

of the list. Within any precedence level, output messages 

are ordered by time of arrival. The other main variables 

are a Boolean array of preemption flags set by insert 

(discussed shortly) and an array of available signals used 

to s~'nchronize output control processes. 

LINEOUTPUT provides four operations: insert, receive, 

done, and cancel. Insert is called by SWITCH, once for each 

destination of an input message; it adds an outputmsg to 

the appropriate output queue. If the output queue is empty, 

the message goes at the tront and available. is signalled. 

If the new output is of higher precedence than the one at 

the front of the queue, the new message is put at the 

front and the pre-e~pt flag for the line is set. This will 

cause the appropriate output control process to stop and 

call LINEOUTPUT to receive the new, high precedence message. 

If the new message is of equal or lower precedence than the 

one at the front of the queue, it is inserted at the appro­

priate place. 

The receive operation is called by output control 

proce~ses whenever they are ready to output aQother message. 

If none is av~ilQblo, tho process waits. Whon a mORSagO is 



-

-63-

available the output controller receives the header of the 

first output message on the linequeue. Some special nessages, 

which are merely directions to output processes, ar~ also 

sent via LINEOUTPUT. Since these do not have headers, only 

a kind indicator is returned. Note that received messages 

remain on the linequeue. In this way they can be received 

again if pre-empted by higher precedence output. 

Once output is complete, the output control process 

calls done. Done merely deletes the first entry on the line­

queue and for regular messages (those having headers) notifies 

SWITCH. For simplicity, done does not return the next avail­

able message if there is one. The output controller gets 

the next one via receive. 

The final operation is cancel. It is called by Sh~TCH 

in order to cancel the output of a message (when directed to 

do so by the operator). Because a message may be sent to 

more than one destination and may be in different stages of 

output to those destinations, cancel merely marks the ~essage 

by setting kind to "cancel". Eventually each output destina­

tion controller will receive the message, process the cancel­

lation and call done. 

5.6 Subscriber Groups 

Each subscriber group provides an interface to a user 

terminal. The organization of each group is the same and 

was shown in Figure 3.4. The programs for an SINPUT and 

an SOUTPUT procoDs as woll aa A SUDSCRIBER devico IIIOdulo 



-64-

Figure 5.11 

Line Output Queues 

interface module LINEOUTPUT: 

define pre-empt, insert, receive, done, cancel: 

~ HEADERS, NOTICE, header: 

~ out?utrnsg - (*output control information*) 

record kind, index, pr : integer: 

link : integer: end: 

linequeue - (*list header for line·) 

record front, rear, size: integer: end 

~ msgs ~ 1 : ftrnax• of outputrnsg (*storage for output 
messages") 

fz:ee queue "maxi" of integer: (*free.message slots") 

outqueue arrat 1 "'lines· of linequeue: (*queues of 
available messages*) 

pre-empt array 1 ·'lines· of Boolean: 

available : array 1 : ".lines· 2i signal: 

i : integer: 

("pre-emption 
flags* ) 

(*output 
synchronization*) 

doinsert : array 1 .: ".lines" 2f signal; (·pre-emption 
synchronization*) 

orocedure insert (line, msgkind, msgindex, precedence: integer): 
(-insert output message on outqueue (line) at appropriate 

precedence") 

~ slot : integer 

~ with outqueue(line) ~ 

free.delete (slot) ("get empty slot-fill in values*) 

~ msqs[slot) do 
kind :- msgkind: index :- msgindoxi 

pr :- precedence, ~ 



-65-

Figure 5.11 (Continued) 

Line Output Queues 

if pre-eropt (line] th~n wait (doinsert(line) e~d; 
---- ("avoid pre-emption conIlict*) 

g size a 0 ("empty linequeue·) 

then front ;- slot; rear ;~ slot; 

size ;. 1; msgs(slot) -link ;- 0; 

send (available (line)) C·wake up output process-] 

~ precedence> msgs[front].pr (*pre-emption*) 

~ ("put new message at front*) 
msgs(slot).link ;- front; 

front ;~ slot; incCsize); 
pre-empt [line] ;- true; 
NOTICE.post (·pre-empt-, msgindex) . (*inform SWI1 

of pre-e!:lptior 

~ ("put new message at appropriate spot in linequeue*) 

i ;. front; 

~ i ~ 0 ~ precedence <- msgs[i].pr ~ 
j ;- i; 1 :- msgs(i].link end: 

.lli-O 

~ ("insert at end of linequeue*) 
msgs(slot).link :- 0; 

msgs(rear).link :- slot; 
rear :- slot 

else ("insert in middle*) 
msgs.(slot].link :- i; 

msgs(j].link ;- slot 

end 

inc (size) 

~ (·of conditional*) 

~ (*of withe) 

!.!!2. insert; 



procedure 

-66-

Figure 5.11 (Continued) 

Line Output Queues 

receive (line : integer; var knd : integer; var 
hd : header); --- ---

(*fetch first output message from outqueue (line) 
as soon as one i.s available*) 

~ i : integer; 

begin ~ outqueue[line] do 

if size - 0 then wait (available[line]) end; 

(*retrieve first message*) 
knd :- msgs[front].kind 

if knd - "ncwmsg" ~ "acknowledge input" 
~ HEADERS.retrieve (hd,msgs[front).index) 

pre-empt[line] :- false, 
send (doinsert(line]), (*let anothor pre-emption*) 

(*occur if one is pending*) 

~ 
end receive; 

procedure done (line: integer), 

(*called when last received output message is finished·) 

~ f; i integer; 

~ with outqueue[line]do 
(*delete first entry on queue - if pre-empt (line) then 

f := !ront; delete second entry*) 

front :- rnsgs[front].link, 

if pre-empt(line] (*a pre-emption insert has occurred but 
-- has not been recognized*) 
~ f :- front; front :- msgs(front).link ~ 

fr~e. insert (f) ; 
dec (size) 

it rpar • f !~ rear .- 0 ~ 



--------~-----------------------------------------------

-67-

Figure 5.11 (Continued) 

Line Output Queues 

(*tell SWITCH output is complete for regular messages*) 
i :- msgs[f).index: 

if i > 0 then NOTICE.post(-done-,i) ~ 

end 

~ done: 

procedure cancel (ind : integer): 

(*find and mark any output messages identified by 
ind - the message may be in more than one linequeue -
for each copy of the massage sot kind to ·cancel: 
and, if it is at the front of the queue, set the 
pre-empt flag*) 

~ t : integer; hd : header; cnt, ptr : integer: 

begin 

HEADERS.retrieve (ind,hd) 

cnt :- 1: 

repeat (*for each output destination in header*) 

t :- hd.dcsts [cnt), (*11ne' of destination*) 

~ outqueue[t)~ 

ptr :- front, 

~ ptr <> 0 do 

inc (cntt, 

if msgs!ptr).index - ind 

~ msgs(ptr).kind :- -cancel­

!! ptr - front ~ 
pre-empt!t1 :- true ~. 

~ cnt > hd.outputcount 

~ cancel, 



-68-

Figure 5.11 (Continued) 

Line Output Queues 

~ (*initialize LINEOUTPUT variables*) 

i :- 1; 

repeat pre-emptli] &- false 

~ i > ·'lines·; 

i :- 1 

repea t free. insert (msgs [il) 

~ i > ·max· 

~ LINEOUTPUT; 



-69-

are shown in Figures 5.12 - 5.14. Because Modula does not 

provide any means to declare processes or modules as types, 

an actual system must contain one group of t~~se three 

components for each subscriber. terminal. 

An SINPUT process takes the actions shown in Figure 4.1. 

Its role is to read characters from a terminal (via its 

SUBSCRIBER device module) and group the characters into 

headers and blocks. The program is shown in Fiqure 5.12. 

SINPUT is organized as a loop repeated for each character. 

First the character is read and then an action is taken 

depending on the current status ot input. There are three 

states: tind start, in head, and in body. 

When no message is being processed, SINPUT is in wfind 

start" status and looks for a start of message sequence of 

characters. Once the start has been found, status changes to 

Win head". Subsequent characters are parsed (detailed code 

is not shown sinco it depends on the exact message fo~a~) 

and a header is built. When the cnd of the header input 

1s detected, a memory fila 18 created, the header is archived, 

the header is Bcnt to SWITCII (via LINEINl'UT) and statuI! 1s 

changed to "in body". The character sequence co~prising 

the body of the message is then processed. For each block, 

MEMORY.write and ARCIIIVE.data operations arG called. OnCG 

the end of the message is found, the last block is taken 

care ot and SWITCH is notitied. If the message is cancelled, 

SWITCH is told to cancel input. After detecting the end of 



-70-

Figure 5.12 

Subscriber Input Process 

process SINPUT: (·one SI~PUT process for each line.) 

~ header, blocK, blocklength, SUBSCRIBER, LINEINPUT, 

REPLY, ~£~ORY, ACTIVE-ARCHIVE, NOTICE, HEADERS: 

~ status : integer: ("where SINPUT is in the message·) 

bl : block: (*buffer for building input message") 
hd : header: (·header built for new input·) 
na:r.e : integer; (·internal msg identifier·) 
rnsgid : integer; ("external r..sg identifier") 
filena::,.e : integer; (·name of MEMORY file") 
current integer: ("character pointer into bl*) 
nblocKs : integer: (-number of input blocks in a messge*) 

begin ("initialize variable*) 

status :~ "find start"; 

l22E 
SUESCRIBER.read(ch): (*get next input char*) 

~ status of 

-find start-: begin 

lOOK for start of message sequence of character. 
keep record of where you are in sequenc~ 

if entire SO~ sequence has been received 

then current 1- 1; 
status :- -in head-

~ 
~1 (*of find start case*) 



---

"in head" I 

-71-

Figure 5.12 (Continued) 

Subscriber Input Process 

~:gin 
store character received·) 

bl. [current] :- Chi 
inc(current); 

find next header component in bl; 
store it in hd; 
if error then status :- "find start" 

NOTICE.post (~exception", data) end; 

if end of header found then (*tell SWITCH*) 

LINEINPUT.sendhead(hd): 
REPLY. receive (line' i, nar.te); (*na::le is internal 

na::-.e of :r.essage -
assigned by S~ITCH*) 

(*create an auxiliary storage file*) 
MEMORY.create (hd.identity, hd.size, filename): 

(-filename is assigned by ~.E~:ORY*) 
nblocks :; 0; 
ACTIVE-ARCHIVE.data( msgid,bl): 

(-set current to start of block and start reading 
of body of message·) 

current := 1; msgid :- hd.identity; 
status := "in body" 

end (*of end of header condition*) 

~, (*of in head case·) 

"in body· : begin 

(-store character received·) 
bl(current) :- Chi inc (current): 

(*look for end of msg(EOM) or cancel sequence*) 

end of message then fill rest of bl with blanks, 
(-wri te block """"Oi1ARCli!VE And ~MORY*) 

ACTIVE-AP.CIlIVE .data (:;osgid. bl); 
MD;ORY.write (filcna::lc,bl); inc (:-:blocks) ; 
MI::XORY.endwrite (filename); (*close file·) 

(-store actual size and file name in header·) 
IIEADERS.retri:eve (hd, name); 
hd.size := nblocks: 
hd.filename :- filoname: 
IIEADERS.update(hd, name), 



--------

-72-

Figure 5.12 (Continued) 

Subscriber. Input Process 

(-notify SWITCH of end of input-) 
NOTICE.post ("cnd of input", name); 

(-reini tLHizc*) 
status := "find start" 

cancel input sequence found then 
(·archive block and notify SWITCH·) 

ACTIVE-ARCHIVE.data (msg,b1); 
NOTICE.post ("input cancel", name) 
status :- "find start" 

current = b10ck1ength then (*write out block-) 
ACTIVE-ARCHlVE.data (msgl.d,bl); 
~:E~:ORY .write (filename, bl); inc (nblocks) i 
current :- 1 
end 

end (·of in body case-) 
enn*of loop*) 

~ SINPUTi 



-7l-

message or cancel. SINPUT sets status to "find start" and 

repeats the above actions. 

The program for an SOUTPUT process is shown in Figure 

5.1l. SOUTPUT also executes as a loop receiving an output 

command from LINEOUTPUT. completely processing the command 

and then repeating the process by getting another LI:.EOUTPCT 

command. (See Figure 4.l) There are six kinds of output 

commands: new message. acknowledge input, cancel, stop 

input, restart input, and stop output. 

New message is the most common ,type of command. It 

is sent whenever SWITCH receives a new input messa~e having 

SOUTPUT's terminal as a destination. On receipt of a new 

message command, (which returns the header)', SOUTPUT outputs 

the header (appropriately reformatted) and then outputs each 

block of the message. Blocks are read from ~~ORY; they are 

printed by calling SUBSCRIBER. write for each character. 

Because ne~ input of higher precedence may be inserted in 

LINEOUTPUT (by SWITCH) while SOUTPUT is writinq out a message, 

SOUTPUT needs to know when a preemption is to occur. LINE­

OUTPUT communicates with SOUTPUT by setting a pre-empt 

flag. SOUTPUT periodically checks the flag and, it ,set, 

exits the loop. This results in the new, higher precedence 

message being received from LINEOUTPUT. As coded in Figure 5.13. 

SOUTPUT checks the pre-empt flag after each block of output. 

This could readily be changed to character level pre-em?tion 

by moving the check (~statement) inside the inner ~ 

statement. 



-74-

The second kind of output command is acknowledge input. 

This is sent by S~~TCH to inform the user at a terminal that 

an input message has been received. The action of SOUTPUT 

is to send the set of characters "input X received" to the 

SUBSCRIBER where X is the sequence numc~r from the input 

message header. 

The cancel kind of output comes about when a normal 

(new message) kind of output is cancelled. In this case, 

SOUTPUT does not output the mess~ge but merely informs 

the terminal user that outp'::: was cancelled. Because of 

the pre-em?tion mechanism, output in progress can be cancelled. 

The stop input command is used to tell the terminal 

user to stop sending input. (This command is issued by 

~ORY or the operator). At some later time, the restart 

input command will be received by SOUTPUT who then tells 

the user to restart input. 

The final type of command is used to temporarily stop 

output. SOUTPUT tells the user that output is being stopped 

and then waits for a REPLY (from SWITCH). On receipt of 

the RF.PLY, SOUTPUT res~~es. 

After processing any output command, SOUTPUT calls 

LI:,=:OUTPUT.done and then loops back to receive the next 

co~and from LINEOUTPUT.receive. 

The final component of each subscriber group is a 

SUBSCRIBER device module. It provides an interface to one 

terminal by defining read and ~Tite operations called by 

SI:-:i'UT and SOUTPUT, respectively. To effect la, SUDSCRIBER 

cont.,inR two ch.,rnctnr buCC.~rR, on .. for input lind ono tor 



------~--~---------------------------------

-75-

Figure 5.13 

Subscriber Output Process 

process SOUTPUT; 

~ header, block, LINEOUTPUT, MEMORY, SUBSCRIBER, NOTICE, 
REPLY; 

~ line - f of output line 1; 

kind : integer; (*kind of output message·) 
hd : header; ("header of output message*) 
nblocks : integer (*number of blocKs to output·) 
cblocks : integer (*nu~ber of blOCks currently being 

output*) 
bl : block (*block of data to output*) 
msgcount: integer (*count of messages output·) 
1. j : integer (*local counters·) 

begin (*initialize variables*) 
msgcount :a 0; 

loop loop (·inner loop is for each output message;outer loop is to 
allow escape from inner loop when pre-emption occurs·) 

LINEOUTPUT.receive (line,kind,hd); 

~ kind of 

"new msg" begin 

(*hd contains header of message to output*) 
nblocks :- hd.size; 
inc(rnsgcountl; 
(*format output header in bl*) 
("output header contains, origin of message 

precede~ce,elaasificat10n, 
identity 
local sequence number 
(rnsgcoun t I * I 

when hd.class is not valid for this te~inal 
do NOTICE.post ("exception", invalid classification 

on line); 
LINEOUTPUT.done (line) 



-----

-76-

Figure 5.13 (Continued) 

Subscriber Output Process 

bl :- output header; 
i :- 1; 

repeat (*output, header on terminal·) 
SUBSCRIBER.write (blli); inc(!) 

~ i > blocklength; 
(*output contents of message as long as no 

pre-em?tion occurs*) 
j :- 1; 

repeat 
~ pre-empt(line) do~; (*go back to start 

of lIIain loop*) 

ME~:ORY.read (hd.filename, j, bl); 
i :::. 1; 
reDeat (·output bl-) 

SUBSCRIBER.write (bl[i); 
inc (i) 

~ i > blocklength; 

inc (j) 

~ j > nblocks; 
~; (*of new msg case*) 

-acknowledge input" : begin 

(*tell terminal subscriber that an input message haa 
been received by SWITClI- hd contains the hoJader of 
the message*) 

bl :a "input X receivad"; (*X 1& hd.aequence(i)*) 
i & 1 

rcncat 

SUBSCRIBER.write (bl(i)~ 

inc (i) 

~ i > • of character in bl; 

~ (*of acknowledge input case.) 



"cancel" 

-17-

Figure 5.13 (Continued) 

Subscriber Output Process 

begi, 
*cancel output that was in progress - done 
automatically via pre-emption - here ~erely 
tell terminal operator that message WAS can­
celled and then tell LINEOUTPUT that action 
is done*) 

bl :- "output cancelled by supervisor·; 
i :- 1 

repeat 
SUBSCRIBER. write (b!li); 
inc (i) 

~ i > • chars in bl, 

~ (*of cancel case*) 

"stopinput" ; begin 

(*tell terminal operator to stop input·) 
hl :- "stop input until told to restart·; 
i :- 1; 

reoeat 
-----SUBSCRIBER.write (blli); 

inc (1) 
~ i > i chars in bl; 

~ (*of stop input case·) 

·restart input" : be1in 
*tell terminal operator to restart input*) 

bl :a "restart input from point where stopped·) 
i :- 1; 
repeat 

SUBSCRIBER. write (blli); 
inc (i) 

~ i > .chars in bl; 
~ (*of restart input case·) 



-78-

Figure 5.13 (Continued) 

Subscriber Output Process 

(*stop writing output; wait for REPLY 
to signal proceed. Will restart output 
at beginning of stopped message*) 

bl :- "stopping output"; 
i := 1; 

repeat 

SUBSCRIBER. write (blli); 
inc (i) 

~ i > • chars in bl; 

REPLY. receive (line.kind); (*wait*) 

~ (*of stop output case*) 

end;(~of case statement*) 

LINEOUTPUT.done(line) 

~ ~ (*of loops*) 

~ SOUTPUT; 



-----

-79-

Figure 5.14 

Subscriber Device 

~ ~ SUBSCRIBER; 

~ read, write; 

inr,outr, nrf : integer; (*input buffer vars*) 
non r full, non r e~pty : signal: (*input signals*) 
rbuf : array 1 : n of char: (*input buffer*) 

inw, outw, nwf : integer: (*write vars*) 
nonwfull, nonwempty : signal: (*outpu~ signals*) 
wbuf : array 1 : n of char; (-output buffer*) 

procedure read (~ch : char): 

begin (*retrieve next input character from rbuf-) 

if nrf ~ 0 then wait (nonrempty) ~; 
ch := rbuf (outr]: 
outr :~ (outr mod n) + 1 
dec(nrf); ---
send(nonrfull); 

~ read; 

procedure write (~ch : char): 

begin ("deposit ch in output buffer*) 

if nwf a n then wait(nonwfull) end; 
wbuf[inw] ::-ch; inw :- (inw moCin) + 1; 
inc(nwf); send (nonwempty) ---

~ write 

process input; 

(*input chars as long as rbuf is not full*) 

begin 

loop 

if nrf - n then wait (nonrfull) end, 
start reaa-rnto buf[inr]: dolO;­
in: :m (inr mod n) + 1 

end 
endinputl 

inc (nrf); ---
send (nonrempty), 



---

-80-

Figure 5.14 (Continued) 

Subscriber Device 

process output; 
(*output chars as long as wbuf is not empty*) 

begin 
loop 

~ 

if nwf .·0 ~ wait (nonwempty) ~; 
start output of buf(outwl; 
dolO; 
outw :- (outw mod n) + 11 
dec (nwf) ----
send(nonwfu11); 

~ output 

~ 
inr :- 1; outr :- 1; nrf :- 0; input; 
inw :- 1; outw :- 1; nwf a- 0; output 

!:E. SUBSCRIBER; 



-Sl-

output. The procedures and processes synchronize with each 

other via counters, pointers and signals. Each buffer is 

treated as a circul~r queue where characters are deposited 

at one end and removed from the other. The SUBSCRIBER code 

is shown in Figure 5.14. 

5.7 Trunk Groups 

A trunk group provides an interface to a tr~~k line 

connecting one switching node to another. Each qroup has 

the same organization as a subscriber group (Figure 3.4). 

It contains TINPUT and TOUTPUT processes and a'TRUNK device 

module. Code for these components is shown in Figures 

5.16 - 5.1S. As with subscribers, an actual system must 

contain one group for each trunk line. 

The actions of each TINPUT and TOUTFUT process are 

basically the same as those of the SINPUT and SOUTPUT 

processes. The differences are that trunks transmit blocks 

instead of characters and that numerous control characters 

are used to control synchronization. Figure 5.15 defines 

a tvpe for a trunkblock and also defines the kinds of centrol 

characters used for synchronization. Data blocks sent 

along trunk lines are S4 characters long. The control 

character .at the start of a block is SOH or STX for the first 

and subsequent blocks of a message, respectively. The end 

character is ETX or ETB for the last and all previous block., 

respectively. Trunk blocks also contain a select character 

which defines the code used (e.g. ASCII), a parity, and 80 



-82-

Figure S.lS 

Trunk Blocks and Control Characters 

!l:E.!!. trunkblock 

control, select : char; 
d~t~ : block; (*block - array of ~hars*) 
end,parity : char ~; 

Control Characters to Synchronize Transmission: 

ACKl, AC1<2 

NAK 

STOP 

RESTART 

SYN 

CAN 

INV 

:\EP 

Rl1 

Ncnninq 

acknowledge.last block; alternate ACKl, 
ACK2, hCKl, ACK2, etc. 

non-acknowledge of block 

stop transmission 

restart transmission 

synchronize - used to keep line active 
when no data is being 
transmitted 

cancel transmission 

invalid transmission 

repeat last block 

error - unable to frame block 

Control Characters to Frame Blocks: 

SOH start of header 

STX start of non header block 

ETB end of block but ~ end of message 

ETX end of message 



... 

-83-

characters of data. 

For each data block transmitted, at least one control 

character is returned. Normally this acknowledqes receipt 

of the block (ACK lor ACK 2). Exceptions can occur, ho,,-c'ler, 

and are indicated by the other control characters. In order 

to understand this message protocol in detail, the code for 

TINPUT and TOUTPUT should be studied carefully. 

The TRUNK device module provides five operations: read, 

write, write control, post control and wait control. Read 

and write are used to transmit data blocks. The other o?era­

tions are used to transmit and synchronize control characters. 

Write control is used to output a control character: it is 

called by TINPUT to respond to an input block. Waitcontrol is 

called by TOUTPUT to wait for a response from the prior out-

put of a data block. The response is sent by the switching 

node at the other end of the trunk line and consequently, is 

received as input by TINPUT. Since TINPUT and TOUTPUT are 

processes, they can only co~~unicate via an interface ~Ddule. 

Therefore TINPUT passes control characters to TOUTPUT by callinq 

the post control operation of TRUNK. 

We now turn to the code of the processes. TINPUT 

(Figure 5.16) receives a trunk block, processes the informa­

tion in the block and then loops. The TRUNK device module 

determines the type of input in each trunk block. There are 

three input types handled by TINPUT: error, control, and 

message. 

If an input error occurs, maaninq that TRUNK read en 



-84-

invalid first character, TINPUT writes an RM (unable to 

fr~~e) control character on the output line of the trunk by 

calling TRUNK.writecontrol. The switching node at the other 

end of the trunk will then send a cancel character to TINPUT. 

(see the code for TOUTPUT, Figure 5.17, since the output 

process at the other end of the trunk is in fact a TOUTPUT 

process of the other switching node). 

If TINPUT reads a control character, it looks at the 

character and then takes an appropriate action. Characters 

which are responses from output are sent to TOUTPUT by calling 

TRUNK.writecontrol. A SYN character merely keeps the line 

"alive" so TIXPUT does nothing. A CAN (cancel) character 

causes TI~PUT to cancel input processing and notify SWITCH. 

An INV (invalid) character indicates problems so SWITCH is 

notified of an exception. Finally a REP (repeat) character 

should not occur so will be ignored. 

The third trpe of input is message. This means that the 

TR:;~;K device module read a data block beginning with an SOM or 

S~ cont~ol c~aracter. In this case, TINPUT processes the 

blocK in the same manner as SINPUT: header blocKs are 

parsed and sent to LINEINPUT; a file is created for new mes­

sages; and blocKs are written on MEMORY and the ACTIVE-ARCHIVE. 

~~en the last block of a message is read, SWITCH is notified. 

TOUTPUT has the same organization as SOUTPUT (Section 5.6, 

Figure 5.131. Its program is given in Figure 5.17. TOUTPUT 

receives an output command from LINEOUTPUT and processes the 

c~~nd. There are five types of commands (the same ones as 



-85-

Figure 5.16 

Trunk Input Process 

process TINPUT; (*one copy per trunk·) 

use block, header, trunkblock, TRUNK, NOTICE, REPLY, 
MEMORY, LINEINPUT, ACTIVE-ARCHIVE, IIElIDERS; 

~ bl : block; (·data block for MC~ORY*) 

head : header; 
tbl : trunkblockl 
cchar : char; 
lntypc : integer; 
status : integer; 
name: integer; 
filename: integer; 
nblocks : integer; 
acknO integer; 

msgid : integer; 

(·header for input message·) 
(*input block fro~ Ta~~K*) 
(·input control character*) 
(*type of in?ut fro::'. TRU:;J(*) 
(*status of msg - find start or in bod 
(*internal messa~e ida) 
(*id of memory file*) 
(*n~~ber of blocks in ms~*l 
(·1 or 2 for ACKl or ACK2*) 

(*external id of message*) 

begin (*initialize variables·) 
status :- "find start"; 
acknO :- 1; 

loop TRUNK.read (tbl, intype); (·get next input·) 

~ intype of 

error : (*invalid first character in input - unable to 
frame input*) 

begin TRUNK.writecontrol(H~~.) ~; 

control: (*input is a control character*) 

begin 

cchar :m tbl.control; (*fetch control Character·) 

it cchar = "ACta" or char - • ACK2" or char - "AAK­
~ char = "STOpu-or char - "RESTART" 

thon(*give TOUTPUT the control character*) 

T!(UNK. I'oS tcontrol (cchilr) 

~ cchar - "SYN-

~ (*do nothing - merely line synchronization 
character so just do next read*) 



-86-

Figure 5.16 (Continued) 

Trunk Input Process 

~ cchar - "CAN" 
~ (*cance1 input if in msg - otherwise ignore-) 

if status - "inbody" 
(*tell S~IITCH to cancel*) 
NOTICE.post ("input cancel",name); 
status :- "find start"; 
acknO :- 1: ~ 

~ cchar .. "INV·· 

then (*unsolicited answer*) 

NOTICE.post ("exception", number) 

else! f cchar - .. REP" 

then (*repeat character - will ignore for now -
---- will assume acknowledgement has been sent·) 

~ (*error*) 
TRUNK.writecontrol ("RM") 

end 

~ (*of control case*) 

msg (*input is a block of a message·) 
(-it starts with an SQ}I or STX control character-) 

beqin 
----Check parity of trunkblock tbl and check control characters 

if input is in error 

then TRUNK.writecontrol ("NAK") 

~ (*acknow'.edge receipt of' input-) 

if acknO - 1 then TRUNK.writecontrol ("ACKl"); 
---- acknO:- 2 

~ writecontrol ("ACK2"); acknO :- 1 ~I 



-87-

Figure 5.16 (Continued) 

Trunk Input Process 

11 tbl.control = ·SOHM 

~ (*start of message header*) 

parse contents of tbl to build head; 
L!NEI:'P:JT. se:ldhead (head): 
REPLY.receive (trunk line I, n~~e); 

(*na~e is intcrnal msg idA) 
(*create an auxiliary storage file*) 

MEI10RY. create (head, identity, he.size, 
.filename) ; 

nblocks := 0; 
status := Min bodyM 
ACTIVE-ARCHIVE.data (hd.identity, tbl.data); 

~ tbl.control = "STX" and tbl.end - METS" 
(*block of w~ssage - not end*) 

bi := tbl.data; (*~essage itself*) 
Mr::'10RY . 'Nr i te (f ilenar.;e, bl) ; 
ACTIVE-ARCIfIVE.data(msgid,bl); 
inc (nblocks) 

~ tbl.control = "STX" ~nd tbl.end - "ETX" 

then (*end of messagc*) 
---- bi := tbl.data; 

MEHORY.writc (filenarne, bl); 
MC:·1CRY.endwrite (filename); 
inc(nblocks); 
ACTIVE-ARCIlIVE.data (msgid,bl); 
(*store file size and filen~~e in header·) 
mCI\DEr>S.rctric'lc (hd, name); 
hd.size := nblocks; 
hd.filename := filename; 
IIEI\DERS.update (hd, name); 

(*notify SI-IITCH and rcinitialize*) 
NOTICE.post ("end of input", name); 
status := "find start" 
acknO := 1; 

end (*of conditional·) 
end (*of conditional*) 

end (*of mag case*) 

!!!2. (*of loop·) . 

~ TINPUT/ 



-88-

for SOUTPCT): new message, cancel, stop input, restart input, 

and stop output. 

On receipt of a new message command, TOUTPUT fetches and 

outputs each block of the message. The header is first re­

form3ttcd. Then TOUT PUT repeatedly writes a trunk block, 

~aits for a control character response (actually read by 

TINPUT), checks for pre-emption and processes the control 

character. Iteration continues until either output is pre­

e~ptcd, all blocks are written or an error occurs. If the 

control character correctly acknowledges the previous write 

then the next block (if any) is read from MEMORY. If the 

previous TRUNK "~ite is not acknowledged, output is re-tried 

(up to sone number, n, times). If the control character in­

dicates that the output was in error then output is cancelled 

and Sh~TCH is notified. 

The cancel, stop in~ut, or restart input commands re­

spectively cause a C~~CEL, STOP, or RESTART control character 

to be "Titten on the output line. The stop output command 

causes TOUTPUT to wait for a REPLY. 

After any command is processed, TOUTPUT calls LINEOUTPUT 

to say that it is done. TOUTPUT then receives the next out­

put co~.ar.d. 

The final trunk component is the TRUNK device module. 

As mentioned before, it defines five operations: read, write, 

write control, post control, and wait control. Actual out­

put is carried out by driver processes named input and output. 

Input fills a trunk block buffer for read. Output empties 



-89-

Figure 5.17 

Trunk Output Process 

process TOUTPUT; (*one copy per trunk*) 

use·header, trunkblock, block, LINEOUTPUT, MEMORY, NOTICE, 
REPLY, TRUNK; 

~ line - • of output line for trunk; 

kind : integer; 
head : integer; 
nblocks , integer; 
cblock : integer, 

tbl : trunkblock; 
bl : block; 
cchar : char; 
acknO : integer; 
more : Boolean; 
NAKtries : integer; 
REPtries , integer; 

(*kind of output message·) 
(*header for O-.ltput r..essage*) 
(*number of blocks to o~t?ut*) 
(*number of block currently ~ein9 

output*) 

(*output to TRU~Y.*) 
(*da ta from !1r;:':0R't*) 
(*control character") 
(*1 or 2 for ACKl or ~CK2*) 
(*control for output loop·) 
(*nu:l'.ber of tries at retra:,.s::Iissic 
(*nUQber of waits for resrense*) 

begin (*initialize variables·) 

NAKtries I" 0; 
REPtrics :" 0 

loop loop (*inner loop executed once per LINEOUT :::sg*) 
(*outer loop allows escape on preemption*) 

LINEOUTPUT.receive (line, kind, head); 

~ kind of 

new msg : begin (*head contains header of message to output·) 

nblocks ,= hd.size; (*no. of bloCks to output·) 

(*format output header in tbl.data - origin of :::essage, 
identity, precedence, classification se~uence r.~ers·) 

tul.data :- hoader contents as above, 
tbl.control :- "SOIlM; 
tbl.end :3 "ETB"; 
tbl.parity :- block parity; 
more :- true; acknO :- 1; cblock ;- 0; 



-90-

Figure 5.17 (Continued) 

Trunk Input Process 

(*main output loop - executed once for each message block*) 

~ l:\orc do 

TRV~K.write (tbl); 
TRU~K.wait control (cchar); 
(-check pre-emption*) 

~ pre-emot [line) do 
~RV~K.writecontror-("CAN") (-cancel·) 

(-control may say to STOP; if so wait for restart-) 

!!. cchar - "STOP" then while cchar ~ "RESTART" do 
TRUNK.waitcontrOI (cchar) ~ 

end; 

(-take action depending on value of cchar*) 

!!. (cchar a "ACKl" and acknO c 1) or 
(cchar ,. "ACK2" and acknO 2) then (-valid response*) 

inc(cblock); 
if cblock >nblocks then more :a false (-output complete-) 

~ (-get next block and build output block-) 
~~V.ORY.read (head.filename, cblock, bl); 
tbl.control := "STX" 

if cblock ,. nblock 

then tbl.end := "ETX" 

else tbl.end :- "ETS" ~, 

tbl.data := bl; 
tbl.parity := block parity; 

if acknO - 1 then acknO :- 2 

~lse acknO :- 1 end 

~ cchar - "NAK" 

(-do nothing - will retransmit same block - but 
if done more than n times notify supervisor 
and get next output·) 

inc (NAKtries); 



-91-

Figure 5.17 (Continued) 

Trunk Output Process 

if NAKtries > n ~ NOTICE.post (-exception-, I) 

NAKtries :- 0; 
more :- false (*stop trying - go to next output*) 

~ cchar = "&'1" 

(*unable to frame - send cancel and notify local 
supervisor"') 

TRUNK.writecontrol("CAN"); 
NOTICE.post("exception", nO); 
more := false; (*get next output") 

!!!!. (*cchar = "No:m" or is invalid·) 
(*TRUNK got no response in expected time - send 

REP to other trunk*) 

inc(REPtries); 

if REPtries < 8 

end 

(*ask again*) 
Trunk i .wr.itecontrol ("REP-) 

(*cancel and tell supervisor·) 
Trunk.writecontrol ("C~~"); 
NOTICE.post ("exception", nO); 
more :- falsel 
REPtries :- 0 

~ (·of conditional statement·) 

end (·of while loo?~l 

(·end of message output·) 

~l (*of new msg case*) 

cancel : (*cancel output in progress - requested by supervisor") 

begin 

TRUNK.writocontrol (-CAN-)f 
~l (*of cancel case*) 



-92-

Figure 5.17 (Continued) 

Trunk Output Process 

stop input : (*tcll output process on other end of the trunk to 
stop sending input*) 

begin 

TRUNK.writecontrol ("STOPW) 

end; (*of stop input case*) 

restart in?~t (*tell output process on other end of trunk to restart 
sending input*) 

begin 

TRU~K.writecontrol ("RESTARTW) 

end; (*of restart input case*) 

stop output: (*te~porarily stop sending output - signalled by 
the supervisor*) 

(*wait for reply signal to proceed*) 

REPLY. receive (line, kind) 

end; (*of stop output case*) 

e~j; (*of case state~ent*) 

Ln:EOUTPUT.cone (line) (*tell LINEOUTPUT that output message 
has been processed*) 

~ ~ (*of loops*) 

~ TOUTPUT; 



-93-

either the control character buffer filled_by writecontrol or a 

trunk block buffer filled by write. Single buffers are used 

so input and output synchronize with the operations via Boolean 

and signal variables. The code of each part of TRUNK is 

straightforward and is shown in Figure S.lS. 

An interesting aspect of trunks is the timing of 

physical input and output. Input is received one character 

at a time until either a control character or entire block 

has been read. Similarly output puts one character at a 

time on the trunk's output line. We assume that trunks do 

not give interrupts but instead provide or expect characters 

to be periodically input or output. Therefore Modula's 

dolO statement is not used. Instead, the drivers synchronize 

by waiting for trunk ticks which are periodically supplied by 

the CLOCK process (Figure 5.3). This is quite different from 

the interrupt drive 10 usaa in a SUBSCRIBER (Figure 5.14). 

5.S Switch Process 

The SWITCH process controls all activity in the switching 

node. It accepts new input from input control processes, gen­

erates output commands, communicates with the operator, and 

handles all exceptions. Its interface to other modules was 

shown in Figure 3.B and its actions were summarized in Figure 4.2. 

Its program is listed in Figure 5.19. 

All communication to SlfiTCH is via the NOTICE interface 

module. SWITCH repeatedly receives a notice and processes 

it. At the start of Figure 5.19, a large comment outlines 



-94-

Figure 5.18 

Trunk Device 

~ ~ TRUNK; (*one per trunk line*) 

~ read,write,writecontrol,postcontrol,waitcontrol; 

~ trunxblock, trunktick; 

inbuf, outbuf : trunkblock; 
"in type : integer; 

outcchar, postchar : char; 
infull,outfull, outcfull, postfull : Boolean I 

'doread, read done : signal; 
depost, pestavail : signal; 
outbufe~pty, outccharempty : signal I 

procedure read (~ tbl: trunkblock; ~ kind: integer); 

begin (*get next input from trunk line*) 

if ~ infull thcn,wait (readdone) ~: 

tbl : = inbuf; 
kind := intype; ,(*control, msg, or error*) 
infull := false; 
send (dorcad) 
end read; 

procedure ... rite (tbl : trunkblock): 

begin (*fill buffer - output process will test outtill*) 

i! outfill then wait (outbufempty) ~; 

outbuf := tbl; 
outfull :- true 

end write; 

procedure writecontro1 (c I char); 

begin (*fi11 control character buffer*) 

if outcfull ~ wait (outcchar empty) endl 

outcchar :a c; 
outcfu11 :- true 

~ writecontrol: 



-95-

Figure 5.18 (Continued) 

Trunk Device 

procedure postcontrol (c : char); 

begin (*fill post character buffer*) 

if post full ~ wait (dopost) ~; 

postchar :a c; 
postfull := true; 
send (postavail) 

end postcontrol; 

procedure waitcontrol (var c : char), 

begin (*get posted character when available*) 

if ~ postf~ll ~ wait (postavail) ~; 

c := postchar; 
postfull :a false; 
send (dopost) 

~ waitcontrol; 

process input; 

(*do trunk input into inbuf*) 

~ : nch : integer; (*no. of character read*) 

if infull then wait (doread) end: 

(*get first character*) 
wait (trunktick): (*clock synchronization*) 
inbuf.control ~ first character on linel 

if inbuf.control has eVCD parity 

then (*control character*) 

intypc := ·control" 

~ inbuf.control "SOH" ~ 

inbuf.control • "STX" 

~ (*mcssage block*) 

intypa :- "msg" 

£l!£ in typo .- "orror" 



-96-

Figure 5.18 (Continued) 

Trunk Device 

II intype = "Illsg" then (*input block-) 

wait (trunktick); 
inbuf.select := next char; 
nch := 1; 

~ wait(trunktick); 

inbuf.data(nch) :a next char; 
inc (nch) 

~ nch > blocklength; 

wait(trunktick); 
inbuf.end := next char; 
wait (trunktick); 
inbuf.parity ,- next Ohar 

~ (*of block input*) 
infull := false; 
send (readdone) 

er.d (*of loop*) 

end input; 

orocess output 
(*output control characters from outcchar or blocks 
fro~ outbuf or, if both are empty. output a line 
synchronization signal*) 

~ nch : integer; (*character count*) 

wait (trunktick); (*clock synchronization*) 

if outcfull ~ (*output control character*) 

put contents of outcchar on 1inel 
outcfull := false; 
send (outcchar empty) 

~ out!ull ~ (*output block*) 
put outbuf.control on line; 
wait (trunktick); 
put outbuf.select on linel 
nch :- 1; 



-97-

Figure 5.18 (Continued) 

Trunk Device 

~ wait (trunktick); 

put outbuf.data (ncb) on line. 
inc (nch) 

until nch > blocklength; 

wait (trunktick); 
put outbuf. end on line; 
wait (trunktick); 
put outbuf. parity on line. 

outfull t= false; 
6cnd (outbufe~pty) 

~ (*output 'SYN character - there is no real output 
so just keep line synchronized*) 

put "SYN" on line 

end (*of conditional*) 

~ (*of loop*) I 
end output; 

begin (*initialize TRUNK·) 

unfull :- false; outfull :- false; outcfull :- false; 
postfull :- false; 
fnput; output 

!!lS. TRUNK; 



-98-

the program and enumerates the kinds of notices. The actions 

SWITCH takes for each notice will now be discussed in the 

order.in which they appear in the program. 

A Rhead R notice, sent by LINE INPUT, signals the presence 

of a new header. SNITCH receives the header from LINE INPUT and 

records control information for the new message. The header 

is entered into !lEADERS, a name table entry is constructed, 

~nd an action message is sent to ACTIVE-ARCHIVE and the oper­

ator. Finally a REPLY is given to the input control process 

which input the header. 

The largest case SWITCH handles occurs when an input 

control process sends an Wend of inputR notice. First, 

the header is retrieved from !lEADERS. Second, the Wend of 

inputR action is recorded on the archive and sent to the 

operator. Third, for input from local subscribers, an ack­

nowledgement is sent to the subscriber via LINEOUTPUT. Fourth, 

potential message orbit is checked for. An orbit occurs if 

a message ever comes back to a switching node which has pre­

viously processed it. This could happen if directory entries 

(see below) are erroneous or if trunk lines go down so two 

switching nodes use each other as alternate routes to a third 

node. An orbit is detected ~s follows. When a message is 

output, SWITCH stores the local switching nodes' identity in 

the sequence array of the message header. On inout, SWITCH 

looks to see if its identity is already in sequence. If so 

an orbit has occurred and the operator is informed (he will 

most likely cancol the mosuagc). The fifth Action swx'rcu 



-~----

-99-

takes on "end of input" notices is to format output commands. 

For each destination, the directory is consulted to find the 

first line with "ok" status. If one is found, the header is 

inserted in LINEOUTPUT. If none is found the operator is 

informed. After all destinations have been processed, the 

header is put back in HEADERS for future reference. 

Once output completes at any destination, LINEOUTPUT 

posts a "done" notice. SWITCH decrements the output co~nt 

(number of destinations) of the message. If ,the count be­

comes zero, SWITCH then archives an "output complete" action, 

tells the operator, deletes ~he header from HEADERS and 

destroys the message's 11EMORY file. 

The above three kinds of notices ("head", "end of input", 

and "done") pertain to normal message processing. The other 

kinds should occur much less frequently since they per~ain to 

exceptions and operator requests. 

The "stop" notice is issued by the operator or MEXORY 

to stop input or output. SWITCH sends an output command to 

the output controller for the line. To restart 10, a 

"restart" notice is sent to SNITCH. Input is restarted by 

sending an output comma~d to the' subscriber or trunk. Out­

put is restarted by giving a REPLY. 

In order to allow the operator to monitor system status, 

SWITCH also accepts a "status" kind of notice. Its actions 

are to retrieve the appropriate status value(s), fo~at a 

message, and send it to tho operator. Details for each type 

of status which might be useful are loft unspecified here. 



-100-

If an input control process finds the cancel sequence 

of characters in an input. message, it notifies SHITCH. 

SWITCH cancels a message by deleting its header and destroying 

its file. As usual, the archive and operator are informed. 

Output can be cancelled at the request of the operator. 

To cancel a message, first its internal name is looked up 

in the names table. If it is not found the operator is in­

formed. If it is found, the message's header is retrieved. 

If· the message has previously been sent to LINEOUTPUT, 

LINEOUTPUT.cancel is called. (The message may not have been 

sent because an orbit might have occurred). Cancellation is 

then archived, the header deleted, and the file destroyed. 

The next case processes "exception" notices. The types 

of exceptions currently implemented deal with archive tapes. 

Others would also exist in an actual implementation. For 

each type of exception, d message is formatted and sent to 

the operator. 

"Alter" notices are sent by the operator to alter the 

contents of either the directory or the line status table. 

SWITCH receives the new values from SUPERVISOR and stores 

them in the appropriate table entry. 

The final kind of notice signals a pre-emption. When 

LINEO~T?CT sets a pre-empt flag (except on cancell, he 

notifies SWITCH who in turn tells the operator. 

The co~plete listing of SWITCH follows ~s Figure 5.19. 



-101-

Figure 5.19 

Switch Proc;ess 

process SWITCIIJ 

use NOTICE, LI~EINPUT, LINEOUTPUT, HEADERS, REPLY, ACTlVE­
ARCHIVE, SUPERVISOR, timeofday, header, actionrn&g, operator­
output, operatorrequest 

~ name - record (*controls for active messages*) 

msgid, intname : integer; 
outputcount : integer 
end; 

destination = ~ (*trunk or subscriber line no's*) 

primary, alt 1, alt 2 : integer 
end; 

names : array 1 I max. activemsgs 2! name; (*of active :lleS­

sages·) 

directory : ~ 1 : 'destinations of destinations; 
linestatus : a~ray 1 'lines of inte~er; 

kind,data : integer; (·input from NOTICE·) 
hd : header; (*local storage for input header-
index I integer; (* internal rneSSi<,e name*) 
actmsg : actio~~sg; (*output to archive*) 
line: integer; ("output line nW:-.!;Hir*) 
c,d,i integ~r; (*counters*) 
orbit Boolean; (*message in loop·) 
opout opera toroutput; (*output to SV?ER'/IS0;l.*) 
opreq operatorrequest; (*input from SUP~RVIS0;l.*) 

(* • * * * * * * •• * * * * * * * * * • * • * 

body of switch is a loop with a case statement for 
each kind of NOTICE SWITCH receives - the kinds of 
notices are the following: 

loop NOTICE. receive (kind, data) 

~ kind 2! 
"head" : data is 0 - new header from 
"end of input" data is internalid - end of input 
"done" I data is internalid end of cut.,ut 
"stop" : data is linei stC? a lir.e 
"restart" data is line. restart a line 
"status· data is key for 

type of status send status to 
"input cancel" data is internalid cancel message 
·output cancel" I data i. externAlid CAncel It:O$SAge 

LII>'EIl'Pl 

operator 



-102-

Figure 5.19 (Continued) 

Switch Process 

·'exception· data is key for 
type of exception -

"alter" : data is 0 

print message on operator'. 
console 

get operator request to 
alter directory or line 
status from SUPERVISOR 

"pre-emption" data is msgid - inform operator 

end 

* * * * * * * * * * * * * • * * • * * * * * * * * *) 

("initialize tables·) 

(·details not shown*) 

loop NOTICE. receive (kind, data); 

~ kind of 

"head": begin (*get new header·) 

LI~EI~?UT.receivehead (hd); 
hd.status := "in input" ; 
HEADeRS.enter (hd.index); 

1 

(*fill in name table*) 

with names (index) do 
-- msgid ;- hd.i:r.:-ntitYI intname 1- index/ 

cou~t :~ hd.#destinations end; 
("archive receipt of header*) 

with actmsg do 
nsgid :,;; hd. identity; time : .. timeofday; 

action :; "header received" ~ 

ACTIVE-IIRCH I VI::' ac t ion (actmsg); 
(*inform operator of accion*) 

SUPERVISOR.sendoutput (actmsg); 
LI~EOUTPUT.insert (operator, "output·, 0, low precedence)/ 

("tell input to proceed*) 
REPLY.give (hd.origin, index) 

~ (*of head case·) 



-
-103-

Figure 5.19 (Continued) 

Switch Process 

"end of input" : begin 

index :- data; (·internal msg identifier·) 
HEADERS.retrieve (hd, index): 

(·archive end of input·) 

~ actmsg do 

msgid := hd.identity; tL~e :a t~eofday; 
action :~ "cnd of input" ~; 

ACTIVE-ARCHIVE.action(actmsg): 
SUPERVISOR.sendoutput (actmsg); 
LINEOUTPUT.inscrt (operator, "output", 0, low); 

(*acknowledge receipt of input if sender is a 
local subscriber*) 

it hd.origin is a subscriber 

then LINEOUTPUT.insert (hd.origin, "acknowledge-
-- input", index, 10'''') ~; 

(*check for message orbit·) 

~ hd do 

i :- 1; orbit :- false; 
~ (i <= seqcount ~ ~ orbit) , 

~ 
it orbit 

do if sequence (i) - local switch' 

~ orbit := true ~; 

inc (i) end, 

~ (*output message to operator*) 
fornat orbit message 
SUP~RVISOR.oendoutput (operator output) 
LINEOUTPUT.insert (operator, "operatoroutput-, 

0, low precedence) 
hd.status :~ "orbit", HEADERS.update (hd, index) 

!!!! (*proceed to output message to each destination·) 

hd do status :a "output"; 
(*update sequcnce data*) 
inc(seqcount); sequence (seqcount) :- local switch' 
(*output to each destination*) 

'c :- names (indcx).outputcount; (·,cests·) 
i :- 1; 



-104-

Figure 5.19 (Continued) 

Switch Process 

repeat 

d := destinations(i); 
line := directory(d).primary; 
if lincst~tus(linc) ~ "ok" 
t~cn line := dircctory(d).alt 1 
rf"Tinestatus(line) I- "ok" 
then line := directory(d).alt 2 
if linestatus(line) I- ok 
then format no good line message; 
---- SUPERVISOR.sendoutput (message); 

LINEOUTPUT.insert (operator, "operator 
output", 0, low) 

end end end; 

if linestatus(line) m ok then 
LINEOUTPUT.insert(line, "newmsg", index, 

precl end; 

hd.dests(i) :'" line; 
inc (i) 

until i > Ci 

(*update header*) 
HEADER~.update (hd , index) 

~ (*of end of illput case*) 

begin (*output to one destination is complete·) 

index := data; (*identifies message.) 
dec(n~mes(index).outputcount); 

(*if output is all complete - archive completion 
and delete message from system·) 

if names (index).outputGount - 0 

then 

~ actmsg do 

msgid s· names(index).msgid; time :- timeofday; 
action :- ·output complete" ~; 



"stop" 

"restart" 

-105-

Figure 5.19 (Continued) 

Switch Process 

ACTIVE-ARCHIVE.action (actmsg): 
SUPERVISOR.sendoutput (ac~sg): 
LINEOUTPUT. insert (oper'ator, "output", 0, low); 

(*delete header and destroy ~emory file*) 
HEADERS.delete (index); 
MEMORY.destroy (names (index).msgid) 

end 

~ (*of done case*) 

(·stop 10 on one line - done by sending a ~essage 
to the output process associated wi~~ the li~e -
If the line is an input line, its output part~er 
will send a message to the h~~an or other s~itchin' 
node telling it to stop input·) 

line := data: (*identifies line 1*) 

if line is an input line 

then line :- output partner's li"e ~O 

LINEOUTPUT.insert (line, ·stop-input", 0, 
highest precedence) 

else LINEOUTPUT.insert (line, "stop-output", 0, 
highest precedence) 

end 

~ (*of stop case*) 

begtn (*restartIO - technique is same as above*) 
ine :- data; 

if line is an input line 

then line := output partner's li~e no. 

LINEOUTPUT.insert (line, ·start-input·, 0, 
highest precedence) 

~ (*output process has gone to sleep because 
of stop message*) 
REPLY.give (line,O) 

end 

~ (*of restart case-) 



-106-

Figure 5.19 (Continued~ 

Switch Process 

(*data identifies type of status requested -
possible types are 
1. status of line 
2. directory entry 
3. queue lengths, etc. *) 

("for the status - SIHTCH formats a message*) 

opo~t.data :- contents of message; 
opo~t.size := length of message; 

(*send message to operator") 
SUPERVISOR.sendoutput (opout); 
("tell operator output process a message is in 

SUPERVISOR for him·) 
LINEOUT?UT.insert (operator, "output-, 0, high) 

~ (*of status case*) 

-input cancel- : begin (*sent by an input process to cancel 
input of a message") 

index :- data; ("identifies message*) 

(*archive cancel action*, 

",i th actr.\sg do 

msgid := names (index).msgid; time :- timeofday; 
action := "cancelled input" ~; 

ACTIVE-ARCHIVE. action (actmsg) ; 
opout.data := "cancelled input"; 
opout.size := 15; 
SUPERVISOR.sendoutput (opout); 
LINEOUTPUT.in~ert (operator, "output", 0, low); 

("delete header and destroy memory file*) 
HEADERS.delete(index); 
ME~lOH¥ .destroy (names (index) .msqid) 

end (*of input cancel case*) 



-output cancel" 

-107-

Figure 5.19 (Continued) 

Switch Process 

begin (·sent by operator to cancel output-) 
(*data gives external message identifier*) 

(*find internal name-) 
i :- 1; index - 0: 

repeat 

if n~es (i).msgid - data 
then index :- names (i) ,internal id~: 

inc (i) 

until index ~ 0 ~ i > max. activemessages: 

llindex = 0 

then (*me~sage not found*) 

opout.data :- "message not found­
opout.size :- 17: 
SUPERVISOR.sendoutput (O?out): 
LINBOUTPUT.insert (operator, ·output-, 

0, high): 

HEADERS.retrieve (hd, index): 

II hd.status = ·output" 

~ (*tell each output destination to 
cancel by telling LI~;E:O::'r?t:T*) 

LINEOUTPUT.cancel (index) ~: 

(*archive cancellation-) 
~ actmsg do 

msgid.:. names (index).internal id: 
time :- ti~eofcay; 
action :- ·output cancelled" ~ 

ACTIVE-ARCHIVE.action (actmsg): 
opout.data := "output cancelled", 
opout.sizc := 15; 
SUPERVISOR.sendoutput (opout): 
LINEOUTPUT.insert (operator, ·output", 

0, low): 

(*delete header and destroy menory file-) 
1IJ.:l\OI;H5.dcleto (ind.!y.): 
Ml·;:·\OR'i.dcstroy (names (index) .msgid) 

~ (*of conditional-) 

!:!l!! (*ot: output cAncul c4I1e·) 



"exception" 

":ountaction tape" 

"end action tape" 

"end data' tape" 

-108-

Figure 5.19 (Continued) 

Switch Process 

begin 

(-print exception message on operator's console~) 
(*data identifies exception type·) 

~ date of 

opout.data :- "mount new action tape on 
active archive ": 

opout.size :a length of data end; 

begin opout.data:- "mount new data tape on 
active archive"; 
opout.size :~ length of 

data end; 

begin opout.data:- "end of action tape on old 
archive" ; 
opout.size := length of 

data ~; 

opout.data :- "end of data tape on 
old archive"; 

opout.size :- length of 
data ~; 

e~d (*of case statement·) 

Sl:P<:RVISOR.sendoutput (opout); 
LINEOUTPUT.insert (operator, "output", 0, high) 

~ (*of exception case*) 

"alter directory": 

(·get operator request from 
alter either directory or 

SUPERVISOR. recei';ereq (opreq); 
with opreq !!£ 
~ key of 

SUPERVISOR 
line status*) 

(-values give line' and new primary and alternate 
destinations·) 

begin ~ directory (value(l» do 
primary :~ value (2); altr-:. value (3); 
alt.2 :- value (4) ~ 



Malter line status" 

end (*of with*) 

-109-

Figure 5.19 (Continued) 

Switch Process 

(-values give line. and new status*) 
begin linestatus(value(l»:- value (2) ~ 

end (*of case*) 

~ (*of alter case*) 

• preemption " begin (*notify operator of pre-emption data 
is internal msgid*) 

index ;= data 
opout.data ;- narnes(index).msgidi (*external 

name·) 
opout.size.,. 
SUPERVISOa.sendoutput (Opout)i 
LINEOUTPUT.insert (operator, "output", 

0, low) 

end (*of pre-emption case·) 

end (*of entire ~ statement-) 

~ (*of loop*) 
~ SWITCHi 



-110-

5.9 Operator Croup 

The operator group consists of six components: input 

control process, output control process, SUBSCRIBER device 

module, SUPERVISOR module, RETRIEVE process, and old archive 

device module. The components are connected to each other 

as was shown in Figure 3.7. The switching node operator 

can send and receive messages in the same way as other sub­

scribers. The operator can also make certain requests and 

receive control and exception output messages. Programs for 

each of the operator group components are presented in this 

section. 

The operator is assumed to have an IO terminal which is 

identical with those for subscribers. Therefore the device 

interface in the operator group is a SUBSCRIBER device mod­

ule identical to that in Figure 5.14. 

The operator input control process is a slight modifica­

tion of the SINPUT process of subscribers (Figure 5.12). 

7he changes are shown in Figure 5.201 they result from the 

fact that the operator can generate two types of input: 

regular rnessases and operator requests. Regular messages 

are handled in a manner identical to that for subscribers. 

Operator requests are assumed to start with a distinguishing 

se~uence of control characters. Their body consists of a 

key and up to four values. Once the start of an operator 

request is found (in the "find start" case), SINPUT's status 

is set to "tind request." Th~ rcquost is then read 



-111-

Figure 5.20 

SINPUT Process for Operator 

Make the following changes to SINPUT: 

(1) ~I add SUPERVISOR, operatorrequest to ~ list 

(2) variables: add 
opreq 

(3) "find start" case: 

operatorrequest: (-kind and values of 
operatorrequest*) 

add a search for start of operator request sequence. 
of control characters 

if start operator request found 

then current :s 0; 
status :- "find request" ~; 

(4) add "find request" case as follows: 

"find request" : 

begin (*build operator request*) 

if current - 0 then opreq.key :- chI 
inc (current) 

else opreq.value(current) :- chI 
---- inc (current) 

end 

if end of request then 
-- ~ opreq.key of 
"status" : begin 

"cancel" 

NOTICE.po~t ("status", opreq.value (1» 
end; 

begin 

NOTICE. post ("cancel", opreq.value (1» 
end; 

begin 

NOTICE.post ("wait", opreq.va1ue (1» 

~; 



-1l2~ 

Fi9ure 5.20 (Continued) 

SINPUT Process for Operator 

"alter" 

begin 

NOTICE.post ("restart", opreq.value (1» 
end; 

begin 

SUPERVISOR.sendreq (opreq); 
NOTICE.post ("alter", 0) 

end; 

"new tape" : begin 

if opreq.value (1) '" "active-archive" 

~hen ACTIVE-ARCHIVE.rcsume 

"retrieve" 

else OLD-ARCHIVE.newtape (opreq.value(l» 

end; 

~ 
SUPERVISOR.doretreive(opreq) 

end; 

"cancel retrieve" : begin 

SUPERVISOR.cancelretrieve 

end 

~; (*of case statement*) 

status :- "find start" (*find next operator request 
or start of message*) 

end; (*of find request case*) 



-113-

and stored one character at a time. Once finished, a case 

statement on the key is executed. Status, cancel, wait, 

and restart requests post a NOTICE for SWITCH. Alter sends 

the request data to SUPERVISOR and then posts a NOTICE 

(there are more data values to pass than post can accept). 

New tape requests signal that a new archive tape has been 

mounted so the appropriate archive (ACTIVE or OLD) is called. 

The retrieve request causes a retrieve message to be sent to 

the RETRIEVE process (see below) via SUPERVISOR. Finally, 

a retrieve can be cancelled by the cancel request. After 

processing an operator request, SINPUT for the operator set. 

status to "find start" to look for the next input. 

The SOUTPUT process for the operator is only slightly 

changed from SOUTPUT processes in subscriber groups (Figure 

5.13). The changes are shown in Figure 5.21. Since the 

operator receives special output co~~ands, the change is to 

add one more case to process the one more kind of LINEOUT?UT. 

The data for the operator comes from SUPERVISOR •. It is'merely 

written out by calling SUBSCRIBER.write. 

The SUPERVISOR module (Figure 5.22) interfaces the 

operator's SINPUT and SOUTPUT processes to SWITCH and RETRIEVE. 

It defines seven operations: sendreq, receivereq, sendoutput, 

receiveoutput, doretrieve, getretrieve, and cancelretrieve. 

Sendreq and receivereq are used to sond operator requests 

from SINPUT to SWITCH. Available requests are stored within 

SUPERVISOR in a requests queue. Sendoutput and receiveoutput 

are used to send operator output messages from SWITCH to 



-114-

Fiqure 5.21 

SOUTPUT Process for Operator 

Make the followinq chanqes to SOUTPUT 

(1) ~ - add SUPERVISOR, operatoroutput 

(2) variables - add 
opout : operatoroutput 

(3) add ·output· case as follows: 

·output· I begin 
(·fetch operator output data and write it out·) 
SUPERVISOR.receiveoutput (opout), 
i :~ 0; 

!..epeat 
SUBSCRIBER.write (opout.data[i) 

~ i· opout.size 

~ 



-115-

SOUTPUT. They too are stored within SUPERVISOR in a queue. 

Doretrieve and getretrieve are used to send retrieve reg~est8 

from SINPUT to RETRIEVE and are also queued within SUPERVISOR. 

Cancelretrieve is called by SINPUT to cancel a retrieve. It 

sets a flag which is exported from SUPERVISOR and examined 

periodically by RETRIEVE. This flag (stopretrieve) serves 

the same role as did the pre-empt flags in LI~EOUTPUT. The 

code for each of the seven SUPERVISOR operations is strai,ht­

forward. Note that SUPERVISOR could be broken into three 

separate interface modules since the operations work in 

pairs. We aid not do so, however, because it makes sense 

to group all the SUPERVISOR interface operations together. 

In this way, the entire interface between the operator and 

other processes appears in one place. 

The RETRIEVE process (Figure 5.23) processes retrieve 

requests sent by the operator input controller via SUPERVISOR. 

There are three kinds of retrieves: copy, retransmit, and 

trace. The kind of request is indicated by opreq.value(lJ 

which is used as a case statement selector. The copy retrieve 

causes all blocks of a message (identified by opreq.value (2) 

to be read from an old archive tape and printed on the 

operator's terminal. The retrieved message is sent to the 

operator as if it were a new message. N~~ely, RETRIEVE builds 

a header, sends it to SWITCH via LINEINPUT, and then ret=ieves 

each message block and stores it on a MEMORY file. h~en the 

end of the retrieved message is found, SWITCII is notified. 

The rotranomit typo of retrieve causos an archivod 

" 



-116-

Figure 5.22 

Supervisor Module 

interface module SUPERVISOR; 

~ operatorrequest, operatoroutput; ("data types*) 

sendreq, receivereq, sendoutput, receiveoutput, 
stopretrieve, doretrieve, get retrieve, cancelretrieve 

~ requests : ~ n of operatorrequest; 
requestavail, requests not full : signal; 

output : queue n of opcratoroutput; 
output not full : signal; 

retrievals : queue n of operatorrequest; 
retrieval not full, retrieveavail : signal; 

stopretrieve : Boolean; (*signals RETRIEVE process to 
stop a retrieval*) 

'Droce'cure sendreq (opreq : operatorrequest); 

begin (*called by SINPUT*) 

if requests.size - n ~ wait (requests not full) ~; 
requests.insert (opreq), 
send (requestavail) 

end 

end sendreq; 

procedure 

Drocedure 

receivereq (oprcq : opcratorrequest), 

~ ("called by SWITCH") 

if requests.empty then wait (requestavail) ~; 
o;.>req : = requests. rei:iove; 
send (queue not full) 

end rcccivercq; 

sencoutput (opout : operatoroutput); 

begin ("called by SWITCH*) 

if output. size c n then wait (outputnotfull) ~; 
-- output. insert (operatoroutput) 

• 
~ sendoutput; 



-117-

Figure 5.22 (Continued) 

Supervisor Module 

procedure receiveoutput (opout : operatoroutput)~ 

begin (*SQUTPUT knows message is available-) 
output. remove (operatoroutput); 
send (outputnotfull) 

end receiveoutput; 

procedure doretrieve (opreq : operatorrequest) 

begin (*called by SINPUT*) 

if 

end 

retrievals.size - n then wait(retrievalnotfull~ -- ~; 
retrievals. insert (opreq). 
send (retrieveavail) , 

~ doretrieve; 

procedure getretrieve (opreq : operatorrequest); 

procedure 

begin (·called by RETRIEVE·) 

stoprctrievc :- false; (*it may have been on*) 

if retrievals.empty then wait (retrieveavail) 
retrievals.remove (opreq); 
send (rctrievalnotfull) 

end getretrieve; 

cancelretrieve; (*called by SINPUT*) 

begin stopretrieve :- true 

end cancelretrieve; 

stopretrieve :- false 

SUPERVISOR; 



-118-

message to be fetched and sent just as if it were a new 

cessage. The message is processed in the same way as for 

copy above except that the header used is the message's 

original header. For the retransmit case RETRIEVE acts 

exactly like an SINPUT process. 

The final type of retrieval is the trace which causes 

all actions taken on a message to be printed on the operator's 

console. This is accomplished within RETRIEVE by building 

a header to direct a message to the operator, reading actions 

from OLD-ARClirVE and storing each action as a block on MEMORY. 

~he only difference between copy and trace is that the former 

retrieves the data in a message while the latter retrieves 

actions taken on a message. 

To retrieve data or actions from archived messages, 

RETRI~V~ calls the OLD-ARCHIVE device module (Figure 5.24). 

OLD-ARClIIVE defines three operations (retrieveaction, 

retrievedata, and newtape) and contains two driver processes 

(data tape and actiontape). Retrieveaction is called to 

retrieve the next action with a given id from the currently 

mounted action tape (a different action tape than the one 

being filled by ACTIVE-ARCI'IVE). It does so by searching 

tape blocks for an actio~~essage with the appropriate id. 

Once an action message is found it is returned. When 

retrieve action requires the next input block on the action 

tape, it signals the actiontape driver and waits. If the 

end of the action tape is reached, a notice is sent to 

SWITCII which in turn informs tho oporator. Onco the operator 



-119-

Figure 5.23 

Retrieve Process 

process RETRIEVE; 

~ SUPERVISOR, stopretrieve, OLD-ARCHIVE, operatorrequest, 
operatoroutput, header, block, action~essage, msgid, REPLY 

·copy· 

oprcq : opcratorrequcst; 
opout : operatoroutput; 
hd: header; 
bl : block; 
act: actionmessagel 
id : msgid; result integer; cnt : integer; 

loop (*main loop - once per retrieval*) 

SUPERVISOR.getretrieve (opreq); 

(*in opreq, value!l) names the type of request to 
perform - they are: copy - print message on 

operator's co~sole 
retransmit - re-send ~essage to 

desti~ation 
trace - print all actions takel 

on ~es~age on cperator 
console 

value (2) identifies the message to retri~ve*) 

id :- opreq.value (21; 

~ opreq.value (II of 

begin (*copy entire message on operator's console*) 

build new header in hd - treat retrieved nessage 
as new input sent to operator; 

put copy of header in bl; 

LINEINPUT.sendhead (hd); 
MEMORY.create (id,size); 
MEMORY.write(id, bl); 

loop (*get body of message*) 

REPLY.receive (·line'·, 
result); 

OLD-ARCIIIVE.retrievedata (id, bll; 
MEMORY.write lid, bll; (*put blOCK back on auxiliary 

mc~ory*) 

when end of msg in bl ~ stop retrieve ~ ~; 

(*once end is found signal SWITCH*) 
NOTICf:. post (·ond", Id) 

~ (*o! copy CQuu*) 



*retransmit* 

-120-

Figure 5.23 (Continued) 

Retrieve Process 

begin 

(*this case is like copy except actual header is 
used to direct the output*) 

OLD-ARCHIVE.retrievcdata (id, bl); 
transfer items from bl to hd; 
LI~EINPUT.sendhead (hd); 
REPLY.receive ("line", result); 
MEMORY.create (id, size); 
~£MORY.write (id, bl); 

end 

OLD-ARCHIVE.retrievedata (id, bl); 
HEHORY.write (id, bl); 
when end of msg is in bl ~ stop retrieve do. 

~ 

NOTICE.post ("end", id) 

~ (*of retransmit case-) 

~ 
(-retrieve all actions taken on a message and print 

them on the operator's console - build message out 
of actions and route it as for normal messages·-) 

build header - destination is operator's console 
LI~EI~PUT.sendhead (id); 
REl'LY.receive ("line", result); 
~£MORY.create (id, size); 

~ (*retrieve actions*) 

OLD-ARCHIVE.retrieveaction (id, act); 
copy act into bl; 
~IE~:ORY.write (id, bl); 

when last action on msg ~ stop retrieve 22 
~ 

end 

NOTICE.post ("end·, ~d) 

~ (*of trace case*) 

end (*of main loop*) 

~ RETRIEVE; 



-121-

has mounted a new action tape, he inputs a new tape co~~and 

which causes the operator's SINPUT process to call OLD­

ARCHIVE.newtape. This reinitializes OLD-ARCHIVE variables 

and causes the first tape block to be read. Once reading 

is complete, retrieveaction is signalled and proceeds as 

above. 

With this scheme, the operator must maintain a catalogue 

indicating which messages are on which archive tapes. It is 

his responsibility to mount the appropriate tape before issuing 

a retrieve request. OLD-ARCHIVE merely reads fro~ where 

he is on the currently mounted tape and informs the operator 

when the end of tape is reached. The operator must then 

mount the appropriate next tape. 

The retrievedata operation is called by RETRIEVE to 

fetch the next message block with a given id from the 

currently mounted data tape. Its implementation is analogous 

to that for retrieveaction, 

The two driver processes in OLD-ARCHIVE read the next 

record from the data and action tapes when signalled to do so. 

Their implementation is straightforward. The entire program 

for OLD-ARCHIVE follows as Figure 5.24. 

5.10 System Initialization 

The code for each process and module of the message 

switch system has now been described. All that remains to 

complete the switching node program is code to initialize 

the main processes. The initialization code is shown in 

Figure 5.25. 



-122-

Figure 5.24 

Old Archive Device 

device ~ OLD-ARCHIVE; 

~. 

procedure 

rctrieveaction, retrieved~ta, newtapo/ 

block, actionmsg 

actiontapesize - ml ; 

datatapesize - m21 

actionrecordsizc a n l ; 

datarecordsize = n 2 ; 

(*same values*) 

(*as in ACTIVE-ARCHIVE*) 

arnO, drnO, abnO, dbnO : integer; 
(*current count of records and blocks*) 

actionbuffer : array 1 : actionrecordsize of 
actionmsg; (*record from actron tape*) 

databuffer : arr~v 1 datarecordsize of record id I 

--meager; info : block end;-
(*record from data tapC*) 

inputaction, actiondone, inputdata, datadone I signal/ 

actionavail, dataavail : Boolean; 
actionstatus, datastatus : integer; 

tapemounted signal; (*end of tape synch.*) 

retrieveaction (id : integer; var msg : actionmsg); 
(*retrieve next actionmsg with'ldentifier id*) 

(~loop until find action·) 
inc (abnOl; 

while abno <= actionrecordsize do (*look at actions·) 

~ actionbuffer (abno).msgid - id (*got it*) 

do msg :- actionbuffer (abno); 
-- result - "found it" 

exit 
inc (abno) 

end: 



-123-

Figure 5.24 (Continued) 

Old Archive Device 

(*end of record so fetch next one if possible*) 
if arno - actiontapesize 

then NOTICE.post (-exception-, -end of action tape-
wait (tapemounted) end 

actionavail := true; signal (inputaction) 
wait (actiondone); 
inc (arno); abnO :- 0 (*next record, first block-) . 

~ (*of loop*) 
end retrieve action; 

procedure retrievedata (id : integer; var bl : block), 
(*retrieve next block with identifier id-) 

beqin 

loop (-until find data*) 

inc (dbno) (·look in current record-) 

~ dbno <- datarecordsize 22 
when databuffer (dbno).id - id 

do bl :- databuffer (dbno).info; 
result :- -found itN exit 

inc (dbno) 
end 

(-end of record so fetch next one if possible-) 

if drno ; datatapesize 
then NOTICE.post (NexceptionN, Nend of data tape-) 
---- wait (tapemounted) end; 

dataavail :- true; signal (inputdata), 
wait (datadone); 
inc(drno); dbno :- 0; (*next record, first block-) 

~ (*of loop*) 

~ retrievedata; 



-124-

Figure 5.24 (Continued) 

Old Archive Device 

orocccure newtape (kind: integer); 

begin (*initialize and get first record from new tape*) 

if kind m action 

then arno := 0; abno :- 0; 

actionavail := true; signal (inputaction); 
wait (actiondone); 
inc (arno) 

else drno := 0; dbno :- 0; 

end 

dataavail := true; signal (inputdata); 
wait (datadone); 
inc (drno) 

signal (tapemounted) 

end newtape 

process datatape; 

begin .!..£2.2. 
if not dataavail then wait (inputdata) end; 

initiate read into databuffer 
dolO 

if error then datastatus :- "error" 

else datastatus :- 0 end; 

dataavail :- false; signal (datadone) 

end 

end data tape; 

orocess actiontape; 

begin ~ 

if not actionavail then wait (input action 
initiate zead into action buffer; dolO; 

if error then actionstatus :- "error" 

else actionstatus :- 0 end; 

actionavail :- false; signal (actiondone) 

cn.d 

end actiontape 



-125-

Figure 5.24 (Continued) 

Old Archive Device 

(*initialize device module*) 

arnO ,~ 0; abnO ,8 0; drnO :- 0; dbnO :- 0; 
dataavail :- false; actionavail :- false; 
data tape ; actiontape 

~ OLD-ARCHIVE 



-126-

Figure 5.25 

System Initialization 

begin (·activate each main process·) 

end 

for each subscriber group and the operator do 
SDIPUT; 
SOUTPUT; 

SWITCH; 
RETRIEVE 



-127-

6.0 Summary and Evaluation 

The description of a representative message switching 

communications system and its implementation in-Modula have 

now been completed. This chapter summarizes the presentation 

and discusses its relation to the design process. The utility 

of Modula as a design language is then evaluated. 

6.1 Summary of Design Technique 

The design presented here has been described in the 

same order in which it was developed. It evolved from a 

sequence of five steps. First.the basic system functions 

were identified and described (in Chapter 2). Syst~~ functions 

in this case were specified by co~nunications people ~ho use 

message switching systems. My role at this stage, as the 

designer, was to discuss the functions with intended users 

so that we could both come to agreement on the purpose and 

scope of the proposed system and become comfortable with 

each other's vocabulary. In addition, it was (and generally 

is) helpful to layout a typical hardware configuration in 

order to get a better feel for the size and nature of the 

system. The hardware need not be considered in detail at 

this point, however. 

The second step was to specify in detail the formats 

of input and output messages. (This was also done in Chapter 2). 

System functions describe how information is processed: this 

step in the design describes what is processed. It completely 



-129-

characterizes the user's view of the system. 

The third step was to develop an organization, in 

terms of Modula constructs, for a system having the functions 

en~~erated in step one. Modula has processes and modules as 

its basic building blocks for multiprogramming systems. 

Various organizations were considered at this stage, all in 

te~s of how the functions could be realized using processes 

a~d modules. The organization settled on was shown in Figure 

3.3. Refinements of the groups in Figure 3.3 were shown in 

Figures 3.4 - 3.8. The actual design proceeded in exactly 

this manner. First important groups of processes and modules 

were identified; in this case the groups implement IO inter­

faces and the ce~tral switching function. In general, a 

sL~ilar correspondence of groups to IO devices and major 

system functions should occur. Each group was in turn re­

fined into modules and~ocesses. Finally, the interconnection 

of groups, in this case the interface between IO groups and . 

the SWITCH process, was organized in terms of modules. 

The fourth step was to list the actions of each major 

syst~~ component. This was presented in Chapter 4. In the 

r.essage switch there are four major components: input, 

switch, output,and the operator. The first three correspond 

to the phases·which an individual message goes through as 

it is processed by the system. For each of these components, 

a path description of its actions was developed. Once this 

was complete, an ordered list of the actions taken in pro-



" -129-

cessing each message was compiled. (Figure 4.4). At this 

point, the design was discussed in detail with the people 

who had contracted for the work. This allowed misconceptions 

and ambiguities about the system functions to be clarified. 

It helped me to be sure of the direction I was headed and 

helped the contractors to better understand the program they 

would be getting. 

The fifth step was to actually program each component. 

No programming was done (or should never be done) until the 

organization and.system actions were understood by myself, and 

agreed to by the contractor. Once the organization of the 

whole system is well understood, it becomes relatively easy 

to program each component. This is not to say that creativity 

is no longer needed thoughl Programming large components 

(e.g. MEMORY or even LINEOUTPUT) is still a rewarding chal­

lenge. 

These five steps - system functions, 10 interfaces, 

organization, component actions, and programming - were 

iollowed in order for the most part. The st~ps are not 

completely independent, however, so some iteration occurred. 

The program for MEMORY, for example, ended up differently 

than had been originally envisioned. This caused a change 

in the internal organization of the MEHORY group (step 3) 

and in the way in which it was accessed (step 5). Of impor­

tance though is the fact that the change to UENORY did not 

affect any other aspect of the organization. The need for 



-130-

and role of memory r~~ined unchanged. The only external 

effect of the reorganization was a change in the syntax 

of statements which access the memory. 

6.2 Evaluation of Modula 

Overall, Hodula proved to be an excellent tool for the 

design of the message switching system. In at least four 

respects, Nodula made it easy to go from the specification 

to the i~ple~entation of the system. 

First, the building blocks of Modula - processes and 

modules - were both appropriate and easy to use. The clarity 

and reliability of an implementation is obviously affected 

by the i~?l~~entation language. In my opinion, Modula is 

the best existing language for multiprogramming systems. 

Interface modules provide exclusion of access to shared 

variables and make it easy to pass data as records. They 

make it easy to both describe process interfaces and reason , 
about the effect of process interaction. And device modules 

provide a natural, encapsulated means for describing device 

interfaces. The power of the language very definitely in-

creased my productivity an1 enabled me to program the entire 

syst~~ in about 15 days. Without access to a compiler, I 

have undoubtedly made numerous unintentional syntactic and 

logical errors. Having described this design and implementa-

tion to numerous people however, I am convinced that no 

major or global errors exist. To go from this r~port to a 

working S~'tltcm should only require debu,)<J.inq each individual 



-131-

component. Some changes may be required in order to tune 

the system for good performance . but most of these changes 

should occur only within device modules (e.g. changes to 

buffer sizes). It is obviously a guess, but I think that 

this syste~ could be made operational in at most a very 

few months, given a compiler. 

The second value of Modula is the power of device 

modules as a method for interfacing to 10 devices. For 

one, device modules provide users with a natural, pro­

cedural interface to devices. For example, the subscriber 

control processes (SINPUT and SOUTPUT) input and output 

characters by calling read and write procedures. ~etails of 

buffer management, 10 synchronization, and interrupts are 

hidden from the user. It was also possible to schedule 

future access to auxiliary memory (within AUX~n~) in parallel 

with disk access. In fact, interface and device modules 

made possible the clean separation of the file system functions 

in MEMORY (e.g. manage~ent, memory mapping, and deadlock 

prevention) from the device functions in AU~1EM (e.g. scheduling 

and buffer management). A final advantage of device ~odules 

is the ability to use different device access methods in 

SUBSCRIBERS and TRUNKS. The SUBSCRIBER modules used the dolO 

instruction because of the assumption that terminals give 

interrupts. The TRUNK modules on the other hand used timing 

signals to synchronize 10 because of the assumption that 

trunk lines periodically provide or expect characters. Pro­

gramming tho so difforonco. ia atraiqhtforward and thoy oro 



-132-

hidden from users of SUBSCRIBERS and TRUNKS. 

A third feature of Modula, the ability to export read 

only variables from modules, made it easy to implement out­

put pre-emption. The output control processes could test 

for pre-emption by merely checking a flag set by LINEOUTPUT. 

If this flag were not accessible outside of LINEOUTPUT, out­

put controllers would have had to call a LINEOUTPUT procedure 

in order to interrogate the flag. In addition, note that 

changing the grain of pre-emption, namely the frequency at 

which the pre-~~pt flag is checked, merely involves moving 

the ~ statement in output controllers. Also note that 

LINEOCTPUT can easily restart pre-empted messages because 

they rem3in on a linequeue until completely processed. 

The fourth and final positive aspect of Modula is its 

app3rent efficiency. The ~~ount of storage and .execution 

time required by the Modula kernel (which implements processes, 

exclusion, signals, and 10 completion) is minimal (10). 

Most of the storage space and execution time used in the 

message switch should result from functions in the system 

itself. 

In spite of its power, Modula is slightly deficient in 

three respects. First, because processes and modules cannot 

appear in type declarations, subscriber and trunk components 

must be declared for each terminal and trunk line. This 

leads to a tr~~endous expansion in the size of the program 

listing even though each subscriber group or each trunk group 



-133-

is the same. Obviously, the same storage space is required 

in either case so efficiency is not affected. Readability 

and clarity is, however. Along the same line, the syst~s 

as defined requires a very large number of proces~es - four 

for each subscriber and trunk group. since a typical system 

has approximately 50 local subscribers and 3 r~T.ote trunk 

lines, this results in over 200 processes. Hew this could 

affect efficiency is unknown. 

A second, although minor, deficiency of Mcdula is the 

lack of queues or a way to construct them easily. As pointed 

out in the previous chapter, a queue can be implemented by 

a module. But a separate module is required for each dif­

ferent type of queue. It would be nice to have generic 

(polymorphic) procedures which operate on any type of queue. 

In parallel systems, queueing occurs frequently within inter­

face modules so a general queueing facility, or the tools 

with which to construct one, would be quite useful. 

The final deficiency of Modula as a language for de­

signing fairly large systems is the ~ phrase. In ~odula, 

use is optional; if omitted a module has access to all globally 

defined objects not renamedm the module. At a minimum, how­

ever, ~ should be required. A module should explicitly 

state what it is using so that a compiler can catch invalid 

accesses. Better yet, ~ should be replaced by a ~ 

statement which specifies, when a process or module is de­

clared, which other objects can access it. At present, Hodula 



-134-

puts access control in the hands of the user of an object: 

it should instead be put in the hands of the object's 

declarer in order to insure that the object is adequately 

controlled. This distinction has little effect in a small 

system but in a large system, especially one implemented 

by ~any people, it can have a great effect upon reliability. 

~~en one object is changed, it should be clear, and explicitly 

stated in the program, which other objects are affected by 

the change. 

The above three deficiencies of Modula can and should 

be re::loved in a language for general system programming 

such as that proposed for the Department of Defense. They 

are relatively minor, however, and should not obscure the 

fact that Modula is the most powerful tool currently avail­

able for the design and construction of structured multi­

?rogr~~~ing syste~s. The message switching system in this 

report is but one example of Modula's utility. 

Ackno .... ledge:nent 

Sera k~oroso and Derek Morris conceived of this project 

and served as sounding boards for the design as it was developed. 

Their assistance is greatly appreciated. 



-135-

Bibliography 

1. Brinch Hans,en, P. The program:lIing lanquage Concurrent 
Pascal. IEEE Trans on Software Engr SE 1, 2 
(June 1975), 199-207. 

2. Department of Defense. Requirements for high order 
computer progra~~ing languages - revised "lro~~an·, 
July 1977. 

3. Hoare, C.A.R. Monitors: an operating system str~cturing 
concept. ,Co~~. hCM 17~ 10 (October 1974), 549-557. 

4. Lampson, B.W. et a1. Report on the progra~ing language 
Euclid. Si901an Gotices 12, 2 (February 1977), 1-79: 

5. Morris, D., Amoroso, S. and Andrews, G. Co~~unications 
software project. Centacs Report, Center for ~actical 
~omputer Sciences, ECOM, Ft. Monmouth, ~.J., June 1977. 

6. Shaw, A.C. Systems design and doc~~entation using path. 
descriptions. Proc. 1975 Sagamore Con!. on Parallel 
Processing, summary, pp. 1&0-181. 

7. Wirth, N. The programming language Pascal. ~ 
Informatica 1 (1971), 35-63. 

8. Wirth, N. Modu1a: a language for ~odular multiprogra~~in9. 
Software - Practice and Experience 7 (1977), 3-35. 

9. Wirth, N. The use of Modu1a. Software - Practice a~1 
Experience 7 (1977), 37-65. 

10. Wirth, N. Design and implementation of Modula. So!tware-
Practice and Experience 7 (1977), 67-84. 


	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif
	pdftemp/0052.tif
	pdftemp/0053.tif
	pdftemp/0054.tif
	pdftemp/0055.tif
	pdftemp/0056.tif
	pdftemp/0057.tif
	pdftemp/0058.tif
	pdftemp/0059.tif
	pdftemp/0060.tif
	pdftemp/0061.tif
	pdftemp/0062.tif
	pdftemp/0063.tif
	pdftemp/0064.tif
	pdftemp/0065.tif
	pdftemp/0066.tif
	pdftemp/0067.tif
	pdftemp/0068.tif
	pdftemp/0069.tif
	pdftemp/0070.tif
	pdftemp/0071.tif
	pdftemp/0072.tif
	pdftemp/0073.tif
	pdftemp/0074.tif
	pdftemp/0075.tif
	pdftemp/0076.tif
	pdftemp/0077.tif
	pdftemp/0078.tif
	pdftemp/0079.tif
	pdftemp/0080.tif
	pdftemp/0081.tif
	pdftemp/0082.tif
	pdftemp/0083.tif
	pdftemp/0084.tif
	pdftemp/0085.tif
	pdftemp/0086.tif
	pdftemp/0087.tif
	pdftemp/0088.tif
	pdftemp/0089.tif
	pdftemp/0090.tif
	pdftemp/0091.tif
	pdftemp/0092.tif
	pdftemp/0093.tif
	pdftemp/0094.tif
	pdftemp/0095.tif
	pdftemp/0096.tif
	pdftemp/0097.tif
	pdftemp/0098.tif
	pdftemp/0099.tif
	pdftemp/0100.tif
	pdftemp/0101.tif
	pdftemp/0102.tif
	pdftemp/0103.tif
	pdftemp/0104.tif
	pdftemp/0105.tif
	pdftemp/0106.tif
	pdftemp/0107.tif
	pdftemp/0108.tif
	pdftemp/0109.tif
	pdftemp/0110.tif
	pdftemp/0111.tif
	pdftemp/0112.tif
	pdftemp/0113.tif
	pdftemp/0114.tif
	pdftemp/0115.tif
	pdftemp/0116.tif
	pdftemp/0117.tif
	pdftemp/0118.tif
	pdftemp/0119.tif
	pdftemp/0120.tif
	pdftemp/0121.tif
	pdftemp/0122.tif
	pdftemp/0123.tif
	pdftemp/0124.tif
	pdftemp/0125.tif
	pdftemp/0126.tif
	pdftemp/0127.tif
	pdftemp/0128.tif
	pdftemp/0129.tif
	pdftemp/0130.tif
	pdftemp/0131.tif
	pdftemp/0132.tif
	pdftemp/0133.tif
	pdftemp/0134.tif
	pdftemp/0135.tif
	pdftemp/0136.tif
	pdftemp/0137.tif
	pdftemp/0138.tif
	pdftemp/0139.tif
	pdftemp/0140.tif
	pdftemp/0141.tif

