
ARMY RESEARCH LABORA TORY

Ultra Wide Bandwidth Synthetic Aperture Radar
Focusing of Dispersive Targets

by John McCorkle and Lam Nguyen

HDL Report March 1992
R-HD-ST-R-92-004 (Reprinted in March 2010)

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or
approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Adelphi, MD 20783-1197

HDLReport
R-HD-ST-R-92-004 (Reprinted in March 2010)

March 1992

Ultra Wide Bandwidth Synthetic Aperture Radar
Focusing of Dispersive Targets

by John McCorkle and Lam Nguyen

Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE Form Approved
OUB No_ 0704-0188

Public reporting burden fOf this collection of information is estimated to average J hour per response, including the time fOf reviewing instructions, searching existing data sourCes, gathering and maintainmg lhe
data needed, and completing and reviewing the collection information Send comments regarding this burden estimate or any other aspect of this wlle<::tion of information. including sugge$tions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, SUIte 1204, Arlington, VA 22202-4302
Respondents should be aware that notwithstanding any other provision of law, no peuon shall be Subject to any penalty for failing to comply with a collection of information if it does not di~play a currently
valid OM» control number
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM·ITYy) 2. REPORT TYPE 3. DATES COVERED (From - To)

March 1992

4. TITLE AND SUBTITLE s., CONTRACT NUMBER

Ultra Wide Bandwidth Synthetic Aperture Radar Focusing of Dispersive
Targets Sb. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AliTlIOR(S) 5(1. PROJECT NUMBER

John McCorkle and Lam Nguyen

St. TASK NUMBER

5f. WORK UNIT NUMBER

1. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PEltfORMING ORGANIZATION

U, S, Anny Research Laboratory
REPORT NUMBER

Attn: AMSRL-SS-SG HDL Report
2800 Powder Mill Road R-HD-ST-R-02-004 (Reprinted in March
Adelphi, MD 20783-1197 2010)
9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORIMONITOR'S ACRONYM(S)

U,S, Anny Research Laboratory
2800 Powder Mill Road II. SPONSORIMONITOR'S REPORT

Adelphi, MD 20783-1197 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited,

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report addresses focusing of synthetic aperture radar (SAR) data, More specifically, it addresses the SAR focusing
problem with special attention to focusing an area in the near-field of the synthetic aperture over a decade or more of
bandwidth in a manner that preserves target resonance characteristics, A method for solving this image formation problem is
described, along with a computationally efficient algorithm that is applicable to real-time processing with motion
compensation, Both simplified program examples are given, as well as a complete program listing that executes on a several
single-chip array processors simultaneously, An error analysis shows quantitatively when the depth of focus is adequate to
preserve long-duration target resonance ringing effects for a given target Q, geometry, and bandwidth,

15. SUBJECT TERMS

17. LIMITATION

16. SECURITY CLASSIFICATION OF: OF ABSTRACT

a. REPORT I b. ABSTRACT I ' rHis PAGE UU

Unclassified Unclassified Unclassified

2

18. NUMBER
OF PAGES

86

19a. NAME OF RESPONSIBLE PERSON

Lam Nguyen

19b. TELEPlIONE NUMBER (ludude areawde)

(30 I) 394-0847

Slandprd Form 298 (Rev. 8J<J8)

Prescribed by ANSI SId. Z39.IS

CONTENTS

1. Introduction ... 5
2. Background .. 7

2.1. Terminology .. 7
2.2. Approaches to Focusing ... 8
2.3. Null Steering and Pattern Forming ... 10
2.4. Target Resonance Effects .. 11

3. Fundamental Time Based, Physical Array Approach .. 13
4. Short Impulse Response Approximation ... 14

4.1. Theory ... 14
4.2. Examples ... 16

4.2.1. Case where n=O ... 16
4.2.2. Case where ... 16

5. Error of Short Impulse Response Approximation ... 17
6. Efficient Calculation .. 22

6.1. Pre-Processing .. .22
6.2. Fast Index Calculation ... 23

6.2.1. Approach23
6.2.2. Solving For The Coefficients .. 23
6.2.3. Fast Polynomial Calculation .. 27
6.2.4. Coefficient Generator Program .. 28

6.3. Fast Focusing Algorithm ... 29
6.3.1. Polynomial Order Selection And Computational Load 33

6.4. Implementation Notes .. 34
7. Beam Patterns and Side Lobe Structure .. 36
8. Conclusion .. .46
APPENDIX A ... 47

A.1. Main Program to Calculate Coefficients (main.c)47
A.2. Main Coefficient Generator Routine (coefgen.c)48
A.3. Subroutine Find Ideal Index Vector (index.c) .. 50
A.4. Geometry File - Declare All Global Constants (coefgen.h) 51
A.5. Declare All Global Variables (coefgen.var) ... 51
A.6. Matrix Pseudo Inverse Coefficients (initmat.c) .. 53
A.7. Initialize All variables (varinit.c) ... 57
A.8. Find Least Squares Polynomial Fit (po1y_fit.c)58
A.9. Matrix Inverter (inverse.c) ... 61

APPENDIX B .. 64
B.1. Main Program For SUN Computer(focus.c) ... 64
B.2. Main Program For Multiple Array Processors (sc.c) 69
B.3. Routines Used to Interpolate (inter. c) .. 72
B.4. Initialize Interpolation Filter (filtinit.c) .. 76
B.5. Main Back Projection Focusing Routing (bp.c) .. 76
B.6. Declare All Global Constants (Focus.h) ... 80
B.7. Declare All Global Variables (Focus.var) .. 81
B.8. Initialize All Global Variables on Both Processors (varinit.c) 83

3

Distribution .. 86

FIGURES

Figure l. Basic Flight Path and Image Area Geometry ... 7
Figure 3. Geometry for calculation of approximation error .. 18
Figure 4. Error as a function of position in aperture ... 19
Figure 5. Error as a function of q with RlLs=2 ... 19
Figure 6. Error as a function of q with RlLs=620
Figure 7. Error at right aperture end as a function of m .. 20
Figure 8. Error at right aperture end as a function of m .. 21
Figure 9. Image Partitioning and Notation ... 28
Figure 10. Coefficient Generator Flow Chart ... 29
Figure 1l. 50MHz Point reflector, Equal Weighting, End View38
Figure 12. 50MHz Point reflector, Hamming Weighting, End View 38
Figure 13. 50MHz Point reflector, equal Weighting, Above Axis 39
Figure 14. 50MHz Point reflector, Hamming Weighting, Above Axis 39
Figure 15. 200MHz Point reflector, Equal Weighting, End View40
Figure 16. 200MHz Point reflector, Hamming Weighting, End View40
Figure 17. 200MHz Point reflector, Equal Weighting, Above Axis41
Figure 18. 200MHz Point reflector, Hamming Weighting, Above Axis41
Figure 19. 400MHz Point reflector, Hamming Weighting, End View42
Figure 20. 400MHz Point reflector, Hamming Weighting, End View42
Figure 21. 400MHz Point reflector, Equal Weighting, Above Axis 43
Figure 22. 400MHz Point reflector, Hamming Weighting, Above Axis 43
Figure 23. 900MHz Point reflector, Equal Weighting, End View 44
Figure 24. 900MHz Point reflector, Hamming Weighting, End View 44
Figure 25. 900MHz Point reflector, Equal Weighting, Above Axis45
Figure 26. 900MHz Point reflector, Hamming Weighting, Above Axis45

TABLES

Table 1. Analysis Nomenclature .. 8
Table 2. Computational Load Versus Partitioning .. 34
Table 3. Point Response Function Plots36

4

1. Introduction

The process of obtaining images of the reflectivity or density of target
areas that are rotating and translating with respect to a sensor such as a
mono-static or bistatic radar, a sonar, or an x-ray CAT scanner, has been
studied for the past 40 years l ,2,3,4. Ausherman etal.5 have written an
excellent review of the work done in this area. Target areas that rotate
and translate relative to a radar include, for example, planet surfaces
observed from a satellite, ground terrain observed from air-borne
platforms, sub-surface objects and voids observed from moving vehicles,
and people scanned by a rotating x-ray system. Although the processing
described is applicable to other systems, this article shall treat the topic
from the point of view of a SAR (Synthetic Aperture Radar). As the
aspect angle between the sensor and a target changes with time, the sensor

collects a sequence of signal records. After collecting data for T. seconds,

the aspect angle has changed by 8, degrees. These received signals are
then coherently processed to obtain the reflectivity profile of the target
area. Down-range resolution into range-bins is obtained primarily by the
bandwidth of the sensor. Cross-range resolution is obtained primarily by
coherently processing the received signals such that a very wide aperture

is simulated; an aperture that is e, degrees wide.

Implementation and study of this image formation processing topic has
been limited in two ways. First, the image formation processing has
assumed that targets are isotropic point scatterers. Many targets, however,
are anisotropic resonant scatterers. Treatment of this resonant case
becomes important when the sensor spectrum covers the Rayleigh,
resonant, and optical regions of a family of targets. For example,
discrimination between scatterers can be based on the unique signature of
each target. But, in order for the discrimination to work in the context of
microwave reflectivity imaging, the information in the signature must be
preserved during the image formation process.

I William M. Brown and Ronald J. Fredricks, "Range-Doppler Imaging with Motion through Resolution Cells",
IEEE Trans. Aerosp. Electron. Syst., AES-5 No.1, (Jan 1969), 98-102

2J.L. Bauck and WK Jenkins, 'Tomographic Processing Of Spotlight-Mode Synthetic Aperture Radar Signals
With Compensation For Wavefront Curvature", IEEE Interna. Can! on Acoust. Speech and Sig. Proc. (Apr.ll-14
1988)

3Edwin D. Banta, "Limitations on SAR Image Area Due to Motion Through Resolution Cells", Correspondence,
IEEE Trans. Aerosp. Electron. Syst., AES-22, No.6 (Nov 1986), 799-803

4D. Mensa, and G. Heidbreder, "Bistatic Synthetic-Aperture Radar Imaging of Rotating Objects", IEEE Trans.
Aerosp. Electron. Syst., AES-18, No.4 (July 1982),423-431

5Dale A. Ausherman, Adam Kozma, Jack L. Walker, Harrison M. Jones, and Enrico C. Poggio, "Developments in
Radar Imaging" IEEE Trans. Aerosp. Electron. Syst. AES-20, No5 (July 1984), 363-400

5

The second limitation in previous work is that relatively narrow
bandwidth systems have been assumed. For example, the compressed
pulse width of the sensor is assumed to be at least several, and usually
many cycles of an RF carrier frequency. So a single range-bin is derived
from several cycles of the carrier. Newer UWB (Ultra Wide Bandwidth)
sensors, however, have made it possible to make the image range-bin size
roughly 1/2 the wavelength of the highest frequency in the sensors'
spectrum. The bin size is much smaller (1/10 or less) than the wavelength
of the lowest frequency in the spectrum. This wide bandwidth
exacerbates range walk and wavefront curvature errors to the point where
conventional FFT based processing must be restricted to very small
patches within an image area.

These two limitations are not independent. It is bandwidth that allows
target discrimination based on signature analysis and it is bandwidth that
makes image formation more difficult. It is the purpose of this paper to
examine image formation processing that preserves resonant target
signatures and to present an efficient method of solving the microwave
reflectivity imaging problem for UWB signals and resonant targets.

6

2. Background

i.·,

,.-3 ,~

2.1. Terminology

; j j

;.I<,j

;:
i-·'

SAR systems depend upon collecting data coherently along a path. This
path is referred to as the "synthetic aperture." Figure 1 shows a sketch of
the scenario projected onto a plane. An aircraft flies at some elevation h

above the ground, over a distance L, to form the synthetic aperture. The
image area grid is referenced to the center of the aperture. Range is
marked off by the parameter i. The parameter k marks off azimuthal
(bearing) lines. The sample points in the aperture are marked off by the
parameter j. The distance between the Jth point in the aperture and the

(i,k/h position in the image area is denoted by di.i,k' Although nearly all

operational SAR systems use a rectangular grid, there are advantages to
the polar grid that will be discussed later in this report. Both the
azimuthal lines and the range lines are referenced to the center of the
aperture.6 Table 1 summarizes the nomenclature to be used in the rest of
the report.

! ,
'! 1

·1,2.,-2

.' .' .., ,.,

Figure 1. Basic Flight Path and Image Area Geometry

6This grid is convenient for post processing. An X-Y grid can also be computed using the techniques described.

7

a e nalysis T bl 1 A I . N omencature

L, !Length (meters) of the synthetic aperture.

s/t) Denotes a received signal amplitude (volts) as a function of time (seconds
from the leading edge of the transmitted pulse), at the jth position in the
laperture. The AID outputs represent this signal.

Over type hat ~enotes that the function is an estimate. The example denotes an estimate for

e.g. set) a received signal.

Subscript of !Particularizes the function to be at particular geometry's, like the ;th position
i,kj . n the synthetic aperture, or the kth bearing line, or the (i,k)th position in the

mage area,

d". penotes the distance (meters) between the jth position of the radar, and the
I.). i,k)th position in the area to be imaged.

2d· k .
Denotes the round trip time (seconds) for the radio energy to travel from the

t - z, ~J . th position in the synthetic aperture, to the (i,k)th position in the image area,
i,k,j - c and back.

c l'Ibe speed of light.

Ct = t j+1.k,j - (i,k,)
rrime shift between range bin j and range bin i+ 1 at the center of the aperture
(where;=O).

f-. PRF lPulse-Repetition-FreQuencv of the radar in Hertz.

f.1 Relative Bandwidth f.1 = (Fhi - Flo) / Fo and Fo = (Fhi + Flo) / 2

UWB Vltra-Wide Bandwidth, where f.1 '" 1

Jc Wavelength in meters.

2.2. Approaches to Focusing

SAR processing, or SAR focusing, is sometimes referred to as a Doppler
based process. Why is this "Doppler" paradigm used? Referring to
Figure 1, assume that the radar platform is moving at velocity v as it
collects data along the aperture. Therefore, the data collection points are
spaced equally in time, occurring at a rate governed v and the PRF. (This
sampling across the aperture is sometimes referred to as "slow-time".) If

the radar is operating at a frequency fo, then the echo from a target in the

image area will have a Doppler shift profile as the platform moves
through the aperture. It will have an upward shift while the platform
approaches, the shift win drop to zero as the platform moves to a position
broadside to the target, and the shift will be downward as the platform
recedes. Every target position will have a unique Doppler profile. Since
every position in the image has a disti:1ct Doppler profile, an image can be
formed by simply assigning to each pixel a filter matched to the Doppler
profile expected for a target at the location represented by that pixel.

8

The classic "Polar Fonnatting"7 approach to computing a SAR image
simply adjusts (time shifts) the data at each aperture point so that the new
data-set appears as if the platfonn had moved in a short circular path -
with the circle centered at the center of the image area. Once this
fonnatting is done, a target at the center point has the unique Doppler
profile of zero over the entire aperture. Other points have other unique
Doppler profiles. A Fourier transfonn is typically used to recover the
image from the Doppler profiles. The Fourier approach works well as
long as the circular path is sufficiently short, the image area sufficiently
small, the signal bandwidth sufficiently small, and the distance from the
radar to the image center sufficiently long. This paper addresses the case
where none of these restrictions apply.

Although the Doppler paradigm has helped countless people to visualize
SAR focusing, it is not necessary, nor always helpful, in solving the SAR

focusing problem. For example, Doppler shift, which is defined as 2 ViA,

works fine when A varies by a few percent, but it becomes a stumbling

block in the UWB case where A can vary by 10 or 100 to 1. Doppler has
proven to be a very convenient narrow band concept. But its convenience
breaks down at wide relative bandwidths. The focusing problem can also,
however, be looked at as a stationary array of N antennas whose outputs
are digitally stored and combined in a computer to fonn beams. It is the
author's view that the focusing problem is easier to visualize and solve
using this stationary array paradigm for the case where neither the
geometry nor the bandwidth are restricted.

Using the stationary array paradigm one can see that equation 1 coherently
focuses the SAR data by summing across the array. It may be helpful to
point out that both approaches can be seen to be identical at the center
point of the "Polar Fonnat" patch. Notice that regardless of carrier
frequency, the center point of the polar fonnatted data is always analyzed
by the DC tenn of the Fourier transfoml. And the DC tenn of a Fourier
transfonn is simply a summation of the data points. The summalion
shown in equation 1 is identical to finding the DC tenn of the polar
fonnatted SAR data. But instead of fonnatting once and then finding
many "Doppler" profiles via an FFT, equation I fonnats and "sums" the
data many times; each fonnatting makes a different pixel me center and
then the DC tenn summation is calculated to get the value for that pixeL
The result is that optimally focused beams are fonned - beams taking full
advantage of both the entire aperture and the entire signal bandwidth. 'The
focusing is truly frequency-independent.

71. L. Walker, "Range-Doppler imaging of rotating objects," IEEE Trans. Aerosp. Electron. Syst., AES-J6 (Jan.
1980),23-52

9

How does the beam width compare with "conventional" (far-field narrow
band) antenna theory? The rule-of-thumb half-power beamwidth of a line

array is approximately NL where L is the length of the array. The beams
formed by the processing described above follow this rule and have a

width proportional to A,. Low frequencies have wide beams and high
frequencies have narrow beams. An interesting aspect of this fact is how
it manifests itself in the time-domain as a source moves through a beam.
The impulse response at the center of the beam is a nice narrow pulse.
But as one moves away from the center of the beam, the impulse response
gets broader and broader. This time-domain broadening occurs because
more and more high frequency energy is lost as the source moves out of
the narrowing high-frequency beam.

As soon as one switches from the Doppler to the stationary array
approach, it may be tempting to also switch to thinking in "phased array"
terms. To do so is a mistake when bandwidth and/or geometry are not
restricted. Whenever the geometry is not restricted to the far-field of an
aperture, plane-wave simplifications break down. This break down
invalidates simple phase steering. Since a Fourier transform forms beams
by simple phase steering, Fourier techniques becomes less and less useful
as targets move into th.e near-field. In an ultra wide bandwidth system,
phase becomes meaningless with regard to defining element positions or
the beam forming network. To speak of shifting one element 180 degrees
with respect to another element implies a fixed A. If, for example, A
changed by 2 to 1, then a delay-line that provided 180 degrees at one
frequency would provide 360 degrees at the other. Yet delay-lines are
precisely the element needed to build a wide bandwidth "phased array"

antenna. When A varies several octaves, the best parameters to use in the
equations defining the antenna is the time and distance - time-shift of the
delay lines that form the beam-forming network, and distance between
antenna elements. So it is best if one switches to thinking in "timed array"
terms. This time-based framework results in derivations that are frequency
and geometry independent.

2.3. Null Steering and Pattern Forming

Generally, an antenna designer would say that the most critically
important aspect of making desirable antenna patterns is forming nulls. A
simple classic case is spacing 2 elements at 90° and phasing them by 90°
to form an endfrre beam in one direction and a null in the opposite
direction. In the simplest case (using element weighting of + I and -1), to
form a UWB null one must time-steer the array to where the null should
be, and then invert half the elements prior to summing. Of course, using
other weighting factors allows more freedom. An impulse signal 5(t)
coming from a direction other than the null would produce in the receiver
some array-induced waveform. Ignoring bandwidth effects from each

10

element, that waveform would be a function of the + and - weighting and
element spacing. Alld by definition, that waveform is the antenna-array
impulse response for that beam angle. Matched filtering to that waveform
forms a mainlobe in th.at direction.

Grating lobes are customarily defined as lobes whose gain is equal to the
mainbeam. It is interesting to;> note that this definition leads to confusion
in the UWB case. Are there grating lobes? Well, that depends. If one
looks at the response to the UWB signal, like an impulse, then the answer
is no. The peak response on the mainlobe is higher than the response at
any other angle. So the definition fails. On the other hand, however, the
antenna is a linear system. It behaves just like an identical array operating
at a single frequency. So, if one looks at the response to a CW signal, the

answer can be yes. If the elements are physically spaced greater than Al2
apart at the highest frequellcy component in the UWB waveform, then
yes, there certainly will be a grating lobe at that frequency component.
AIl the insight gained from CW antenna analysis holds and remains
useful. One must, however, be carefnl when applying terms like grating­
lobes that presuppose a narrow band signal. In the case of SAR, the
element spacing (Velocity/PRF) needed will be a function of what
sidelobes are permissible al: the various frequency components in the
UWB waveform.

2.4. Target Resonance Effects

Historically, the relative bandwidth of radars has been sufficiently small
that a target's echo is adequately modeled by a single number, [sigma], the
Radar Cross Section (RCS); usually given in square meters. When J1 ~. 5,

however, a single number may no longer adequate -- (J is a function of
frequency. For example, Figure 2 is a plot of the RCS of a sphere. In
addition to the magnitude characteristic plotted, there is also a phase
characteristic. These two frequency-domain characteristics can also be
represented in the time domain by a ringing or resonant response. In
either case - time domain or frequency domain - the plots can be referred
to as the impulse response of the target.

11

5 r-------~--------~----------~----~------~--------_,

Resonance

2 ----------- -------.------------, ,
Optical

0.5

0.2

0.1

______ 1 _________ , ____ _

RayleJgh

Region

- - - - - - - - -,- - - - - - ,- - - - - - - r - - - - - - - - -

- - .. - - - - - - - - - ,- - - - - - - - - .. - - - - - ,- - - - - - - ,.. - - - - - - - - -

, It' j ----------------------------------.-------------
, I " I

0.05 L-_~_~_~~____'____'~ ______ ~ __ ~ __ ~_~~_~~_'__'

0.3 0.5 2 3 5 10

27ifrlc

Figure 2. Radar Cross Section of a Sphere

Since historical SAR systems have not been interested in target ringing,
no attention was paid on how to preserve the ringing infonnation. This
paper describes and analyzes a procedure to focus a large array, over ultra­
wide bandwidths, in such a way as to preserve the resonant response of
targets; even when they are in the near-field.

12

3. Fundamental Time Based, Physical Array Approach

Consider an aperture looking at completely empty space except for an

isotropic scatterer at position (i,k). Also assume that an ideal impulse o(t)
is broadcast It is desirable to take advantage of all the echo energy across
the aperture. To do that, the energy from all collection points along the
synthetic aperture is summed. However, this summation must be done
such that the energy adds coherently at all frequencies. Frequency
independent adding is accomplished as,

kk(t)= LSj(Ti,k,j +t)fort::;0 (1)
j

Here'/;,k(t) would be the impulse response of the target located at position
(i,k). Note that the Ti,kJ term time shifts the received signals Sj such that
the target impulse response starts at t=O -- at all points in the aperture.

The above discussion assumes that a target's impulse response is
sufficiently similar at all points along the aperture to consider equation 1
true. The response of a vertical dipole, for example, does not change
depending on where the radar is positioned in the aperture. It is,
therefore, an isotropic target.

Suppose we relax the isotropic requirement, and suppose that a complex
scatterer is at position (i,k) in the image area. A horizontal dipole, for
example, is an anisotropic target Advantage could be taken of the
anisotropic behavior to extend the detection and target recognition
performance of the radar by rewriting equation 1 as

kk(t) = L[Xj ® Sj](Ti,k,; + t)for t::; 0, (2)
j

where the convolution step represents filtering. In this case, a set of filters

X/ro) would be needed, each one matched to the target response at the
bearing of the J'th position in the aperture. In order to simplify the rest of
this report, equation 1 will be used as the fundamental equation.
Nonetheless, one must recognize that real targets are complex anisotropic
polarimetric scatterers. This fact should not be ignored for large arrays.

13

4. Short Impulse Response Approximation

A typical 2-D SAR image is simply the echo magnitude mapped to
intensity. Equation I expands the typical 2-D image into a 3-D image
with the target ringing along the third dimension. Given the heavy
computation load of typical SAR processing, if it is required that ani(t) be
computed for every pixel instead of a single value, then a massive
computer would be needed. The impact of this computational load is even
worse when one considers that the mass ofresulting data must be analyzed
in the target detection/identification phase. This section defines an
approximation which reduces the problem back to a 2-D case and presents
an error analysis of the approximation.

4.1. Theory

The problem is that a third dimension has been added to measure target
ringing. Note, however, that if there was only one aperture position, then
ringing of the target would just appear in pixels behind the target. Even
with an aperture of many positions, ringing will appear behind the target.
But since the geometry is not constrained, and near-field operation is
presumed, the antenna beam defocuses behind the target. Thus (1) will
perfectly focus ringing of unbounded duration. But for practical purposes,
the target only rings for a finite duration, say M range-bins. The question
is, given that the ringing is finite in duration, can the ring information be
retained in a 2-D image. In other words, suppose that instead of
calculating a time series fi.k(t) for each pixel in the image, only one value

is calculated, for example: fi i1:) where 1: is fixed for the image. If the
target identification problem can be solved with this 2D image, then a
great reduction in computational load is obtained. The aim of this section

is to describe and quantify the error bounds when a 2-D image ii,k(1:) is
used.

First, define a. to be the round-trip time it takes the radar pulse to traverse
one range bin on the grid; that is,

a = ti+l k " - ti k ,: Vk, j = 0 , , , , (3)

Since the grid for the image has been defined to be referenced to the
center of the aperture (the j=O position), the i parameter can be thought of
as a quantized time t parameter. While t is in units of seconds, i is in units

of range bins, and they are related by a. -- one range bin equals a. seconds,
Now we can write

{
case 1: j = 0, Vm, Vi, Vk}

S/T"k,j +ma.);; Sj(T,+,...,) for case 2: m = 0, Vj, Vi, Vk

14

(4)

An approximation is made to equation 4, generalizing it to include all
aperture points over a limited range of m to arrive at

Sjcr.",j +ma) = Sj(T,+m,,) for Vi, Vk, V},m = -M··,M (5)

The following may be said of the approximation in Equation 5,

1. It is perfect at the center of the aperture regardless of m.

2. It is perfect at m=O regardless of j;

3. gets worse as m deviates further from zero;

4. and is worst at the end-points of the aperture.

A solution is desired to (1) in the form offi.k(r;) where 1: is a constant. In a

practical system r; will be mapped to discrete range bins, so let

'l'=na.

Substituting equations 5 and 6 into 1 we define a 2-D "image" f(i,k) as

h,k(O) = ~>/Ti,k,j)
j

= h-n,k(na)= I,sj(Ti-n,k,j +na)= j(i,k)
j

(6)

(7)

If one thinks of a ringing target, then equation 7 can be described as
allowing the point of perfect focus to be adjusted to any depth n in the
ring. For example, if n=O, then the perfect focus point would be at the
leading edge (the first sample) of the ringing response. If n '" 0, say n=3,
then the third sample of the ringing response would be perfectly focused,

Next consider the indexing. The indexing is performed such that f(i,k)
always represents the leading edge of the response from a target located at
(i,k) regardless of whether it is perfectly focused or not. Once fCi,k) is
found, we now wish to find the discrete samples of the target ringing. The
samples will be counted as m=O for the first sample, m= 1 for the second
and so on. These samples are obtained by simply incrementing the i
index. The mth value is just fCi+m,k); which follows from equations 5
and 7 as

fi,k(ma) = h-n+m,k(na) = j(i+m,k) or,

I, Sj(Ti,k,j + mal = h-n+m,k(na) = f(i + m,k)
j

(8)

Clearly equation 8 is identical to equation 1 (i.e. perfect) when m=n. So
equation 8 gives perfect focus at m=n.. The name "short impulse response
approximation" is used because the approximation only needs to remain
accurate over the duration of a target's impulse response.

15

4.2. Examples

To illustrate the use of equation 8, we follow these steps:

1. Fix n;

2. Place a target (for the purposes of the illustration) at say i=237
in range on the kth bearing.

3. Use equation 7 to calculate f(i,k) for all (i,k);

The cases of interest are where n=O and where n '" 0 . We will consider
each separately.

4.2.1. Case where n=O

Use equation 8 to find the ringing response of the target. The response for
the first three points of the focused impulse response is:

f237,k(O) = fZ37-n+m,k(0) = fZ37,k(0) = f(237,k) {caseform=O}

fz37,k (a) z f237-n+m,k(O) = fz38,k (0) = f(238,k) {case for m = I}

fZ37,k (2a) z f237-n+m,k(O) = fZ39,k(0) = f(239,k) {case for m = 2}

Since n=O, the amplitude of the leading edge (m=O) of the impulse
response of that target is perfectly focused. As m increases, the
approximation gets worse. So the approximation is useful as long as the
target resonance dies before the approximation gets too bad.

4.2.2. Case where n 7= 0

In this case, perfect focus is na seconds past the leading edge of the target
impulse response. Suppose, for this exan1ple, n=2. The first 4 data points
for the impulse response is:

f237,k(O) ~ f237-n+m,k(na) = fZ35,k(2a) = f(237,k) {caseform=O}

fz37,k(a) z fz37-n+m,k(na) = fz36,k(2o:) = f(238,k) {caseform=I}

f237 k(2a) = f237-n+m k(na)=!ZJ7 k(2a)= f(239,k) {caseform=2} , , ,
fZ37,k(3a) z fz37-n+m,k(na) = fz38,k(2o:) = f(240, k) (case for m = 3)

Note that the leading edge is not perfectly focused, as it was when n=O.
Incrementing. The important point here is that one can choose n '" 0 to
allow the leading edge to defocus slightly for the sake of keeping later
points in better focus.

16

5. Error of Short Impulse Response Approximation

Landt, Miller, and Van Blaricum8 show the transient echo response of a
thin (hi-Q) dipole. Its ringing is damped after 5 cycles. This response is a
good example to gain an intuitive idea of what kind of range is needed in
the approximation. A 1/2 foot dipole should ring for 5 cycles at 1 GHz.
If the ND sampler collects data at 2 Gs/s, then at M=IO, all of the 5
cycles will have been collected. If the dipole were 5 feet long. then it
would ring for 5 cycles at 100 MHz. So M=IOO to collect the 5 cycles.
Generally, high frequencies damp quickly and low frequencies damp
slowly.

Figure 3 illustrateS the geometry of the approximation. The discussion will
assume this geometry. If a target is located at (i,k)=(237,0), then R is the
distance from the center of the array to the target. al is the distance from
the end of the array to the target. 1237,0(0) is the perfectly-focused data
point for the impulse response of the target. The next point (m=!) in the
impulse response is approximated by saying that a2 z al + ad, or in

general a2zal+mad' If € is the difference (error) between the
approximation and the actual, then

<: = approximation - actual

=(al+ma d)-a2 (9)

=~R2 + i -LsRcos(e) +mad -~(R+madl + i -Ls(R+mad)cOS(e)

8J.A. LandI, E.K. Miller, and M. Van Blaricum "WJ-MBAILlL1B: A COMPUTER PROGRAM FOR THE TIME­
DOMAlN ELECTROMAGNETIC RESPONSE OF TlUN-WIRE STRUCTURES" Lawrence Liverrl".ore Laboratory;
May 6,1974

17

•
j~3 j~2 j=-l j=D j=3

i~ L,------~~~I

Figure 3. Geometry for calculation of approximation error
As an example, suppose R=2 Km, e = 90°, Ls=1 Km, and m=10. How
many degrees off (round trip) would the end points be at 1 GHz?
Plugging into equation 9, we find £=.0447 meters. So the round trip
phase error at I GHz is 107°. Figure 4 is a plot of the error as a function

of the position in the aperture for e=90,76,50, and 30 degrees. A peculiar
characteristic is that the error peaks at 76°. This peaking is a result of
working at a range of only twice the aperture length. Figures 5 and 6
show the error as a function of the beam angle e, for m = 5, 10, 15, and 20
at two ranges.

18

100

:C
<..? 80
""'
'" <t:
o 60
~

~
CJ 40

20

, , , _~ _________ ~ __ M __________ _

, , ,

-400 -200 0 200 400
Position in aperture (meters)

Figure 4. Error as a function of position in aperture

N
::r::
<..?

2~ir===~~----~------~----~~
m
5 ~:

-:- .. , . _ ~/4 '" ~ ; . _ . .",,< ; .. _ ; _ .. 200

I://",
, I'
: Ii :

..... _., ... ;/ ..
;/

50 '--':4
o 20 40

e

, 10

5

60 80

Figure 5. Error as a function of e with RlLs=2

19

Slant Range =2000
m=IO
Sample Rate=2GHz
,,=0

Slant Range =2000
Sample Rate=2GHz

,,=0

25rr==~--~------~------~-----~~'~--1
m 2Qr/" :
5 ? '

----;- ___ : __ N~_=_6-:. __ . _/ __ : __ . _ . ___ : ___ _
~, , , ,
15' '.' 15 '

20

----, '/' , -3L -- -: - -------:- /- ---- : ------- -: ----
: ,/ : 10 --><---*-:-*--I

5

, /' -- - -- - --:-- - -- Jf -,-
, /'

- - - - - - - -; ~ - -

~

20 40 60
e

Figure 6. Error as a function of 6 with R/Ls=6

80

1201r===~~--~----~----~----~~~
e

90
100 -e--

76 --..-
50

,... 30

'" , ,
:;:; 60 -----.----------o , ,

, ,
.. ---.----------. ,

ill
~

~~~ .. ,..,.. ................. .. 
~-

'" 40 Cl 

20 

2 4 

---<-----

, , , ----------------------, , , 

6 8 10 
parameterm 

Figure 7. Error at right aperture end as a function of m 

12 

Slant Range =6000 
Sample Rate=2GHz 
1:=0 

Slant Range =2000 
Sample Rate=2GHz 
1:=0 

Figure 7 is a plot of the error at the right end point of the aperture as a 
function of m, with T=O. The error at the right end is greater than the 

error at the left end for e angles below 900 - so this is the worst case. 
Figure 8 is the same plot but with r=na and n=4. In this case, the leading 

20 



100 

::C 80 
o 
-:;; 
::t: 60 
o 

~ 
~40 

Cl 

20 

edge of the impulse response (at m=O) is out of focus by about 45° at 1 
GHz. Perfect focus occurs when m=n=4. 

, , , 
--.-----------------, , , 

, , , 
--.------._------------, , , , 

2 4 6 8 10 
parameterm 

12 14 

Slant Range =2000 
Sample Rate=2GHz 

f=4a 

Figure 8. Error at right aperture end as a function of m 

To conclude, Figures 4 through 8 show give an indication of the bounds 
over which a 5-cycle ring of a hi-Q scatterer is adequately captured by the 
approximation used in equation 4. These figures also show that making 
r"# 0 can significantly increase the depth of focus on resonant targets. 

21 



6. Efficient Calculation 

Fast focusing can be broken into 3 stages: first, pre-processing, where 
interpolation of the raw data is performed; second, computing a set of 
polynomial coefficients that will be used for fast index calculation; and 
third, performing the focusing summation of equation 7 using the 
coefficients found in second stage to find the index corresponding to the 
proper time shift. 

6.1. Pre-Processing 

The first aspect requiring a solution is a method to efficiently implement 
time shifting. The SAR data is collected by an AID converter that 
outputs a vector of N numbers (voltages) at each aperture position. This 

vector will be called Sj(!). A time shift is, therefore, simply a shift in the 

index i . Typically, the time shifting obtained by indexing on the original 
N-point vector is not fine enough. Finer resolution is gained by a two­
stage interpolator. First, a high quality interpolator is used to produce a 

new K point vector Sj(i). It is usually implemented by inserting M-l 

zeros between each data point in the original vector and then passing the 
new sequence through a low-pass FIR (Finite Impulse Response) filter. 
The process results in a new vector with nearly the desired time-shift 
resolution. The length, in this case, is K = MN. Extra fine resolution is 
gained by using a floating-point index with simple linear interpolation to 
find a value between any two data points in the interpolated data vector. 
For example, if the index i were 6.3, then the interpolated value would 

just be .7sj (6)+.3sj (7). 

The focusing algorithm that follows uses these techniques in the following 
sequence. 

1. Read in one N-point vector Sj (!) ofraw data. 

2. Do an M-point interpolation, to form a new K-point vector Sj(i). 

3. Iterate for all pixels: 

a. Find the floating point index needed for a pixel. 

b. Find the data-value for that pixel by either rounding the index 
and grabbing Ihe value, or by linearly interpolating between 
adjacent values. 

c. Sum into that pixel the data-value obtained. 

22 



6.2. Fast Index Calculation 

6.2.1. Approach 

G(i,k, j) ~ P(i,k, j) 

Typically, the greatest computational load in backprojection focusing is in 
fmding the index. Let P(i,kJ) be the exact index needed. Then equation 
7, the 2-D focusing equation, becomes: 

kk = l.sj(P(i,k, j» 
j 

(10) 

Calculating P(i,k,j) exactly involves 3-D trigonometric solutions for 
every pixel in the image at every position in the aperture. Such 
calculation is prohibitive! So for practical implementation, a secondary 
approximation is utilized to speed the computations. Extremely efficient 
computational methods exist for finding evenly spaced solutions to 
polynomials. Therefore, the approach will be to defme a polynomial in 

three variables G(i,kJ}, where G(i,k, j) ~ P(i,k, j), and use G to compute 
the index. 

The first issue that arises is choosing the order of the polynomial needed 
for each variable. For now (to explain the method) suppose that a second 
degree polynomial is adequate for each of the 3 variables (i,k,}). Now the 
problem can be re-stated as, "for a given image pixel (i,k), and a given 
apenure position (J), find the coefficients am for m=0 . .26 such that 

. ·2 = qO,k,j + Ql,k,jl + Q2,k,jl 

= [cO,j+cl,jk+ C2,jk
2

]+ [c3,j + c4,jk +cS,je]i + [C6,j +c7,jk +C8,l2]i2 

= [(aO + alj+ a2j2)+(a3 + a4j+ asl)k+ (a6 + a7j +as/)e] 

+[(a9 +alOj +al1/)+(a12 + a13j+ a14P)k+(a15 +a16j+a17f)k2 ]i 

+[(alS +a19j+a2oj2)+(a21 +a22j+a23P)k + (a24 +a2sj+a26l)e]i2 

(11) 

Written in this format, it is easy to see that one can code the index 
calculation as loops nested 3 deep; with) as the outer loop, k as the middle 
loop, and i as the inner loop. 

6.2.2. Solving For The Coefficients 

The coefficients am can be found numerically. The approach is to 
calculate the exact index required for M points in the image at each of H 
positions in the aperture, and do a least-squares fit to find the coefficients 

23 



am for m=O .. 26. A generic solution to this problem, for arbitrary image 
size, is found by using a pseudo inverse to perform the least-squares fit. 
When matrix A is not square but rectangular, then A-I is known as the 
Pseudo Inverse and is defined as: 

(12) 

An example will explain the method. To simplify the example, we will 
find a solution for only a single position in the aperture at j=O. So we will 
find the Co through Cs needed to calculate the index needed for sO(GU,k,O). 
Take M=25 points on a patch to be focused: 5 ranges (close-in to far-out: 
i= 0, b, 2b, 3b, 4b) on each of 5 azimuths Oeft side to right side: k=O, a, 

Za, 3a, 4a). The vector B will be the exact (floating-point) calculated 
index needed for those 25 points in the image. The matrix A will be set 
up so that the width of the patch is 4a and the depth of the patch is 4b. So 
we have 

G( ' k ')1 k k2 ' 'k 'k 2 ·2 '2k '2k2 
I, ,] j=O=CO,O+Cl,O +C2,0 +C3,01 +C4,01 +C5,01 +C6,01 +C7,01 +C8,01 

or 

with 

which is, 

24 

·2 
1 

(13) 

(14) 



1 ° ° ° ° ° ° ° ° P(O,O,O) 

1 a a2 

° ° ° ° ° ° P(O,a,O) 

1 2a 4a2 

° ° ° ° ° ° P(O,2a,O) 

1 3a 9a2 

° ° ° ° ° ° P(O,3a,O) 

1 4a 16a2 

° ° ° ° ° ° P(O,4a,O) 

1 ° ° b ° ° b2 

° ° P(b,O,O) 

1 a a2 b ab a2b b2 ab2 a2b2 P(b,a,O) 

1 2a 4a2 b 2ab 4a2b b2 2ab2 4a2b2 P(b,2a,O) 

1 3a 9a2 b 3ab 9a2b b2 3ab2 9a2b2 
cO,O P{b,3a,O) 

1 4a 16a2 b 4ab 16a2b b2 4ab2 16a2b2 
C1,0 P(b,4a,O) 

1 ° ° 2b ° ° 4b2 

° ° c2,0 P(2b,O,O) 

1 a a2 2b 2ab 2a2b 4b2 4ab2 4a2b2 
c3,0 P(2b,a,O) 

1 2a 4a2 2b 4ab 8a2b 4b2 8ab2 16a2b2 
c4,0 = P(2b,2a,O) 

1 3a 9a2 2b 6ab 18a2b 4b2 12ab2 36a2b2 
c5,0 P(2b,3a,O) 

1 4a 16a2 2b 8ab 32a2b 4b2 16ab2 64a2b2 
c6,0 P(2b,4a, O) 

1 ° ° 3b ° ° 9b2 

° ° c7,0 P(3b,O,O) 

1 a a2 3b 3ab 3a2b 9b2 9ab2 9a2b2 
c8,0 P(3b,a,O) 

1 2a 4a2 3b 6ab 12a2b 9b2 18ab2 36a2b2 P(3b,2a,O) 

1 3a 9a2 3b 9ab 27a2b 9b2 27ab2 81a2b2 P(3b,3a,O) 

1 4a 16a2 3b 12ab 48a2b 9b 2 36ab2 144a2b2 P(3b,4a,O) 

1 ° ° 4b ° ° 16b2 

° ° P(4b,O,O) 

1 a a2 4b 4ab 4a2b 16b2 16ab2 16a2b2 P( 4b ,a,O) 

1 2a 4a2 4b 8ab 16a2b 16b2 32ab2 64a 2b2 P(4b,2a,O) 

1 3a 9a2 4b 12ab 36a2b 16b2 48ab2 144a2b2 P(4b,3a,O) 

1 4a 16a2 4b 16ab 64a2b 16b2 64ab2 256a2b2 P(4b,4a,O) 

The inverse of A is found to be: 

25 



~ 961 -- -837 
1225a 
403 

2450a 

124 
2¢s; 
837 

24s(i; 

-403 

31 
245a' 
-31 

49Oa' 
-31 

245a' 
-31 

49Oa' 
31 

-837 729' ---1225b - 1225ab 

-243 -351 ---1225b 2450ab 

81 -108 
i22Sb 245ab 

27 -729 ---2450ab 

1225" ~ 1225b 
-243 9 403 

351 
1225ao 
'-351 

-27 31 -27 

245a'b 245b' 2454b' 
27 9 13 

49Oa'b 245b' 49Oab' 
27 -3 4 

245a' b 245b' 494b' 
7:1 -1 27 

49Oa' b 
-27 

49b' 49Oab' 
3 -13 

2454'b 245b' 245ab' 
13 -31 27 

, 1225 
I 279 

1225 
-93 
1225 
-31 
245 

93 
1225 
27'1 

1225 

81 
1225", 

117 
245a' 2450b 2450ab 49Oa'b 490b' 49Oab' 

-9 117 
1225 2450a 49Oa' 2450b 

-27 36 -9 -39 

169 -13 -9 -13 
4900abc 

26 
980a'b 

-13 
98Oab' 

-2 
1225 245" 
-9 243 

245,,' 2450b 24s;b 49Oa'b 49Gb' 49ab' 
-9 -13 

245 2450a 49Oa' 

27 -117 9 
i22S 1225<1 245,,' 
-93 81 -3 
1225 1225,,_ 245,,' 

-27 -39 3 

490b-

39 
2450b 

124 
245b 

36 
1225 2450a 49Oa' 245b 

9 -12 
245a 

~1 

3 -12 
245a' 245b 

3 -4 

351 -13 

980a'b 
13 

49Oa'b 
4 

1 -27 

98b' 9sQ;;bl 
-3 13 

490b' 49Oab' 
-31 27 

49a'b 245b' 245ab' 
-2 -9 -13 

245b' 49Oab' 
3 -4 

245b' 49ab' 
-27 

49a;b 1 : 

-1 

9Sa'b' I 
-1 

49a;b l I 

-1 

9Sa'b' I 
1 

~i 
-1 i 

9Sa'b' I 
---,1;.,.....,.\ 
196a'b" 

1 I 
9Sa'b' I 

1 I 

196a'b,1 

-1 

98a 2b z I 
-1 I 

494 2bz 

98a'b' 

1 , 
49a'b' I 

1 
245 2450a 49Oa' 49b-

4900ab 

-169-
2450ab 

-108 
245"b 

26 
245ab 

16 
49ab 

54 
245ab 

-52 
245ab 

-729 

49a'b 
-4 

49a'b 

-2 
49a'b 

4 

49a 1b 

49b' • 49Oab' 98a'b' 
-9 39 -3 12 -3 13 -1 

1225 
-31 
245 

-9 
245 

3 
245 

49 
-3 
245 
93 

: 1225 
I 27 

i 1225 
I -9 
I i22S 

-

-3 
245 
9 

1225 

1225" 245a' 
27 -1 

245a. 

-13 
490a 

-4 

---
2450ab 

351 
4900ab 

54 
245ab 

729 

27 

49Oa'b 
-27 

9SOa'b 
-27 

49Oa'b 
-27 

245b' 
-31 

49Ob' 

49a 

-27 
490a 

49a' 
1 

9Sa' 
1 

49a' 
1 

9Sa' 
-1 

245b-
83, 

2450b· 

243 
2450b 

-SI 
2450b­

-2, 
490b 

81 
~ 980a 1b 

-9 
490b' 

3 
490b' 

1 

98b' 
-3 

245ab' 
27 

49Oab' 
-13 

98Oab' 

-2 
49ab l 

-27 

98Oab' 
13 13 -351 27 

245a 49a' 2450b- 2450ab 

-SI 3 -403 351 
1225« 245a' 1225b 1225ab 

39 -3 -117 -169 
2450a 49Oa' i225b 2450ab 

12 -3 39 -52 
245a 245a' 1225b 245ab 

81 -3 13 -3S1 
2450a 

-39 
1225a 

490a' 
3 

245a' 

245b 

-39 
i225b 

26 

2450ab 

169 

12234b 

49Q;;'ib 490b' 49Oab' 
-13 31 -27 

245a'b 245b' 245ab' 
13 9 13 

49Oa'b 
13 

'245a'b 
13 

49Oa'b 
-13 

245a'b 

245b' 49Oab' 
-3 4 

245b' 
-1 

49b' 49Oab' 
3 -13 

245b' 245ab' 

49a zb 1 

-1 

98a'b' i 

:96a'b'! 
1 ' 

98a lb 1 : 

196a'b' 
-1 

9Sa'b' 
1 

490 2b 1 

-1 

9Sa'b' 
-I 

49a1.b 1 

-I 

9Sa'b' 
1 

49a'b' 



Now C is calculated as C = A -1i3, and is used to find a floating-point 
index pointing into the data array. This floating-point index is either 
rounded to pick the nearest point or is used to do a linear interpolation 
between the two closest data points in order to find a data value. 

Two options are available to find the coefficients ao ... a26' The first 
method is to go through the same process as shown but for the full 

problem. That process would involve: enlarging C to hold the 27 aO .. 26 

coefficients; enlarging B to hold the ideal values for not just one position 

in the aperture, but more, say 5 positions; and enlarging A to match. 

The second method is to solve for vector C (as shown) at a number of 
positions in the aperture. Then construct a polynomial in j for each 
coefficient. This solution does not involve inverting the large A matrix 
but will result in a less than optimum solution. 

One beauty of this second method, is that it lends itself to correcting for 
airplane motion. Since A is independent of the airplane position, it is 
inverted once. The matrix multiplication to find the index polynomial 
coefficients can be applied at every aperture position or short sub 
apertures if desired. So the algorithm allows real-time UWB motion 
compensation. 

6.2.3. Fast Polynomial Calculation 

Now that we have a polynomial to find the index, we need a fast way to 
compute the polynomial. Directly calculating an Nth degree polynomial 
usually requires N adds and N multiplies. If, however, a sequence of 
solutions is desired with the variable changed in fixed increments - the 
case we have here - then more efficient means are available. An 
algorithm by NuttaU9 describes a method which can be applied here, to 
calculate the index recursively without the multiplications. The procedure 
is as follows: 

1. Let XU) = qo +q,i+qziZ be the polynomial to be solved, where 
i=O,1,2,3 .... 

2. Let X, (i) = X(i)-X(i-l) = q, -qz +2q2i 

3. Observe that X, (i)- x, (i -1) = 2qz 

4. Therefore a recursion can be set up where: 

9 Albert H. Nuttall, "Efficient Evaluation of Polynomials and Exponentials of Polynomials for 
Equispaced Arguments" IEEE ASSP-35 No. 10 (Oct. 1987) pp1486-1487 

27 



x; (i) = X;(i - I) + 2q2' andX(i) = X;(i -1) + X; (i). 

The starting values for the recursion are: 

X(O) =qo' and X; (0) =ql -q2 +2q2i =ql -q2 

The same derivation can be applied to an arbitrary Nth degree polynomial 
to produce a recursive f011llula that requires N adds per step. The 
technique can also be expanded to the multiple dimensions by nesting. 
Appendix B, lists all routines used in the fast focusing algorithm. 
Subroutine poly2 in section B.5 of appendix B uses this technique 
directly. 

6.2.4. Coefficient Generator Program 

Figure 9 is a diagram showing how the image is broken down along with 
the names used in the subroutines. 

-k 

Figure 9. Image Partitioning and Notation 

The basic flow chart is shown in figure 10. Each time the inner loop goes 
through all the n's, The Zn's are the aO to a26 coefficients for the box 
(defined by hand m) and the sub-aperture (defined by 1). The flow-chart 
shows that the polynomial degree for the en is not always the same. The 
degree was optimized based on the errors caused by going to a lower 
degree. Appendix A provides a complete listing of the program that 
generates the focusing coefficients from an input file with the geometry. 

28 



I Output Header r-
n, DegfO] .. Deg[n-1] 

1-0 (Sub Aperture Count) I 
m-O (Boxes Across) I 

rl h=O (Boxes Out) I 
I n=O (Coefficient) I 

rl 
I Geometry File Compute for all j 

~ Pseudo Inverse 
Cn(j) 

I Least Squares Fit Matrix 

Deglnl p 6X25 
i Cn(j) ~L zp[n,m,h,l] j 
I p=O 

! 

U 
Output Zp's To File I 

n=n+1 
I J Until all n done 

y TlnMr;;-ft~ldone I 
I m=m+1 I nol Until all m done 

1 1=1+1 I 
nol Until All SubAperture done 

Figure 10. Coefficient Generator Flow Chan 

6.3. Fast Focusing Algorithm 

Inner Loop (f, s, s 
float *f; 
float *s; 

The fast focusing algorithm simply applies the fast polynomial solution 
technique to find the indexing and does the signal summation into all the 
pixels in the image. As outlined above, the index calculation is done in 
three nested loops. To aid in explanation, subroutines Inner_Loop, 
Middle_Loop, and OutecLoop are pseudo-coded lO examples of how the 
focusing routine is written using the recursive technique with nesting. A 
second degree polynomial is used throughout for illustration pmposes. 
These subroutines assume that the image is broken into a number of boxes 
where each box has its own set of coefficients. Inner_Loop is the simplest 
subroutine and follows the derivation of the recursive formula directly. It 
essentially increments i to focus a single line in a box. 

max, Q, i_pixes) Inner Loop Subroutine 
pointer to first pixel in a line; f(i stan,k) 
pointer to signal-data vector from jth aperture 
position 

29 



float *q; pointer to coefficients vector for index calculation 
int s max; s range is s[OJ .. s[s maxJ s max; 
int i .pixes; , size of the box (pixels) along i axis is Lpixes; 
Cstop _i = f + i_pixes-l; Set up initial conditions 
T=q[2J+q[2J; 
Rl=q[IJ-q[2]; 
RO=q(01; 
If RO < -0.5 then repeat Perform Clipping when index<O 

{f++; (prior to beginning of actual data) 
Rl=Rl+T; 
RO=RO+Rl); 
until RO > -0.5); 

If (f > f stop_ i) then return; 
index=Round(RO); Perform 1st summation 
*f = *f + *(s+index); 
reIJeat begin loop for a line in box 

ff++; increment pointer to next pixel 
Rl=R1+T; increment index RO=RO+R1; 
index=Round(RO); (clip when index is beyond actual data record 
if index>s max return; length) 
*f = *f +;*(s+indcx) sum into pixel the new data; 

until (f = Cstop); (END Inner_Loop) 
return; 

Nesting of the recursive approach means that the coefficients qO, q 1, and 
q2 are each formed by polynomials in k. Each polynomial is incremented 
recursively in the subroutine Middle_Loop. So Middle_Loop sums into a 
single box the data from a single aperture position. 

Middle_Loop(f, s, c, s_max, Subroutine 
i .pixes, k inc, box offset); 
float *f; pointer to first pixel of box 
float *s; pointer to jth data vector 
float *c; pointer to coefficients vector for index calculation 
int s max; s range is s[O] .. s[s max] 
int k_inc; F[i,k] = *(f + i + k * k_inc) so k_inc is the total range line 

length 
int i .pixes; size of the box (pixels) along i axis 
int box offset; Number to add to f, to move pointer to last line in box 
f last = f + box offset; f last = address of the first pixel in the last line of box 
qO_ T=c[2]+c[2]; Set up initial conditions for qO 
qO_Rl=c[1]-c[2J; 
a[Ol=c[Ol; 

30 



q13=c[5]+c[5]; Set up initial conditions for q 1 
q I_RI=c[ 4]-c[5]; 
qrIl=cr31; 
q2_T=c[8]+c[8]; Set up initial conditions for q2 
q2_RI=c[7]-c[8]; 
q[2]=c[6]; 
Call Inner Loop(f,s,q .. ); Perform summation on fIrst line 
repeat start loop for rest of lines 

f= f + k inc; increment pointer to next line in box 
qO_RI=qO_RI+qO_T; iterate qO 
q[O]=q[O]+qO RI; 
q l_Rl =q l_Rl +ql_ T; iterateql 
q[1]=q[I]+q1 R1 
q2_R 1 =q2_R 1 +q2_T; iterate q2 
q[2]=q[2]+q2 RI; 
Call Inner Loop( .. ); Perform summation on current line in box 

Until (f = Clast); Loop until all lines done 
Return; 

Again, nesting of the recursive approach means that the coeffIcients cO .. c8 
are each formed by polynomials in j. Each polynomial is incremented 
recursively in the subroutine OutecLoop. So OutecLoop sums into a 
each box the data from a multiple aperture positions. Since it is desirable 
to only read the signal-data once, OutecLoop will both call Middle_Loop 
for each box and increment tile coeffIcients for each box separately as it 
increments j across the aperture. 

Outer Loop(f,a,s max,k boxes,i boxes,k_pixes,i .pixes,L beg;, i. end) 
float *fo; pointer to fIrst pixel in entire image; all 

pixels set to zero. 
float *a; pointer to array of coeffIcient vectors for 

index calculation' one vector per box. 
int s max; s has range of srol to sr s max 1 
int number of boxes in k axis k boxes; 
int number of boxes in i axis i boxes; 
int k _pixes; size of the box (pixels) in k axis 
int size of the box (pixels) in i axis i .pixes; 
int t beg; start of data vectors to be processed 
inti end; stop of data vectors to be processed 
k inc = i_pixes * i boxes; (F(i,k»= *(f+i+k*k inc) 
box offset = k inc * (k_pixes-1); Used by Middle Loop 
box inc k - i .pixes + box offset; box inc i = i _pixes; 

j=Lstart; read signal data for fIrst aperture position 
read 5[0 •. 5 max] for j th position; 

31 



f = fo - (box_inc_k+box_inc_i); set up to loop through all boxes 
box=-2; 
for k_box = ° to k_boxes-l; 

box = box + 1; 
f = f + box_inc_k; 
for i_box = ° to i_boxes-I; 

box = box + 1; 
f=f+box inc i; 
cO_T[box]=a[2,box]+a[2,box]; initial condo for cO for current box 
cO_RI[box]=a[1,box]-a[2,box]; 
clO,box l=aro,box 1; 
cl_T[box]=a[5,box]+a[5,box]; initial condo for current box 
cCR 1 [box]=a[ 4,box J-a[5,box]; 
c1 cf1,boxl~-ar3,boxl; 
.. initial condo for .c2 .. c7 for current 
.. box 
.. 
cS_T[box]=a[27,box]+a[27,box]; initial condo for cS for current box 
cS_R1 [box]=a[26,box]-a[27,box]; 
cfS,box 1=af25,box 1; 
Call Middle LoQD(f,s,clboxl, ... ); first summation for current box 

END (for i_box); loop through all boxes 
END (for k box); 
re eat loon throue:h all anerture nositions 

i=i+ 1; increment anerture 
read s[O .. s_max]; position read data for that aperture 

, nosition 
f = fo -(box inc k+box inc 1); 
box=-2; set up to loop through all boxes 
for k_box=O to k_boxes-I; 

box = box + 1; 
f = f + box_inc_k; 
for i_box=O to i_boxes-I; 

box=box+I; 
f=f+box inc i; 
cO_RI[boxJ=cO_Rl[boxJ+cO_T[box]; 
cfO,bo; l=cfo,bo~ l+cO Rlfbox 1; 

iterate cO for current box 

cl_RI[boxJ=cCRl[boxJ+cl_T[box]; iterate c1 for current box 
cf1,bo~kcrl,box1+c1 RHbox1; 
.. iterate c2 .. c7 for current box 
cS_Rl[boxJ=cS_Rl[box]+cS_T[box]; iterate cS for current box 
crS,boxl=cfS,box1+cS Rlfbox1; 
Call Middle T;;;:;;:;(f,s,Crbo~,::l; Sum into current box 

END (for i_box); Loop until all boxes done 
END (for k box); 

32 



Until j=Lstop; Loop until all apenure positions are done. 
Return (END Middle Loop) 

6.3.1. Polynomial Order Selection And Computational Load 

i' 
k' 
j' 

J 
I 
K 
B 

A study was conducted to determine the effect of polynomial order on the 
image size and apenure length. Referring to Figure 3, the scenario 

geometry was for an apenure of Ls=384 feet, a squint angle of e = 85°, a 
slant range of 550 feet to the closest range line i=O, an elevation of 60 
feet, an image area 540 wide, for the worst-case position and box j=3 and 
(i,k)=(0,3), and for a 4 Gs/s data rate 

with record lengths (s_max) of 4096 points. If the error in the floating 
point index is restricted to ±. 5, then this geometry produces the following 
results: 

Poly Nom max max 
De!ITee Loixes k pixes 
I 228 27 
2 964 105 
3 2191 315 
4 657 

By using the nested recursive technique as shown in the example 
subroutines, the computational load is computed as shown below. 

oolvnomial order for i index; 
polynomial order for k index; 
polynomial order for j index; 
Number of points in the apenure; 
Number of range bins (pixels) in box (Lpixes); 
Number of azimuth bins (pixels) in box (k pixes); 
Number of boxes 

LO-I*(i'+l) Adds per Inner Loop call 
Ll-K*(Lo+cl'+ i\k"1 Adds per Middle Loop call 
L=J*(Ll +(i'+ llik'+ m Adds oer Outer Loop (adds per image) 

Grouping terms we get: 

L=(inner loop adds) + (middle loop adds) + (outer loop adds) 

=IKJB(i'+I) + KJB(i'+I)k' + JB(i'+l)(k'+l)j' 

From this equation it is clear that a low order polynomial is crucial in the 
inner loop. Conversely, the order of the polynomial in the outer loop can 

33 



q I I 

1 227 

2 817 

3 2043 

boxes 
down 
18 

5 

2 

be high with little impact on the overall speed. The table below shows the 
computational load for various configurations with j'=3 and J=2304. The 
upper number is the total number of adds (L)in Giga-adds. The lower 
number is the total number of boxes in the image (B). The center number 
is the bytes of storage needed for the coefficient tables which is 
(i'+ l)(k'+ 1)(j'+ 1)*B*(4 bytes/word). 

Table 2. e omputational Load Versus Partition ina 
i' 1 2 3 4 
K 27 103 256 512 
boxes 19 5 2 1 
across 
total pixels 513 515 512 512 
across 

total pixels 
down -
4086 L=9.711 L=9.786 L=9.769 L=9.81O 

S=21888 S=8640 S=4608 S=2880 
B=342 B=90 B=36 B=18 

4085 L=14.51 L=14.58 L=14.51 L=14.53 
S=9120 S=3600 S=1920 S=12OO 
B=95 B=25 B=1O B=5 

4086 L=19.33 L=19.41 L=19.31 L=19.32 
S=4864 S=1920 S=1024 S=64O 
B=38 B=1O B=4 B=2 

6.4. Imph~mentatiol1 NotE'S 

The algorithm developed here requires no multiplication except in the pre­
processing (interpolation) stage. There already exist DSP chips whose 
architecture is ideal for the FIR interpolation task. The bulk of the 
computations, however, occur in the summing and index calculation stage. 
Two facts make the summing algorithm attractive. First, adders take 
considerably less area to implement in a VLSI chip than multipliers. And 
second, parallel operation is extremely simple; the image can simply be 
broken into boxes with a separate processor working independently on 
each box. Except for passing the signal-data to each processor, the 
processors could run independently; only the coefficient table would be 
different. Therefore, design of a custom LSI chip appears practical and 
could result in real-time speeds. 

If an off-the-shelf DSP chip with a parallel adder and multiplier is used to 
perform this algorithm, then other options become available. For 
example, the multiplier can be used in the summing algorithm to do 
interpolation on the indexing rather than rounding. The mUltiplication 
required can be done dlUing other add cycles such that it takes zero time. 

34 



Another possibility is to calculate the index polynomial directly instead of 
recursively. Finally, all the operations can be fixed point. So the address­
generator ALU (Arithmetic Logic Unit) can sometimes be used in parallel 
with the floating point units. 

35 



7. Beam Patterns and Side Lobe Structure 

To develop an intuitive understanding for the beam shape, 16 figures were 
assembled to display, in the time domain, the main-lobe and side-lobe 
beam patterns. Simulation of a resonant target was done by generating a 
data record for every position in the aperture. The simulated scene was a 
single point target. The target bearing, refering to figure 3, was squinted 
150 off broadside (9=1050). Range to the target R was 750 feet. The 
aperture length Ls was 385 feet. The aperture height was 60 feet. The 
point target had an impulse response of 

s(t) = 
sin(27ift)[.5+.5cos(47ift)] for 0 < t < _1_ 

4/ 
1 

(--1)0.23/ 1 
sin(27ift)e 4/ forr <! -

4/ 

(15) 

The data simulated a 2 GHz sample rate. A record length of 2048 samples 
was made for each aperture position. Each record was pre-processed with 
a times-8 interpolator to produce 16K records. Interpolation was done by 
the standard FIR (Finite Impulse Response) filter method. A 255 tap 
Parks-McClellan low-pass filter with a 950 MHz cutoff was used to do the 
interpolation. Equation 7 (with n=O) was used to produce the focused 
beams. A Hilbert Transform was used to obtain the magnitude that is 
plotted in the figures. Plots were made on a dB scale. Sixteen plots were 
made to fill the mattix shown in table 3. 

Table 3. Point Response Function Plots 

Freauencv 
EQual 
50MHz 
200MHz 
400MHz 
900MHz 

On-Axis On-Axis Above-Axis Above-Axis 
EQual Hamming Baual Hamming 
Fwrre 11 Figure 12 FIiiiTe 13 Figure 14 
Fi.rure 15 Fi!!ure 16 Fi!!ure 17 Fi!!ure 18 
Fie-ure 19 Fi!!Ufe 20 Fi!!Ufe 21 Figure 22 
Fi!!ure 23 Fi!!Ure 24 Fi!!ure 25 Fi!!ure 26 

The on axis plots were made so that amplitude values could be easily read 
off of the plots. The above axis plots were made in order to see the 
sidelobe structure, and the ring -down time of the target. The axis labels 
were shifted so that 0 range was at the point target and so that 0 degrees 
was the bearing centered on the target. Notice that all plots are 3-D, even 
the on-axis plots. The various horiwntal lines in the on-axis plots are the 

36 



beam pattern on the i th range bin. These horizontal lines are identical to 
those shown in the above axis plots; they are just being viewed "end on." 

These figures are unique in that they show how the sidelobes spread in 
time as one moves off of the main beam. Due to the sharp rise-time of the 
target echo, the contribution from the near and far ends of the aperture can 
be seen as the early and late peaks in the sidelobe structure. Hamming 
weighting was applied to the array to enable one to see the effect of 
weighting on the sidelobe structure. It is interesting to note that although 
the peak sidelobe levels only drop marginally, the average, or integrated 
sidelobe levels are significantly lower when tapered aperture weighting is 
used. The weighting also reduces the near and far peaks in the sidelobes 
since the weighting reduces the contribution of the array ends. 

Since the antenna is a linear system, it is no surprise that the beam pattern 
behaves basically as classic antenna theory predicts. The aperture beam 
pattern is a function of I) how long the aperture is relative to wavelength, 
and 2) what kind of weighting is used to sum the points in the aperture. If 
uniform aperture weighting is used (a straight summation), then the 

typical sin ( f3lj1) / (f3lj1) pattern occurs, where: 'II is the angle off the main 

beam; and f3 <X Ls / A. f3 establishes the width of the main beam. As the 

wavelength gets small, or as the aperture gets long, the beam gets narrow. 

37 



U 
"0 
:::s ..-.... 

o 

-0 
c.."" e' 

<: 
U o Oil..., 
c:l' e -

"'"' ~ 

o 
"<T , 

0 

"0 0 
'-' -, 
U 

"0 
:::s ...-.... 
-0 c..,... 
e' 
<: 
U o 
Oil"" 
0:' 
e -

0 
"<T , 

2 1.5 

2 I . 5 

1.0 .5 0 
Azimuth 

1.0 .5 0 
Azimuth 

.5 1. 0 
(degree) 

.5 I. 0 
(degree) . 

38 

-1.5 -2.0 

- I . 5 -2.0 

Figure II. 
50MHz Point reflector 
with Equal Weighting 
End View 

Figure 12 . 
50MHz Point reflector. 
Hamming Weighting. 
End View 



"0 
-ON " ' -
~ 
<~ 
~ 
'" e -

~ 
"'0 -ON 
::;I' -.~ -Q. 

e 
<~ 
'" bD 

'" e -

39 

Figure 13. 
50MHz Point reflector, 
Equal Weighting, 
Above Axis 

Figure 14. 
50MHz Point reflector 
Hamming Weighting 
Above Axis 



0 

---e:t1 
"0 0 
'-' -, 
Q) 

"0 
;:: ..... ...... 
-0 
Q,.N 

E' 
-<: 
Q)o 
OIl"" 
c:l' 
E -

0 .... , 
2 

0 

~ 

e:t1 
"0 0 ....... -, 
Q) 

"0 
;:: ..... ...... 

- 0 Q,.N 

E ' 
-<: 
Q)c 
OIl,.,., 
c:l ' 
E -

0 .... , 
2 

J . 5 J • 0 .5 0 
Azimuth 

J . 5 1 . 0 .5 0 
Azimuth 

.5 1. 0 
(degree) 

. 5 1 .0 
(degree) 

40 

- 1. 5 -2.0 

- 1 . 5 -2.0 

Figure 15. 
200MHz Point reflector 
Equal Weighting 
End View 

Figure 16 . 
200MHz Point reflector 
Hamming Weighting 
End View 



'" 

'" -;' 

"0 "ON 
::l ' -.~ 0. 
E 
<~ 
~ 
'" E -

o 

41 

Figure 17. 
200MHz Point reflector 
Equal Weighting 
Above Axis 

Figure 18. 
200MHz Point reflector 
Hamming Weighting 
Above Axis 



~ 

lXl 
"0 0 
'-' -
o 

"0 
::s -..... 

• 

-0 
Q..<'I 
E . 
-( 

o 
"0 
::s -..... 

o 
~ , 

o 

-0 
Q..N 

E ' 
-( 

0 0 00,., 
ce' 
E -

2 I . 5 

2 I . 5 

1 . 0 .5 0 
Azimuth 

1.0 

.5 I. 0 
(degree) 

.5 1.0 
(degree) 

42 

- 1 . 5 

- 1 . 5 

-2.0 

-2.0 

Figure 19. 
400MHz Point reflector 
Hamming Weighting 
End View 

Figure 20. \ 

400MHz Point reflector 
Hamming Weighting 
End View 



o 

<>0 """N :;>' -.~ -c:>-e 
<~ 
~ 
'" e -

43 

Figure2L 
400MHz Point reflector 
Equal Weighting 
Above Axis 

Figure 22. 
400MHz Point reflector 
Hamming Weighting 
Above Axis 



0 

"'"' 
~ 
"0 0 
'-' -, 
0 

"0 
::l ..... ..... 
-0 
0..<-> 
8' 

<C 
0 0 OIl,.., 
«I' 
8 -

o 
"0 
::l ... ..... 

0 ..... , 

o 

...... 0 
0..<-> 
8' 

<C 

o ..... , 
2 

2 1.5 1.0 

I . 5 I . 0 

.5 0 
Azimuth 

.5 0 
Azimuth 

.5 I. 0 
(degree) 

.5 I. 0 
(degree) 

44 

- 1. 5 -2.0 

- I. 5 -2.0 

Figure 23. 
900MHz Point reflector 
Equal Weighting 
End View 

Figure 24. 
900MHz Point reflector 
Hamming Weighting 
End View 



o 

"0 -0", ::s . 
. ':: 
P. 
E 
<~ 

" .. .. 
E -

45 

Figure 25. 
900MHz Point reflector 
Equal Weighting 
Above Axis 

Figure 26 . 
900MHz Point reflector 
Hamming Weighting 
Above Axis 



8. Conclusion 

This report has identified a frequency independent processing algorithm to 
get a perfectly focused impulse response from any object at any position 
from an ultra wide bandwidth synthetic aperture radar. The report also 
presented an approximation that reduces the computational complexity of 
the algorithm. An error analysis of this approximation demonstrated its 
applicability to focus even hi-Q objects in the near field of an aperture. 
An implementation that is both computationally efficient and applicable to 
real-time motion compensation was also presented. Finally, plots were 
made demonstrating the capability of the algorithm to focus ringing 
targets over an 18-to-l bandwidth. 

46 



APPENDIX A 

Coefficient Genorator Program 
A.I. Main Program to Calculate Coefficients (main. c) 

/*************************************************************************** 

Program: coefgen 

Description: This is the main program to generate coefficients 
for fast focusing algorithm. 

*****************************************************************************/ 

#include <malloc.h> 
#include <stdio.h> 
#include <math.h> 
#include "coefgen.const" 
#include "coefgen.var" 

mainO 
( 
long cacheset; 
FILE *fp,*tstarcfp; 
char fn[80]; 
long i; 
ia=(BOX_SIZE_AZIMUTII-4)/4; 
ib=(BOX_SIZE_RADIAL-3 )/4; 

/* initialize variables * / 
coefgen_ varinitO; 

/* initialize pseudo inver matrix */ 
initmatO; 

printf("Enter coefficient a output file name ===> "); 
scanf("%s",fn); 
fp=fopen(fn, "w"); 
if(fp==.r...ruLL) 

( 

} 
/* 

printf("Error open output file \n"); 
exit(l); 

printf("Enter data acquisition timing file name => "); 
scanf("%s" ,fn); 
*/ 

47 



/* 
tstart_fp~fopen(" delaytime.dat", "r"); 
if(tstart_fp--]\j'1JLL) 

( 
printf("Error open input file \n"); 
exit(O); 

} 
read_delaytime(tstartjp); 
*/ 
coefgen(fp); 
} 

A.2. Main Coefficient Generator Routine (coefgen.c) 

#include "coefgen.h" 
#include "coefgen.var" 
#include <stdio.h> 
#include <math.h> 
extern indexO; 
extern rnxmul_O; 
extern poly _fitO; 

/*geometry file*/ 
/*list of variables*/ 

/* Note that Reference point is now taken at coordinate kpixeI~ n_azimuth/2-1 */ 
/* ipixel~ nJadiaV2 -1 */ 
/* At every position data were taken so that the reference point is at center * / 
/* data buffer * / 

void coefgen(fp) 
FILE *fp; 
( 
float input[NPOINT_APERl41; 
long i,j; 
long section,kbox,ibox,position,position_start,position_slop; 
long ipoinl,kpoint; 
for(i~O;i<NPOINT _APERln_section;i++) 

{ 
inpul[il~(floal)i; 

} 
fore section~O;section <n_section;section++ ) 

( 
position_slart~section*n_aper/n_section; 

position_stop~position_start+n_aper/n_section; 

for(kbox~O;kbox<NBOX_AZlMUTH;kbox++ ) 
( 
for(ibox~O;ibox<NBOX_RADIAL;ibox++) 

( 
printf("processing section %d ibox %d kbox %d\n" ,section,ibox,kbox); 

48 



for(position=position_start;position<position_stop;position++ ) 
( 

1******Calculating Actual index for all samples points in a box**********/ 
i=O; 
for(ipoint=O;ipoint<NPOINT _BOXSAMPLE_RADIAL;ipoint++) 

( 
for(kpoint=O;kpoint<NPOINT_BOXSAMPLE_AZIMUTH;kpoint++) 

( 
ipixel=ibox*BOX_SlZE_RADIAL+ipoint*ib; 
jpixel=kbox*BOX_SlZE_AZIMUTH+kpoint*ia; 

d=«float)position-«float)n_aperl2.-I.»*(aper_length/«float)n_aper-l.»; /* distance from 
radar to center of aperture * / 

x=sqrt(rcenter_ref*rcentecref-radar_height2); 
cref=sqrt(radar_height2+x*x*c_theta_centecref*c_theta3enter_ref+(d­

x*s_theta_center_ref)*(d-x*s_theta3enter_ref); 
rmin=cref-d3center*( (float)n_radial/2.-I.); 

index( &ipixel,&jpixel,&findex[i]); 
i++; 

) 
) 

/* generate coef for this box at this position * / 

rnxmuls(mat,&rnacc_stride,&stride,fmdex,&findex_c_stride,&stride,coef,&coeCc_stride,&stri 
de,&n_coef,&i_one,&n_boxsample ); 

/* save in coefc[i][position] */ 
for(i=O;i<COEF _SIZE;i++) 

( 
coefc[i] [position-position_start] =coef[ i]; 
) 

/* for debug only */ 
/* printf("pos= %d tstart= %.3e\n",position,2.0*rmin/c); */ 
/* end debug * / 

) /* position * / 
for(i=O;i<COEF _SIZE;i++) 

( 
printf("Doing polyfit for coef %d\n",i); 

poly_fit(input,&coefc[i][O],n_aper/n_section,deg[i],&coefa[i][O]); 

) 

for(j=O;j«deg[i]+ l);j++) 
( 
fprintf(fp,"%e\n",coefa[iJlj]); /* save ali] to file */ 

) 

49 



) /* ibox */ 
) /* kbox */ 

) /* section * / 

} /* subroutine */ 

A.3. Subroutine Find Ideal Index Vector (index.c) 

1*************************************************************************/ 

Subroutine: 
Input: 

ipixel 
jpixel 
a_span 
a_ofset 
d 
d_rcenter 
dr8 
rrnincenter 
hgt 
hgt2 
lengtb 

Output: 
findex 

index.c 

pixel radial coordinate 
pixel angle coordinate 

angle spanned by tbe patch 
offset angle of tbe center line 

distance from middle position 
sampling range 

(sampling range)/8 
min range rom center position 

height of building 
square tbe height 
length of tbe building 

floating point index to ivalue of tbat pixel 

************************************************************************/ 
#include "coefgen.const" 
#include "coefgen.var" 
#include <matb.h> 

index(ipixel,kpixel,fmdex) 
int *ipixel, *kpixel; 
float *findex; 
( 

I 

theta=a_ofset-a_span/2.+{float)*kpixel*d_tbeta; 
c_tbeta=cos(tbeta); 
s_tbeta=sin(tbeta); 
rcenter=rrnincenter+(float)*ipixel *d_rcenter; 

x=sqrt(rcenter*rcenter-radacheight2); 
r=sqrt(radar_height2+x*x*c_tbeta*c_tbeta+(d-x*s_tbeta)*(d-x*s_tbeta)); 
*fmdex=(r-rrnin)/dr8; 

50 



A.4. Geometry File· Declare All Global Constants (coefgen.h) 

#defme NPOINT_AZIMUTII 600 /* number of bearing lines */ 
#defme NPOINT_RADIAL 4095 /* number of radial lines */ 
#defme NPOINT _APER 2304 /* # of positions in aperture * / 
#define NPOINT_DATA 2048 /* number of original data points */ 
#define NPOINT_DA TA_INTER NPOINT_DATA *8/* number of data points after 

interpolated * / 
#define PI 3.141592654 
#define RADAR_HEIGHT 60. /* radar height in feet */ 
#define A_OFSET -15.0 /* offset angle from center line */ 
#define A_SPAN 54.0 /* spanning angle of the patch */ 
#define RMINCENTER 550. 1* range from center position to 

nearest point on the patch */ 
#define RCENTER_REF 802.0 /* range (ft) of ref. point from center pos. */ 
#define THET A_ CENTER_REF -15.0 /* angle (deg)of ref. point from center pos. */ 
#define SAMPLING_RATE 2.0e09 /* sampling frequency of signal */ 
#define SAMPLING_PERIOD 5.0e-1O /* ts=1/fs */ 

#define BOX_SIZE_RADIAL 195 
#define BOX_SIZE_AZIMUTH 100 
#define NBOX_RADIAL NPOINT_RADIAL/BOX_SIZE_RADIAL 
#define NBOX_AZIMUTH NPOINT_AZIMUTH/BOX_SIZE_AZIMUTH 

#define SECTION_SIZE 4 /* # of sections for one aperture */ 
#define COEF _SIZE 6 /* # of coeffs for curve fit */ 
#define MAXDEG 3 /* maximum degree for poly. fit */ 
#define NPOINT_BOXSAMPLE_RADIAL 5 /* # of samples in a box in radial 

direction * / 
#define NPOINT_BOXSAMPLE_AZIMUTH 5 /* # of samples in azimuth direction 

for every box */ 
#define NPOINT_BOXSAMPLE 
NPOINT_BOXSAMPLE_RADIAL*NPOINT_BOXSAMPLE_AZIMUTH 

/* # of samples in a box for curve fit * / 

A.S. Declare All Global Variables (coefgen.var) 

struct complex { floatr,i; I; /* define a complex type */ 

/* Data Variables */ 
float pixel[NPOINT_AZIMUTH][NPOINT_RADIALJ; /* array of image */ 
float data[NPOINT_DATAJ; /* original data bufer */ 
float data_inter[NPOINT_DATA_INTERJ; /* interpolated data buffer */ 
struct complex data_inter_fft[NPOIl',T'CDATA_INTER/2]; /* Real->Complex Forward FFf 

51 



of data_inter * / 
float fllter3oefINPOINT_DATA_INTERl; /* fllter coefficients */ 
struct complex filtecfft[NPOINT_DATA_IN1ER/2l; /* Real->Complex Forward FFT 

float nyquist_fllter; 
float nyquiscdata; 

offllteccoef */ 
/* value ofFFT offllter at Nyquist point */ 
/* value ofFFT of data at Nyquist Point */ 

/* Geometry Variables */ 
float a_ofset; /* offset angle from the center line */ 
float a_span; /* spanning angle of the patch */ 
float d_theta; /* delta angle */ 
float x,theta; /* coordinate of a pixel */ 
float c_theta,s_theta; /* cosine and sine of theha */ 
float d; /* distance from radar to center position 

positive to the right, neg. to the left */ 
float rcenter,rmincenter,nnaxcenter; /* range from center position */ 
float rcenter_ref; /* range from center pos. to ref point */ 
float theta3enter_ref; /* angle of ref. point from center position */ 
float f_fef; /* range from any pos. to ref. point */ 
float d_rcenter; /* sampling distance from center position * / 
float dr8; /* (sampling distance)/8 */ 
float f,rmin,rmax; /* range from any position */ 
float apeclength; /* length of aperture */ 
float radar_height; /* height of radar */ 
float radar_height2; /* square the height of radar * / 

/* Radar Variables */ 
float c; /* speed of wave * / 
float ts; /* sampling period of signal * / 
float fs; /* sampling frequency of signal * / 

long n_azimuth; 
long n_radial; 
long n_aper; 
long pix_size; 
long n_data; 
long n_data_inter; 
long n_data_intechalf; 
long n_boxsample; 
long n_coef; 
long n_section; 

/* SSL VAriables */ 
float Lzero; 
float Lone; 
long i_one; 

/* # of points in azimuth direction */ 
/* # of points in radial direction */ 
/* # of positions in aperture */ 
/* # of points in pixel array * / 
/* number of original data points */ 

/* number of interpolated data points * / 
I" 1/2 # of interpolated data points * / 
/* # of samples in a box for curve fit * / 

/* # of coefficients curve fit */ 
/* # of sections for one aperture * / 

/* floating point zero 
/* floating point 1 
/* integer 1 

52 

*/ 
*/ 

*/ 



long stride; 

/* working variables *1 
long n_position; 

1* stride for supercard ssl 

float e_index,a_index,error,maxerror,rninerror; 
long ierr_max,jerr_max,ierr_min,jerr_min; 
long column_max,row _max,column_rnin,row _min; 
long ia,ib; 
long ipixeljpixel; 
float c_theta3entecref,s_theta3enter_ref; 
float 

*1 

mat[COEF _SIZE] [NPOINT _BOXSAMPLE],findex[NPOINT_BOXSAMPLE] ,coefTCOEF _SIZ 
EJ; 
float coefc[COEF _SIZE][NPOINT_APER/4]; 1* c coef. for each section *1 
float coefa[COEF _SIZE][MAXDEG+l]; 1* a coef. for each c *1 
long deg[COEF _SIZE]; 1* degree for each coefc *1 
long macc_stride,fmdex3_stride,coeCc_stride; 
float tstart[NPOINT_APER]; /* time from trigger to start data acq. at *1 

1* each position *1 
A.6. Matrix Pseudo Inverse Coefficients (initmat.c) 

#include <stdio.h> 
#include <math.h> 
#include "coefgen.const" 
#include "coefgen.var" 

initmatO 
( 
int i,j; 
float a,b; 

a=«float)BOX_SIZE_AZlMUTII-4.)!4.; 
b=«float)BOX_SIZE_RADIAL-3.)/4.; 

mat[O][O]=93./175.; 
mat[O][1]=27./175.; 
mat[O][2]=(-9.)/175.; 
mat[O][3]=( -3.)/35.; 
mat[O][4]=9./175.; 
mat[O] [5]=62./175.; 
mat[O][6]=18./175.; 
mat[O][7J=(-6.)/175.; 
mat[O] [8]=( -2.)/35.; 
mat[O][9]=6./175.; 
mat[O][lO]=31./175.; 
mat[O][1l]=9./175.; 

53 



mat[0][12]=( -3.)/175.; 
mat[0][13]=(-1.)/35.; 
mat[0][14]=3./175.; 
mat[O][15]=O.; 
mat[O] [16]=0.; 
mat[O](17]=O.; 
mat[O][18]=O.; 
mat[O](19]=0.; 
mat[0][20]=(-31.)!175.; 
mat[0](21]=(-9.)/175.; 
mat[O] [22]=3./175.; 
mat[O] [23]=1./35.; 
mat[O][24]=( -3.)/175.; 

mat[l][0]=(-81.)!(175. *a); 
mat[1][1]=39./(350. *a); 
mat[1][2]=12J(35.*a); 
mate 1 ][3]=81./(350. *a); 
mat[l][4]=(-39.)/(175. *a); 
mat[1][5]=(-54.)!(175. *a); 
mat[1][6]=13./(l75. *a); 
mat[l][7J=8.!(35.*a); 
mat[lJ[8J=27./(175. *a); 
mat[ 1][9J=( -26.)/(175. *a); 
mat[lJ[lO]=( -27.)/(175. *a); 
mat[lJ[11]=13./(350. *a); 
mate 1 J[12]=4./(35. *a); 
mate 1][ 13J=27 ./(350. *a); 
mat[lJ[14]=(-13.)/(175. *a); 
mat[lJ[15J=O.; 
mat[1][16J=O.; 
mat[1J[17]=O.; 
mat[lJ[18J=O.; 
mat[lJ[19J=O.; 
mat[l][20J=27./(175. *a); 
mat[1 J[21 ]=(-13.)/(350. *a); 
mat[1][22]=( -4.)/(35. *a); 
mat[1][23]=(-27.)/(350. *a); 
mat[1][24]=13./(175. *a); 

mat[2][0]=3./(35. *pow(a,2.»; 
mat[2][1]=( -3.)/(70.*pow(a,2.»; 
mat[2] [2]=(-3.)/(35. *pow(a,2.»; 
mat[2][3]=( -3.)/(70. *pow(a,2.»; 
mat[2]( 4]=3./(35. *pow(a,2.»; 
mat[2][5]=2./(35. *pow(a,2.»; 

54 



mat[2][6]=(-1.)/(35. *pow(a,2.»; 
mat[2][7]=( -2.)/(35. *pow(a,2.»; 
rnat[2][8]=(-1.)/(35. *pow(a,2.»; 
mat[2][9]=2.!(35. *pow(a,2.»; 
mat[2](10]=1./(35.*pow(a,2.»; 
rnat[2][11]=(-1.)/(70. *pow(a,2.»; 
mat[2][12]=(-1.)/(35. *pow(a,2.»; 
rnat[2][ 13J=( -1.)/(70. *pow(a,2.»; 
rnat[2][ 14]=1./(35. *pow(a,2.»; 
rnat[2][15]=O.; 
rnat[2][16]=O.; 
rnat[2][17]=O.; 
rnat[2][18]=O.; 
rnat[2][19]=0.; 
mat[2] [20] =( -1. )/(35. *pow(a,2.»; 
mat[2J[21]=1.1(70. *pow(a,2.»; 
mat[2][22]=1./(35. *pow(a,2.»; 
mat[2J[23]=1./(70. *pow(a,2.»; 
mat[2][24]=(-1.)/(35. *pow(a,2.»; 

mat[3][0]=( -31.)/(175. *b); 
mat[3][1]=(-9.)!(175. *b); 
mat[3J(2]=3./(175. *b); 
mat[3][3]=1.I(35. *b); 
mat[3][4]=(-3.)/(l75. *b); 
mat[3][5]=( -31.)/(350. *b); 
mat[3][6]=(-9.)/(350. *b); 
mat[3][7]=3.!(350.*b); 
mat[3][8]=1.1(70. *b); 
mat[3][9]=( -3.)/(350. *b); 
mat[3][1O] =0.; 
mat[3][Il]=0.; 
mat[3][12]=O.; 
mat[3][13]=O.; 
mat[3][14]=0.; 
mat[3][15]=31./(350. *b); 
mat[3][16]=9.1(350. *b); 
mat[3][17]=( -3.)/(350. *b); 
mat[3][18]=(-1.)/(70. *b); 
mat[3][ 19J=3.1(350. *b); 
mat[3][20]=31./(175. *b); 
mat[3][21J=9.1(l75. *b); 
mat[3] [22]=( -3.)/(175. *b); 
mat[3][23]=( -1.)/(35. *b); 
mat[3] [24]=3./(175. *b); 

55 



mat[4][O]=27 .1(175. *a*b); 
mat[ 4] [1 ]=(-13.)1(350. *a *b); 
mat[4)[2]=(-4.)/(35.*a*b); 
mat[ 4](3)=(-27.)/(350. *a*b); 
mat(4)[4]=13.J(175. *a*b); 
mat(4) [5]=27 .I(350.*a*b); 
mat[ 4] [6]=(-13.)/(700. *a*b); 
mat[ 4) [7]=(-2.)/(35. *a*b); 
mat[ 4) (8)=(-27.)/(700. *a *b); 
mat[ 4] [9]= 13./(350. *a*b); 
JDat[4][1O)=O.; 
JDat[4)[11]=O.; 
JDat[4](12)=O.; 
JDat[4][13]=O.; 
mat[4][14)=O.; 
JDat[ 4)[15]=(-27.)/(350. *a *b); 
mat[ 4] [16]=13./(700. *a*b); 
mat[4) [17]=2.1(35. *a*b); 
mat[ 4][18]=27.1(700. *a*b); 
mat[ 4] [19]=(-13 .)/(350. *a*b); 
mat[ 4][20]=( -27.)1(175. *a *b); 
mat[4][21]=13./(350. *a*b); 
mat[ 4)[22]=4./(35. *a*b); 
mat[ 4] [23]=27.1(350. *a*b); 
mat[ 4] [24]=(-13. )/(175. *a*b); 

mat[5] [0]=(-1.)/(35. *pow(a,2.)*b); 
mat[5][ 1 ]=1.1(70. *pow(a,2.)"'b); 
mat[5][2]=l./(35. *pow(a,2.)*b); 
mat[5][3]=1./(70. *pow(a,2.)*b); 
mat[5J[4]=( -1.)/(35. *pow(a,2.)*b); 
mat[5][5]=( -1. )/(70. *pow(a,2.)*b); 
mat[5][6J=l.1(140. *pow(a,2.)*b); 
mat[5][7J=1.I(70. *pow(a,2.)*b); 
mat[5J [8]= 1.1( 140. *pow(a,2.)"'b); 
mat[5] [9J=( -1.)/(70. *pow(a,2.)*b); 
mat[5J[1O]=O.; 
mat[5][11J=O.; 
mat[5][12]=O.; 
mat[5J[13J=O.; 
mat[5][14]=O.; 
mat[5][ 15]= 1.1(70. *pow(a,2.)*b); 
mat[5J[16]=(-1.)!(140. *pow(a,2.)*b); 
mat[5][ 17]=(-1.)/(70. *pow(a,2.)*b); 
mat[5] (18)=(-1.)/(140. "'pow( a,2. )*b); 
mat[5][19]=1.I(70. *pow(a,2.)*b); 

56 



mate 5)[20)= 1./(35. *pow(a,2.)*b); 
mat[5)f21)=( -1.)/(70. *pow(a,2. )*b); 
mat(5)[22)=( -1.)/(35. *pow(a,2.)*b); 
mate 5][23)=( -1.)1(70. *pow(a,2.)*b); 
rnat[5] [24)=1.1(35. *pow(a,2.)*b); 

} 
A.7. Initialize All variables (varinit.c) 

/*************************************************************************** 

Subroutine: coefgen_ varinit 

Description: initialize all neccessary variables 

****************************************************************************/ 

#include <stdio.h> 
#include <math.h> 
#include "coefgen.const" 
#include "coefgen. var" 
coefgen_ varinitO 
( 
n_azimuth=NPOINT_AZIMUI1I; /* # of points in azi. direction */ 
n_radial=NPOINT_RADIAL; /* # of points in rad. direction */ 
pix_size=n_azimuth*n_radiaI; /* Pixel array size */ 
n_data=NPOINT_DATA; /* # of orig. data points */ 
n_data_inter=NPOINT_DATA_INTER; /* # of interpolated. data points*/ 
n_data_intechaIf=NPOINT_DATA_INlER/2; /* 1/2 # of inter. data points */ 
n_aper=NPOINT_APER; /* # of points in the aperture */ 
n_boxsample=NPOI\IT _BOXSAMPLE; /* # of samples in box for curve fit */ 
n_coef=COEF _SIZE; /* # of coeffs for curve fit */ 
n_section=SECTION_SIZE; /* # of sections for one aperture*/ 

/* Radar Variables * / 
fs=SAMPLING_RAlE; /* Sampling Frequency */ 
ts=SAMPLING_PERIOD; /* Sampling period */ 
c=3.e8; /* Speed of wave */ 

/* Geometry variables */ 
a_ofset=A_OFSET*PI/180.; /* Offset angle from center line */ 
a_span=A_SPAN*PI/180.; /* Spanning angle of the patch */ 
d_Iheta=a_span/«float)n_azimuth-l.); /* delta theta */ 
aper_length=(n_aper-1)*2.0*.0254; /* length of aperture */ 
radar_height=RADAR_HEIGHT*12. *0.0254; /* height ofradar */ 
radar_height2=radar_height*radar_height; /* square the height */ 

57 



nmncenter=RMINCENTER*12.*O.0254; 1* min range from center position 
to reference point * / 

d_rcenter=ts*c/(2.0*2.0); /* sampling range */ 
/* project back to 2*n_data samples */ 

dr8=ts*c/(2.0*8.0); /* interpolated 16K buffer */ 

/* 
theta_center=a_ of set -a_span/2. +( (float )n_azimutb/2. -I. )*d_ theta; 
c_theta_center=cos(theta3enter); 
s_theta_ center=sin( theta3enter); 
rcenter_ref=rmincenter+d_rcenter*«float)n_radia1!2.-I.); 
*/ 
rcentecref=RCEr-.'TER_REF*12.*.0254; /* range ofref. point from center pos. */ 
theta_center_ref=TIIETA_CENTER_REF*PII180.; /* angle ofref. point from center 

position */ 
c_theta_center_ref=eos(theta_center_ref); 
s_theta_centecref=sin(theta_center_ref); 

/* SSL Variables * / 
Czero=O.; /* floating point zero */ 
stride= 1; /* stride for ssl * / 
Lone=1.0; /* floating point 1 */ 
i_one=1; /* integer 1 */ 
macc_stride=n_boxsample; /* column stride for mat */ 
findex_c_stride=l; /* column stride fO'r findex */ 
coeCc_stride=l; /* column stride for coeff */ 
deg[O]=3; /* degree for first coefc */ 
deg[I]=3; 
deg[2]=3; 
deg[3]=3; 
deg[4]=2; 
deg[5]=2; 

/* xgints_(pixel,&Lzero,&pix_size,&stride); */ /* clear pixel[][] */ 

) 
A.8. Find Least Squares Polynomial Fit (poly fit.c) 

/************************************************************************* 
Subroutine: poly _fit.c 
Description: 

Perform data fit to polynomial 
Input: x[n] input array 

y[n] input array 
n number of elements 
deg degree of poly. 

58 



output coeff[deg+lJ coefficients of poly 
**************************************************************************/ 
#include <stdio.h> 
#include <malloc.h> 
#include <math.h> 
void poly_fit(x,y,n,deg,coeff) 
float x[],y[],coeff[]; 
long n,deg; 
{ 
double *dx, *dy, *dcoeff; 
double *dX, *dXtrans, *dA, *dB, *dC; 
long m,ij,one; 
one=l; 
m=deg+l; 
dx=malloc(n*sizeof(double»; 
if(dx==NULL) 
{ 
printf("Memory allocation Error! ! !\n "); 
exit(l); 
} 

dy=malloc(n*sizeof(double»; 
if(dy==NULL) 
{ 
printf("Memory allocation Error!!!\n "); 
exit(l); 
} 

dcoeff=malloc( m* sizeof( double»; 
if(dcoeff==NULL) 
{ 
printf("Memory allocation Error!!!\n "); 
exit(l); 
} 

dX=malloc(n*m*sizeof(double»; 
if(dX==NlJLL) 
( 
printf("Memory allocation ElTOr !!!\n"); 
exit(l); 
} 

dXtrans=rnalloc(n*m*sizeof(double»; 
if(dX==NULL) 
{ 
printf("Memory allocation Error!! !\n "); 
exit(l); 
} 

dA=malloc(m*m*sizeof(double»; 
if(dA==NULL) 

59 



( 
printf("Memory allocation Error !ll\n"); 
exit(l); 
} 

dB=malloc(m*m* sizeof( double»; 
if(dB==NULL) 
( 
printf("Memory allocation Error I I !\n "); 
exit(1); 
) 

dC=malloc(m*sizeof(double»; 
if(dx==NULL) 
( 
printf("Memory allocation Error!!!\n "); 
exit(1); 
) 

for(i=O;i<n;i++ ) 
( 
dx[i)=(double)x[i); 
dy[i]=( double )y[i); 
} 

for(i=O;i<n;i++ ) 
{ 
dX[i*m)=l.O; 

} 
forG= l;j<m;j++) 
( 
for(i=O;i<n;i++ ) 
( 

} 

dX[j+i *m)=pow(dx[i),( double )j); 
} 

ruxtrans(dX,n,m,dXtrans); 
mxmuld(dXtrans,&n,&one,dX,&m,&one,dA,&m,&one,&m,&m,&n); 
maUnverse(dA,dB,m); 
ruxmuld(dXtrans,&n,&one,dy,&one,&one,dC,&one,&one,&m,&one,&n); 
ruxmuld(dB,&m,&one,dC,&one,&one,dcoeff,&one,&one,&m,&one,&m); 
for(i=O;i<m;i++ ) 
{ 
coeff[i]=(float)dcoeff[i]; 
} 

free(dx); 
free(dy); 
free(dA); 
free(dB); 

60 



free(dC); 
free(dX); 
free( dXtrans); 
free(dcoeff); 
} 

A.9. Matrix Inverter (inverse.c) 

#include <stdio.h> 

macinverse(source_mat,descmat,size_mat) 
double source_mat[]; 
double descmat[]; 
long size_mat; 
{ 
long n,i,j,k,ki,count; 
double b,bl; 
double err=O.OOOI; 
double a[lOO][IOO]; 
n=size_mat; 
count=O; 

for(i=O;i<size_mat;i++ ) 
{ 
for(j=O;j<size _mat;j++) 

{ 

I 

a[i+ l][j+ l]=source_mat[count++]; 
I 

for(i= 1 ;i<=n;i++) 
{ 

} 

for(j=n+ l;j<=2*n;j++) 
( 

} 

if«j-n-i)=O) 
{ a[i][j)=l.O; } 

else 
{a[i]U]=O.; I 

for(k=l;k<=n-l;k++) 

{ 
b=a[k] [k]; 

61 



ki=k; 
for(i=k+ l;i<=n;i++) 

( 
if( (abs(b )-abs(a[i] [k]) )<0) 

( 
b=a[i] [k]; 
ki=i; 
) 

if«abs(b )-err)<O) 
( 
printf("Error matrix inverse, matrix is singular\n"); 
exit(1); 

} 

if«ki-k) ! =0) 
( 

} 

for(j=k;j<=2*n;j++ ) 
( 

) 

b 1 =a[k][j]; 
a[k] [j]=a[ki][j]; 
a[ki][j]=bl; 

for(j=k+ 1;j<=2*n;j++) 
( 
a[k][j]=a[k][j]!b; 

) 

for(i=k+ 1 ;i<=n;i++) 
( 
for(j=k+ 1;j<=2*n;j++) 

( 

} 
} 

ali] [j]=a[i] [j]-a[i] [k]*a[k] [j]; 
) 

for(j=n+ 1;j<=2*n;j++) 
( 
a[ n] [j]=a[ n ][j]/a[ n] [n]; 
) 

for(k=n-l;k>= 1 ;k=k-1) 
( 

62 



for(j=n+ 1;j<=2*n;j++} 
{ 

} 
} 

for(i=k+ l;i<=n;i++} 
{ 
ark 1 [j)=a[k] [j) -a[k] [i] * ali 1 [j); 

} 

count=O; 
for(i=O;i<size_rnat;i++ } 

{ 
for(j=O;j<size_mat;j++ } 

{ 
descmat[ count++ ]=a[i+ 1] [size_mat+j+ 1]; 
} 

} 

63 



APPENDIXB 

B.I. Main Program For SUN Computer(focus.c) 

1******************************************************************* 

program: focus.c 
description: 

this programs reads radar data from file, interpolates 
data using convolution in freq. domain, and projects 
data back to the polar grid on the ground. The indeces 
used in back projection are computed from the file 
which contains coefficients for a particular geometry 

*******************************************************************/ 

#include <stdio.h> 
#include "focus.h" 
#include "focus. var" 

float data[NPOINT_DATA]; /* data buffer for host */ 
struct cstype *cs[NO_SUPERCARD]; 

main 0 
{ 
float tstarcerr[NPOINT_APER]; /* tstart-tstarctrunc for each position */ 
FILE *inputfile; /* input file contains radar data */ 
FILE *outputfile; /* output file contains focused image */ 
FILE *filterfile; /* input file contains filter coefficients * / 
FILE *coeffile; /* input file contains back projection * / 

/* coefficients * / 
FILE *tstarcerr_file; /* input file contains tstart-tstarctrunc */ 
FILE * junkfile; 
char inputname[80]; 
char outputname[80]; 
char filtemame[80]; 
char coefname[80]; 
char tstart_err_name[80]; 
char temp_string[20]; 
long section,position,box,coefc_order,coefa_order; 
long i,j; /* just working variable */ 
float Cposition; 
long data_ready=l; /* maibox to indicate data ready host ---> SC */ 
long data30nsumed=2; /* mailbox to indicate data consumed host <--- SC */ 
long msg; /* message read from mailbox */ 

64 



long one=1; /* nonzero message to put in mailbox */ 
long cacheset=l; /* cacheset=O turn off cache */ 
long numpar=1; 
float pixel_zero[BOX_SIZE_AZIMVTH) [NPOINT _RADIAL J; 

/*** open supercards *********************************************/ 
for (i=O;i<NO _SUPERCARD;i++) 
( 
cs[iJ=(sttuct cstype *)xlubgn_(O,&cacheset,"sc.lo"); 
} 

/*** initialize supercatd variables ******************************/ 
focus_ varinitO; 

/*** initialize supercards' id ***********************************/ 
for(i=O;i<NO _SUPERCARD;i++) 
( 
cs[iJ->supercard_id=i; 
} 

/*** Enter Input *************************************************/ 
printf("Enter input file name ( .raw )==> "); 
scanf("%s",inputname); 
printf("Enter output file name ( .focus)===> "); 
scanf("%s",outputname); 

/* 
printf("Enter back projection coefficient file name (coefa.dat)===> "); 
scanf(" %s" ,coefname); 
printf("Enter start time difference file name (delaytime_diff.dat)==> "); 
scanf("%s" ,tstart_ercname); 
*/ 
strcpy(coefname,"coefa.dat"); 
strcpy(tstart_ercname,"delaytime_diff.dat"); 

printf("Do you want hamming weight accross the aperture (y or n) ===> "); 
scanf("%s",temp_string); 

forG=O;j<NO _SUPERCARD;j++) 
( 
csUl->ham_flag=O; 
if(temp_string[OJ=='y') 

( 
cs(j]->ham_flag= 1; 
) 

65 



strcpy(filtername, "fIlter.dat"); 
if( (inputfile=fopen(inputname, "rb ") )==NULL) 

( 
printf("Error open input file\n"); 
exit(l); 

} 
if«outputfile=fopen(outputname,"wb"»==NULL) 

( 
printf("Error open output fIle\n"); 
exit(l); 

} 
if«fIlterfIle=fopen(fIltername,"r"»==NULL) 

( 

} 

printf("Error open fIlter fIle\n"); 
exit(1); 

if( (coeffile=fopen( coefname,"r") )==NULL) 
( 

} 

printfC'Error open back projection coefficient fIle\n "); 
exit(l); 

if«tstarcerrjile=fopen(tstart_err_name,"r"»==NULL) 
( 

} 

printf("Error open tstart difference fIle\n "); 
exit(1); 

/*** Read filter coefficients **********************************/ 
/*** into 1st supercard and copy to others supercards **********/ 
printf("»> Reading filter coefficients\n"); 
for(i=O;i<FIL TER_LENGTH;i++) 
( 
fscanf(fIlterfile,"%f',&cs[O]->fIlteccoef[i]); 

} 

for(j=l;j<NO_SUPERCARD;j++) 
( 
for(i=O;i<FIL TER_LENGTH;i++) 

} 

{ 
cs[j]->fIlter_coef[ij=cs[Oj->fIlteccoef[ij; 
} 

66 



/*** Read in tstan_err for all positions to fIrst supercard *****/ 
/*** and then copy to other supercards ***************************/ 
printf("»> Reading tstarcerr data \n"); 
for(i=O;i<NPOINT _APER;i++) 
{ 
fscanf(tstarurr_fIle,"%d %f',&j,&(cs[O)->tstan_err[i))); 
} 

for(j=l;j<NO_SUPERCARD;j++) 
{ 
for(i=O;i<NPOINT_APER;i++) 

} 

( 
cs[j]->tstarcerr[i)=cs[O)->tstarcerr[i); 
} 

/*** Read in coeffIcients a for back projection ******************/ 
/*** to the fIrst supercard and then copy to other supercards ****/ 
printf("»> Reading backprojection coefficients \n"); 
for(section=O;section<SECTION_SlZE;section++) 
( 
for(box=O;box<NBOX_RADIAL *NBOX_AZIMUTII;box++) 
( 
fore coefc_order=O;coefc_order<COEF _SIZE;coefc_order++) 
( 
fore coefa_order=O;coefa_order« cs[O)->deg[ coefc _order) + 1 );coefa_order++ ) 
( 

fscanf(coeffile,"%f',&(cs[O)->coefa[section)[box) [coefc_order )[coefa_order))); 
for(j= 1 ;j<NO _SUPERCARD;j++) 

( 
cs[j]->coefa[section) [box) [coefc_order) [coefa_order)= 

cs[O)->coefa[section)[box) [coefc_order) [coefa_order); 
} 

} /* coefa_order */ 
} /* coefc_order */ 

) /* box */ 
} /* section * / 

/*** Start supercards ********************************************/ 
printf("»> Starting supercard programs \n"); 
for(j=O;j<NO_SUPERCARD;j++) 
( 
xrcall_("sc",&numpar,&cs[j]->dummy); 

I 

/*** For every position, the host computer reads data for that ***/ 

67 



/*** position and copy data into each supercard memory. *""********/ 
/*** There are two mail boxes used betwwen host and each *********/ 
/*** supercard to provide synchronization ************************/ 

for(section=O;section<SECTION_SIZE;section++) 
( 
for(position=O;position<NPOINT flER/SECfION _SIZE;position++) 
( 
printf(,,»»>processing section %d pos %d «««<\n",section,position); 

/*** Read in data for a position *********************************/ 
fread( data,sizeof( data), 1 ,in putfIle); 

forG=O;j<NO_SUPERCARD;j++ ) 
( 

/*** Copy data in each supercard memory **************************/ 
for(i=O;i<NPOlNT_DATA;i++) 

( 
cs[j]->data_temp[ij=data[ij; 
) 

/*** Send mail to supercard to inform data is ready **************/ 
xlnwxmc(cs[j],&data3eady,&one); 
) 

/*** Wait until data is consumed by supercards *******************/ 
forG=O;j<NO _SUPERCARD;j++) 

( 
xlwtrec_(cs[j],&data_consumed,&msg); 
) 

) /* position */ 
) /* section */ 

/*** Check for supercards to finish all processing ******************/ 
forG=O;j<NO_SUPERCARD;j++) 

( 
xldone_(cslj]); 
) 

/*** Save resulting radar image *************************************/ 
forG=O;j<BOX_BASE_START;j++ ) 
{ 
printf("»>Prepad zero to output file \n"); 
fwrite(pixel_zero,sizeof(pixel_zero), 1 ,outputfile); 
) 

printf(,,»>Save image to output file \n"); 
forG=O;j<NO _SUPERCARD;j++) 

68 



fwrite( cslj]->pixel, 

sizeof(float)*BOX_SIZE_AZlMUTH*NPOINT_RADIAL*NO_KBOX_PROCESSINO_SUPE 
RCARD, 

1 ,outputfile); 
} 

for(j=BOX_BASE_START+NO_KBOX]ROCESS;j<NBOX_AZIMUTH;j++) 
( 
printf(,,>>>Postpad zero to output file \n"); 
fwrite(pixel_zero,sizeof(pixeCzero), 1 ,outputfile); 
} 

fclose(inputfile ); 
fclose( outputfile); 

/*** Closing all supercards ****************************************/ 
for(j=NO_SUPERCARD-l;j>=O;j-- ) 
{ 
xlclos_(csfj]); 
} 

) /* end main */ 

B.2. Main Program For Multiple Array Processors (sc.c) 

/******************************************************************* 

Program: sc.c 

Description: This is the main program to be executed by each of 
the CSPI i860 array processor. 

*******************************************************************/ 
#include "focus.h" 
#include "focus.var" 

struct cstype *cs; 

void sc(dummy) 
long *dummy; 
( 
void focus_ varinitO; 
void filter_initO; 

69 



void haminitO; 
void hamwtO; 
void eraseO; 
void interO; 
void fix_data_pointerO; 
voidpolyO; 
void bpO; 
void xwtrec_O; 
void xnwxmcO; 
void xvmov_O; 
void xvclcO; 

float *data_pointer; /* pointer to actual data */ 
long section,position,box,coefc_order,kbox,ibox; 
long data_ready=l; /* maibox to indicate data ready host ---> SC */ 
long data_consumed=2; /* mailbox to indicate data consumed host <--- SC */ 
long msg; /* message read from mailbox */ 
long one=l; /* nonzero message to put in mailbox */ 
float Cposition; 
long box base; 

/*** initialize supercard pointer ***********************************/ 
cs=O; 

/*** initialize image with zeros ************************************/ 
xvclr_(cs->pixel,&cs->pix_size,&cs->i_one); 

/*** initialize filter **********************************************/ 
filter_initO; 

/*** initialize hamming weight coefficients *************************/ 
haminit(cs->ham_coef,NPOINT_APER); 

/*** Start forming image ********************************************/ 

for(section=O;section<SECfION_SlZE;section++ ) 
{ 
for(position=O;position<NPOINT_APER/SECfION_SIZE;position++) 
{ 

/*** Wait for new data from host computer **************************/ 
xwtrec_(&dataJeady,&msg); 

/*** Copy data to working buffer ***********************************/ 
x vmov _ (cs->data,cs->data_ temp,&cs->n_data,&cs->i_ one,&cs->i_ one); 

70 



/*** Signal host computer that data are consumed *******************/ 
xnwxmC( &data_consumed,&one); 

Cposition=(float)position; 

/*** Hamming weight data if needed *********************************/ 
if(cs->ham_flag==l) 

( 
hamwt(cs->data,cs->n_data,section*NPOINT_APER/SECTION_SlZE+position, 

cs->ham_coef); 

/*** zeros last portion of data for circular convolution ***********/ 
erase(cs->data,cs->n_data,32); 

/*** Interpolate data **********************************************/ 
inter(cs->data,cs->n_data,cs->data_inter, 

cs->n_data_inter,cs->filterjft); 

fix_data_pointer(&data_pointer,&cs->data_inter[O], 
cs->tstarcerr[NPOINT_APER/SECTION_SIZE*section+position], 
cs->ts,8); 

for(kbox=boxbase;kbox«boxbase+NO_KBOX_PROCESS/NO_SUPERCARD);kbox++) 
( 
for(ibox=ffiOX_START;ibox<(IBOX_ST ART +NO _ffiOX_PROCESS);ibox++) 
( 
box=kbox*NBOX_RADIAL+ibox; 

/*** Generate coefficients for back projection ********************/ 
for(coefc_order=O;coefc_order<COEF _SIZE;coefc_order++) 
( 
poly( &Cposition,&cs->coefc[ coefc _order], I, 

&cs->coefa[section] [box] [coefc_order][O], 
cs->deg[coefc_order]); 

} /* coefc _order * / 

/*** Perfonn back projection **************************************/ 
bp(cs->pixel,data_pointer,cs->n_data_inter,cs->coefc, 

boxbase,kbox,i box, 
cs->k_pix_size,cs->i_pix_size,cs->i_box_size); 

} /* i_box */ 
) /* k_box */ 

} /* position */ 

71 



1* section * / 

I /* end supercard program */ 

B.3. Routines Used to Interpolate (inter.c) 

#include <math.h> 
#include "focus.h" 
#include "focus.var" 
1**************************************************************************** 

Subroutine: haminit.c 
Description: 

this subroutine initialize array of hamming weighting coeffs 
accross the aperture. 

Input: float ham3oef[NPOINT_APER] 
long npoint Number of points for hamming coeffs 

Output: float ham_coef[NPOINT_APER] is initialized 
****************************************************************************/ 
haminit(ham_coef,npoint) 
float *ham_coef; 
long npoint; 
{ 

) 

long i; 
for(i=O;i<npoint;i++ ) 

( 
ham_coef[i] =.54-.46*cos(2. *3. 1415927*(float)i/(float)npoint); 
) 

1**************************************************************************** 
Subroutine: hamwt.c 

Description: 

Input: 

Output: 

this subroutine takes the radar signal at a position and 
multiplies the entire signal array with the hamming coef at 
that position. 

float data[NPOINT_DATA] 
long npoincdata 
long position 
float ham_coef[]; 

float data[NPOINT_DATA] 

72 



****************************************************************************/ 

hamwt( data,npoincdata,position,ham3oef) 
float *data, *ham3oef; 
long npoincdata,position; 
( 
long i; 
for(i=O;i<npoint_data;i++ ) 

{ 
data[il=data[i]*ham_coef[positionl; 

} 

/**************************************************************************** 
Subroutine: inter.c 
Description: 

This routine performs FIR interpolation by using convolution 
in the frequency domain. The input buffer contains 2K of data 
and is interpolated into 16K of data. The FIR filter has 
breakpoints at .95 Ghz and 1.05 Ghz 

# of taps = 255 
name of filter coeff. f:t1e : f:t1ter.dat 

Input: data[NPOINT_DATA] 
complex filterjft[NPOINT_DATA_INTER/2] 
float nyquiscf:t1ter 

Output: data_inter[NPOINT_DATA_INTER] 
****************************************************************************/ 

interO 
( 
void xvclr_O; 
void xfrf_O; 
void xcvrnls_O; 
void xfrU); 

extern Strllct cstype *cs; 
int i; 

/* clear data_inter buffer * / 
xvclr_(cs->data_inter,&cs->n_data_inter,&cs->i_one); 

/* interleave data into data-inter buffer */ 
for(i=O;i<NPOINT_DATA;i++) 
( 

73 



cs->data_inter[i*8}=es->data[i]; 
} 

/* FFT of interleaved data * / 
xfrC{cs->data_inter_fft,&cs->nyquisCdata,cs->ctata_inter, 

&cs->n_data_intechalf); 

/* FFT of interpolated data (multiply with filter in freq. domain)*/ 
xcvmls_{cs->data_intecfft,&cs->Cone,cs->data_intecfft, 

cs->filter_fft,&cs->n_data_intechalf); 
cs->nyquiscdata=es->nyquiscdata*cs->nyquiscfilter; 

/* inverse FFf to get interpolated data */ 
xfrL(cs->data_inter,&cs->nyquiscdata,cs->data_intecfft, 

cs->ctata_intecfft,&cs->n_data_intechalf); 

) 

/************************************************************************* 

Subroutine: fix_data_pointer 

Description: This subroutine fixes the pointer to the start of 
data_inter buffer. The pointer needed to be adjusted 
due to the following reasons: 

Input: 

(a) The linear FIR interpolation filter has phase 
shift and the actual data point starts at bin 127 
of the data_inter buffer ( FIR has 255 coeffs ) 

(b) The actual time to start data acquisition has to 
be rounded of to I nsec resolution for the scope 
DSA602. However the backprojection algorithm uses 
the exact time since the indeces have to be smooth 
for curve fit. 

float *data_inter (address of data_inter buffer) 
float tstart_err ( tstart-tstart_trunc ) 
float ts ( radar sampling period ) 
long intecfactor (interpolation factor ) 

Output: 
float *data_pointer ( actual start pointer for data) 

**************************************************************************/ 

74 



fix_data_pointer(pointer,data_inter,tstart_err,ts,inter_factor) 
float **pointer; 
float *data_inter; 
float tstart_err; 
float ts; 
long interjactor; 
{ 

long i; 
double floatl,float2; 
unsigned long index_ofset; 
floatl=modf(tstart_err*intecfactor/ts,&float2); 
if(floatl>=.5) float2=float2+ 1.; 
index_ofset=( unsigned long) 127+( unsigned long)float2; 
*pointer=data_inter+index_ofset; 

1* zeros fill first 128 points of data_inter since phase shift from linear filter *1 
for(i=O;i<128;i++ ) 
( 
data_inter[iJ=O.; 

J 

1* zeros fill the last 128 points of data_inter plus 8 points for tstart_err '"I 
for(i=O;i<136;i++ ) 
{ 
data_inter[NPOINT _DATA_INTER +iJ=O.; 

J 

1* first point and last point of actual data array are zeros for backprojection *1 
*'"pointer=O.; 
*(*pointer+NPOINT_DATA_INTER-I)=O.; 

J 

1************************************************************************* 

Subroutine: erase 

Description: Zero out the last nzero points of input buffer 

***************************************************************************/ 

erase(buffer,ndata,nzero) 
float *buffer; 
long ndata,nzero; 
{ 

75 



long i; 
for(i=ndata-nzero;i<ndata;i++) 

( 
buffer[i]=O.; 
) 

} 

BA. Initillllize Interpolation Filter (filtinit.c) 

1*************************************************************************** 

This subroutine performs tbe following: 
1- Read filter coefficients from file to filter buffer 
2- Zerro pad tbe filter buffer to the size of interpolated data 

buffer size 
3- Perform Real Forward FFT of filter buffer to prepare for 

interpolation 

/***************************************************************************/ 
#include <stdio.h> 
#include "focus.h" 
#include "focus. var" 

extern struct cstype *cs; 

void filtecinitO 
( 
void xfrf_O; 
long i; 

/* zero pad filter coeff * / 
for(i=Fll.. TER_LENGTH;i<NPOINT_DA TA_lNTER;i++) 

{ 
cs->filter_coef[iJ=O.; 
} 

/* take fft of filter coef for each supercard * / 
for(i=O;i<NO_SUPERCARD;i++) 

( 
xfrL(cs->filterjft,&cs->nyquisCfilter, 

cs->fIlteccoef,&cs->n_data_intechalf); 

B.S. Main Back Projection Focusing Routing(bp.c) 

#include <math.h> 

76 



1**************************************************************************** 
Subroutine: poly.c 
DEscription: 

Calculates values of polynomials 
Input: x[] input array 

n number of elements 
coeff[] coefficients of poly 
deg degree of poly 

Output: y[] output array 
****************************************************************************/ 

poly(x,y,n,coeff,deg) 
fIoat *x, *y, *coeff; 
long n,deg; 
( 
long i,j; 
for(i;O;i<n;i++ ) 
( 
y[i]~oeff[O] ; 
forG= 1 ;j«deg+ 1 );j++) 

} 
} 

( 
y[i]=y[i]+coeff[j]*pow(x[i],(float)j); 
} 

/*************************************************************************** 

Subroutine: poly2.c 
Description: calculate y~O+cl *x+c2*x"2 

where x;[O,1,2, ... ,n-l) 
Input: 

float c[3) coefficients 
long n (max: 1000) number of points 

Output: 
float y[] output vector 

***************************************************************************/ 

#define MNCELEMENT 1000 

void poly2(y ,n,c) 
float y[],c[]; 
long n; 
{ 
void xvrmp_O; 

77 



void xdint~(); 
float temp; 
float yI[MAJCELEMENT]; 
float y Linit,y I_inc; 
y Unit=e[ I)-c[2); 
yI_inc=2. *c[2); 
xvrmp_(yl,&temp,&yI_init,&yI_inc,&n); 
yI[O]=O.; 
xdint~(y,&c[O],y I ,&temp,&n); 
) 

/**************************************************************************** 

Two-dimensional back projection subroutine 
using fast algorithm by Nuttal to calculates the index to data 
array for each pixel on the ground in i_box,k_box positioned by i,k 
k: azimuth ( 2nd order) 
i: range (ist order) 
The equation for index calculation is 

index= cO+c1 *k+c2*kI\2 + (c3+c4*k+c5*kI\2)*i 
= dO + dI*i 

where c(i) (i=O,5) is a set of coefficients for each box and 
each position in the aperture 

Input: 
float *pixel pointer to first point of the image 

2-dimensional area 
float *data pointer to data array 

Important: data[O]=O.O 
dataf dacsize-I]=O.O 

long dacsize size of data buffer 
float *c pointer to six coefficients for 

index computation 
long k_pix_size size of the patch (pixels) in k axis 
long i_pix_size size of the patch (pixels) in i axis 
long k_box patch number in k axis 
long i_box patch number in i axis 
long i_box_size number of patches in i axis 

Output: 
index to data array is calculated and pixel is updated 

***************************************************************************/ 
#define MAX_K]DCSIZE 1000 
#define MAX_LPIX_SIZE 1000 

78 



void bp(pixel,data,dat_size,c,k_box_base,k_box,i_box,lcpix_size, 
i_pix_size,i_box_size) 

float *pixel; /* array of pixels of tbe whole 2-dimentional area * / 
float *data; /* data array */ 
long dacsize; /* size of data array * / 
float *c; /* pointer to six coefficients for index computation */ 
long k_box_base; /* 0 for 1st SC, i*NBOX_AZlMUTH/NO_SUPERCARD for ith SC */ 
long k_box; /* patch number in k axis */ 
long i_box; /* patch number in i axis */ 
long k_pix_size; /* size of tbe patch (pixels) in k axis */ 
long i_pix_size; /* size of tbe patch (pixels) in i axis */ 
long i_box_size; /* number of patches in i axis */ 

void xvclip_O; 
void vclip_O; 
void xvfx4_0; 
void fix4_0; 
void xvrmp_O; 
void vindex_O; 
void vramp_O; 
void vgatbr_O; 
void vadd_O; 
void vtabU); 

float fllldex[MAX_CPIX_SIZEJ; /* data index value */ 
long lindex[MAX_CPIX_SIZEJ; /* data index value (round to integer) */ 
float pix_temp[MAX_CPIX_SIZEJ; /* temp buffer for back projection */ 
float dO[MAX_K_PIX_SIZEJ; /* dO= cO+cl *k+c2*kA2 */ 
float dl[MAX_K_PIX_SIZEJ; /* dl= c3+c4*k+c5*kA2 */ 
float *pix_index; /* pointer to current pixel */ 
long pix_index_inc; /* each time k is incremented, pixel pointer is jumped */ 
long k; /* for k and i loops control */ 
float maxindex; /* maximum value for data index */ 
float zero=O.O; 
float one= 1.0; 
long i_one= 1; 
float temp; 

maxindex=(float)(dacsize-l); 

pix_index=pixel+(k_box-k_box_base)*k_pix_size*i_box_size* 
i_pix_size+i_box*Lpix_size; 

/* index of first point of tbe patch */ 

79 



1* with respect to pixel */ 
pix_index_inc=i_puesize*i_box_size; /* index increment along k axis */ 

poly2(dO,k_pix_size,c); /* generate array of dO 
poly2(dl,k_pix_size,c+3); /* generate array of dl 

for(k=O;k<k_pix_size;k++ ) 
( 

/* generate floating point index vector * / 
vramp_C&dO[k],&dl[k],findex,&i_one,&Cpix_size); 

/* table look up and interpolate * / 
/* this function replaces xvclipO,xvfx40, vgathrO * / 

*/ 
*/ 

/* 
vtabi_(findex,&i_one,&one,&zero,data,pix_temp,&i_one,&dacsize,&i_pix_size); 
*/ 

/* clip index */ 
vclip_Cfindex,&i_one,&zero,&maxindex,findex,&i_one,&i_pix_size); 

/* convert to integer index */ 
fix4_Cfmdex,&i_one,lindex,&i_one,&Cpix_size); 

/* gather data into temporary buffer * / 
vgathr_Cdata,lindex,&i_one,pix_temp,&i_one,&i_pix_size); 

/* update pixel array with data from temporary buffer */ 
vadd_Cpix_index,&i_one,pix_temp,&i_one,pix_index,&i_one,&i_pix_size); 

/* pix_index jumps along k axis * / 
pix_index=pix_index+pix_index_inc; 

} /* k loop */ 

} /* subroutine */ 

B.6. Declare All Global Constants (Focus.h) 

#define NO_SUPERCARD 3 
#define NPOINT_AZlMUlH 600 
#define NPOINT_RADIAL 4095 
#define NPOI}.;"'CAPER 2304 
#defineNPOINT_DATA 2048 

/* number of supercards */ 
/* number of bearing lines * / 

/* number of radial lines * / 
/* # of positions in aperture */ 
/* number of original data points */ 

80 



#define NPOINT_DATA_INTER NPOINT_DATA*8 /* number of data points after 
interpolated * / 

#define FILTER_LENGTH 255 /* length of FIR filter */ 
itdefine PI 3.141592654 
itdefme RADAR_HEIGHT 60. /* radar height in feet */ 
#define A_OFSET -15.0 /* offset angle from center line */ 
#define A_SPAN 54.0 /* spanning angle of the patch */ 
itdefine RMINCENTER 550. /* range from center position to 

reference point on tha patch */ 
#define RCENTER_REF 802.0 /* range (ft) of ref. point from center pos. */ 
#define THETA_CENTER_REF -15.0 /* angle (deg)of ref. point from center pos. */ 
#defme SAMPLING_RATE 2.0e09 /* sampling frequency of signal */ 
#define SAMPLING_PERIOD 5.0e-lO /* ts=l!fs */ 

#defme BOX_SIZE_RADIAL 195 
#define BOX_SIZE_AZIMUTII 100 
#define NBOX_RADIAL NPOINT_RADIALIBOX_SlZE_RADIAL 
#define NBOX_AZIMUTII NPOINT_AZIMUTHlBOX_SIZE_AZIMUTH 
#define BOX_BASE_START 2 
#define NO_KBOX_PROCESS 3 
#define mOX_START lO 
#define No_mOX_PROCESS 1 

#define SECTION_SIZE 4 /* # of sections for one aperture */ 
#define COEF _SIZE 6 /* # of coeffs for curve fit */ 
#define MAXDEG 3 /* maximum degree for poly. fit */ 
#define NPOINT_BOXSAMPLE_RADIAL 5 /* # of samples in a box in radial 

direction */ 
#define NPOINT _BOX SAMPLE_AZIMUTH 5 /* # of samples in azimuth direction 

for every box */ 
#define NPOINT_BOXSAMPLE 
NPOINT_BOXSAMPLE_RADIAL *NPOINT_BOXSAMPLE_AZIMUTII 

/* # of samples in a box for curve fit */ 

B.7. Declare All Global Variables (Focus.var) 

struct complex ( float r,i; ); /* define a complex type * / 

struct cstype ( 

/* Data Variables * / 
float pixel[NPOINT_AZIMUTH/NO_SUPERCARD)[NPOINT_RADIAL); /* array of 
image*/ 
float data_temp[NPOINT_DATA); /* temp buffer for data */ 
float data[NPOINT_DATA); /* original data bufer */ 

81 



float filter3oef[NPOINLDATA_mTER]; 1* filter coefficients *1 
float data_inter[NPOINT_DATA_INTER+ 136]; 1* interpolated data buffer *1 
float tstarcerr[NPOINT_APER]; 1* tstart-tstarCtrunc for each position *1 
struct complex data_interjft[NPOTh"CDATA_INTER/2]; 1* Real->Complex Forward FFf 

of data_inter *1 
struct complex filtecfft[NPOINT_DATA_INTER/21; 1* Real->Complex Forward FFf 

of filtec coef *1 
float nyquiscfilter; 1* value of FFf of filter at Nyquist point *1 
float nyquiscdata; /* value ofFFf of data at Nyquist Point */ 
long ham_flag; 1* to indicate wheter to use hamming or not * / 
float ham3oef[NPOINT_APER]; /* hamming weight coefficients */ 

1* Geometry Variables *1 
float a_ofset; 1* offset angle from the center line * / 
float a_span; 1* spanning angle of the patch */ 
float d_theta; 1* delta angle *1 
float x,theta; 1* coordinate of a pixel * / 
float c_theta,s_theta; /* cosine and sine of theha *1 
float d; 1* distance from radar to center position 

positive to the right, neg. to the left *1 
float rcenter,rrnincenter,rmaxcenter; 1* range from center position *1 
float rcenter_ref; 1* range from center pos. to ref point *1 
float theta_centecref; 1* angle of ref. point from center position *1 
float r_ref; 1* range from any pos. to ref. point *1 
float d_rcenter; 1* sampling distance from center position *1 
float dr8; 1* (sampling distance)/8 */ 
float r,rrnin,rmax; /* range from any position * / 
float apeclength; 1* length of aperture *1 
float radar_height; /* height of radar * / 
float radar_height2; /* square the height of radar */ 

1* Radar Variables *1 
float c; 1* speed of wave *1 
float ts; 1* sampling period of signal *1 
float fs; /* sampling frequency of signal *1 

long n_azimuth; 
long n_radial; 
long n_aper; 
long pix_size; 
long n_data; 
long n_data_inter; 
long n_data_inter_half; 
long n_boxsample; 
long n_coef; 

1* # of points in azimuth direction */ 
/* # of points in radial direction *1 
1* # of positions in aperture * / 
/* # of points in pixel array */ 
1* number of original data points *1 

/* number of interpolated data points *1 
1* 1/2 # of interpolated data points *1 
/* # of samples in a box for curve fit */ 

1* # of coefficients curve fit *1 

82 



Distribution 

ADMINISTRATOR 
COMMANDER DEFENSE TECHNICAL INFORMATION CENTER 
AF ROME AIR DEVELOPMENT CENTER 
ATTN DTIC-DDA (2 COPIES RADC/RBC CAMERON STATION, BUILDING 5 
A TIN M. WICKS ALEXANDRIA, V A 22304-6145 A TIN P. VAN ETTEN 

OFFICE OF THE SECRETARY OF DEFENSE 
COMMANDER DDR&E/RESEARCH & ADV. TECHNOLOGY 
PENTAGON, WASHINGTON D.C. 20301 
A TIN COL. BARRY CRANE 

US ARMY MISSILE COMMAND ELECTRONIC SYSTEMS 
A TIN AMSMI- - - , J. LOOMIS 
ATTN AMSMI- - - , C. KROLINGER 

83 




