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Abstract

In this paper we discuss the bene�t of par�
allel computing in propagating orbits of ob�
jects� Several analytic methods are now in
use operationally� We will discuss three such
schemes� We demonstrate the bene�t of par�
allelism by using an INTEL iPSC�� hyper�
cube and by using a cluster of Unix�based
workstations running Parallel Virtual Ma�
chine �PVM�� The software PVM allows a
heterogeneous set of networked workstations
to appear as a multicomputer�
We will show that one can achieve near

���	 e
ciency on the hypercube�

�Author to whom all correspondence should be

addressed�

� Introduction

The Naval Space Command �NAVSPACE�
COM� and the Air Force Space Command
�AFSPACECOM� currently track daily over
���� objects in elliptical orbits around the
Earth� To assist in identi�cation and track�
ing of these objects in orbit� they both use an
analytic satellite motion model� The Navy is
using the subroutine PPT� based on varia�
tion of elements model of arti�cial satellite
motion around the Earth� The theory is due
to Brouwer and Lyddane 
��� Given a set of
satellite�s �mean� orbital elements at a given
epoch� the model predicts the state �position
and velocity� vector at a future time� The
model considers perturbing accelerations due
to atmospheric drag� oblateness of the Earth�
and asymmetry of the Earth�s mass about
the equatorial plane� The Air Force is using
SGP��SDP�� �Simpli�ed General Perturba�
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tions� based on the theory of Lane and Cran�
ford 
��� The Deep space capabilities are due
to Hujsak�s 
�� work� They replaced the old
version SGP which was based on the work of
Kozai 
�� and Brouwer 
�� and made opera�
tional by Hilton and Kuhlman 
��� The old
version had no capabilities to track objects
in �deep space� i�e� period greater than ���
minutes�
With the current increase in space oper�

ations� the number of objects necessary to
be tracked is expected to increase substan�
tially� Additionally� if there exists a desire
to increase the accuracy of prediction� the re�
sulting model would require even more com�
puting resources and make achieving results
even more time consuming�
Parallel computing o�ers one option to

decrease the computation time and achieve
more real�time results� Use of parallel com�
puters has already proven to be bene�cial in
reducing computation time in many other ap�
plied areas�
Two common measures of e�ectiveness� ac�

counting for both the hardware and the al�
gorithm are speedup and e
ciency� The
speedup� Sp� of an algorithm is de�ned as

Sp �
Ts

Tp
or

T�

Tp
���

where Ts is the time on a serial computer and
Ti is the time on a parallel computer having
i processors� The e
ciency� Ep� is de�ned by

Ep �
Sp

p
���

and it accounts for the relative cost of achiev�
ing a speci�c speedup� many factors could
possibly limit the e
ciency of a parallel pro�
gram� These factors include the number of
sequential operations that cannot be paral�
lelized� the communication time between pro�
cessors� and the time each processor is idle

due to synchronization requirements� see e�g�
Quinn 
����
Two decomposition strategies can be used

in parallelization of any algorithm� i�e� con�
trol decomposition and domain or data de�
composition� It was shown by Phipps et
al 
��� that control decomposition is ine
�
cient for orbit computation using the analytic
methods mentioned above�

In this paper� we will summarize the results
of parallelization of the analytic orbit prop�
agators using domain decomposition strat�
egy� The INTEL iPSC�� hypercube is used�
We will also discuss the use of a cluster of
Unix�based workstations networked and all
running the Parallel Virtual Machine �PVM�
software� PVM was developed by Oak Ridge
National Laboratory� It is a software sys�
tem that enables a collection of heterogeneous
computers to be used as a coherent and �ex�
ible concurrent computational system �Geist
et al� 
���� In the next section� we discuss the
results of parallelization when using the IN�
TEL hypercube� We give a brief introduction
to PVM software in section �� The results of
parallelizing PPT� on a cluster of worksta�
tions will be detailed in section �� In section
� we discuss PVM use in parallelizing the Air
Force models� We give our conclusions in sec�
tion ��

� Parallel Ver�

sions of PPT�� SGP�

SGP��SDP�

In this section� we discuss the parallelization
of PPT� as well as SGP� SGP��SDP�� The
idea id to let one processor read and dis�
tribute the data to the other �p � �� pro�
cessors which propagate the orbit and send
their results to another processor� the collec�
tor� which writes to the disk� see �gure ��
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The results for n satellites� �� � n �

������ are given in Table � for a hypercube
consisting of � processors�

It is clear that P �T is more e
cient� This
should not be of a surprise� since PPT� re�
quires more computation time ����� msec�
than the others� Note also that the e
ciency
is improving with the number of processors�
The question is now how to �nd the opti�

mal number of processors to use� Phipps et
al 
��� ��� have developed a model for the ex�
ecution time to propagate n objects using p

processor� The time t�p� is given by

t�p� � tw��p� � tw��p� � tc�p� ���

where tw��p� is the time the last node must
wait to receive its �rst data set� tw��p� is the
total time the last node must wait for all its
subsequent data� and tc�p� is the time for each
node to propagate its share of the n objects�
It was shown there that

tw��p� � �p � ��tm��� ���

tw��p� �

�
� if tw� � t��

n

p��
� �

�
�tw��p� � t�� if tw� � t�

���

tc�p� �
nt�

p� �
���

where tm��� is the time to send a single mes�
sage between the distributing and working
node and t� is the time to propagate one ob�
ject� These were found to be

tm��� � ����� msec and t� � ���� msec�

Therefore� the speedup and e
ciency for n �
���� objects� can be plotted as a function of
the number of processors� It can be seen in
the next �gure that for P �T the maximum
e
ciency is ��	 and is achieved when us�
ing �� processors� For PSGP� the maximum
e
ciency is over ��	 using ��� processors�

For PSGP� and PSDP�� the maximum e
�
ciency �over ��	� can be achieved when using
�� processors� Figures ��� show the plots of
the e
ciency of each code as a function of p�
Note that the number of objects propagated
by each code is di�erent� When using SGP�
one handles all orbits the same� but when us�
ing SDP�� only the �deep space� orbits are
considered� The rest are handled by SGP��
As a result of discussion with AFSPACE�

COM� we realized that the propagator in usu�
ally called several times for each object� Each
call corresponds to a speci�ed time beyond
epoch� SGP� propagates data for low earth
objects which requires more frequent tracking
than deep space satellites� Thus� a relatively
large number of observations are received per
day by the AFSPACECOM for each low earth
satellite� The estimated number of calls to
SGP� for each object is �� and to SDP� is
��� To analyze the speedup and e
ciency� we
note that each time a new set of satellite data
is received by SGP� an initialization subrou�
tine is called before the SGP� main subrou�
tine is called� For every other incremented
time speci�ed for the same satellite� the ini�
tialization program is not called� Thus the
execution time can be modeled by �Ostrom

����

t� � tf � �m� ��ts ���

where tf is the time to propagate the satel�
lite including initialization� and ts is the prop�
agation time without initialization� The val�
ues of tf � ts as measured on the iPSC�� hy�
percube are

tf � ���msec� ts � ���msec�

thus
t� � �����msec�

Figure � depicts the speedup and e
ciency
versus hypercube dimension when propagat�
ing ���� satellites to �� times each� Clearly

�



much higher speedups are obtainable in this
case� The maximume
ciency is nearly ���	
when using a hypercube having ��� nodes�
A similar analysis for SDP� �Ostrom� 
����

shows that t� � ����� msec� Using now ����
satellites ���	 of a total of ���� objects� one
�nds near ���	 e
ciency using a ����node
hypercube� see Figure �� This analysis can
be extended to PPT��

� Parallel Virtual Ma�

chine

Parallel Virtual Machine �PVM� is a small
��� Mbytes of C source code� software pack�
age that allows a heterogeneous network of
Unix�based computers to appear as a single
large distributed�memory parallel computer�
The PVM package is good for large�grain par�
allelism� that is� as least ��� kbytes�node�
The term virtual machine is used to desig�
nate a logical distributed�memory computer
and host is used to designate one of the mem�
ber computers�
The PVM software� developed at Oak

Ridge National Laboratory �see Dongara et
al 
�� and Sunderam et al 
���� supplied
the functions to automatically start up tasks
to communicate and synchronize with each
other� A problem can be solved in parallel by
sending and receiving messages to accomplish
multiple tasks� similar to send and receive on
the hypercube�
PVM handles all message conversion that

may be required if two computers use di�er�
ent data representations� PVM also ensures
that error messages generated on a remote
computer are displayed on the user�s local
screen�
The PVM system is actually composed of

two parts� the daemon and a library of PVM
interface routines� The daemon �pvmd or
pvmd�� resides on all the computers making

up the virtual machine� When a user desires
to run a PVM application� he�she executes
pvmd on one of the computers which in turn
starts up pvmd on all the others� The library
of PVM interface contains routines for mes�
sage passing� spawning processes� coordinat�
ing tasks� and modifying the virtual machine�

� Parallelization of

PPT� using PVM

Stone 
��� has tried four possibilities of do�
main �data� decomposition�

� The master sends one satellite to each
working node� then sends one satellite at
a time upon request �ds���

� The master sends one satellite to each
working processor then continues in
round�robin fashion �ds���

� The entire data set is divided to p �num�
ber of working nodes� blocks� The mas�
ter sends a block to each working node
�ds���

� The entire data set is divided to �p
blocks� The master sends one block to
each and then the other block to each
�ds���

In the second option we save on communica�
tions� In the third case we save even more on
communication because we reduced the num�
ber of times required to send data� On the
other hand� sending such large blocks forces
the others to wait� Thus the last case is an
attempt to compromise between the previous
two�
For these experiments� PVM was started

on eighteen di�erent workstations so mea�
surements could be taken for one to sixteen
working nodes� The workstations are SUN

�



Sparc II and Sparc IPX having �� MHz pro�
cessors and con�gured with �� Mbytes of
system memory� The workstations are con�
nected by a �� Mbytes Ethernet based net�
work� Stone experimented with ��� and ����
objects in the data set� We give here the
result for ���� ��gure ��� It is clear that
four working processors su
ce to minimize
the computing time and that the fourth pos�
sibility is the best� Stone 
��� has shown that
a speedup of almost � was achieved when us�
ing � SUN workstations�

� Parallelization of SGP�

using PVM

Brewer 
�� has tried three possibilities for do�
main �data� decomposition�

� Answer Back Method �ABM�

The master sends one block of m satel�
lites to each working node� Upon re�
quest a working processor receives an�
other block of m satellites until the data
set is processed�

� Successive Deal I �SDI�

The master sends one block of m satel�
lites to each working node and continues
to deal such blocks in round�robin fash�
ion�

� Successive Deal II �SDII�

The master sends one block of m satel�
lites to each working node� The rest of
the data set is divided by �p �twice the
number of working nodes�� Blocks of this
size are given to each working nodes in
round�robin fashion �� blocks each��

The second method will eliminate the com�
munication time by the workers requesting
more data� The third method will cut the

communication overhead� This is di�erent
from SDI with a larger m� because in SDII
large blocks are sent while the workers are
busy propagating the �rst m satellites�
We have experimented with various val�

ues of m and chosen ��� and �� processors
�i�e� ������ working nodes� respectively�� The
number of satellites taken to be ����� ��	
of which were considered deep�space� For
a deep�space satellite �� calls were made to
SDP�� For the other satellites� �� calls were
made to SGP��
The �rst measure is the end�to�end time�

This is the most important� since it is a re�
�ection of the total performance of each al�
gorithm� The Answer Back Method was su�
perior when using � or � processors� When
using �� processors� ABM was faster in most
cases� See Figures �����
We can look at this from another point of

view� In the next three �gures� we plot the
end�to�end time for each method� It is clear
from �gure �� that a choice of � or �� pro�
cessors is the best �shortest time� for ABM�
For SDI and SDII a choice of �� processors is
best�
The second measure is the percent of time

a working processor spent on communication�
From the next three �gures ����� is clear that
SDII requires less communication time� which
shouldn�t be surprising� It is also clear that
the more working nodes we have the higher
the percentage�
The third measure is e
ciency� In all three

cases� the ABM was more e
cient� The next
three �gures ����� show that for each method
it is more e
cient to use � or � processors
rather than ���
In closing we should note that with the use

of an open network� there are great �uctua�
tions in the amount of time taken to perform
a given task� The execution time depends on
the number of current users and the percent�
age of the CPU allocated to each user� To
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partially compensate for that� we averaged
�� run times to arrive at our results�

� Conclusions

In this paper we have shown the bene�t of
MIMD parallel computers in predicting the
orbit of objects� Analytic orbit propagators
currently in use by the Navy and Air Force
were implemented on an INTEL iPSC�� hy�
percube and on a cluster of networked Unix�
based workstations running PVM� The e
�
ciency of the algorithms nears ���	 when us�
ing the optimal number of processors� This
optimal number depends on the number of
satellites� the orbit propagator used and the
number of calls to the propagator per satel�
lite� For a cluster of workstations we have
used the software PVM and have shown that
it is more e
cient to use � or � workstations
than ��� The speedup is almost � when using
� workstations�
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