
Artificial 

ELSEVIER Artificial Intelligence 86 ( 1996) 157- 170 

Intelligence 

Research Note 

Polynomial solvability of cost-based abduction * 

Eugene Santos Jra**, Eugene S. Santosbq’ 
a Department of Electrical and Computer Engineering, Air Force Instifute of Technology, Wright-Patterson 

AFB, OH 45433-7765, USA 

h Department of Computer and Information Sciences, Youngstown State University, Youngstown, OH 44555, 
USA 

Received May 1995; revised June 1996 

Abstract 

In recent empirical studies we have shown that many interesting cost-based abduction problems 

can be solved efficiently by considering the linear program relaxation of their integer program 
formulation. We tie this to the concept of total unimodularity from network flow analysis, a fun- 
damental result in polynomial solvability. From this, we can determine the polynomial solvability 
of abduction problems and, in addition, present a new heuristic for branch and bound in the 
non-polynomial cases. 

1. Introduction 

In cost-based abduction [ 3,9], hypotheses have associated costs, and the cost of 
a proof is simply the sum of the costs of the hypotheses required to complete that 
proof. Examples of such proofs can be found in [ 1,3,9]. Central to this approach is 
the use of directed acyclic graphs called WAODAGS (or, weighted AND/OR directed 

acyclic graphs) to represent relationships between hypotheses and the evidence to be 
explained. Each node represents some proposition, and the connections explicitly detail 
the relationships between different propositions. It has been shown in [3] that belief 
revision in Bayesian networks [7] can be accurately modeled by cost-based abduction. 
The costs are interpreted as negative log probabilities. Unfortunately, computing the 
minimal cost explanation has also been shown to be NP-hard [ 31. 
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Recent empirical [ 2.91 studies have shown that many interesting cost-based abduc- 
tion problems can be solved efficiently performing better than existing best-first search 

techniques by considering the linear program relaxation of their integer program for- 
mulation. In particular, a significant number of test cases [ 2,9] were solved through 

linear programming alone without resorting to branch and bound. Linear programming 

is known to be solvable in polynomial time [ 6, IO]. 
We study this phenomenon and determine the conditions for solving abduction prob- 

lems in polynomial time. Our approach ties the concept of total unimodularity from 
network flow analysis to our cost-based problem. Total unimodularity is a fundamental 

result in optimization on polynomial solvability [6, lo]. Furthermore, for those ab- 

duction problems requiring branch and bound, we present a new heuristic based on 

our results which potentially reduces the overall number of branches that need to be 

explored. 

2. Solvability 

Cost-based abduction problems are defined as directed graphs, called WAODAGS (or, 

weighted OR / AND directed acyclic graphs), where the nodes represent propositions, 
the connections represent logical relationships, and the weights at each node represent 
the costs [3,9]. Semantically, these costs can be treated as the negative logarithms of 

conditional probabilities as shown in [ 31. 

Notation. R+ denotes the positive reals. 

Definition 2.1. A WAODAG is a 4-tuple (G. c. r, S), where: 
( 1) G is a directed acyclic graph, G = (VE). 
(2) c : V + IR+ is called the cosr function. 
(3) r : V ---t {AND, OR} is called the l&e/. Such nodes are called AND-nodes and 

OR-nodes respectively. 
(4) S C V is called the evidence nodes. 

Notation. For each node 4 E V, D, = {p / (p. y) E E}, the parents of q. 

Notation. 1 . 1 denotes the cardinality of a set. 

An explanation of the evidence is the same as a proof. More formally, we define this 

as follows: 

Definition 2.2. A truth assignment for a WAODAG W = (G, c, r, S) where G = (YE) 
is a function e : V ----t {true,false}. We say that such a function is an explanation for 
W if and only if the following conditions hold: 

(1) t7’q E V s.t. r(q) = AND,e(q) = true + bfp E V s.t. (p,q) E E,e(p) = true. 
(2) tiq E V s.t. r(q) = OR, e(q) = true + 3p E V s.t. (p, q) E E and e(p) = true. 
(3) YqE S, e(q) =true. 
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no-one-home-7 

Fig. 1. A simpler WAODAG. The AND-node house-quiet is the observation. The nodes no-shows, 

no-one-home and bad-songs are the hypotheses with associated costs 6, 7 and 3, respectively. 

To order the possible explanations, we define the cost of an explanation as follows: 

Definition 2.3. The cost C of an explanation e for W = (G, c, r, S) where G = ( y E) 

is 

C(e) = c c(q). 
{e+(q)=true} 

(1) 

An explanation e which minimizes C is called a best explanation for W. 

Note that conditions ( 1) and (2) in Definition 2.2 above are relaxed from the original 
definition found in [9]. According to Theorems 2.14 and 2.15 from [9], the best 
explanation defined here can be transformed into a best explanation for the original 
definition. Such a transformation can be achieved in 0( IEI) steps. 

In Fig. 1, assume that house-quiet = true is the observation to be explained. One 

possible explanation would be the following assignment of truth values: {housequiet, 

radio-off, bad-songs, tv-off, no-shows} are assigned true and {no-one-home} is assigned 
false. A second possibility is to assign all of them to true. And as a third possibility, 

we can assign {house-quiet, radio-off, W-off, no-one-home} to true and {bad-songs, 
no-shows} to false. We find that our three explanations above have costs 9, 16 and 7, 
respectively. Of the three, our best explanation is the third one with the cost of 7. 

Given a WAODAG W = (G, c, I, S) where G = (YE), construct a O-l integer linear 

program, L(W), as follows: The real variables of L(W) is the set of variables indexed 
by V, that is, {xq 1 q E V}. These variables are governed by the constraints 

l For each xq, 
( 1) if r(q) = AND, then 

xq < xp 

for each p E D,; 

(2) 
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(2) if r(q) =OR, then 

c X,’ > x c/ 
I’ E D‘, 

(3) 

l For each q E S, xq = I. 
l For each xq, xq is either 0 or I. 

The objective function being minimized is 

(“)L(\V) = c x,c(q). 

Note: We have only taken a subset of the constraints from the original formulation [9] 

for our transformation. In particular, the top-down constraints in [ 91 are not considered. ’ 
Again, according to Theorems 2.14 and 2.15 from [9], this system is sufficient to find 

a best explanation for IV. 

Theorem 2.4. An optimal solution for L(W) is a best explanation for W. 

For Fig. I, we have the following system of linear inequalities: 

Xhouse-quiet 6 Xtv-off > 

Xhouse-quiet < .xradic-off 5 

Xhouse-quiet = I. 

-xbad-songs f Xn+one-home 3 -xtv-off 7 

-xno-shows f Xnwxx-home N radio-offs >r 

and the following objective function 

@L(W) = 3Xbad-songs + ~&me-home + ~-%-shows. 

With the transformation to integer linear programming, we now examine the total 
unimodularz’ty [ 6, lo] of the constraint system. Without loss of generality, assume that 

W is a binary graph, that is, each node has either 0 or 2 parents only. Any WAODAG 

can be directly transformed into a binary graph with at most a linear increase in the 
number of nodes and edges. 

As mentioned in [9], the optimal solution to L(W) may not be integral (or more 
specifically, O-l). Consider the simple WAODAG in Fig. 2. From this WAODAG, we 

have the following system of linear inequalities: 

Xtv-ofF $- Xradio-off 3 Xhouse-quiet 1 

Xhouse-quiet = 1, 

&v-off < x no-one-home 3 

Xradicwff 6 Xno-one-home 1 

2 This corresponds to the sem-induced constraint system of 19 1 
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Fig. 2. A WAODAG with a non-integral optimal for L(W) 

and the following objective function 

@L(W) = 7&c-one-home. 

We can easily show that the solution which minimizes the objective function is as 

follows: Xhouse_quiet = 1, Xradieoff = 0.5, Xtv+ff = 0.5, and Xno-one_home = 0.5 with 
@L(W) = 3.5. The primary cause for the 0.5s arises from the inequality for the OR- 

node house-quiet. 

Consider the following canonical form optimization problem: 

min cn 
X 

s.t. Ax < b, 

x; isOor 1. 

The xi correspond to our xq where each q is a node above. x is called the solution 

vector. Each ci in c corresponds to the cost of each node represented by Xi and c is 
called the cost vector. Finally, we can rewrite our above WAODAG linear inequalities 
as a matrix and vector multiplication where A is called the constraints matrix and b the 

constraints vector. 

Observe that each column in the matrix A corresponds to a unique node in W and 
vice versa. For Fig. 1, we have the following system: 

x= 

Xhouse-quiet 

&v-off 

Xradio-off 

Xbad-songs 

Xno-one-home 

c= 

&c-shows _ 
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1 -I 0 0 0 0 0 

1 0 - 1 0 0 0 0 

I 0 
A= 

0 0 0 0 
* b= 

1 

-1 0 0 0 0 0 -1 

0 1 0 -1 -I 0 0 

0 0 I 0 -I -1 0 

Next, we define the concept of parity as follows: 

Definition 2.5. Given an undirected simple cycle, 

~={~p1~p2~~~p2.p3~~...~~pn-l~pI~}. 

in G, the parity of r is 

i{p E V 1 r(p) = OR, (p,p) E 7, (p,q) tl 7, and D, = {p,q}}l module 2. (5) 

Furthermore, if the parity equals I, then r is an odd-cycle. Otherwise, it is an even-cycle. 

Intuitively, parity is a measure on the number of OR-nodes and their parents that are 

traversed by the cycle. We now extend this over W. 

Definition 2.6. W is parity-balanced if for any undirected simple cycle r in G, r is an 
even-cycle. 

Notation. For simplicity, we can also represent r by the sequence of nodes {pt , ~2,. . . , 

pn) where pn = PI. 

Definition 2.7. A is said to be totally unimodular if all of its square submatrices have 
determinant equal to either 0, + I, or - I. 

Consider the following theorem on total unimodulurity from [ 10, Theorem 19.3( iv) ] : 

Lemma 2.8. A is totally unimodular iff each collection of columns of A can be split 

into two parts so that the sum of the columns in one part minus the sum of the columns 

in the other part is a vector with entries only 0, +I, and - 1. 

Based on our derivation of A from W, the entries in A are either 0, +I, or -1. 
Furthermore, for any submatrix A’ formed by arbitrarily selecting sets of columns from 
A, each row in A’ will have one of the following configuration of non-zeros: 

( 1) All zeros. 
(2) One fl. 
(3) One fl and one -1. 
(4) Two -1s. 
(5) One +1 and two -1s. 
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With regards to Lemma 2.8 on columns splitting, the first two configurations will have no 
effect. The third configuration requires that the two columns involved must belong in the 

same grouping, otherwise, the results for that row will be f2. The fourth configuration 

requires that the two columns be separated. The last configuration prohibits placing the 

+l column in one group and both the - 1s in the other group. 

Intuitively, Lemma 2.8 represents a dependency graph between the columns in the 
matrix. As long as this graph is bipartite, we can partition up the columns to satisfy the 
lemma. Our goal is to show that parity-balance guarantees a bipartite graph and vice 
versa. We now prove the following theorem on total unimodularity: 

Theorem 2.9. A is totally unimodular iff W is parity-balanced. 

Proof. (+) Let A be totally unimodular and assume that W is not parity-balanced. This 

implies that there exists an odd-cycle r in G. Let r = (~1, ~2, . . . , p,,} where p,, = pl. 
An OR-node p is said to be completed in r if it contributes to the parity of r, i.e., 

r(p) = OR, (p,p> E T, (p,q) E 7, and D, = {p,q}. The number of completed nodes 
in r is odd. 

Rewrite 7 as follows: 

where (41,. . . , qk} are all the completed OR-nodes in 7. Let ai,j be the column in A 

associated with pi,j for j = 1,. . . , rni and i = 1,. . . , k. Form a collection of columns 
with this set and call the matrix A’. From Lemma 2.8, if the columns in A’ can be 

split, then the columns of any submatrix of A’ formed by removing rows from A’ can 

also be split. There may be OR-nodes in r whose parents are both also in r but is not 
completed. Eliminate the rows relating such OR-nodes to their parents, i.e., those from 

inequality (3). Now, the remaining rows in A’ can be in any configuration except the 
fifth one as described earlier. 

Claim.Foreachi=l,..., k,allpi,jforj=l,.. . , mi must belong in the same group. 

Consider any two consecutive nodes pi,j and pi,j+t in r. One is necessarily the parent 
of the other. Without loss of generality, say pi,j is the parent. If pi,,i+t is an AND-node, 
then there is a row in A’ that satisfies configuration (3) with the +l in ai,j+t and -1 
in Ui,j. Similarly, this holds even if pi,j+t is an OR-node, since it cannot be a completed 

node. This implies that the two nodes must belong to the same group since the columns 
must belong in the same part in order to satisfy Lemma 2.8. 

Denote these groups simply by Pi. 

Claim. Pi can never be grouped with Pi+1 for i = 1,. . . , k - 1 and Pk cannot be grouped 

with PI. 

For each completed node qi, pi_t,nli_l and pi,1 are the parents of qi for i = 2,. . . , k, 

and for 91, the parents are Pk,mL and p1 ,I. Also, there must exist a row of configuration 

(4) above such that the two -1s correspond to the parents. This implies that these two 
nodes must always be in separate groups to satisfy Lemma 2.8. Thus, Pi can never be 
grouped with Pi+, for i = 1, . . . , k - 1 and Pk cannot be grouped with PI. 
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For k = 1, we have an inconsistency where pi.1 and ~1,~~~ must both be in the same 
group as well as both be separated. 

For k > 1, this leaves us with the problem of merging the Pi until we only have 
two groups while simultaneously satisfying the grouping and separation constraints. We 
can represent this by an undirected graph A whose nodes correspond to the Pi and arcs 

between the nodes correspond to a separation condition. Our problem now reduces to 
whether d is bipartite. 

Clearly, A is a simple cycle of odd length since the number of completed nodes is 

odd. Thus, A cannot be bipartite [ 51. Contradiction. 
(e-) Let W be parity-balanced and let {at, ~2, . , a,} be any collection of columns 

in A. Let A’ be the submatrix of A formed from the a,. 
Let V’ = {p, ,p2,. . , y,,} be the nodes associated with the columns ai. Construct the 

subgraph G’ = (V’, E’) from G as follows: For all i, j from 1 to II, if (pi3p.i) E E, then 

(P,>Pi) E E’. 
We say an OR-node is weakly completed with respect to G’ if all its parents are 

also in G’. We observe the following: Given (p;,pi) E E’, (i) r(pj) = AND or (ii) 
r(pi) = OR and p,i is not weakly completed if and only if there exists exactly one row 
in A’ of configuration (3) such that the non-zeros are only in ai and Uj. 

Define a relation R on V’ such that piRp, iff i = j or there exists an undirected path 

r from pi to pj where r does not contain any weakly completed OR-node. Clearly, R is 
an equivalence relation and let u = {CT,, (~2,. . , CT~} be the partition on V’ induced by 
R. Intuitively, these flk represent the necessary grouping of nodes/columns to guarantee 
total unimodularity. 

Next, construct an undirected graph A whose nodes correspond to each (Tk. For each 

row of configuration (4) on A’, if the -1s occur in Ui and U,i, then connect (rk, to ffk, 

where pi E flk, and p.i E (Tk,. 

Claim. ffk is never directly connected to itself. 

If both pi and p,, belong to (Tk, then there is an undirected path from pi to pj 
containing no weakly completed OR-nodes. By construction of A from W, pi and p,i are 

the parents of some OR-node q outside of V’. We can construct a cycle by including 
q. By Definition 2.5, this is an odd-cycle. This would contradict our assumption of 

parity-balance for W. 
Finally, we must consider rows of configuration 5 in A’. Such rows indicate weakly 

completed OR-nodes in G’. Assume pi is such a node and pi, and pjz are the parents of 

Pi. 

Claim. Both p.i, and p,? cannot belong in the sume partition pk. 

Otherwise, there is an undirected path from p,,, to Pi1 containing no weakly completed 
OR-nodes. We can construct a cycle in the path by including pi. By Definition 2.5, this 
is an odd-cycle. This would contradict our assumption of parity-balance for IV. 

Since the parents of a weakly completed OR-node cannot be in the same partition, 
place an arc in A between the corresponding partitions containing the parents. 

As before, we must now prove that A is bipartite. Assume that A has an odd-length 
cycle. Each arc in A corresponds to an OR-node in G. We can construct an undirected 
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cycle in G by first constructing path segments which are free of weakly completed 
OR-nodes in the nodes of A being traversed and join them via the OR-nodes represented 
by the arcs. Hence, we have an odd-cycle in G. Contradiction. Therefore, A is bipartite 

and A’ satisfies the columns splitting of Lemma 2.8. 0 

The Simplex Method for solving linear programs searches along the vertices of the 
polyhedron defined by the constraint system. Combined with the following theorem from 

[ 10, Theorem 19.3(ii)]: 

Theorem 2.10. A is totally unimodular ifffor each integral vector b, the polyhedron 

{x ( x > 0, Ax < b} has only integral vertices. 

This guarantees that the optimal solution found by Simplex will be integral. Hence, 

Simplex alone will solve WAODAG W if W is parity-balanced without resorting to 
branch and bound. 

However, Simplex has an exponential worst-case run-time. Linear programming prob- 
lems can be solved in polynomial time through methods such as Khachiyan’s [IO] 
but these methods do not necessarily find an optimal solution which is integral. It is 
possible for there to exist an integral and a non-integral solution both of which are 

optimal (same objective value). Simplex searches for an optimal solution by exploring 
the extreme points of the constraint space [4,6]. Total unimodularity guarantees that 
all extreme points are integral. Hence, Simplex will find an integral optimal. As it turns 
out, taking the solution generated with Khachiyan’s method, the optimal integral solution 
can be found in polynomial time when W is parity-balanced. This follows from [ 10, 

Theorem 16.21. 
Let’s consider two simple WAODAGS in Figs. 3 and 4 where the first is of even parity 

and the other is of odd parity. Let 

X= 

The corresponding constraint matrices are 

According to Lemma 2.8, we find that taking the last three columns of Aodd, there is 
no way to split them into two sets to satisfy the lemma. On the other hand, A,,, does 
indeed satisfy the conditions for total unimodularity. 
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: no-one-home-7 

‘,----(; 
I’ \ 

Fig. 3. A simple even parity WAODAG 

i no-one-home-7 ’ 

house-quiet , 

Fig. 4. A simple odd parity WAODAG. 

Proposition 2.11. Cost-based abduction with parity-balanced WAODAGS can be solved 
in polynomial time. 

The total unimodularity of a matrix can be determined in polynomial time according 
to [ 10, Theorem 20.31. Hence, we can determine parity-balance also in polynomial 
time. An alternative to this approach is to check for parity-balance directly for each 
undirected cycle in the graph. The problem of generating the cycles can be easily done 

inO((IVI+IEl)(n+l)) h w ere n is the number of cycles generated. Basically, a depth- 
first search is used whereby through an elegant approach to adding edges will generate 
each cycle. Details and analysis of the algorithm can be found in [ 81. 
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Now, consider the case when the constraint system is not totally unimodular. The 
vertex corresponding to the optimal solution in this polyhedron may still be integral. 

Let II be the number of variables and rn be the number of equations in our constraint 

system. For each vertex u in our polyhedron, there are n constraints which define U. 
Construct a subgraph G, from G as follows: 

l For each inequality like (3), we include the OR-node, its parents and the edges 
between them. 

l For each inequality like (2), we include the AND-node, the single parent involved 
and the edge between them. 

Constraints for evidence are ignored since they will have no impact on total unimodu- 

larity of the resultant matrix. (The row associated with such a constraint has a single 

non-zero value of 1.) Parity and parity-balanced can be naturally extended to G,, even 
though AND-nodes may only have one parent. 

Theorem 2.12. If G,. is parity-balanced, then o is integral. 

Proof. If G,, is parity-balanced, then it follows with slight modifications from Theo- 
rem 2.9, that the coefficient matrix of the IZ equations is totally unimodular. Thus, u is 

integral. 0 

The integrality of a vertex depends on its associated subgraphs. Hence, linear pro- 

gramming alone can also result in an integral optimal solution. 
Let W’ = (G’, c’, r’, S’) where G’ = (V’, E’) be a WAODAG. 

Definition 2.13. W’ is said to be a partial WAODAG of W if the following conditions 

hold: 
0 v’ = v. 
l G’ is a subgraph of G such that Vp E V, if r(p) = OR then either 

- v(q,p) E E,(q,p) E E’, or 
- V( q,p) E E, (q,p) is not in E’. 

l C’EC. 

0 r’ E r. 

0 S’ = s. 

Theorem 2.14. Given a WAODAG W, let e be a best explanation for W. We can 

determine a best explanation for W in polynomial time if there exists a partial WAODAG 
W’ of W such that W’ is parity-balanced and e is also a best explanation for W’. 

Proof. Observe that the polytope for W’ is a superset of the polytope for W. In fact, 
the matrix for W’ is a submatrix of the one for W. Furthermore, since e is also a 
best explanation for W’, there cannot exist any solution x in W such that cx < C(e) 

regardless of whether x is integral or non-integral. 
With Khachiyan’s method, we can find C(e) = max{cx ( Ax < b} and a system of 

linear equations A’x = b’ determining a minimal face F of {x 1 Ax < b} so that each 
x in F satisfies cx = C(e) [lo]. 
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We can find an optimal integral solution for W in polynomial time according to 
Corollary 5.3b from [ lo] which states that: Given c1 system of rational linear equations, 

we can decide if it has an integrul solution, and if so, find one, in polynomial time. cl 

From Theorem 2.14, it is not necessary for the original graph to be parity-balanced 

to ensure that an optimal solution to the derived constraint system is integral. As 
long as there exists a partial WAODAG which is parity-balanced and shares the same 

optimal integral solution as the original, Simplex alone can be used to determine a best 
explanation. This can serve to explain the empirical results in [ 2,9]. 

Finally, given the observations on parity-balance, the clamping of evidence nodes 

in W can also impact total unimodularity indirectly. Construct a new WAODAG WI = 

(G’, c, r, S) where G’ = (YE’) from W as follows: Initially, E’ = E. Remove edge 
e = (p, q) from E’ if D, n S is not empty and r(q) = OR. Intuitively, q is automatically 

supported by one of its parents. 

Proposition 2.15. The best explunatiorl for WI is the best explanation for W. 

WI reduces the size of the problem and eliminates potential odd parity cycles from W. 

More importantly, this generalizes to the branch and bound process further eliminating 

such cycles. 
In the bounding process, a variable xq can bc clamped to either 0 or 1. Proceeding 

down the branch and bound tree, each problem instance has two associated sets of 
nodes VO and VI 2 S which must be clamped to 0 and 1 respectively. Let q be defined 

recursively as follows: 
0 voc:i$. 
l If r(q) = AND and D, fl q is not empty, then q E G. 

l If r(q) = OR and D, C_ VO, then y E VO. 

If q f’ VI is not empty, the problem instance is infeasible. Otherwise, construct W’ 
from W as follows: 

( 1 ) For each p t VO, remove all edges incident on p from G. 

(2) If D, n V, is not empty and r(q) = OK, remove edge e = (p, q). 

(3) If D, C V, and r(q) = AND, remove edge e = (p,q). 

Definition 2.16. e is a corksterrt explanatiorl for W with respect to VO and VI if the 

following conditions hold: 
0 e is an explanation for W. 

0 vq E VO, e(q) = false. 
0 Vq E VI, e(q) = true. 

The best consistent explanation is one which minimizes the cost function C ( .). 

The following relationship between W and W’ holds: 

Theorem 2.17. e is a consistent explanation for W with respect to VO and VI if e is a 

consistent explanation for W’ with respect to F and VI. 
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Proof. (+) Let e be a consistent explanation for W with respect to V, and V,. By the 
construction of W’ above as a subgraph of W, e is an explanation for W’. Also, vq E VI, 

e(q) = true. Finally, from Definition 2.2 and the construction of K above, Vq E K, 

e(q) = false. Therefore, e is a consistent explanation for W’ with respect to K and V, . 

(e) Let e be a consistent explanation for W’ with respect to i& and Vj, Since V, is 
a subset of K, for all q in VO, e(q) = false. Also, for all q in VI, e(q) = true. 

If e’ is not an explanation for W, then e’ violates one of the following conditions 

from Definition 2.2: 

(1) 3q E V s.t. r(q) = AND, e(q) = true, and 3p E D4(W) s.t. e(p) = false. 
Dy( W) are the parents of q in W. 

(2) 3qE Vs.t. r(q) =OR, e(q) =true, andVp ED,(W), e(p) =false. 
(3) 3q E S s.t. e(q) = false. 
Case ( 1). Let p and q be the two nodes. If p E 04( W’), then e’ cannot be an 

explanation for W’. If p is not in D4( W’), by our above construction, p E i;t; or q E q. 

If q E q, then e’ cannot be a consistent explanation for W’ with respect to % and Vi. 

If p E i?j;, then q must also be in K. Contradiction. 

Case (2). Let q be the node. If D4( W’) is not empty, then e’ cannot be an explanation 
for W’. For each p E Dg( W), either p E F or p E VI. p cannot be in V, since e(p) = 

false. Thus, 04(W) G VO implying that q E 6. Contradiction. 

Case (3). S = S’. Contradiction. 
Therefore, e’ is an explanation for W. Thus, e is a consistent explanation for W with 

respect to VO and VI. 0 

Thus, W and W’ are equivalent WAODAGS under their respective clampings. 

Theorem 2.18. The best consistent explanation for W with respect to VO and VI is the 

best consistent explanation for W’ with respect to G and VI. 

Proof. Follows from Definition 2.16 and Theorem 2.17. 0 

This leads to the following new heuristic for branch and bound: Let V, 2 V be the set 

of all OR-nodes in G such that the OR-node contributes to the parity of some undirected 
simple cycle in G. 

Theorem 2.19. If all the nodes in V, are clamped, then the resulting WAODAG W’ 

constructed from W above can be solved in polynomial time. 

Proof. If all the nodes in V, are clamped, then there cannot exist any cycles in G’ 
constructed from G above with odd parity. Hence, W’ is parity-balanced. From The- 
orem 2.9, the constraint system for W’ is totally unimodular and thus solvable in 
polynomial time. 0 

Theorem 2.20. The worst-case number of branches needed to$nd the optimal integral 

solution is 21v4 < 21’1. 



170 E. Snntos Jt: ES. Suntos/Art&rul Intelligence 86 (1996) 157-l 70 

Proof. Follows from our above construction and Theorem 2.19. 0 

3. Conclusion 

Parity-balance is a necessary and sufficient condition for guaranteeing the total uni- 
modularity of a cost-based abduction problem for arbitrary cost functions. Thus, parity- 
balance also guarantees polynomial solvability by using our transformation to integer 

linear programming. Furthermore, the integrality of each vertex in our polyhedron re- 
lies on the associated subgraphs of the cost-based problem. Finally, a new heuristic for 

branch and bound motivated by our results provides a new tighter upper bound on the 

worst-case performance of integer linear programming for solving cost-based abduction. 
Most work in cost-based abduction and related problem domains such as weighted 

abduction [ 111 have been mainly empirical in nature. However, the results from experi- 
mentation have indicated general characteristics from the problem domain that allow for 

more efficient computations. This work has strived to provide a theoretical explanation 

for such an observation. 
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