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Parallelization of the DG method for the Navier-

Stokes Equations

Summary

Accurate predictions of skin friction and thermal loads of high speed complex
flows, in both simple and nontrivial geometries, require good shock capturing
capability and high accuracy in the viscous flow region. High order discontin-
uous Galerkin (DG) discretizations possess features that make them attrac-
tive for accurate computation of complex flows with strong shocks. A key
ingredient that would make the DG method more attractive for these com-
putations, is application of p-adaptive procedures that ensure accurate cap-
turing of discontinuities with low order expansions and resolution of smooth
complex features, such as vortices and shear layers, with higher order ac-
curacy. A limiting procedure of DG discretizations capable of commuting
high speed flows with strong shocks around complex geometries, using a p-
adaptive procedure on mixed type (quadrilateral and triangular) meshes was
developed and preliminary results were presented in the previous report. In
this report further validation of the limiting approach is presented for stan-
dard computationally demanding flow cases, such as the Mach reflection and
the wind tunnel with a step. Application examples for both quadrilateral,
triangular and mixed type meshes are shown.

These large scale computations were made possible by parallelizing the
code using domain decomposition and MPI. Viscous terms were added for the
DG method using the local DG approach. Incorporation of an implicit time
marching scheme, which will make possible high Reynolds number compu-
tations, is underway for a single processor. Implementation of implicit time
marching with domain decomposition is more involved and requires use of a
dual time stepping for time accurate computations. Developments of capabil-
ities to compute viscous flow numerical solutions with implicit time stepping
for multiprocessor will be presented in the next report.
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Parallelization

The compact form of the DG discretization stencil (information is needed
only from the immediate neighbors) permits efficient implementation on par-
allel processors. The data structure of the code was designed in order to
meet the requirements of the DG method on mixed type element meshes and
p-adaptive expansions. Moreover, it allows application of the domain decom-
position method through MPI without serious additional coding complexity.

Every simulation with domain decompositions initiates with the par-
titioning of the computational domain using free available software Metis
(http://glaros.dtc.umn.edu/gkhome/views/metis). In order to handle mixed
type meshes, a graph file representing the mesh is initially created and subse-
quently partitioning of the graph in to subdomains leads to the final decom-
position of the mesh. Every partition (subdomain) includes layers of elements
belonging to neighboring partitions. This set of elements is the receiving list
for a partition, and the set of elements of the partition sharing the same
edges with the receiving list, is the sending list to neighboring partitions.

A TVD Runge–Kutta method was used for time marching. Limiting is
applied after every stage of the RK cycle. Finally, an exchange between
the partitions of the solution is also performed at the end of each stage.
For a parallel p-adaptive DG code, all coefficients of the expansion for the
highest order polynomial approximation are exchanged between partitions of
the mesh.

The parallel algorithm for every partition is as follows:

1. Transfer the solution (expansion coefficients) at the end of the RK cycle
between partitions. Wait for the transfer to complete.

2. Apply the limiter.

3. Transfer of all coefficients of the highest polynomial application. Wait
for the transfer to complete.

4. Assign solution coefficients from P0 up to the highest polynomial ap-
plication.

5. Compute the volume integrals.

6. Compute the line integrals.

7. Compute residual for every element belonging to the partition.

8. Enter the next RK stage.

9. Complete the RK cycle and repeat.
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Results

Results from parallel computations of flows with strong shocks on single- and
mixed-type meshes are presented next. The supersonic flow over a cylinder
is the first example. The single type computational mesh with triangular
elements and the computed density field for flow at M=2.0 is are shown in
Figs. 1-2. The same flow was computed on a mesh with arbitrary quadri-
lateral elements (see Figs. 3 and 4). This computation was not possible
with the original limiting procedure suggested by Cockburn and Shu [1] and
difficult to implement with limiting approaches presented in Ref. 2-6, but
it is straightforward with our new limiting approach. Next, an example of
a computation on a mixed-type mesh is presented. The mesh and the com-
puted density field is shown in Fig. 5. For this computation, a p-adaptive
procedure is applied where the flow near the discontinuity is computed with
P1 polynomials as flagged by the limiter while the rest of the smooth flow
field is computed with P2 polynomials. A comparison of the computed den-
sity along the symmetry line is shown in Fig. 6. The agreement with the
quadrilateral mesh solution is excellent.

Computations for two classical examples are presented next. These are
the M=3.0 tunnel with a step and the double Mach reflection of a strong
shock at Mach=10 (P. Woodward and P. Colella, ”The numerical simulation
of two-dimensional fluid flow with strong shocks,” Journal of Computational
Physics, Vol. 54, No. 1, 1984, pp. 115-173). The computational domain for
the tunnel with a step discretized with a mixed type mesh and the partition
of this mesh to subdomains for parallel processing is shown in Fig. 7. At
the corner the mesh was refined in order to diminish the Mach stem that is
created from the artificial entropy layers caused by the sharp corner. The
computed flow field and the elements flagged for limiting are shown in Fig.
8. The elements flagged for limiting for the double Mach reflection problem
computation are shown in Fig. 9 and the computed flow field is shown
in Fig. 10. For these computations the elements flagged for limiting are
updated continuously during the time accurate computation. Computations
with higher order expansions using p-adaptive procedures are underway and
they will presented at the AIAA ASM meeting in January 2011.

Conclusions and Outlook

The DG code was parallelized using domain decomposition and MPI. The
new limiting procedure for DG discretizations was then applied for standard
computationally demanding test problems. The proposed approach applied
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to quadrilateral, triangular, and mixed-type meshes. The extension of the
limiting approach in three dimensions is underway. Numerical solutions of
viscous flows with shocks will be computed using a p-adaptive procedure.
For high Reynolds number flows and long time integration with small size
meshes use of an implicit time marching scheme is necessary.
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Figure 1.  Triangular element mesh over the cylinder 
 

 
Figure 2.  Computed density field at M=2. 
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Figure 3.  Quadrilateral element mesh over the cylinder 
 

 
Figure 4.  Computed density field at M=2. 
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          Figure 5. Mixed-type mesh for the computation of supersonic flow. 

 
 

Figure 6  Comparison of the density along the symmetry stagnation line 
obtained with quadrilateral (P1) and mixed type meshes (p2 adaptive). 
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Figure 7.  Mixed-type mesh and partition for MPI parallel processing. 
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(elements flagged for limiting) 
 

 
 
 
 

 
Figure 8.  Elements flagged for limiting (top) and computed density and 
pressure for the flow in a tunnel with a step. 
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Figure 9.  Elements flagged for limiting 
 

 

Figure 11.    Computed density field. 
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