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SUMMARY

A continuum sensitivity analysis is presented for large inelastic deformations and metal forming processes.
The formulation is based on the di8erentiation of the governing 9eld equations of the direct problem and
development of weak forms for the corresponding 9eld sensitivity equations. Special attention is given to
modelling of the sensitivity boundary conditions that result due to frictional contact between the die and
the workpiece. The contact problem in the direct deformation analysis is modelled using an augmented
Lagrangian formulation. To avoid issues of non-di8erentiability of the contact conditions, appropriate regular-
izing assumptions are introduced for the calculation of the sensitivity of the contact tractions. The proposed
analysis is used for the calculation of sensitivity 9elds with respect to various process parameters including
the die surface. The accuracy and e8ectiveness of the proposed method are demonstrated with a number of
representative example problems. In the die design applications, a B=ezier representation of the die curve is
introduced. The control points of the B=ezier curve are used as the design parameters. Comparison of the
computed sensitivity results with those obtained using the direct analysis for two nearby dies and a 9nite
di8erence approximation indicate a very high accuracy of the proposed analysis. The method is applied to
the design of extrusion dies that minimize the standard deviation of the material state in the 9nal product
or minimize the required extrusion force for a given reduction ratio. An open-forging die is also designed
which for a speci9ed stroke and initial workpiece produces a 9nal product of desired shape. Copyright
? 2000 John Wiley & Sons, Ltd.
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680 N. ZABARAS ET AL.

1. INTRODUCTION

Many metal alloys are currently employed in the manufacture of automotive, aerospace and other
hardware components. The high cost of manufacturing critical structural components can be sig-
ni9cantly reduced with the development of mathematically and physically sound computational
methodologies for process design and control. The complicated nature of polycrystalline materials
and the induced changes in their microstructure during processing are among the main challenges
that one must consider while developing means for the design and control of bulk forming pro-
cesses that result in products of desired shape and material state.
The desired objectives for a single forming operation, e.g. in a hot extrusion process, may

include one or more of the following criteria: uniform deformation in the 9nal product; minimum
required work or extrusion pressure; desired microstructure in the 9nal product; minimum or desired
residual stress distribution; minimum deformation and wear of the die; desired shape of the 9nal
product; and minimum porosity in the 9nal product. Any of these objectives can theoretically be
achieved by appropriate design of the die surface; design of the preform; design of the material
state (microstructure) in the initial billet; and appropriate selection of the process parameters (ram
speed and pressure history, operating temperature, etc.). However, it is important to note that in a
single forming operation there is only a limited control of the material state in the 9nal product
that one can achieve using a single stage design and generally a multistage process design is
required.
Most deformation process design is currently focussed on trial and error techniques based on

previous experience and the results of the direct analysis. A systematic review of such problems
is given in Reference [1]. The design approaches reported in this reference are not mathematically
rigorous and=or realistic from a material representation point of view. However, a variety of
important forming design problems were addressed.
On the other hand, sensitivity analysis and optimization theory, provide a fresh look at these

problems and can lead to realistic and accurate designs. Traditional forming design problems that
can be analysed as optimization problems are the optimum design of dies, preforms and process
parameters. To mathematically address such problems, one needs to calculate the sensitivity of the
material state and geometry at various stages of deformation with respect to in9nitesimal changes
in each of the design variables.
Sensitivity computations can be performed using 9nite di8erence approximations and the results

of the direct analysis for two nearby design variables. In addition to signi9cant computer resources
required for solving the direct problem multiple times, diKculties arise in such calculations from the
fact that many direct analysis tools are insensitive to in9nitesimal changes in the design variables
(e.g. the die surface) and cannot provide accurate sensitivity 9elds. This is particularly true when
the computed sensitivity 9elds are of the same order of magnitude as the numerical error in the
solution of the direct analysis.
In the direct di8erentiation method, a set of 9eld equations are developed by considering the

variation of the continuum or discretized 9eld equations of the direct problem with respect to
small changes in design parameters [2–6]. The sensitivity 9eld equations are linear and can be
eKciently solved. Direct automatic di8erentiation can also be applied to evaluate sensitivities [7].
In most of the current developments in the 9eld of sensitivity analysis for large deformation

problems, the Low formulation is utilized and emphasis is given to steady-state forming applications
[6]. Isothermal as well as non-isothermal deformations have been considered and the sensitivity
of various forming processes with respect to shape and material parameters has been studied

Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 48:679–720



METAL FORMING PROCESSES WITH APPLICATIONS TO DIE DESIGN PROBLEMS 681

[8–10]. Computation of sensitivity coeKcients for the purpose of parameter identi9cation for 9nite
elasto-plastic deformations is reported in Reference [11].
Although the last few years have seen an increasing interest in the direct di8erentiation method

for calculating sensitivities, a number of challenges still remain in the accurate and e8ective
computation of sensitivity 9elds for practical engineering problems that involve frictional contact
[12]. A sensitivity analysis for frictional metal forming processes in steady state using a Low
formulation is presented in Reference [8] where the e8ect of variation in the Coulomb friction
coeKcient on the deformation response is studied. Special contact elements were introduced in
the workpiece boundary to handle contact=frictional e8ects. More recently, sensitivity analysis of a
non-steady state open die forging process has been carried out in Reference [13] to study the e8ect
of variation in the height of the initial cylindrical preform in a single stage operation. A shape
optimization scheme for non-steady state metal forming processes with applications to preform
design in forging is given in References [14; 15]. Applications of optimization techniques to net-
shape manufacturing involving forging processes are given in Reference [16]. Other applications
to extrusion and forging die design can be found in References [17; 18].
The main objective of this paper is to provide sensitivity 9eld calculations that can be used

for accurate forming process design. A Lagrangian sensitivity analysis is developed to include the
e8ects of contact and friction for both steady state and non-steady-state metal forming processes.
Emphasis in this paper is given to non-shape forming design problems such as the design of
various process parameters. In such problems, for example, one calculates the die surface (for a
given reduction or die stroke) that results in desired material properties in the 9nal product or a
product of desired shape (e.g. in an open-die forging process).
It is common to discretize the die surface using basis functions (e.g. splines or polynomial

functions) assuming that certain constraints are satis9ed (e.g. 9xed reduction) [19–22]. With such
discretizations, a die design problem can be posed as an optimization problem with respect to
a 9nite number of algebraic design parameters. The design parameters are here denoted by the
vector Rp= {�i}; i=1; 2; : : : ; Np. Various problem-dependent objective functions are usually written
implicitly in terms of the parameters Rp. Such objective functions may represent for example, the
deviation of the resulting material state of the 9nal product from a desired state for the process
de9ned by design parameters Rp. Similarly, the objective function can be selected to minimize the
required work expenditure for the design parameters Rp.
There are many ways to solve the above class of optimization problems but most commonly

a sequential search method is employed starting from a guess solution that is iteratively updated
along some speci9c direction and a given step size [23]. To determine at each optimization iteration
the speci9c search direction and step, one must evaluate the gradient of various 9elds (material or
geometric) involved in the de9nition of the objective function with respect to design parameters.
The interest here is in using a sensitivity analysis for evaluating the gradient of the objective
function. With such an analysis, sensitivities of various Lagrangian 9elds can easily be calculated
sequentially in time.
The work reported here is an extension of an earlier work by Zabaras and co-workers [24]. In this

work, a continuum sensitivity analysis for hyperelastic viscoplastic deformations was introduced
and some die design examples were analysed. The sensitivity 9elds were de9ned as directional
derivatives of the corresponding Lagrangian 9elds of the direct analysis. For die design, for ex-
ample, these directional 9elds were calculated at a reference die and for a given die perturbation.
Appropriate kinematic and constitutive sensitivity problems were de9ned and the sensitivities of
the contact tractions were calculated by assuming Coulomb friction in the contact boundary and
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682 N. ZABARAS ET AL.

by applying direct di8erentiation of the impenetrability constraint and contact traction components
with respect to the die surface. The sensitivity of the contact pressure was eliminated from these
equations with the sensitivity of the normal to the die unit vector expressed in terms of the refer-
ence die surface and the die surface variations. Even though the technique introduced in Reference
[24] was found to give very good results for simple die design problems, accuracy concerns were
raised in many other die and preform design problems [25]. These diKculties were attributed to
the explicit manner with which contact was treated in both the direct and sensitivity analyses.
Such issues will be addressed in this paper by employing a fully implicit contact scheme and its
regularized derivative.
The plan of this paper is the following. At 9rst, a brief introduction of the direct defor-

mation problem is given to set the notation for the sensitivity analysis. A fully implicit aug-
mented Lagrangian algorithm for handling the contact=friction sub-problem of the direct analysis
is then presented. The constitutive and kinematic sensitivity problems are brieLy reviewed next
together with the techniques for their solution. The contact sensitivity algorithm is derived by the
direct di8erentiation of continuum contact and frictional constraints and the implementation of
the resulting sensitivity constraints using a penalty formulation. To allow for the di8erentiability of
the continuum contact=frictional constraints, appropriate regularizing assumptions are introduced.
The developed contact sensitivity problem is linear and augmentation steps are avoided by ap-
propriate selection of penalty parameters that enforce contact=frictional sensitivity constraints. The
paper concludes with an evaluation of the accuracy of the proposed methodology and a presentation
of the solution of a number of die design problems in extrusion and open-die forging processes.

2. REVIEW OF A DIRECT LARGE INELASTIC DEFORMATION PROBLEM

2.1. Kinematic and constitutive equations

The basic governing equations for the Lagrangian analysis of the large deformation of isotropic
viscoplastic solids are presented here to set the notation for the proposed sensitivity analysis.
Let us denote with B0 the con9guration of the body at time t=0 and with Bt the current body

con9guration at time t. Consider the location x, in the current con9guration Bt , that at time t is
occupied by the material point p. Let X be the location of this particle in the con9guration B0 at
time t=0. A smooth mapping M exists such that

x=M(X; t) (1)

The deformation gradient F is then de9ned by

F=∇M(X; t) (2)

Assuming isothermal conditions, the deformation gradient F is decomposed as follows:

F=Fe OFp; det Fe¿0 (3)

where Fe is the elastic deformation gradient and OFp the plastic deformation gradient with det OFp = 1.
From the polar decomposition of Fe, one can write,

Fe =ReUe (4)
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The equilibrium equations can be expressed as,

∇ ·P+ f = 0 ∀X∈B0 (5)

where P(X; t) is the 9rst Piola–Kirchho8 stress and f(X; t) is the body force density in the reference
con9guration B0. The de9nition of P and f is as follows:

P(X; t) = det FTF−T

f(X; t) = det F b
(6)

Here, T is the Cauchy stress and b the known body force density in the current con9guration.
The weak form of the above equilibrium equations is stated as follows: Calculate M(X; t) such

that
∫

B0
P · @ũ

@X
dV0 =

∫

9Bn+1

t̂ · ũ dAn+1 +
∫

Bn+1

b · ũ dVn+1 (7)

for every admissible test function ũ. The hyperelastic constitutive equations are taken as [26],

OT=Le( OEe) (8)

where the elastic strain OEe is de9ned by

OEe = ln(Ue) (9)

and the corresponding conjugate stress OT is given as,

OT=(detUe)(Re)TTRe (10)

The isotropic elastic moduli Le are de9ned by

Le = 2GI + (K− 2
3G)I⊗ I (11)

with K the bulk modulus, G the shear modulus and I; I, the unit second- and fourth-order
tensors, respectively.
A Low rule is given in the form of the evolution of OFp with zero spin of the intermediate

con9guration [26],

OL
p
= OD

p
= ȮFp( OFp)−1 =

√
3
2
˙̃� p ON

p
( OT′; �̃) (12)

where

ON
p
( OT′; �̃)=

√
3
2

OT′

�̃
(13)

the equivalent stress �̃ is given by

�̃=

√
3
2
OT′ · OT′ (14)

with

OT′= OT− tr OT
3
I (15)
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Finally, the equivalent plastic strain rate ˙̃� p is speci9ed as

˙̃� p =f(�̃; s) (16)

and the evolution of the scalar state variable s (internal resistance to plastic deformation) is given
by

ṡ= g(�̃; s)≡ h(�̃; s)f(�̃; s) (17)

The functions f(�̃; s) and h(�̃; s) are experimentally determined for a particular material [27].
With the above constitutive equations, one can solve the weak form of the equilibrium equations

(Equation (7)) to calculate the deformation and evolution of state induced by given applied loads
or kinematic boundary conditions [28]. Contact constraints play an important role for metal forming
processes [29; 30]. A brief presentation of the contact sub-problem is given next in order to set
the notation for the development of the contact sensitivity algorithm.

2.2. The contact sub-problem

A schematic of the contact sub-problem is shown in Figure 1. The presentation is limited to plane-
strain and axisymmetric problems and dies are considered to be rigid. The die D is parametrized
using a parameter � and the die functions y(�)= (y1(�); y3(�)); 06�61. A 9xed right-handed basis
(e1; e2; e3) is de9ned, with e2 pointing into the plane of the paper. A convected basis (r; e2; ]) is
de9ned at each point (i.e. for each particular value of �). The tangent vector �1, and the unit
tangent vector r are given as

�1 = y; �=
@y1
@�
e1 +

@y3
@�
e3; r=

�1
‖�1‖ (18)

The die separates the space into admissible and inadmissible regions and the die is parametrized
such that the normal vector ] is pointing into the admissible region [29]. With this convention,
the unit normal vector ] points towards the body (i.e. ]=−n, where n is the outward unit normal
vector to the body). Figure 1 shows a schematic of the contact sub-problem and introduces the
notation for the various contact parameters. The gap function g of any point x in space is de9ned
as the shortest distance of that point from the die. Thus, we write

Oy − x= g(x)]( Oy) (19)

where Oy∈D is the value of y that minimizes the norm, ‖x−y‖. A unique value of the parameter O�
is associated with each Oy.
Following the work in Reference [29], the contact traction vector [ per unit reference area

�⊂ @Bn is introduced and its components �N and �T are de9ned as follows:

[= �N]− �T�1 (20)

The impenetrability constraints can now be written as follows: For all xn ∈�, with xn+1 =
xn + u(xn),

�N¿0; g(xn+1)60; �Ng(xn+1)= 0 (21)
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Figure 1. A schematic of the contact sub-problem showing the body con9gurations at times tn and tn+1, the
de9nition of the gap function g(x) and the admissible and inadmissible regions. � refers to the part of the

boundary @Bn that could potentially come in contact.

The Coulomb friction law can be written as:

[T = −[+ �N]
T := ‖[T‖ − ��N6 0

vT = �
[T

‖[T‖
�¿ 0

�T = 0

(22)

An augmented Lagrangian algorithm that enforces the above contact and friction constraints, is
presented in the next section.

2.3. Basic elements of a Lagrangian analysis

In the updated Lagrangian FEM formulation, a sequence of incremental problems is de9ned from
time tn to tn+1; n=0; 1; 2; : : : . Within each time increment, the deformation problem is further di-
vided into three incremental sub-problems: (1) the constitutive problem, (2) the kinematic problem
and (3) the contact problem.
In the constitutive incremental problem, one calculates (Tn+1; sn+1; OF

p
n+1) given the incremental

deformation gradient Fr from tn to tn+1 (see Figure 1) and (Tn; sn; OF
p
n ). Constitutive integration

techniques for such problems can be found in Reference [31]. In the present analysis the radial
return mapping of Reference [26] is implemented.
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686 N. ZABARAS ET AL.

In the kinematic problem, one calculates the incremental displacements from tn to tn+1 given
the triad (T; s; OFp) at tn+1. A Newton–Raphson scheme is developed by linearizing the weak form
of the equilibrium equation [28].
In the contact sub-problem, given the con9guration Bn+1, the die location and shape at tn+1, as

well as estimates of the contact tractions from a previous time step or a Newton iteration, one
computes (updates) regions of contact as well as the contact traction components �N and �T.
The time integration of the contact sub-problem based on the augmented Lagrangian analysis

of Laursen and Simo [29; 30], is brieLy reviewed since it is essential for the presentation of the
proposed sensitivity methodology. The time integration of the frictional constraint is achieved by
the introduction of a trial state and a subsequent return map. In the algorithm below, k refers to
the augmentation index and j refers to the Newton–Raphson iteration index. The terms G and Gc
in the kinematic problem refer to the principle of virtual work and contributions from the internal
work=non-contact related boundary terms and contact terms, respectively [28].

1. Initialization:

�(0)N = 〈�Nn + �Ng(x
(0)
n+1)〉

U�(0)T = 0
k =0

2. Solve for the incremental displacement u(k) = x(k)n+1 − xn which is the converged estimate of
u(k)j = x(k)n+1; j − xn:

G̃(u(k)j ; ũ)=G(u(k)j ; ũ) + Gc(u
(k)
j ; ũ)= 0

Note: The above equation is non-linear and is solved iteratively (iteration j) [28]. A Newton–
Raphson algorithm is used to solve this system and the computation of the linearized sti8ness
matrix and residual is dependent on the solution of the kinematic, constitutive and contact sub-
problems. The solution of this non-linear equation predicts estimates of the body con9guration
Bk
(n+1); j at tn+1 and 9nally the converged solution B

k
n+1.

The contact traction [kj−1 used in the solution of the linearized principle of virtual work
(based on the estimate Bk

(n+1); j−1) is calculated as follows:

Normal traction:

�N = 〈�(k)N + �Ng(x
(k)
(n+1); j−1)〉

Tangential traction:
Compute trial state:

�trialT = �Tn + �T( O�
(k)
(n+1); j−1 − O�n) + U�(k)T

Ttrial = ‖[trialT ‖ − ��N

Radial return update:

IF (Ttrial60)
THEN �T = �trialT (stick)

Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 48:679–720
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ELSE (return map)

�T = ��N
�trialT

‖[trialT ‖ (slip)

Complete contact traction description:

[kj−1 = �N]( Oy)− �T�1( Oy)

3. Check for contact constraints satisfaction:
IF g(x(k)n+1)6TOLg AND

‖ O�(k)n+1 − O�n‖6TOLf ∀ xn ∈ � such that ‖[T‖¡�〈�(k)N + �Ng(x
(k)
n+1)〉

THEN
CONVERGED (GOTO 4)

ELSE AUGMENT (∀ xn ∈�)
�(k+1)N = 〈�(k)N + �Ng(x

(k)
n+1)〉

�trialT = �Tn + �T( O�
(k)
n+1 − O�n) + U�(k)T

Ttrial = ‖[trialT ‖ − ��(k+1)N

IF (Ttrial60)
THEN

U�(k+1)T =U�(k)T + �TU O� (k) (stick)

ELSE (return map)

U�(k+1)T = ��(k+1)N
�trialT

‖[trialT ‖ − �Tn (slip)

ENDIF
k = k + 1
GOTO 2
ENDIF

4. Post-process operation:
Use the converged solution of the con9guration Bn+1 to update the triad (T; s; OFp) as well as
the contact traction components (�N; �T) at time tn+1.

The three sub-problems (constitutive, kinematic and contact) are solved in an iterative manner.
More details on the implementation of these problems can be found in References [28; 32] where
an object-oriented environment for 9nite deformation problems is discussed.

3. THE SENSITIVITY PROBLEM

3.1. De8nition of sensitivity 8elds

A de9nition is given for the sensitivity of any 9eld related to the direct problem (e.g. of the
deformation gradient, stress, state variables, etc.) with respect to the die shape. The parameter
Rp introduced below is either the die surface itself (i.e. Rp is a function) or a set of algebraic
parameters that de9ne the die surface in a 9nite dimensional space as discussed in Section 1.
Before we proceed, it is mentioned that Rp can also represent any other non-shape related process
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688 N. ZABARAS ET AL.

Figure 2. Schematic diagram of the deformation history of a workpiece corresponding to two dies de9ned
by the design parameters Rp and (Rp +URp). Note that in the deformation process with a die Rp +URp, the
relative deformation gradient from tn to tn+1 is easily shown to be Fr+

∗
Fr , where

∗
Fr = (

∗
Fn+1 −Fr ∗Fn)F−1

n .

parameter such as the ram or die speed, operating temperature, lubrication conditions as well as the
initial material state. For preform design and related shape optimization problems, see References
[25; 33]. For clarity of the presentation, unless otherwise stated, we only refer to sensitivities with
respect to the die surface.
Let �(X; t; Rp) be a Lagrangian 9eld de9ned in the direct analysis for a given choice of design

Rp. The notation �(X; t; Rp) implies that � can be uniquely determined by solving the direct
deformation problem for a particular set of boundary conditions resulting from a die de9ned by
Rp. Figure 2 shows the con9gurations of the body during a deformation process for two di8erent
but nearby sets of design parameters (i.e. two nearby dies).

We de9ne the sensitivity
∗
� (X; t; Rp;URp) of � as the directional derivative (Gateaux di8eren-

tial) of � with respect to Rp in the direction of URp, i.e.

∗
� (X; t; Rp;URp) =

d
d�
[�(X; t; Rp + �URp)]|�= 0

= �(X; t; Rp +URp)−�(X; t; Rp) + O(‖URp‖2) (23)

Based on the above de9nition, one can easily de9ne temporal and spatial derivatives of sensitivity
9elds [24]. The sensitivity of Eulerian 9elds can be calculated by 9rst transforming them to
Lagrangian 9elds (via the mapping given by Equation (1)) and then applying the de9nition given
in Equation (23).

3.2. The overall deformation sensitivity problem

Given the die design parameters Rp and with the remaining boundary and process conditions 9xed,
one can solve the direct deformation problem and calculate the material state, deformation and
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stresses at each time step. On the other hand in the sensitivity problem, one is interested in
computing the sensitivity history of the material state, deformation and stresses around a die Rp
and with a die perturbation URp. In simple terms, the sensitivity of a given direct 9eld tells us how
much this 9eld will change from its value obtained from the direct deformation problem solution
obtained with a die Rp if the die is perturbed by an amount URp.
As in the direct analysis, the incremental deformation sensitivity problem (from time tn to

time tn+1) is divided into three coupled sub-problems, the constitutive, kinematic and contact
sensitivity sub-problems. In the incremental constitutive sensitivity problem, given the sensitivity
9elds at time tn; [

∗sn; ∗Fn], as well as the direct 9elds at time tn+1, [Tn+1; s n+1;Fn+1; OF
p
n+1], one

calculates the linear relations between each of the sensitivity 9elds [
∗
Tn+1;

∗sn+1;
∗
Fen+1] and

∗
Fn+1. In

the incremental kinematic sensitivity problem, given the direct problem solution at tn+1, i.e. given

[Tn+1; s n+1;Fn+1; OF
p
n+1], and with the given linear relations between [

∗
Tn+1;

∗sn+1;
∗
Fen+1] and

∗
Fn+1,

one calculates
∗
Fn+1. In the incremental contact sensitivity problem, given the contact traction

components �N and �T at time tn+1 as well as the identity of regions of sliding and sticking, one
computes the linear relation between the sensitivities

∗
�N and

∗
�T at tn+1 and the sensitivity

∗x of
the contact boundary in the current con9guration Bn+1.

Remark 1. For simpli9cation, it has been selected in the direct analysis to track and report the
calculation of the triad Vn+1 ≡ [Tn+1; s n+1; OF

p
n+1] and Fn+1, whereas in the sensitivity analysis the

duo
∗
Wn+1≡ [

∗sn+1;
∗
Fen+1] and

∗
Fn+1 are computed and reported. The selection in the sensitivity

analysis of
∗
Fen+1 to de9ne the sensitivity of the intermediate con9guration instead of

∗
OFpn+1 is for

convenience of the presentation since
∗
Fen+1 and

∗
Fn+1 uniquely de9ne

∗
OFpn+1 for given OF

p
n+1 and Fn+1.

The three incremental sensitivity problems (constitutive, kinematic and contact) are linearly
coupled and together provide a linear problem for the calculation of sensitivities of both the
deformation and the material state at tn+1. It should be noted that the corresponding sub-problems
in the direct problem are non-linearly coupled and are solved in an iterative fashion [31].

3.2.1. The constitutive sensitivity problem. The incremental constitutive sensitivity problem is
de9ned in Reference [24] and is brieLy described here for clarity and completeness of the pre-
sentation. The present mathematical approach to this problem is similar to that of Reference [24],
however, the implementation is quite di8erent. The solution of the constitutive sensitivity problem
follows the following steps:

Calculation of the linear relations between
∗
OT′
n+1;

∗̃
�n+1 and

∗
Fen+1

By following the de9nitions of OT′ (Equation (15)) and �̃ (Equation (14)), the sensitivities
∗
OT′
n+1

and
∗̃
�n+1 are obtained as follows:

∗
OT′
n+1 =

∗
OTn+1 − 1

3
tr(

∗
OTn+1)I (24)

and

∗̃
�n+1 =

3
2

OT′
n+1 ·

∗
OT′
n+1

�̃n+1
(25)
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By di8erentiating the hyperelastic law in Equation (8),
∗
OTn+1 is expressed as:

∗
OTn+1 =Le[

∗
OEen+1] (26)

By employing the 9rst Pad=e approximation of the logarithm of Ue and taking the sensitivity,
∗
OEen+1

can be written as

∗
OEen+1 = 4(Uen+1 + I)

−1 ∗Uen+1(Uen+1 + I)−1 (27)

where

∗
Uen+1 = sym(Ue

−1
n+1 sym(F

eT
n+1

∗
Fen+1)) (28)

Equations (24)–(28) and the linear transformation equations presented in Appendix A of Reference

[24] can easily be combined to provide the linear relations between
∗
OT′
n+1 and

∗
Fen+1 as well as∗̃

�n+1 and
∗
Fen+1.

Calculation of the linear relation between
∗
OFpn+1[ OFp]−1n+1 and

∗
Fen+1

According to the de9nition of OD
p
(Equation (12)), one can write the following:

∗
OD
p
=
d
dt
(
∗
OFp)[ OFp]−1 − OD

p∗OFp[ OFp]−1

=
d
dt
(
∗
OFp[ OFp]−1) +

∗
OFp[ OFp]−1 OD

p − OD
p∗OFp[ OFp]−1 (29)

We employ an Euler-backward integration scheme over (tn; tn+1) to integrate Equation (29) and
express the above equation as follows:

d
dt
(
∗
OFp[ OFp]−1) +

∗
OFp[ OFp]−1 OD

p
n+1 − OD

p
n+1

∗
OFp[ OFp]−1 =

∗
OD
p
n+1

Pre-multiplication of the above equation by exp(−t OD
p
n+1), post-multiplication by exp(t OD

p
n+1) and

integration of the resulting equation, leads to the following:

∗
OFpn+1[ OFp]−1n+1 =UOF

p
∗
OFpn[ OFp]−1n (U OF

p)−1 + Ut
∗
OD
p
n+1 (30)

where from the constitutive sub-problem of the direct problem [26],

U OFp = OFpn+1[ OF
p]−1n = exp(Ut OD

p
n+1) (31)

with Ut= tn+1 − tn. From Equation (12), one can derive the following:

∗
OD
p
n+1 =

3
2

fn+1

�̃n+1

∗
OT′
n+1 +

3
2

(
�̃n+1(f�̃)n+1 − fn+1

�̃2n+1

∗̃
�n+1 +

(fs)n+1
�̃n+1

∗sn+1
)
OT′
n+1 (32)
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where from Equation (17),
∗s is obtained from

d
dt
(
∗s)= gs

∗s + g�̃
∗̃
� (33)

The subscripts to the functions f(�̃; s) and g(�̃; s) are used to denote partial derivatives with respect
to their arguments. An Euler-backward integration of Equation (33) results in the following:

∗sn+1 = ∗sn 1
1−Ut(gs)n+1

+
(g�̃)n+1Ut
1−Ut(gs)n+1

∗̃
�n+1 (34)

Substitution of Equations (32) and (34) in Equation (30) results in

∗
OFpn+1[ OFp]−1n+1 =Cn+1 + an+1

∗
OT′
n+1 + bn+1

∗̃
�n+1OT′

n+1 (35)

where

Cn+1 =UOFp(
∗
OFpn[ OFp]−1n )(U OF

p)−1 +
3(fs)n+1

2 �̃n+1(1−Ut(gs)n+1)
∗sn Ut OT′

n+1 (36)

an+1 =
3fn+1Ut
2 �̃n+1

(37)

bn+1 =
3
2

{
�̃n+1(f�̃)n+1 − fn+1

�̃2n+1
+

(fs)n+1(g�̃)n+1Ut
�̃n+1(1−Ut(gs)n+1)

}

Ut (38)

The sensitivity 9elds
∗
OT′
n+1 and

∗̃
�n+1 were written earlier as linear functions of

∗
Fen+1 (see Equa-

tions (24)–(28)). As a result, Equation (35) provides the linear relation between
∗
OFpn+1[ OFp]−1n+1 and∗

Fen+1.

Calculation of the linear relation between
∗
Fen+1 and

∗
Fn+1

Starting from the multiplicative decomposition of the deformation gradient, one can write

∗
Fn+1 =

∗
Fen+1 OF

p
n+1 + F

e
n+1

∗
OFpn+1 (39)

Hence,

[Fe]−1n+1(
∗
Fn+1 [F]−1n+1)F

e
n+1 = [F

e]−1n+1

∗
Fen+1 +

∗
OFpn+1[ OFp]−1n+1 (40)

As has already been shown,
∗
OT′
n+1 and

∗̃
�n+1 linearly depend on

∗
Fen+1. Therefore substitution of

Equation (35) in Equation (40) results in a linear relation between
∗
Fen+1 and

∗
Fn+1

[Fe]−1n+1(
∗
Fn+1 [F]−1n+1)F

e
n+1 − Cn+1 = [Fe]−1n+1

∗
Fen+1 + an+1

∗
OT′
n+1 + bn+1

∗̃
�n+1 OT′

n+1 (41)
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Using the simpli9cations of Appendix A and the linear transformation equations discussed in the
Appendix of Reference [24], one can write the following:

∗
Fen+1 =A(Vn+1)[

∗
Fn+1] + A(Vn+1;

∗
Wn) (42)

where A is a second-order tensor function and A a fourth-order tensor function. A and A depend
upon the direct 9elds Vn+1 ≡ (Tn+1; s n+1; OF

p
n+1) calculated at time tn+1 and the sensitivity 9elds

∗
Wn≡ (∗sn;

∗
Fen) calculated at time tn.

Calculation of the linear relation between
∗
Tn+1 and

∗
Fen+1 Linearizations similar to the ones per-

formed in the direct analysis as part of the calculation of the tangent sti8ness, are used here to

calculate the sensitivity of the Cauchy stress. Following References [24; 26], one can express
∗
T

as

∗
Tn+1 = (detUen+1)

−1 Ren+1
∗
OTn+1Re

T
n+1 − tr(

∗
OEen+1)Tn+1 + 2sym(

∗
Ren+1Re

T
n+1Tn+1) (43)

where

∗
Ren+1[Re]Tn+1 =

∗
Fen+1[Fe]−1n+1 − Ren+1

∗
Uen+1[Ue]−1n+1[R

e]Tn+1 (44)

Expressions for
∗
OEen+1 and

∗
Uen+1 in terms of

∗
Fen+1 are given in Equations (27) and (28), respectively.

The calculation of
∗
OTn+1 in terms of

∗
Fen+1 was reported above (Equations (26)–(28)).

3.2.2. The kinematic sensitivity problem. To calculate the sensitivity 9eld
∗
F, one needs to consider

the sensitivity of the equilibrium Equation (5) in conjunction with a set of boundary conditions
for this kinematic problem. In the following, a principle of virtual work like equation is developed

to obtain
∗
F. The non-contact related sensitivity boundary conditions are treated in this section,

whereas the contact sensitivity problem is addressed in the next section. To simplify the notation,
we omit the subscript (n+ 1) for tensor variables that refer to time tn+1.
The directional derivative of the equilibrium equations (Equation (5)) results in the following:

∇ · ∗P+ ∗
f = 0 ∀X ∈ B0 and ∀t ∈ [

0; tf
]

(45)

Based on the de9nition of P from Equation (6),
∗
P is calculated as

∗
P = det F[tr(

∗
F F−1)T+

∗
T −T(∗F F−1)T]F−T (46)

In the above equation,
∗
T is given by Equation (43). Suppose that the gravity is the only body

force acting on the body. Let �0 be the constant density of the body in the reference con9guration
and let g be the gravity constant. The body force density in the current con9guration is given by

b= �g=
�0
det F

g
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Hence, f = �0g, and therefore,

∗
f = 0 (47)

A variational form of the kinematic sensitivity problem can now be posed as the calculation of
∗x (X; t) such that

∫

B0
(∇ · ∗P) · ũ(X) dV =0 (48)

where ũ(X) is a kinematically admissible sensitivity displacement 9eld expressed over the reference
con9guration. With integration by parts, Equation (48) results in

∫

B0

∗
P · @ũ

@X
dV0 =

∫

9B0

∗
Pm · ũ dA0 (49)

where m is the unit outward normal at X∈ @B0. The reference con9guration is not a8ected by

the change in the die surface, therefore
∗m =0. Transforming the term in the right-hand side of

Equation (49), to the current con9guration (where n is the corresponding unit normal vector) and

substituting the expression for
∗
P from Equation (46), one can obtain,

∫

9B0

∗
Pm · ũ dA0 =

∫

9Bn+1

{tr(∗FF−1)T+ ∗
T −T(∗FF−1)T}n · ũ dAn+1 (50)

The normal vector n in the current con9guration can be expressed in terms of the deformation
gradient 9eld and the normal vector m as follows:

n=F−Tm=‖F−Tm‖ (51)

Applying the sensitivity operator to the above equation and after some simpli9cations, one can
show that

∗n = {(∗F F−1) · n⊗ n}n − (∗F F−1)Tn (52)

Using the above equation, the sensitivity of the traction vector t̂=Tn (per unit current area) can
be written as follows:

∗̂
t = {(∗F F−1) · n⊗ n} t̂ + ∗

Tn − T(∗F F−1)Tn (53)

Equations (49), (50) and (53) 9nally lead to the following weak sensitivity problem: Calculate
∗x (X; t) such that

∫

B0

∗
P · @ũ

@X
dV0 =

∫

9Bn+1

{(∗F F−1) · (I − n⊗ n)} t̂ · ũ dAn+1 +
∫

9Bn+1

∗̂
t · ũ dAn+1 (54)

for every admissible test function ũ.
In the direct contact analysis presented in Sections 2.2 and 2.3, the contact traction [ per unit

reference area � was introduced. The contact traction vectors t̂ and [ are related as follows:

t̂= [ ‖FTr n‖=Jr (55)
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where Fr =FF−1n is the relative deformation gradient and Jr = det Fr . Using the fact that ‖FTr n‖=Jr =
dAn

dAn+1
, the 9rst term in the right-hand side of Equation (54) can be expressed as

∫

9Bn+1

{(∗F F−1) · (I − n⊗ n)} t̂ · ũ dAn+1 =
∫

9Bn

{(∗F F−1) · (I − n⊗ n)}[ · ũ dAn (56)

The sensitivity of the contact traction vector t̂ can be computed as

∗̂
t =

∗
[
‖FTr n‖

Jr
+
[
Jr

∗
‖FTr n‖ −[‖F

T
r n‖

Jr2
∗

det Fr (57)

Equation (57) can be used to modify the right-hand side of Equation (54) as follows:
∫

9Bn+1

∗̂
t · ũ dAn+1 =

∫

9Bn+1

(
∗
[
‖FTr n‖

Jr
+
[
Jr

∗
‖FTr n‖ −[‖F

T
r n‖

Jr2
∗

det Fr

)

· ũ dAn+1 (58)

The 9rst term in the right-hand side of the above equation simpli9es as
∫

9Bn+1

∗
[
‖FTr n‖

Jr
· ũ dAn+1 =

∫

9Bn

∗
[ · ũ dAn (59)

The computation of the sensitivity of the contact traction vector
∗
[ is derived in the next section.

The following expression can be shown to hold:

∗
‖FTr n‖ = [(FrFTr ) · (∗n ⊗ n) + (

∗
Fr FTr ) · (n⊗ n)]

1
‖FTr n‖

(60)

where the sensitivity of the relative deformation gradient is expressed as

∗
Fr = (

∗
F −Fr ∗Fn)F−1n (61)

The sensitivity of Jr is computed as

∗
det Fr = Jr tr(

∗
F F−1)− Jr tr(Fr

∗
Fn F−1) (62)

Equations (60) and (62) can be used to evaluate the second and third terms in the right-hand side
of Equation (58). One can thus pose the weak kinematic sensitivity problem as follows:

Calculate ∗x (X; t) such that
∫

B0

∗
P · @ũ

@X
dV0 =

∫

9Bn

∗
[ · ũ dAn +

∫

9Bn

tr[Fr
∗
Fn F−1][ · ũ dAn

−
∫

9Bn



Fr
∗
Fn F−1n FTr
‖FTr n‖2



 · (n⊗ n)[ · ũ dAn (63)

In the above equation, the integrations over the boundary @Bn are non-zero only on its subset
� where contact occurs.
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Remark 2. In using a 9nite element method to solve the above kinematic sensitivity problem

for
∗x, one can notice that the term on the left-hand side of Equation (63) contributes to both

the sti8ness matrix and the force vector. Considering the right-hand side of the equation above,
we remark that its 9rst term contributes to both the sti8ness matrix and the force vector (see
Section 3.3), whereas its second and third terms contribute only to the force vector. In the present
continuum sensitivity analysis, the sti8ness matrix for the sensitivity problem is not the same as
the linearized tangent sti8ness used in the direct kinematic analysis, even though the relation of

dP with dF and
∗
P with

∗
F, respectively, look identical. This becomes apparent after noticing that∗

P depends on
∗
T (Equation (46)) and through the solution of the constitutive sensitivity problem

∗
T depends upon the history of the sensitivities of the material state and Fe (Equations (42) and
(43)). Such dependencies are characteristic of the sensitivity problem and are of no relevance to
the direct analysis.

3.2.3. Initial conditions and non-contact boundary sensitivity conditions. The following set of
initial conditions are used in the direct analysis:

T(X; 0)= 0; s(X; 0)= s0 (64)

The corresponding initial conditions for the sensitivity problem are the following:

∗
T(X; 0)= 0; ∗s(X; 0)=0 (65)

For calculating sensitivities with respect to the initial state or stresses, one should appropriately
modify these equations.
The boundary conditions for the die sensitivity problem are derived from the corresponding

boundary conditions of the direct analysis. Some typical non-contact related cases are examined
below. The boundary traction is zero on a free boundary. The corresponding boundary condition
for the sensitivity problem is written as follows:

∗̂
t = 0 (66)

On the part of the boundary with prescribed displacement or velocity, e.g.

x(X; t)= x̃(X; t) (67)

where x̃(X; t) is a known function, the corresponding kinematic sensitivity condition is

∗x(X; t)= 0 (68)

The equation above should be modi9ed if the objective is to calculate sensitivity 9elds with respect
to design variables related to x̃(X; t) (for example when the ram speed is the design variable).

3.3. The contact sensitivity problem

As a result of the non-smooth nature of the contact=friction conditions, the calculation of the sensi-
tivity of contact traction components is a non-trivial task. Non-smooth contact=frictional behaviour
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result from the variation of the normal traction component at impending contact and from the vari-
ation of tangential traction component at the stick-slip transition. To allow for the di8erentiability
of the direct contact=frictional conditions (see Section 2.3), the following regularizing assumptions
are made:

(1) Contact sensitivity assumption: A material particle that lies in the admissible (inadmissible,
respectively) region at time t for a particular deformation problem also lies in the admissible
(inadmissible, respectively) region for a nearby deformation problem (e.g. obtained after an
in9nitesimal perturbation of the reference die or for a nearby set of process parameters) at
that time t.

(2) Friction sensitivity assumption: If the frictional conditions at a particular point in contact for
a reference deformation problem are those of sticking (sliding, respectively), the frictional
conditions of this point at the same time for a nearby deformation problem will be that of
sticking (sliding, respectively). Thus transition from a stick to a slip condition does not occur
at a material point as a result of in9nitesimal changes in the die shape or other process
parameters.

Recall that in the direct contact problem, in addition to contact tractions, the regions of contact
and the regions of slip=stick within the contact boundary are calculated. However, in the sensi-
tivity analysis with the regularization assumptions introduced above, one needs to calculate only
the sensitivities of the traction components, with the contact boundary and regions of stick=slip
identi9ed by the direct analysis.
Let us 9rst introduce a proper notation for the sensitivity of a function f=f(x). In the particular

case of a die design problem, it is assumed that a variation in the die surface would not only
result in a variation of the position x, but also may result in a variation of the function f itself.

The sensitivity of the function f denoted by
∗

[f(x)] generally consists of two parts, the 9rst

part,
∗
f , denotes the contribution due to changes in the function f with x constant and the second

part, ∇f
∗x, denotes the contribution due to changes in the variable x with f constant, i.e.

∗
[f(x)] =

∗
f +∇f

∗x (69)

A calculation of the sensitivity
∗
[ of the contact traction is now developed. Figure 3 shows the

schematic used to de9ne the contact traction sensitivities. The analysis presented here is for die

design problems and the change in the die shape is represented by
∗y.

In the present work, the sensitivity traction 9eld
∗
[ is de9ned by di8erentiating with respect

to the die surface the continuum contact constraints and then implementing these sensitivity con-
tact constraints consistently with the analysis used in the direct contact problem. The variables

(
∗
[n;

∗
O�n) are assumed to be known as calculated from the time integration of the contact sensitiv-

ity problem from the previous time-step (time tn). The corresponding unknown variables at time

tn+1 are denoted as (
∗
[;
∗
O� ), where for simplicity of notation, the subscript (n+ 1) is omitted from

variables that refer to time tn+1. The solution of the direct deformation contact problem gives the
contact tractions [ at time tn+1 and identi9es regions of sticking and sliding.
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Figure 3. A schematic of the contact sensitivity problem for in9nitesimal changes in the die shape.

Consideration of the strong form of the normal contact constraints in the direct deformation
problem yields for points in contact g(xn+1)= 0 and �N¿0. Thus, the strong form of the normal
contact sensitivity constraint is obtained as

∗
g(xn+1) = 0 and

∗
�N ∈�

This is a direct result of the contact sensitivity assumption introduced earlier. The sensitivity
∗
�N

is treated as the Lagrange multiplier that enforces the continuum form of the normal contact
sensitivity constraint. The following penalty form is used to enforce this constraint:

∗
�N =

∗
�Nn +�N

∗
g(xn+1) (70)

where
∗
�Nn is the sensitivity of the normal traction component at the beginning of the time integra-

tion step. The penalty parameter �N introduced above is generally not the same as the corresponding
parameter used in the direct contact sub-problem (see Remark 3).
Consideration of the tangential contact constraints yields that for points in sticking contact,

Ȯ�=0. The corresponding sensitivity constraint (based on the friction sensitivity assumption) takes
the form

∗̇
O� =

∗̇
O� =0

As in the case of the normal to the die sensitivity constraints,
∗
�T is treated as the Lagrange

multiplier that enforces the tangential to the die sensitivity constraints for the case of sticking
contact. The following penalty formulation of the sticking sensitivity constraint is introduced:

∗̇
O� =

1
�T

∗̇
O� T (71)
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Integration of this equation results in the following:

∗
�T =

∗
�Tn +�T(

∗
O� −

∗
O� n) (72)

where
∗
�Tn is the sensitivity of the tangential traction component at the beginning of the time

integration step. The parameter �T can be selected independently of the corresponding parameter
in the direct contact sub-problem.

Remark 3. Equations (70) and (72) are derived in a continuum contact sensitivity setting. An
alternate formulation can be considered where the design di8erentiation of the corresponding dis-
crete equations used in the augmented Lagrangian analysis in the direct contact sub-problem is
carried out (i.e. of �N = 〈�N + �Ng(x

(k)
n+1)〉 and �trialT = �Tn + �T( O�

(k)
n+1 − O�n) + U�(k)T , respectively).

However, this interpretation requires that the penalty parameters �N and �T are identical in both
the direct and sensitivity contact sub-problems. Such a restriction is unnecessary as it implies that
the magnitude of the penalty parameters �N and �T in the sensitivity contact analysis is limited
by corresponding values used in the direct contact problem. Indeed, recall that an augmented
Lagrangian formulation instead of a penalty formulation is used in the direct contact algorithm
because using large penalties to enforce contact and frictional constraints leads to ill-conditioning
and convergence problems of the Newton algorithm that solves the non-linear direct deformation
boundary value problem.

Remark 4. Solution of the direct deformation problem with moderate penalties within a time
increment usually requires augmentations to accurately enforce the contact=frictional constraints.
Derivation of the contact sensitivity sub-problem by di8erentiation with respect to the die of
the discrete direct contact sub-problem (see Remark 3) will thus lead to a contact sensitivity
algorithm that requires a number of iterations (augmentations). The sensitivity deformation problem
is however a linear problem and augmentations are preferably avoided with a linear continuum
sensitivity analysis.
As a result of the contact and frictional sensitivity assumptions, Equations (70) and (72) can

be used here with high penalty parameters and no augmentations are necessary in the contact
sensitivity analysis. For simplicity of notation, the contact sensitivity penalty parameters are denoted
by �N and �T, even though they are not the same as the corresponding penalty parameters in the
direct contact analysis.

In the case of slip,
∗
�T is well de9ned by the Coulomb friction law as follows:

∗
�T =

∗(
��N

1
‖�1‖

)
(73)

To simplify the above equation, the following relation is used:

∗
[�1( Oy)] =

∗
[ Oy;�] =

∗
Oy;� + Oy;��

∗
O� (74)

where
∗
Oy;� represents the contribution to the sensitivity due to changes in the shape y of the die.
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Using the above equation, Equation (73) (applicable to a slip condition) simpli9es as follows:

∗
�T =

∗
�N
�N

�T − �T



 Oy;� ·
∗
Oy;�

Oy;� · Oy;�



− �T

(
Oy;� · Oy;��
Oy;� · Oy;�

)∗
O� (75)

One can thus complete the contact sensitivity description by writing the following equation for
∗
[:

∗
[ =

∗
[N − ∗

[T;
∗
[N =

∗
�N]( Oy);

∗
[T =

∗
�T�1( Oy) (76)

where
∗
[N and

∗
[T are the sensitivities of the normal and tangential contact traction vectors,

respectively. Using Equations (70), (74), (76b) and ]( Oy)= �1( Oy) × e2=‖�1( Oy)‖, the sensitivity
of the normal contact traction vector can 9nally be expressed as follows:

∗
[N =

∗g V1+
∗
O� V2 + V3 (77)

where the vectors Vi are de9ned by

V1 = �N
( Oy;� × e2)
‖ Oy;�‖

V2 =
�N

‖ Oy;�‖
[
( Oy;�� × e2)−

(
Oy;� · Oy;��
Oy;� · Oy;�

)
( Oy;� × e2)

]

V3 =
∗
�Nn

( Oy;� × e2)
‖ Oy;�‖

+
�N

‖ Oy;�‖



(
∗
Oy;� ×e2)−



 Oy;� ·
∗
Oy;�

Oy;� · Oy;�



 ( Oy;� × e2)




(78)

Similarly, using Equations (72) (for sticking friction) or (75) (for sliding friction), (74) and (76c),

the sensitivity of the tangential contact traction vector
∗
[T can be expressed as follows:

∗
[T =

∗g v1+
∗
O� v2 + v3 (79)

If the material point is in sliding contact, then the vectors vi take the form:

v1 = �N
�N
[T

v2 = �T Oy;�� −
(
Oy;� · Oy;��
Oy;� · Oy;�

)
[T (80)

v3 =
∗
�Nn

�N
[T −



 Oy;� ·
∗
Oy;�

Oy;� · Oy;�



 [T + �T
∗
Oy;�
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On the other hand, if the friction conditions are that of stick, vi take the form
v1 = 0
v2 = �T Oy;� + �T Oy;��

v3 = ∗
�Tn Oy;� − �T

∗
O� n Oy;� + �T

∗
Oy;�

(81)

If the contact conditions are frictionless, then vi= 0.
Substitution of Equations (77) and (79) in Equation (76a) yields a concise expression for the

sensitivity of the contact tractions as

∗
[ =

∗gS1+
∗
O� S2 + S3 (82)

where Si ≡ Vi − vi. The sensitivity
∗
O� of the amount of inelastic slip is related to

∗x (see Figure 3).
The linear relationship between

∗
O� and

∗x is now developed. Consider the sensitivity of the relation
( Oy−x) · �1( Oy)= 0 which expresses the fact that the closest point Oy on the die to a point x is the
projection of the point x on to the die. The sensitivity of the above relation is given by

(y( O�)− x) ·
∗

[y;�( O�)] +(
∗

[y( O�)] − ∗x) · y;�( O�)= 0 (83)

The above expression can be simpli9ed as follows:

∗
O� = a · ∗x +b (84)

where

a=
�1( Oy)

‖�1( Oy)‖2[1 + g!( Oy)]

b=
−[g]( Oy) · ∗Oy;� +�1( Oy) ·

∗
Oy]

‖�1( Oy)‖2[1 + g!( Oy)]

(85)

where !(Oy)= ](Oy) · y; ��( O�)=‖�1(Oy)‖2 represents the curvature of the die at Oy.
The linear relationship between the sensitivity of the gap function

∗
g(x) and ∗x can be obtained

by the design di8erentiation of Equation (19) as follows:

∗g = ](Oy) · (∗Oy − ∗x) (86)

Substitution of Equations (84) and (85) in Equation (82) results in the 9nal expression for the
sensitivity of the contact traction:

∗
[ = [(S2⊗ a)− (S1⊗ ](Oy))] ∗x +[(](Oy) ·

∗
Oy)S1 + bS2 + S3] (87)

From Equations (63) and (87), one can conclude that the sensitivity of the contact tractions
contributes to the force vector as well as the sti8ness matrix in the weak form of the kinematic
sensitivity problem (see the 9rst term on the right-hand side of Equation (63)).
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Figure 4. Solution procedure used in the contact sensitivity sub-problem. The penalty parameters �N
and �T used in this analysis are much larger than those used in the direct contact sub-problem in which

augmentations are usually necessary.

The initial conditions for the contact sensitivity algorithm at the beginning of the deformation

at time t0 are (
∗
[0;

∗
O� 0) which are given as follows:

∗
[0 = 0;

∗
O� 0 = 0 (88)

A summary of the time integration of the contact sensitivity sub-problem follows (Figure 4):

Solve for the sensitivity of the deformation
∗x at time tn+1

S̃(
∗x; ũ)= S(

∗x; ũ) + Sc(
∗x; ũ)= 0

Note: The above equation represents the linear sensitivity weak form, the solution of which re-
quires input from the kinematic, constitutive and contact sensitivity sub-problems. The solution of

this linear equation yields the sensitivity of the body con9guration
∗x corresponding to the body

con9guration Bn+1.
The following values for the sensitivity of contact tractions are used in the solution for ma-

terial points in contact (based on the computed body con9guration Bn+1 and the history of the
sensitivity):

Sensitivity of normal traction:

Use
∗
[N from Equation (77)

Sensitivity of tangential traction:
IF (x∈ #stick) THEN

Use
∗
[T from Equations (79) and (81)

ELSE (sliding contact)

Use
∗
[T from Equations (79) and (80)
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Remark 5. Implementation of the contact sensitivity algorithm obtained by di8erentiation of the
discrete equations used in the direct contact sub-problem was also developed as part of this in-
vestigation. Such a contact sensitivity analysis uses the same penalty parameters �N and �T as the
direct analysis and requires augmentations within a time increment. It has been determined that
the method presented in this paper provides the same accuracy for the computed sensitivities of
the contact tractions as this alternative method, although with a higher computational eKciency.

4. NUMERICAL RESULTS

A comprehensive set of numerical examples in the design of metal forming processes is considered
here to validate the proposed computational framework and numerical algorithm. The CPU require-
ments of the present object oriented implementation are shown in a representative example. The
computations were performed on an IBM RS-6000 workstation at the Cornell Theory Center. In
all reported simulations three-noded cross triangular elements were used. Unless otherwise stated,
the penalty parameters for the sensitivity contact problem are selected as �N =108 and �T = 104.
The workpiece material chosen in all examples is Al 1100-O at 673K. The constitutive model for
this material is taken from Brown et al. [27] and is summarized in Appendix B.

4.1. Accuracy investigations

4.1.1. Sensitivity calculations in axisymmetric extrusion (Example 1). An axisymmetric extrusion
of a cylindrical workpiece is considered through a curved die. The initial radius of the workpiece
is 1 cm and the initial height is 2 cm. A friction coeKcient of 0:01 is assumed at the die–workpiece
interface.
A degree six (n=6) B=ezier curve is used to represent the die shape:

r =
n+1∑

i=1
Cifi(&) (89)

z = & (in cm) (90)

Here &∈ [0; 1], and Ci; i=1; : : : ; (n+1), are algebraic control parameters (points). The Bernstein
functions fi(&); i=1; : : : ; (n+ 1), are de9ned as follows:

fi(&)=
n!

(i − 1)!(n− i + 1)!
&i−1(1− &)n−i+1 (91)

In order to obtain the same reduction for di8erent die design parameters, the parameters C1
and C7 are selected such that C1 = 1:0 cm and C7 = 0:866 cm. Such a selection results in a 9xed
cross-sectional area reduction of 25 per cent. In addition, to allow the workpiece to enter and leave
the die zone smoothly, the die curve at the entrance and exit is restricted to be perpendicular to
the radial axis. This is accomplished by selecting C2 =C1 and C6 =C7.
With the above selection of the parameters Ci, there are three remaining die design parameters

(�1; �2; �3) ≡ (C3; C4; C5). The initial values are arbitrary, and the reference (initial) die is selected
such that

�1 = (3C1 + C7)=4; �2 = (C1 + C7)=2; �3 = (C1 + 3C7)=4
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Figure 5. The initial and steady-state (t=170 s)
grids shown along with the initial guess of

the die shape (Example 1).

Figure 6. Steady-state distribution of the state
variable s (in MPa) (Example 1).

Table I. Simulation parameters for the frictional
extrusion of a 1100-Al billet (Example 1).

Parameter Value

Energy error norm 1.0E− 07
Displacement L2 error norm 1.0E− 07
Normal penalty for contact 1.0E+06
Tolerance for gap 1.0E− 06
Tangent penalty for contact 1.0E+03
Tolerance for friction condition 1.0E− 06

The initial die shape (length= 1 cm) is shown in Figure 5. A 9nite element mesh of 6 × 18
cross-triangular elements is considered (Figure 5). The extrusion velocity is 0:01 cm=s. A 9xed
time step of Ut=0:25 s is used. The parameters used in the simulation are given in Table I. The
time at which the process reached steady-state conditions at the exit was computed as t=170 s.
The grid at this time is also shown in Figure 5.
Figure 6 shows the steady-state contour plot of the state variable s. In more detail, the state

variable distribution s along the die exit is shown in Figure 7 demonstrating that steady-state
conditions are achieved at t=170 s. Figures 8–10 show the steady-state contours of the sensitivity
∗s with respect to the design parameters (�1; �2; �3) using the DDM (direct di8erentiation) and
the FDM (9nite di8erence) methods. The FDM results are obtained using the results of the direct
analysis and a forward di8erence approximation for a perturbation of each of the design variables

by 10−3 cm. Figure 11 shows a comparison of the sensitivity ∗s with respect to each of the design
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Figure 7. The distribution of the state variable s along the exit at various process times (Example 1).

Figure 8. Contours of the steady-state sensitivity of the state variable s (in MPa) with respect to �1 computed
using the DDM and FDM methods (Example 1).

parameters along the die exit using the DDM and the FDM at steady state. The results match
quite well.

4.1.2. Evaluation of the accuracy of the computed sensitivities of contact tractions in an open
die forging process (Example 2). In this example, the accuracy of the computed sensitivities of
contact tractions with respect to the speed of a Lat die in an open die forging process is examined,
i.e. the forging rate V is here taken as the process (design) parameter. Variations in the forging
rate a8ect the dissipated energy during upsetting and so it is important to be able to model the
sensitivity 9elds as a result of this variation.
The initial cylindrical workpiece of radius 1.00mm and height 3.00mm is discretized using

576 triangular 9nite elements. As a result of the symmetry of the problem, only a quarter of the
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Figure 9. Contours of the steady-state sensitivity of the state variable s (in MPa) with respect to �2 computed
using the DDM and FDM methods (Example 1).

Figure 10. Contours of the steady-state sensitivity of the state variable s (in MPa) with respect to �3 computed
using the DDM and FDM methods (Example 1).

work-piece is modelled (Figure 12). The speci9ed forging velocity for the reference problem is
V =0:01mm=s and the workpiece is allowed to deform to 80 per cent of its initial height at which
time the sensitivity 9elds are monitored. The various simulation parameters are given in Table II.
The FDM values are computed corresponding to a variation of )V =10−4 mm=s.
The accuracy of the contact sensitivity algorithm introduced in this paper (see Figure 4) is

investigated here with the penalty parameters in the sensitivity algorithm selected as �N =1:0E+08
and �T = 1:0E + 06. In addition, an alternative simulation is also performed with smaller contact

Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 48:679–720



706 N. ZABARAS ET AL.

Figure 11. Comparison of steady-state values of
∗s at the exit corresponding to �1, �2 and �3, respectively,

computed using the DDM and FDM methods (Example 1).

Figure 12. Axisymmetric upset forging for parameter sensitivity analysis
with respect to the die speed (Example 2).

penalty parameters. As mentioned in Remarks 4 and 5, augmentations are required within a time
step for such a choice. The penalty parameters for this simulation are selected to be the same
as the corresponding parameters in the direct contact problem. Such an alternative simulation can
be thought of as the regularized derivative of the corresponding discrete contact algorithm of the
direct analysis.
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Table II. Simulation parameters for the fric-
tional open die forging of an axisymmetric

1100-Al billet (Example 2).

Parameter Value

Energy error norm 1:0E− 08
Displacement L2 error norm 1:0E− 08
Normal penalty for contact 1:0E + 07
Tangent penalty for contact 1:0E + 05
Tolerance for gap 1:0E− 08
Tolerance for friction 1:0E− 06

Figure 13. Distribution of the normal and tangential contact traction components at the 9nal state for the
axisymmetric frictional upsetting process with a reference die velocity of 0:01mm=s (Example 2).

In order to validate the parameter sensitivity problem for processes involving frictional contact,
a moderate friction coeKcient of 0:4 is chosen to allow for variable regions of stick and slip at
the contact interface. Figure 13 depicts the variation of the normal and tangential tractions at the
die–workpiece interface using the reference die velocity. Figure 14 shows the variation of @�N=@V
and @�T=@V along the radius in the deformed con9guration at the die–workpiece contact interface.
In general the FDM and DDM results (using the present contact sensitivity algorithm and the
alternative contact sensitivity algorithm mentioned above) agree very well. It is observed that the
DDM method is able to accurately predict the tangential traction derivatives in regions where there
is a transition from stick to slip or vice versa. This is evident at the sharp peak at radius r ≈ 0:7
in Figure 14 where there is a transition from sticking friction (inner radii) to sliding friction (outer
radii). The non-smooth behaviour at this location is the result of the Coulomb law used to model
friction. Small oscillations in the sensitivities (observed both in the FDM and DDM methods) are
due to the instability in the 9nite element implementation of the direct deformation problem as a
result of the reduced numerical quadrature used in the treatment of near-incompressibility and is
currently being investigated.
The computational savings using the present DDM method are substantial for problems where

the contact conditions are complex and is therefore the recommended method that is used in the
remaining of this paper.
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Figure 14. Comparison of the design derivatives @�N=@V and @�T=@V computed with the DDM and FDM
methods for the axisymmetric frictional upsetting process (Example 2).

Figure 15. Die design for uniform distribution of the state variable s at the exit location
in axisymmetric extrusion (Example 3).

4.2. Using sensitivity calculations for die design problems

4.2.1. Die design for uniform material state in an extruded product (Example 3). In this exam-
ple, the die parameters in the B=ezier representation given in Section 4.1.1 are designed such that
the distribution of s at the die exit (see Figure 15) is as uniform as possible, i.e. one is interested
in calculating the die parameters such that the following function is minimized:

f(Rp)=
N∑

i=1
(si − Os)2 (92)

where si (i=1; : : : ; N ) are N (= 20) discrete (equally spaced) state variable s values along the
radius at the exit (in the particular example, along z=1:0 cm) and Os=

∑N
i=1(1=N )si is the mean

value of the distribution of s along the exit.
The extrusion conditions are identical to those given in Example 1. The initial mesh is shown

in Figure 5 with 6× 18 cross triangular elements. A 9xed time step Ut=0:25 s is considered and
the steady-state process time is taken as t=170 s.
The computed sensitivity 9elds are used to evaluate the gradient of the objective function. Vari-

ous optimization methods have been tested for this design problem. Figure 16 shows the objective
function values as well as the norm of the gradient of the objective function, during the iterations
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Figure 16. The objective function and the norm of gradient of the objective function, respectively,
versus the iteration index (Example 3).

Figure 17. Distribution of s along the exit using the SD and CG methods, respectively (Example 3).

using the steepest descent (SD) and conjugate gradient (CG) methods. Figure 17 shows the distri-
bution of s along the exit at the 9nal time during various optimization iterations. Convergence is
achieved after 14 iterations. The computed die shapes during the initial and following optimization
iterations using the SD and CG methods are shown in Figure 18. Both optimization methods result
in the same optimal die.
The computing statistics for the optimization of the die shape in one iteration are summarized

in Table III. In the FDM method, one optimization iteration includes 4 direct problems. In the
DDM method, one optimization iteration includes 1 direct problem and 3 sensitivity sub-problems
The DDM method results in savings of about 64 per cent compared to the FDM method.

4.2.2. Die design for minimum required extrusion force for a given reduction ratio (Example 4).
The same B=ezier approximation and design parameters are used as in the earlier extrusion examples.
The die design parameters are calculated such that the required extrusion force is minimized.
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Figure 18. The computed die shapes during various iterations using the SD
and CG methods, respectively (Example 3).

Table III. CPU time (in hours) for the extrusion
die design problem (Example 3).

Direct problem 2.5
Sensitivity sub-problem 0.3
1 optimization iteration with FDM 10.0
1 optimization iteration with DDM 3.6

The required force is expressed as follows:

Fe =
∫

9Bn

[ · eZ dAn (93)

and the sensitivity
∗
Fe can be expressed as

∗
Fe =

∫

9Bn

∗
[ · eZ dAn (94)

where the integrations over the boundary @Bn are non-zero only on the boundary �⊂@Bn where
contact occurs.
The initial design parameters are selected as the optimal parameters evaluated in Example 3, i.e.

�1 = 0:90829 cm, �2 = 0:88793 cm, and �3 = 0:88279 cm. Due to the 9nite element implementation
of the contact problem, the computed extrusion force for a given die is oscillatory (Figure 19).
However, when the stroke is greater than 1:2 cm, the mean extrusion force remains constant. The
average force between stroke 1.2 and 1.7 cm is used here as the objective function to be minimized.
Figure 20 shows the sensitivity of the extrusion force versus stroke with respect to the three die
design parameters, using both the FDM and the DDM methods. The results agree quite well. In
the FDM calculations, the increments U�i, i=1; 2; 3, were taken as 10−3 cm.
A quasi-Newton method with a BFGS update of the Hessian is used to minimize the steady-state

extrusion force. The objective function is approximated at each optimization step as a quadratic
function along the descent direction. Three di8erent step sizes are selected along the descent
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Figure 19. The extrusion force versus stroke for the initial die design (Example 4).

Figure 20. The sensitivity of the steady-state extrusion force with respect
to �1, �2 and �3, respectively (Example 4).
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Figure 21. The extrusion force versus stroke and the various die shapes, respectively, computed during
the optimization process (Example 4).

direction and the direct problem is simulated with the corresponding design variables to obtain
the values of the objective function. The three computed values of the objective function de9ne a
local quadratic approximation that can be used to 9nd the minimum in the descent direction. The
extrusion force–stroke curve and the corresponding die shapes during the optimization processes
are shown in Figure 21. The optimized die is quite Lat in comparison to the initial die.

4.2.3. Die design in axisymmetric open-die forging to obtain a product of desired shape (Example
5). Consider an arbitrary curved die with which an axisymmetric cylindrical workpiece is forged
for a given reduction resulting in a product of some 9nal shape. In this example, we would like to
use an optimization scheme with the present sensitivity analysis to recover the die shape starting
from the shape of the free surface of the 9nal product. One could start from the whole shape of
the 9nal product. However, since the top surface in principle de9nes the desired die, only the free
surface is used in the present calculations. Such calculations will proceed in an iterative manner
starting with a Lat die until a die is found that results in the desired shape of the free surface
in the 9nal product. A single stage forging process cannot always produce a product of desired
shape and generally a multi-stage process is needed. However, based on the direct analysis that
produced the desired shape in the current application, it is known that a die does exist that results
in a product of the desired free surface shape after open-die forging of the workpiece.
The initial radius of the workpiece is 1 cm and the initial height 3 cm. A friction coeKcient of

1:0 is assumed along the die–workpiece interface. A degree four (n=4) B=ezier curve is used to
represent the die shape:

r=1:5& (in cm); z=
n+1∑

i=1
Cifi(&)

Here &∈ [0; 1], and Ci; i=1; : : : ; (n + 1), are algebraic parameters with fi(&); i=1; : : : ; (n + 1);
the Bernstein basis functions (see Equation (91)). To account for the axisymmetry of the problem,
the parameters C1 and C2 are selected as follows C1 =C2 (= 1:8 cm). A particular die is de9ned
with (�1; �2; �3)≡ (C3; C4; C5) with initial values of (2:04; 2:13; 2:05) cm. This die shape, the initial
workpiece and the 9nal product resulting after 33.33 per cent height reduction (at r=0) are shown
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Figure 22. The initial workpiece and selected die. After 33.33 per cent height reduction (at r=0), the product
shown in the right of the 9gure results. The shape of the free surface of this product is used as the desired

shape in the optimization analysis (Example 5).

Table IV. Simulation parameters for the design of
an open die forging process (Example 5).

Parameter Value

Energy error norm 1:0E− 07
Displacement L∞ error norm 1:0E− 07
Normal penalty for contact 1:0E + 05
Tangent penalty for contact 1:0E + 04
Tolerance for gap 1:0E− 05
Tolerance for friction condition 1:0E− 05

in Figure 22. The die speed is taken as 0:01 cm=s. Due to axisymmetry, only 1=4 of the workpiece
cross-section is modelled using a mesh of 8× 8 cross-triangular 9nite elements. The time step
was selected as Ut=0:2 s. The remaining parameters used in this direct simulation are given in
Table IV.
In the present design problem, one is given the initial shape of the workpiece (Figure 22(a)) and

is interested in 9nding the die shape that after a 33.33 per cent height reduction (at r=0) results
in a free surface of the 9nal product as that given in Figure 22(b). It is obvious that the solution
to this problem corresponds to the curved die de9ned earlier. The CG method is used to calculate
the descent direction during iterations and a line search method is used to calculate the step size
in each optimization step. Figure 23 shows the 9nal workpiece and the computed dies during the
optimization process. Figure 24 shows the values of the objective function as well as the norm of
the gradient of the objective function versus the number of iterations. It is apparent that after four
iterations, the die shape has converged to the expected solution of this design problem.
Such a die design problem is essential in multi-stage process design in which various inter-

mediate preforms have to be designed. Such applications will be reported in a forthcoming
publication [34].
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Figure 23. The 9nal workpiece during various steps in the optimization process. The initial, 1st,
2nd, 3rd and 9nal (4th) iterations are shown together with the desired shape of the free surface

in the 9nal product (Example 5).

Figure 24. The objective function and the norm of the gradient of the objective function versus the number
of iterations for the open-forging die design problem (Example 5).
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5. CONCLUSIONS

An accurate and eKcient continuum sensitivity analysis was presented for the design of metal
forming processes. The developed methodology is applicable for the calculation of the sensitivities
of the deformation, stresses and state variables with respect to variations in the die surface as well
as variations in other (non-shape related) process parameters.
An e8ective method was presented for computing the sensitivities of the contact tractions. The

method is developed by di8erentiation of the continuum contact and frictional constraints after a
number of regularizing assumptions were introduced. The linearity of the sensitivity algorithm was
preserved and no iterations or augmentations were required in the calculation of various sensitivity
9elds.
Various examples were presented to demonstrate the accuracy and potential of the developed

sensitivity analysis. Both extrusion and open-die forging processes were considered. Preform design
problems based on the present analysis are addressed in a companion paper [33].

APPENDIX A. DERIVATION OF THE LINEAR RELATION BETWEEN
∗
Fen+1 AND

∗
Fn+1

A sequence of steps is followed in order to express
∗
Fen+1 as a linear function of

∗
Fn+1. The variable

Dn+1 is introduced as follows:

Dn+1 ≡ [Fe]−1n+1(
∗
Fn+1 F−1n+1)F

e
n+1 (A1)

and Gn+1 is de9ned as follows:

Gn+1 =Dn+1 − Cn+1 (A2)

where Cn+1 is given by Equation (36). For an isotropic hyperelastic model with shear modulus
G, one can write the following:

∗
OT′
n+1 = 2G

∗
OEen+1 − 2G

3
tr(

∗
OEen+1)I (A3)

As shown in Reference [26],

tr(
∗
OEen+1)= tr(

∗
Uen+1[Ue]−1n+1) (A4)

Using the tensor property tr(AB)= tr(BA) and the sensitivity of the the polar decomposition of
Fen+1, one can show that

tr(
∗
Fen+1[Fe]−1n+1)= tr(

∗
Uen+1[Ue]−1n+1) (A5)

and using Equation (A4) conclude that

tr(
∗
Fen+1[Fe]−1n+1)= tr(

∗
OEen+1) (A6)
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Using Equations (41), (A2) and (A6) and the fact that deviatoric tensors are traceless, one arrives
at the following equation:

tr(
∗
OEen+1)= tr(Gn+1) (A7)

By considering the dot product of Equation (41) with OT′
n+1, one can eliminate

∗̃
�n+1 from this

equation. This is shown by the sequence of steps that follow.

Let us 9rst consider the quantity, ([Fe]−1n+1

∗
Fen+1) · OT′

n+1. Using the sensitivity of the polar decom-
position of Fen+1, one can write,

{[Fe]−1n+1

∗
Fen+1} · OT′

n+1 = {[Ue]−1n+1([R
e]Tn+1

∗
Ren+1)Uen+1} · OT′

n+1 + ([U
e]−1n+1

∗
Uen+1) · OT′

n+1 (A8)

Since Uen+1 and OEen+1 commute in multiplication, U
e
n+1 and OTn+1 and hence Uen+1 and OT′

n+1 also
commute in multiplication. Thus,

{[Ue]−1n+1([R
e]Tn+1

∗
Ren+1)Uen+1} · OT′

n+1

= {[Re]Tn+1
∗
Ren+1} · {[Ue]−1n+1

OT′
n+1U

e
n+1}

= {[Re]Tn+1
∗
Ren+1} · OT′

n+1

= 0 (A9)

where the skew symmetry of [Re]Tn+1
∗
Ren+1 and symmetry of OT′

n+1 were taken into account. The
following simpli9ed equation is 9nally obtained from Equation (A8),

([Fe]−1n+1

∗
Fen+1) · OT′

n+1 = ([U
e]−1n+1

∗
Uen+1) · OT′

n+1 (A10)

Using the diagonal representation of the symmetric tensor Uen+1, one can write

Uen+1 =Qn+1&n+1QTn+1 (A11)

where &n+1 is a diagonal tensor and Qn+1 is a rotation tensor. Therefore,

∗
Uen+1 =Qn+1

∗
&n+1QTn+1 + 2 sym(

∗
Qn+1Q

T
n+1U

e
n+1) (A12)

Since Uen+1 and OT′
n+1 commute in multiplication and both are symmetric, (U

e
n+1)

−1 OT′
n+1 is

symmetric. Since
∗
Qn+1Q

T
n+1 is skew symmetric and OT

′
n+1 symmetric, the following equation holds:

{[Ue]−1n+1 sym(
∗
Qn+1Q

T
n+1U

e
n+1)} · OT′

n+1 = 0 (A13)

Thus using Equations (A12) and (A13), one can write

([Ue]−1n+1

∗
Uen+1) · OT′

n+1 = (Qn+1
∗
&n+1&

−1
n+1Q

T
n+1) · OT′

n+1 (A14)
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Similarly, one can write the following:

OEen+1 = ln(U
e
n+1)=Qn+1 ln(&n+1)QTn+1 (A15)

∗
OEen+1 =Qn+1

∗
&n+1&

−1
n+1Q

T
n+1 + 2 sym(

∗
Qn+1Q

T
n+1
OEen+1) (A16)

with

sym(
∗
Qn+1Q

T
n+1
OEen+1) · OT′

n+1 = 0 (A17)

Therefore using Equations (A16) and (A17), one derives the following:

∗
OEen+1 · OT′

n+1 = (Qn+1
∗
&n+1&

−1
n+1Q

T
n+1) · OT′

n+1 (A18)

Combining Equations (A14) and (A18), one can write the following:

([Ue]−1n+1

∗
Uen+1)· OT′

n+1 =
∗
OEen+1· OT′

n+1 (A19)

Also following Equation (25) and using
∗
OT′

n+1 = 2G
∗
OEe′n+1, one can write

∗̃
�n+1 =

3G
�̃n+1

∗
OEe′n+1· OT′

n+1 =
3G
�̃n+1

∗
OEen+1· OT′

n+1 (A20)

The following simpli9cation is obtained using Equations (A10), (A19) and (A20):

([Fe]−1n+1

∗
Fen+1)· OT′

n+1 =
∗
OEen+1· OT′

n+1 =
�̃n+1

3G

∗̃
�n+1 (A21)

Taking the dot product of Equation (A22) with OT′
n+1 and using Equations (14), (25) and (A21),

results in the following:

Gn+1· OT′
n+1 =

∗̃
�n+1

{
�̃n+1

3G
+
2 �̃n+1an+1

3
+
2 �̃2n+1bn+1

3

}

(A22)

and thus
∗̃
�n+1 is 9nally expressed as

∗̃
�n+1 =

3GGn+1· OT′
n+1

�̃n+1(1 + 2G(an+1 + �̃n+1bn+1))
(A23)

Let us now de9ne the following tensor (function of
∗
Fen+1):

Hn+1 = [Fe]−1n+1

∗
Fen+1 + 2Gan+1

∗
OEen+1 (A24)

Using this de9nition and Equations (A2), (A3), (A7), Equation (41) can now be simpli9ed as
follows:

Hn+1 =Gn+1 +
2Gan+1 tr(Gn+1)

3
I − 3Gbn+1Gn+1· OT′

n+1

�̃n+1(1 + 2G(an+1 + �̃n+1bn+1))
OT′
n+1 (A25)
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Table A1. Material parameters for Al 1100-O
at an initial temperature 673K.

Material parameter Value

A 1:90593× 107 s−1
Q=R 2:1086× 104 K−1

� 7:0
m 0:23348
s0 29.7 MPa
h0 1115.6 MPa
a 1.3
s̃ 18.92 MPa
n 0.07049
G 20.2 GPa
K 66.0 GPa

or 9nally as

Hn+1 =Dn+1 +
2Gan+1 tr(Dn+1)

3
I − 3Gbn+1Dn+1· OT′

n+1

�̃n+1(1 + 2G(an+1 + �̃n+1bn+1))
OT′
n+1

−Cn+1 +
3Gbn+1Cn+1· OT′

n+1

�̃n+1(1 + 2G(an+1 + �̃n+1bn+1))
OT′
n+1 (A26)

Notice that Dn+1 is linearly related with
∗
Fn+1 and Cn+1 is independent of

∗
Fn+1. With the de9nition

of Hn+1 from Equation (A24), one can transform Equation (A26) to the form of Equation (42).

Also, given
∗
Fn+1 and using the de9nition of Dn+1 and Cn+1 from Equations (A1) and (36),

Equation (42) can be solved numerically to obtain
∗
Fen+1.

APPENDIX B. CONSTITUTIVE MODEL FOR Al-1100 AT 673K

The constitutive model for 1100-Al at 0=673K is here taken from [27]. The Low function f is
given as follows:

f(�; s; 0)=A exp
(
− Q

R0

)[
sinh

(
�
�
s

)]1=m
(B1)

and the hardening function g is given by

g(�; s; 0)= h(�; s)f(�; s; 0) (B2)

where the function h is de9ned as follows:

h(�; s)= h0|1− s=s∗|a (B3)
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with

s∗= s̃
[
f(�; s; 0)

A
exp

(
Q
R0

)]n

(B4)

The speci9c values of the mechanical and thermal parameters are given in Table A1.
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