ADL and Mobile Learning

Judy Brown and Jason Haag
11 August 2010
<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 AUG 2010</td>
<td></td>
<td>00-00-2010 to 00-00-2010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADL and Mobile Learning</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5e. TASK NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Decision Learning (ADL), 1901 N. Beauregard Street Suite 600, Alexandria, VA 22311</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementation Fest 2010, 10-12 Aug 2010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT unclassified</td>
</tr>
<tr>
<td>c. THIS PAGE unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same as Report (SAR)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Disclaimer

The appearance of commercial products does not constitute endorsement by the Advanced Distributed Learning initiative or the Department of Defense, of the commercial product.
ResponseWare

- iPhone
- BlackBerry
- Mobile browser to http://rwpoll.com

turningtechnologies.com
Vision

To be the source of information and support for DoD mobile learning initiatives.
Knowledge

- Tracking
- Collecting, sharing
- Presentations
- Use cases
Deliverables

- Developing samples
- Tools identified
- Workshops, webinars
- White papers
- Annual S&T Workshop
Research

- Collecting, sharing best practices
- BAAs
http://emerginged.com/adlmobile
Welcome to Mobile Learning Basics. The menu items below will help you get started with mobile learning.

- Definitions
- Glossary
- Capabilities
- Industry Statistics
- Quotes
- Five Moments
Mobile Learning Opportunities

- Location specific
- Field guide
- Quiz
- Review/remember
- Survey
- Audio recordings
- Video recordings
- Micro learning
- Just-in-time
- Feedback
- Note taking
- Capture/share/document
- Reporting
- Test
- Reminders
- On-demand access
- Procedures
- Geo-blogging
- Geo-exploration
- Game-based learning
- Organization
- Audio recordings
- Job aid/check list
- Reference
- Conferencing
- Assignments
- Presentations
- Translation
- Geo-exploration
- Decision support
- Coaching/mentoring
- Transcription
- alerts
- Game-based learning
- Updates
- Augmented reality

Advanced Distributed Learning
2014 US Mobile Learning Reach and Adoption Across All Eight Buyer Segments

National rollout of 3G & fixed wireless broadband began in 2005-2006, 4G rollout began in 2010

- **1st Generation Mobile Learning**
 - Desktop Self-paced eLearning Peaked
 - Demand Still Growing in Academic Segment
 - Wired Broadband
 - Remote Tutors, Virtual Labs, and Virtual Classrooms

- **2nd Generation Real-time Collaboration-based Learning Dominates**
 - App Stores, On-deck Device-dependent Supply Chain
 - Embedded & Location-based Learning
 - Handheld Decision & Performance Support

- **2nd Generation Mobile Collaboration**
 - Connected 4G Multi-purpose Devices
 - Wi-Fi, WiMAX, & Long Term Evolution (LTE)
 - Cloud-based, Cross Platform Supply Chain
 - Peer-generated Content, and Mobile Augmented Reality-based Learning
 - Real-time Video and Conferencing

Adoption Rate

Reach (in Millions of People)

- 2002
- 2003
- 2004
- 2005
- 2006
- 2007
- 2008
- 2009
- 2010
- 2011
- 2012
- 2013
- 2014
Five Moments of Learning Needs

- When learning for the first time
- When wanting to learn more
- When trying to remember
- When things change
- When something goes wrong

Dr. Conrad Gottfredson
Ball State University Research

- 99.8 percent of students have a cell phone
- Nearly nine in 10 students with smart phones access the Internet
- 97% of students send/receive text message; 30% e-mail; 25% IM
- 97% smart phone owners take and send photographs; 87% take and send video
4.6 billion subscriptions - 68% of planet
3.4 billion unique users - half the planet
1.2 billion PCs (including notebooks)
3x as many camera phones in use today than any kind of stand-alone camera, digital or film-based - ever manufactured
1.13 billion handsets sold last year compared to 270 million new PCs
More internet users on mobile than on personal computers
"You can't teach people everything they need to know. The best you can do is position them where they can find what they need to know when they need to know it."

Seymour Papert, MIT
Challenges

- Security
- Changing markets
- User expectations
- SCORM
Looking Ahead…

- Devices
- Location
- Mobile broadband
- Recognition
- Accelerometers
- Context aware
- Augmented Reality

- Machine to machine
- Near Field Communication
- Personalization
- 3D
- Sensors
 - Orientation
 - Heart rate
 - Blood glucose
 - Pulse
SCORM Implementation Strategies for Mobile
Objectives

- Generate a list of mobile learning initiatives that use SCORM.
- Publish general best practices for developing SCORM content for mobile devices.
- Identify which technologies are available when implementing SCORM for mobile devices.
- Identify potential requirements for future versions of SCORM.
Use Case #1: Mine Lab (Taiwan)

- **PocketSCORM**
 - SCORM reader on mobile devices + LMS Server + SCORM repository
 - Part of larger Hard SCORM project
 - Can dynamically adjust the content to adapt
 - First released in June 2004 for Windows Mobile
Use Case #1: Mine Lab (Taiwan)

- PAD SCORM
 - Stand-alone Native App for SCORM content that supports iPhone, iPod Touch, and iPad
 - Released in 2010
 - Submitted to iTunes App store
Notable Findings: MINE Lab (Taiwan)

- Both Pocket SCORM & PAD SCORM Apps provide offline/disconnected capability in case connectivity is lost
- Both Support SCORM 1.2 and SCORM 2004
- Native Mobile Apps provide more local storage capability, and better support for multimedia and human interaction than Mobile Web Apps.
- Biggest challenges were not technical, but related to:
 - Promoting their products
 - Finding and keeping SMEs & instructors onboard to create the materials
 - High cost of development
Use Case #2: Bank of America

Hey Bill, how was your weekend?

Great weekend. I had a date with that girl who I was telling you about on Saturday night...and all I can say is
Use Case #2: Bank of America

- GoLearn – First started development/pilot in 2006
 - Largest use case
- Repurposed existing SCORM content to fit on smaller screen (BlackBerry)
- Can differentiate between mobile & computer-based learners
 - Tracking activations, completions, and demographics
 - Conduct surveys to collect Level 1 data (Kirkpatrick Model)
- SCORM needed in order to provide standard way of tracking completions & bookmarking
 - Using Intuition Player to handle SCORM
Notable Findings: Bank of America

- 12% higher completion rate during initial 45-day pilot
- Averaged 45% less time to complete content on mobile device (no loss of comprehension)
- Completion Locations: 32% business travel, 24% work commuting, 26% at home, 18% office
Use Case #3: Accenture
Use Case #3: Accenture

- First began Pilot in 2007; internal success now part of their offering to customers
- Conducted surveys during prototype phase
 - Goal was 100% mastery of compliance training
 - 92% of those surveyed would jump at the opportunity to use their mobile devices for this compliance training
- Repurposed existing SCORM content in-house to fit on smaller screen
- SCORM needed for standard tracking of completions (Intuition Player)
- Internet connection needed only during initial download and when completed
Notable Findings: Accenture

- More than 1,000 completions (2009)
- Overall learner satisfaction ratings averaged 4.4 on a 5.0 scale
- Compared to 4.0 for traditional e-learning courses
About the Intuition Mobile Player

- Started in mLearning in 2006 (first customer was Bank of America)
- Made 3 key decisions for the App to:
 - Allow content to be available anywhere, anytime
 - Fully support standards (e.g. SCORM)
 - Develop solution that easily integrates with any LMS
- Targeting Windows Mobile, BlackBerry, iPhone
 - Built using SDK for each platform
- SCORM 1.2 Now and SCORM 2004 (later this year)
 - Stores bookmarking data locally then sends to server
 - Developed to not use pop up windows or framesets
Use Case #4: Upside Learning
Use Case #4: Upside Learning

- First released in February 2010
- Developed both web-based (mobile browser) App and Native App
- Web-based (mobile browser) App implemented using JavaScript
 - Provides front-end LMS functionality
 - Accommodate multiple devices using device detection script and checking the following headers:
 - user-agent (most widely used)
 - x-operamini-phone-ua (opera mobile browser)
 - x-wap-profile (older wap devices)
 - x-skyfire-phone (skyfire mobile browser)
- Developed solution that doesn’t use pop ups or framesets
- Requires continuous internet connection
Use Case #4: Upside Learning

- Native App solution built using JavaScript + device-specific SDKs
 - Currently support iPhone, iPod Touch
 - BlackBerry 5.0+ (targeted because previous versions were problematic/inconsistent)
- SDKs provide access to JavaScript methods
 - JavaScript methods provide an API for the content to communicate with
- Native BlackBerry App provides the following:
 - Offline tracking
 - Downloads content to the device
 - Synchronization of learning data
Use Case #5: Litmos
Use Case #5: Litmos

- Currently in beta stage with a handful of customers
- Web-based (mobile browser) App provides front-end LMS functionality
- Focused on HTML5, CSS, and JavaScript for development
 - Currently targeting iPhone and Android with plans to support BlackBerry
- Provide tracking of audio, video, and SCORM packages
 - Back-end LMS automatically creates multiple optimized video formats
- Certified for SCORM 1.2
- Working on offline storage of CMI data using SQLite DB (supported by webkit browsers)
Notable Findings: Litmos

- Developing Mobile Web Apps enforces the KISS principle.
- Agile approach to Mobile App development allows for more immediate updates.
Use Case #6: OnPoint Digital
Use Case #6: OnPoint Digital

- Release date upcoming (currently in beta); CellCast Mobile SCORM Player
- Targeting: Windows Mobile, BlackBerry, iPhone, iPad, Android, and Symbian (Nokia)
- Native App approach using SDK & build CellCast widgets for each platform for development
- Also offer Web-based (mobile browser) App that doesn’t use pop up windows or framesets
Use Case #6: OnPoint Digital

- Can support Flash-based SCORM content on:
 - Windows Mobile 6.0 & 6.5
 - Android 2.2
- No problems with supporting SCORM 1.2 & 2004
 - JavaScript support is consistent across mobile devices
 - Lightweight mobile API for SCORM with less complexity & offline support?
- Current screen size challenges for developers trying to repurpose existing content will improve
 - Nexus One Android now supports 800x480
 - Apple's new iPhone 4.0 now supports 960x640 display
SCO Playback – Debugger Enabled shows SCO details captured
Use Case #7: Rustici Software
Use Case #7: Rustici Software

- Early stage of offering a mobile solution, but completed the following:
 - Integrated SCORM Cloud (web-service SCORM engine) with Moodle
 - Developed SCORM content prototype using JQTouch framework for iPhone

- Upcoming integrations of SCORM Cloud with:
 - Google Apps
 - Google Cloud Course
 - Worpress
 - Facebook
Use Case #8: VCOM3D
Use Case #8: VCOM3D

- Prototype effort started in March 2010
 - Developed exclusively for JKDDC (JKO and ROCCE)
 - Developed other Apps for language & cultural training for Military
- Consists of two Apps:
 - Login, Enrollment
 - Course Content
Use Case #8: VCOM3D

- Initially targeted for iPod Touch, but was expanded to support:
 - iPhone & iPad
 - HTC Evo
 - Droid Incredible
 - Nexus One
- SCORM 2004 2nd and 3rd Edition
 - API communication from Mobile App to JKO uses JavaScript
 - Student’s progress is tracked within the App and only looks for active connection when course is completed
 - Making specific use of cmi.learner_id, cmi.learner_name, cmi.exit, cmi.completion_status
Common Technical Challenges

<table>
<thead>
<tr>
<th>Screen Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>128x160</td>
</tr>
<tr>
<td>176x220</td>
</tr>
<tr>
<td>320x240</td>
</tr>
<tr>
<td>320x480</td>
</tr>
</tbody>
</table>
Common Technical Challenges

- Support for multiple OS versions (BlackBerry)
- An emulator is not always consistent with the actual device
- Small screen dimensions for displaying content
 - This will eventually improve as legacy smart phones shelf life quickly approaches
- Limited battery, memory, and storage space
- Limited support for Flash player
 - Windows Mobile 6.5 & Android 2.2 only
- Limited connectivity
- Limited video support
 - Varying formats supported; this will also improve in time
- No support for pop up windows and framesets
- Files must be optimized for quicker load times
 - This is starting to improve with new era of Smartphones
- Lack of authoring tools to create mobile SCORM content (looking for use cases)
 - SumTotal Toolbook, Lectora Trivantis, Articulate (flash-based)….others?
General Best Practices
(A Start)
General Best Practices

- Gather Requirements: “If You Fail to Plan, Then You’re Planning to Fail”
 - Define goals and requirements for your project
 - Prototype, prototype, prototype (start small, think big)
 - Make distinction between “learning” and “performance support”
 - Identify target device(s) and potential OS version(s)
 - Native App or Web App? Or Both?
 - Who will provide support? Help Desk?
General Best Practices

- Design with Usability and Accessibility in Mind
 - Determine smallest screen area to support (4x6 cards)
 - When repurposing content, provide a comparable learning experience:
 - Replicate assessment interactions whenever possible (true/false; drag/drop)
 - Use bullets to make contextual information more concise
 - Increase use of color, bold, and font types to boost effectiveness/prevent loss of emphasis
 - Reduce or replace audio and video with static graphics and transcripts
 - Follow W3C guidelines for creating Accessible content:
 - With BlackBerry there is significant differences between browsers
 - Explicitly setting the width and height of an image in the HTML can resolve issues with text wrapping around images
General Best Practices

- Plan for the Disconnected Mobile User
 - Provide an offline or disconnected version of your content?
 - Poor connectivity issues can result in bad user experience
Use Case Credits

- Accenture: http://www.accenture.com
- Bank of America: http://www.bankofamerica.com
- Intuition: http://www.intuition.com
- Litmos: http://www.litmos.com
- MINE Research Lab: http://www.mine.tku.edu.tw
- OnPoint Digital: http://www.mlearning.com
- Rustici Software: http://www.scorm.com
- Upside Learning: http://www.upsidelearning.com
- VCOM 3D: http://vcom3d.com
Questions? / Comments?

Judy Brown
judy.brown.ctr@adlnet.gov

Jason Haag
jason.haag.ctr@adlnet.gov