Strategies to Enhance Online Learning Teams

Team Assessment and Diagnostics Instrument and Agent-based Modeling

Tristan E. Johnson, Ph.D.
Learning Systems Institute
Florida State University
Tallahassee, FL,
tejohnson@fsu.edu

ImplementationFest 2010
Joint ADL-CoLab
10-12 August 2010
Orlando, Florida
**Strategies to Enhance Online Learning Teams: Team Assessment and Diagnostics Instrument and Agent-based Modeling**

**Author(s):**

**Performing Organization Name(s) and Address(es):**

*Florida State University, Learning Systems Institute, Tallahassee, FL, 32306*

**DISTRIBUTION/AVAILABILITY STATEMENT**

Approved for public release; distribution unlimited

**U.S. Government or Federal Rights License**

**ABSTRACT**

**SUBJECT TERMS**

**SECURITY CLASSIFICATION OF:**

*a. REPORT* unclassified

*b. ABSTRACT* unclassified

*c. THIS PAGE* unclassified

**LIMITATION OF ABSTRACT**

Same as Report (SAR)

**NUMBER OF PAGES**

41

**NAME OF RESPONSIBLE PERSON**
Background
Learning/Performance Challenges

Human Challenges
• Demands on individuals
• From learning perspective: complex skills and knowledge, limited time, lack of practice to develop automaticity

Solution Challenges
• Recurrent theme—getting more out of the people
• Need to do more with resources—effective, efficient
• Need to get engaged with other and learning activities/job tasks
• Target all three characteristics—Effective, Effective, Engaging

Designer Challenges
• Differences between Learning and Performance Strategies
• Differences between Novice and Expert Strategies
Workplace Challenges

Technology Progress/Workplace Needs

1. Scientific/technology progress places new demands on workforce
2. Rapid technology advances require workforce to have ability to adapt to changing technologies
3. Technological progress has an impact not only on how we do things, but also how we think
   a. “Knowing” was once—being able to remember and repeat information
   b. “Knowing” is now—being able to find and use information
4. Current work tasks favor strong non-routine cognitive skills such as problem solving, abstract reasoning, communication, and collaboration
5. Learning goals need to focus towards helping students develop learning strategies and cognitive tools
6. Students need basic understanding about key subjects but also need to learn how to ask meaningful questions
7. Many work tasks are too complex and too large to be handled by a single individual
Viable Solution

1. Teams
   a. Formed for collective resources (e.g., knowledge, skills, and diverse expertise) are required to complete and solve complex tasks

2. Team Research—Understanding Team Behaviors
   a. Teams work effectively together when they think in similar ways
   b. Key indicator of team performance—degree team members share similar conceptualizations of problems and approaches
   c. Research had led to improved understanding about team behaviors
   d. Theoretical constructs (e.g., shared understanding, distributed cognition, shared knowledge, shared cognition) have been developed to better understand team
Broad Impact—Benefits of Theoretical Framework

1. Developing and Improving Teams
   a. Use a team cognition framework to systematically study aspects of instructional and performance strategies that affect team performance in complex problem-solving domains
   b. Theoretical framework can guide the design of effective learning activities (interaction strategies)
   c. Theoretical framework can inform our knowledge of teaming processes
   d. Working in teams has more benefits than just job performance

2. Using Teams for Learning
   a. Few instructional methods use teams as a salient characteristic
   b. Team Based Learning (TBL) specific instructional method
Where are we going with Teams?

Collective Intelligence
Connectivity of Information (KSA) and People

Online Team Challenges/Solutions/Practice
Online Team Challenges

1. Forming
2. Roles
3. Expectations
4. Communication
5. Style
6. Intent
7. Feedback
Online Team Solutions

Solutions approach informed

- Anecdotal Data
- Evaluation Data Driven Decision-Making
- Modeling
- Experimental Research

Techniques for becoming informed

- Advanced/Emergent Performance (Learning) Assessment

TADI—HIMATT—ABM
Online Team Practice

1. Development Needs
   - Selection of solid development methods
   - Application of rigorous development standards
   - Insights from outside of development

2. Research Needs
   - Selection of solid research methods
   - Application of rigorous research standards
   - Insights from outside of research

3. Bridging Research and Development (examples at the end)
   - Decision-making Tools—make sense of research (models, algorithms)
   - Knowledge-making Tools—make sense of practice (learning and performance assessment tools, research instruments)
Inquiry & Measurement
Strategy

Understanding Theoretical Framework
Team Cognition
Shared Mental Models

Tools Used to Understand [Decision-making & Knowledge-making]
Measuring
Assessing
Modeling
Understanding Online Teams
Team Cognition Framework
Team Cognition—Framework Value

1. Understand Teams
   a. TC has potential value as explanatory mechanism

2. Predictive Value
   a. Construct has potential to be a predictive variable in teams

3. Diagnosis Treatment
   a. Help to diagnose team dysfunction or team excellence
   b. Provide insight into how to solve issues

4. Facilitate Interventions
   a. Understanding the TC behind team performance should facilitate intervention design, development, and/or selection, in order to improve performance
Implications of Theoretical Framework

1. Team Cognition provides a framework to study performance and learning teams
2. Team Cognition framework provides the key factors that have an impact on team outcomes
Team Cognition—Concept

- More than the sum of the individual team members cognition

- Emerges from the interaction between individual cognition (each team member) and team process behaviors
Team Cognition—Framework

Collective level
Individual knowledge

Holistic Level
Taskwork/Teamwork Knowledge
—Long-term & Fleeting

Team Process Behaviors

Team Knowledge

Team Performance
Team Cognition—Types
Operationalization of Theoretical Framework

Shared Mental Models
Mental Models—Concept

[aka: Collective cognition, team knowledge, team mental models, shared knowledge, transactive memory, shared mental models]

Mental Models

“Mechanism whereby humans generate descriptions of system purpose and form, explanations of system functioning and observed system state, and prediction of future system state”  Rouse & Morris (1986)
Shared Mental Model—
What do we mean by shared?

1. Shared or overlapping
   a. Situations where two or more team members having ‘some common knowledge’, but not necessarily ‘fully redundant’
   b. Implying a knowledge base associated with the work

2. Similar or identical
   a. Team members holding similar, if not identical, knowledge
   b. Most directly applying to shared attitudes and beliefs.

3. Compatible or complementary
   a. Not need shared or similar knowledge, but knowledge must lead team members to draw similar expectations for performance

4. Distributed
   a. Adequate coverage for task knowledge
   b. Knowledge being effectively apportioned across members
Shared Mental Model—
“Shared” Knowledge

Shared = **Common** and **Complementary**
Shared Mental Model—Shared Knowledge Types

1. Task Knowledge—domain specific

2. Team Knowledge—5 factors
   a. Team Knowledge
   b. Team Skills
   c. Team Attitudes
   d. Team Dynamics
   e. Team Environment
Shared Mental Model—
Link to Team Performance
Tools to Understand Online Teams
Measuring Team Cognition
Measuring Team Cognition—Why Measure

1. Assessment of team performance or effectiveness (criterion or dependent measures) often taken for granted.

2. Outcome measures of team performance do not typically reveal why performance is effective or ineffective.

3. Process measures of team behavior are often subjective and lack reliability and validity.

4. Team cognition is assumed to contribute to team performance, and especially for growing number of cognitive tasks.

5. Understanding the team cognition behind team performance should inform interventions (design, training, selection) to improve that performance.
Assessing Team SMM
Assessing Team SMM

1. Capture conceptual representations of individual mental models

2. Use analytical methods to compare mental models
   a. Show relationships among individuals (team) or for a single individuals — at one point or over time

3. Analytical comparisons are carried out to represent differences and change of cognitive function

4. Research Focus
   a. Measure Individual Knowledge, Determine Shared Knowledge
   b. Measure Team Interactions, Determine Team Patterns
   c. Measure Individual & Team Performance, Determine Effects of Team Cognition

5. Research Goal
   a. What are the patterns and underlying mechanism of Team Cognition

6. Workplace Goal
   a. Improve Team Performance
Techniques to Measure Shared Knowledge

1. Traditional—measuring concept relatedness
   a. Card sorting, cognitive interviewing, MDS, Pathfinder, surveys, casual maps (Langan-Fox, Code, Langfield-Smith, 2000; Trochim, 1989)
   b. Concept Mapping—Statistical analysis & Descriptive analysis

2. Emerging Methods
   b. Team-related Knowledge SMM Instrument (TADI) (Johnson et. al, 2007)
   d. Model Inspection Trace of Concepts and Relations (MITOCAR) Methodology (Pirnay-Dummer, 2006)
Assessing Team SMM—TADI

Team Assessment and Diagnostics Instrument (TADI)
Team-related Knowledge SMM Instrument (Johnson et. al, 2007)
TADI—Team Knowledge Factors

1. Team Knowledge
   - Knowledge about team members and tasks that they need to perform
   - Teammates knowledge, Task knowledge

2. Team Skills
   - Knowledge about team members abilities associated with successful job performance
   - Communication skills, Interpersonal skills, Leadership skills, Skills to deal with conflict and team cohesion

3. Team Attitudes
   - Knowledge about team members internal state that influences team members’ choices or decision to act in a certain way under particular circumstances
   - Shared belief, Shared value

4. Team Dynamics
   - Knowledge about team members dynamic processes of team coordination and team cohesion
   - Team coordination, Team cohesion

5. Team Environment
   - Knowledge about team members external conditions affecting the foundation of the team mental model
   - Technology, Organization, Synchrony & Geographic dispersion
Developing Team SMM Assessment Techniques—HIMATT Study

Highly Integrated Model Assessment Technology & Tools (HIMATT) (Johnson et. al, 2009)

• Surface, Matching, and Deep Structure (SMD) Methodology (Ifenthaler, 2006)
• Model Inspection Trace of Concepts and Relations (MITOCAR) Methodology (Pirnay-Dummer, 2006)
Similarity Analysis

HIMATT based on graph theory, set theory, model theory, and similarity distribution measures and measurement of change.

<table>
<thead>
<tr>
<th>Similarity Dimension</th>
<th>Similarity Indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>1-Surface</td>
</tr>
<tr>
<td></td>
<td>2-Graphic</td>
</tr>
<tr>
<td></td>
<td>3-Structure</td>
</tr>
<tr>
<td></td>
<td>4-Gamma</td>
</tr>
<tr>
<td>Semantic</td>
<td>5-Concept</td>
</tr>
<tr>
<td></td>
<td>6-Proposition</td>
</tr>
<tr>
<td></td>
<td>7-Balance</td>
</tr>
</tbody>
</table>

1-sum of all propositions; 2-diameter of spanning tree (quantity of links for the shortest path for most distant notes—range of conceptual knowledge); 3-not graphical but mere structure; 4-density of vertices
HIMATT Indices

1. **Surface measure** — compares the number of vertices within two graphs—values for surface complexity

2. **Graphical matching** — diameters of the spanning trees—indicator for range of conceptual knowledge Measure for structural complexity only

3. **Structural matching measure** — compares complete structures of two graphs Measure is necessary for testing all hypotheses that make assumptions about general features of structure (e.g., assumptions which state that expert knowledge is structured differently from novice knowledge)

4. **Gamma** (density of vertices measure) — quotient of terms per vertex Since both graphs, (a) those which connect every term with each other term (everything with everything), and (b) graphs which only connect pairs of terms can be considered weak models, a medium density is expected for most good working models

5. **Concept matching** — compares the sets of concepts (vertices) within a graph to determine the use of terms — Counts how many concepts are alike Measure is especially important for different groups operating in the same domain (e.g. using the same textbook). It determines differences in language use between the models

6. **Propositional matching** — value compares only fully identical propositions (concept-link-concept) between two graphs—semantic similarity

7. **Balanced semantic matching** — uses concepts and propositions to match the semantic potential between the knowledge representations
Future Work

- Team Readiness Assessment—realtime, cyclical nature of job tasks (performance/recoil) (performance episodes)—how ready are we?
- Learning feedback—how am I doing? how are we doing?
- Decision-making tool—what is the state of things? where do we go?
- Team self diagnosis—where are we at? what to focus on?
- Learning & Performance Interventions—want is needed? what types of tasks are critical to focus on?
Modeling Team
Processes
Agent-Based Modeling
Implications and Benefits—Team Modeling

• Decision making tool
  • What size of team given specific team and task parameters

• Diagnostic tool
  • How might our team perform given our team characteristics

• Planning Tool
  • How much will our team get out of a specific learning task?
  • What is the cost of having too many teammates?
Strategies to Enhance Online Learning Teams
Team Assessment and Diagnostics Instrument and Agent-based Modeling

Q&A

Tristan E. Johnson, Ph.D.
Learning Systems Institute
Florida State University
Tallahassee, FL,
tejohnson@fsu.edu

ImplementationFest 2010
Joint ADL-CoLab
10-12 August 2010
Orlando, Florida