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Abstract 

The Extended Spatial Number Network (ESpaN) is a neural model that simulates 
processing of high-level numerical stimuli such as multi-digit numbers. The ESpaN model 
targets the explanation of human psychophysical data, such as error rates and reaction times, 
about multi-digit (base 10) numerical stimuli, and describes how such a competence can develop 
through learning. The model suggests how the brain represents and processes an open-ended set 
of numbers and their regularities, such as the place-value structure, with finite resources in the 
brain. The model does that by showing how a multi-digit spatial number map forms through 
interactions with learned semantic categories that symbolize separate digits, as well as place 
markers like "tens," "hundreds," "thousands," etc. When number-stimuli are presented to the 
network, they trigger learning of associations between specific semantic categories and 
corresponding spatial locations of the spatial number map that together build a multi-digit spatial 
representation. Training of the network is aimed at portraying the process of development of 
human numerical competence during the first years of a child's life. The earlier SpaN model 
proposed a spatial number map, which both human and animal possess in their Where cortical 
processing stream, that can explain many data about analog numerical representation and 
comparison. The ESpaN model shows how learned cognitive categories in the What cortical 
processing stream can extend numerical competence to multi-digit numbers with a place-value 
structure. The ESpaN model hereby suggests how cortical cognitive and spatial processes can 
utilize a learned What-and-Where interstream interaction to control the development of multi­
digit numerical abilities. 
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The mighty chariotry, twice ten thousand, thousands upon thousands, 
the Lord came from Sinai into the holy place, 

Psalm 68 

Numbers and mathematics, the science of numbers, are commonly associated with 
digits and mathematical operators that rely heavily on symbolic notation. Historically, 
however, it was not written symbolic notation, but spoken language that brought the concept of 
number into human life. Long before the appearance of the first concise numerical notation, in 
early Sumerian language dating from the third millennium BC, number-words reflected the 
structure of the numerical system, as shown in Figure 1 (after Menninger, 1969). Numerical 
systems were developed independently by many civilizations in different parts of the world. 
The Sumerians, who inhabited the southern part of Mesopotamia, based their system on 
gradations of the number 60, an influence that can be seen today in how time is measured in 
minutes and seconds (Figure 1, left). The Celts in Europe as well as the Maya and the Aztecs in 
Mesoamerica used a vigesimal, or base-20, numerical system. Modern French still bears the 
legacy of the base-20 that interferes with its number-naming base-IO structure. Our modern 
numerical competence has a decimal system in its foundation that originated from Arab and 
Indian cultures. 

Sumerian Egyptian Roman 

Value Cuneiform Number Value Symbol Value Symbol 
symbol word --

I I I I 
I T as n 10 10 X 
10 <: II 9 100 50 L 
60 T gd 1 

T< 
1000 100 C 

60 to ges-u 
U 

fI 
10000 500 D 

602 sar n 99 nnnnill 

~ 
2374 9 nnn I 1000 M 

60' to .far-u 

~ 
2374 MMCCCLXXIIil 

603 lar-gal 

Figure 1. Sumerian, Egyptian, and Roman number systems. The Sumerian language illustrates how 
the structure of a number system was renected in their number-words. Egyptian and Roman 
languages provide examples of number-systems formed according to an additive principle. 

Initially, most of the number systems were based on an additive principle. Egyptian and 
Roman systems (Figure 1, middle, right) serve as good examples of how the symbols for units or 
hundreds are ordered and then grouped together such that their sum represents a new symbol for 
ten or thousand, respectively. The additive principle allowed use of a compressed representation 
of large numbers, such as 2,374, but this representation was not as compressed and convenient 
for calculations as the modern number system based on a multiplicative principle. In a number 
system based on a multiplicative principle, maximum compression is achieved by means of 
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place-values. Instead of having a new symbol for each of the powers of ten, as in the case of 
Egyptian hieroglyphs, the power of ten is encoded by its place information. Such a system was 
used by Babylonians as early as about 2000 Be, with only one principal difference from the 
modern number system: they were lacking the concept of zero. In Babylonian notation, a number 
such as 3,005 could not be expressed unambiguously, as the empty space was used instead of 
zeros. This limitation was the source of possible confusion and slowed down the development of 
mathematics. 

Despite their many differences, the vast majority of nnmber systems had a few features in 
common: they utilized some form of compressed representation of an open-ended set of numbers 
by means of either an additive or mUltiplicative principle. Other similarities include the fact that 
the number-names employed as categories for the compressed representation often reflected the 
structure of the number system, such as in case of Sumerian and Roman systems. More 
importantly, even if the symbolic notation was based on an additive principle, the linguistic 
structure relied on a multiplicative relation. This is especially surprising to find with the Romans, 
who had a precisely ordered flexible verbal number sequence (Figure 1, right), but used a rather 
crude and cumbersome symbolic notation. The similarities of the number systems that appeared 
in different parts of the world are perhaps not surprising, since their development was shaped by 
the common needs to describe the environment and to commnnicate it within a community. 

An analysis of the historical development of numerical competence leads to the following 
conclusion: a natural task that produces common abstract concepts and common linguistic 
representations may suggest a common representation in the brain. It can be assumed that this 
representation arises from a more basic representation of numerical quantities, one that builds on 
an internal spatial representation in the brain for numerical estimation and comparison (Dehaene, 
1997; Grossberg and Repin, 2000). The present article models how this spatial numerical 
representation can be extended into a multi-digit numerical representation through its learned 
interactions with number category names. 

Three types of models for multi-digit number comparison 
Psychophysical data related to multi-digit number processing include studies on number 

reading, comparison, and simple arithmetic. A major controversy arising from the data concerns 
the response times in numerical comparison experiments (Hinrichs et a!., 1981; Poltrock and 
Schwartz, 1984; Dehaene et a!., 1990; Brysbaert, 1995). All results agree on the general trend 
when the numbers are compared to a fixed standard: the response time becomes longer as the 
difference between the presented number and the standard becomes smaller. This trend reflects 
the temporal side of the Numerical Distance effect (Dehaene, 1997). In addition to these 
response time differences, the Numerical Distance effect is exhibited in an increasing error rate 
as the difference between the number being compared decreases. The controversial portion of the 
data is related to how the reaction times behave at a decade boundary (for two-digit numbers). 
Experiments on two-digit (Dehaene et a!., 1990) and multi-digit (Poltrock and Schwartz, 1984) 
number comparisons reported no fine-grain patterns in the reaction time data beyond the 
conventional Numerical Distance effect. In contrast, the study by Hinrichs et a!. (1981) 
mentioned a statistically significant increase in the reaction time change for the two boundaries 
between the decades (49-50 and 59-60) versus the adjacent intervals in the number comparison 
experiment with stimuli ranging from 11 to 99 and a fixed standard of 55. The experiments by 
Bryzbaert (1995) demonstrated a reverse distance effect (reaction time increase for larger 
numerical distance) for the two-digit numbers across the decades boundaries (Figure 2). Neither 
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Hinrichs et a1. (1981) nor Bryzbaert (1995) proposed a mechanism to explain these observed 
paradoxical results for numerical comparison between decades or on decades boundaries. 

Traditionally, explanations 
of psychophysical data about multi­
digit number comparison were 
based on the information about the 
symbolic and linguistic structure of 
numbers - called the lexicographic E 
approach or the magnitude of 
representation of numbers - called ~ 

the holistic approach or a § 
combination of both. The·OO ·0 
lexicographic approach predicts ~ 

numerical comparison times based 
solely on the leftmost digit 
information (the decades digit in the 
case of two-digit numbers), 
completely ignoring the other 
information (Poltrock and Schwartz, 
1984). The holistic approach - in 
which the symbolic numerical 
notation first would be converted to 
a magnitude representation and only 
then the would two numbers be 
compared - is supported by the 
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Figure 2. Decision times for two-digit number comparison as a 
function of the absolute distance between the target and 
comparison numbers, whether or not the larget and the standard 
shared the same decade. Open circle: different decade; solid star: 
same decade. [Adapted with permission from Bryzbaert (l995).J. 

experiments by Dehaene et a!. (1990). A combination of the two approaches above was proposed 
in Hinrichs et a1. (1981). According to their hypothesis, for two-digit numbers, the result of the 
units comparison could influence the result of the decades comparison that, by itself, was 
providing the correct result. The Hinrichs et a1. (1981) hypothesis, called the intelj(mmce model, 
was questioned by Dehaene et al. (1990), based on the results of their experiments with 
asynchronous presentation of decades and units digits during the two-digit number comparison 
task. These experiments yielded no difference in the error rates and reaction times for the 
conditions when either decades or units digits were presented 50 ms earlier than the other digit. 
In ruling out the interference model in favor of the holistic model, a strong emphasis was placed 
on the relative processing speed of the units and decades digits. According to the Dehaene et al. 
(1990) argument, the earlier presentation of the nnits digit should have increased the reaction 
time, while the earlier presentation of the decades digit should have reduced the reaction time, 
results which have not been observed in the experiments. 

As noted above, the present work develops a model of cognitive numerical representation 
in the human brain that incorporates both lexicographic and holistic components. The 
lexicographic mechanisms help to account for the complex structure of the modern numerical 
system, including the place-value principle that allows a compressed representation of the open­
ended set of numbers. In particular, this aspect of the model shows how learned number-name 
categories are involved in numerical representation, and thus clarifies how cognitive processes 
begin to enter the symbolic number system. The holistic approach provides a basis for the spatial 
representation of numerical information in the brain and fundamental mechanisms underlying the 
number comparison processes. Why does not a spatial representation alone have the capacity to 
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represent arbitrarily large finite quantities? One reason is that an extended liner array of spatially 
represented numbers would run out of space in the brain. A deeper reason is that such a linear 
array exhibits a Weber law property (c.f. Figure 5, panel I, below), wherein larger numbers have 
a coarser resolution, thereby leading to increasingly inaccurate operations with them. 

In reality, people can deal with arbitrarily large numbers without losing much accuracy. 
Therefore, additional means for creating an adequate representation for numerical information 
are required. We suggest herein how the higher-level cognitive process of categorical perception 
is closely related to the symbolic structure of any number system. Our model posits learned 
interactions between number categories (that are themselves learned within the brain's What 
processing stream for language acquisition) and the representation of numbers in a spatial map 
(that is part of the brain's Where processing stream for spatial representation and action). The 
model hereby predicts that symbolic numerical abilities arise through a What-Where interstream 
interaction. It is through the learned interactions between cognitive number categories and the 
primal spatial number representation that the model can show why and how the open-ended 
nature of numerical representation arises. 

For example, in the English language, number units, tens, hundreds, thousands, etc. are 
used, with each successive group of numbers tending to repeat the basic number units, but with 
an order of magnitude more numbers represented in each group. How is this numerical 
proliferation represented in the brain? Our neural model, the Extended Spatial Number Network, 
or ESpaN, an extended version of the SpaN model of Grossberg and Repin (2000), proposes how 
the brain combines both the linguistic categories that denote number-names and the spatial 
substrate of the basic numerical representation in a single computational framework. 

The ESpaN model provides a quantitative fit to both the error rates and the reaction time 
data for multi-digit numbers. It simulates the reaction times and suggests the explanation of the 
paradoxical reversed Numerical Distance effect observed in Bryzbaert (1995) and partly 
indicated in Hinrichs et a!. (1981). The ESpaN also simulates the numerical comparison results 
for the two-digit numbers for asynchronous digit presentation paradigm and points out the 
difference in two-digit number comparisons for different language structures, such as English 
(24 is pronounced as twenty-four) versus Dutch (24 is pronounced as four-and-twenty). The 
scope of the model is restricted to humans, because as far as we know, animals do not have 
names for categories. The next section describes the structure and equations of the ESpaN model, 
focusing on the interaction between number-name categories and the spatial number map 
through learning. The model is then used to simulate the reaction time and error rate data in a 
multi-digit number comparison task as well as the example with asynchronous digit presentation. 
Finally, we discuss the evolutionary implications of the proposed model, and its limitations. 

The ESpaN model 
The essence of the ESpaN model is the fusion of verbal categories for number-words and 

spatial analog numerical representation, which may be considered as a fusion of What and 
Where information streams (Figure 3). Recent neurophysiological data have begun to 
demonstrate the existence of such What-and-Where interaction in the primate brain (Rainer et 
a!., 1998). In the present example, the Where stream is represented by the spatial number map 
that has a specific topological structure which has a brain correlate in the inferior parietal cortex 
(Dehaene et a!., 1996; Pinel et a!., 1999). This spatial number map may be activated through the 
sensory input coming from visual, auditory or other modality, as well as by the cognitive 
categorical inputs originating in other cortical areas. The What stream is represented by a set of 



verbal categories that arc 
learned from speech 
representations 111 the 
prcli'ontal and temporal 
cortical areas that have 
projections from the 
auditory cortex (Gruber et 
aI., 2000; Grabowski et aI., 
1998). The verbal 
categories are connected to 
the spatial map by adaptive 
memory weights via 
associative learning, and 
are activated by phonetic 
number-names. 

A two-dimensional 
spatial map serves as the 
basic structure for multi-
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Figure 3. What-Where cortical processing stream fusion is a key hypothesis 
of the ESpaN model. Previously learned phonetic categories in the What 
stream become associated with corresponding locations of the spatial number 
map in the Where stream. These learned What-Where associations arc 
essential for building a number-system based on the place- (Where) value 
(What) principle. 

digit number representation, and the representation of each particular number is accessed through 
the activation of a corresponding category. For example, two hundred requires categories two 
and hundred in order to activate the corresponding region in the spatial number map. Before 
What-Where learned associations form, the basic spatial number map has a one-dimensional 
structure that is represented by extended strips across the map (Figure 4A). What-Where learning 
converts these strips into localized regions that represent multi-digit numbers (Figure 4B). Using 
this learned representation, the ESpaN model can explain numerical abilities for the number 

9 

8 

3 

2 

A B 

categories 

10's 100's 

I?igurc 4. Schematic representation of the spatial number map and learned What-Where 
associations. A: The striped area on the left shows the location of the primary (units) weights 
strip. B: An example of where the association for seven-ty is formed in the spatial map. The 
size of the solid circles encodes weight magnitude; the strongest association for seventy is 
arises at the spatial location where both the associations for categories seven and ty are 
present. 

system based on both additive and multiplicative principles, as long as there is a structure of 
linguistic categories for number names. In order to demonstrate and test the ESpaN approach, we 
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have developed a computational model simulating the modern number system based on English 
number naming and tbe decimal place-value number system. 
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Figure 5. Summary of SpaN model simulations. I: Response distribution. Data: Rats were trained to 
press a lever a fixed number of times before switching to another lever in order to get a reward. Data 
points (diamonds, circles) represent the proportion of responses made to match one of the four 
required fixed numbers of lever presses (4, 8, 12, or 16). [Adapted with permission from Mechner 
(1958)]. Model: Solid lines show equilibrium activities p,(=) of the spatial number map for four 
inputs corresponding to 4, 8, 12, and 16 events. II: Number comparison times as a function of 
numerical distance. Data: diamonds, dashed lines. People compared two-digit numbers presented in 
visual Arabic notation. [Adapted with permission Ii·om Link (1990)]. Model: circles, solid lines. III: 
A: Error rates for chimpanzees selecting the larger pile of chocolate bits [Adapted with permission 
from Washburn and Rambaugh (1991)] and people comparing two-digit numbers to a fixed standard 
of 65 as a function of the numerical distance from the target (Adapted with permission from Dehaene 
et al., (1990)]. B: Inverse of the maximum value of the winning comparison wave (see Equations 
(12) and (13) of this arlicle) as a function of distance between the first and the second inputs. IV: 
Number priming. A: Best linear fit (dashed line) to the data of Bryzbaert (1995). Adapted with 
pcnmsslOn. B: Model simulations of the priming effect for number targets 5 (circles) and 8 
(diamonds). 
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Number categories and spatial ol'ganization 
The original SpaN model simulated an ordered analog one-dimensional spatial map, 

where activations of the smaller numbers were positioned towards the left side of the map and 
those of the larger numbers, towards the right side. The lefi and the right sides of the map 
reflected the commonly observed property of ordering of the small to large quantities in the 
direction from left to right. All the simulations of numerical abilities in the SpaN model relied on 
how sequences of events activated the map or caused a redistribution of activation along its one­
dimensional array. Figure 5 summarizes the data simulations of the SpaN model. 

The ESpaN model proposes a natural extension of the spatial map hypothesis. It suggests 
that the activation of the spatial number map is not confined to the narrow strip of a number line, 
but rather decreases gradually in the dimension approximately orthogonal to the number line. 
Thus it is more accurate to say that number strips are activated in the spatial number map. 
Without loss of generality, it is assumed that the activation decreases monotonically as described 
by a simple gradient (Equation (4) below). 

The ESpaN model suggests how neural connections from number-categories to the nodes 
that form the two-dimensional spatial number map are tuned through learning. These number­
categories represent the phonetic entities that reflect the linguistic structure of the particular 
number system. In English, they are the single digits from one to nine, group categories such as 
hundred or thousand, and specific phonetic markers such as ty, that denotes tens in twenty or 
thirty. These number-categories may be more complex, such as in French or Basque, reflecting 
the mixture ofbase-IO and base-20 systems. Phonetic number-categories may also exactly reflect 

Number-category channel Number-category space 

Figure 6. ESpaN model in the learning mode. During the initial developmental, the analog input 
channel provides the necessary llumerical input that drives the formation of the primary strip in the 
spatial number map. Latcr in the development, with the acquisition of language, number-words 
reflecting learned number-categories provide the input for the other channel: The activation of the 
primary strip due to the analog channel propagates down the gradient across the spatial map. When 
both input channels are active, the weights are learned in the locations of the spatial map activated 
simultaneously by both the number-category input and the gradient of activation. 
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the decimal structure of the number system with the exception of eleven and twelve in the teens 
and awkward structures such as twen-ty instead of two-ten as in modern Chinese. 

The schematic operation of the model during the learning phase is shown in Figure 6. 
Numerical inputs may activate both the analog and the verbal input channels. The analog channel 
represents such processes as counting and estimation of quantities that rely on a spatial 
representation. In the original SpaN model, this input channel was implemented by means of a 
preprocessor module that converted the number of items in a spatial pattern or the number of 
events in a temporal sequence into an analog amplitude representation which activated different 
spatial locations in the number line. The verbal channel represents number-categories that 
correspond to the number-names. Number input seventy-four is assumed to activate such 
categories as seven, ly (for the tens), andfour. 

II is known that human infants who are only a few months old are capable of 
distinguishing small quantities (Wynn, 1998), suggesting early development of a basic spatial 
number map. With the acquisition of language, the number-words that denote the small single­
digit numbers begin to influence the number representation process. During learning within the 
model, these learned number-categories are associated with the area of the spatial number map 
that has the highest activation level at the time when the number-category input is active. For 
one-digit numbers, this area represents the original, or the primary, number line. Later in map 
development, when learning more complex two- or three-digit numbers, new categories such as 
teen, ty, and hundred are learned and become associated with areas of the number map that have 
smaller activation than the primary number line. Learning of categories ty or hundred occurs in 
the presence of a single-digit category; for example, seven for seven-ty or seven hundred. This 
means that weights for ty or hundred in the case of seven-ty or seven hundred will be learned 
within that portion of the map gradient, where seven is active (Figure 4). If a gradual exposure to 
more complex numerical structures is assumed, and tens tend to be learned before hundreds, then 
the categories corresponding to tens will be learned at approximately the same values of the 
gradient orthogonal to the primary number line. Thus, the structure of the spatial number map 
after learning both one- and two-digit numbers will represent a strip of a primary number line 
corresponding to the learned one-digit numbers and another strip, somewhat parallel to it, 
corresponding to the tens, or the ty, category. Such a strip structure of a spatial number map may 
not be very regular, but it tends to have a topology where one dimension represents the analog 
quantitative scale and the other dimension spans a certain number of categories that expand the 
numerical system with progressively larger number of digits. 

Figure 7 presents an example of the dynamics of the simulated two-dimensional weight 
pattcrn connecting number-categories with the spatial number map during the learning phase. To 
roughly portray the first steps of how the child may learn numbers, only one-digit numbers were 
presented to the network at first. Figure 7 A (top row) shows how the weights for number­
categories from one to nine evolve with presentation of more and more inputs. The growing strip 
of large weights connect single-digit categories to the locations of the spatial number map along 
the primary number line. This strip will be referred as the units strip later on. As with a child 
learning numbers from simple to more complex, the two-digit numbers were then added to the 
training set of the ESpaN network. 

Figure 7 A (bottom row) shows that once the category weights near the primary number 
line have saturated, weights corresponding to the new inputs, the tens, are learned within the strip 
that is parallel to the primary number line and located to the right of the units strip. This tens 
strip represents how the weights from single-digit categories from I to 9 are associated with the 
decades digit of the two-digit numbers. 



In our simulation 
example, we used the 
English language, which 
does not possess the 
most optimal structure 
of number naming, and 
bears odd artifacts of 
the past such as eleven 
and twelve, and to a 
lesser extent, the whole 
structure of teens, One 
may argue that numbers 
11 and 12 fall out of the 
teen linguistic structure. 
In this case, these two 
numbers may be 
assigned individual 
categories eleven and 
twelve that would be 
learned further to the 
right from the basic 
numbers (1 through 9) 
on the primary number 
line. The latter case 
does not contradict the 
model hypothesis, as we 
know that primary 
number line does not 
have to end at 9, but 
may extend as high as 
50 for some animal 
species; see Grossberg 
aud Repin (2000) for 
further discussion. 

The formation of 
the strip structure of the 
weights to the spatial 
number map is clarified 
in Figure 8 in the 
example of how the 
weights are learned 
from each category. It 
illustrates the change of 
the weights connecting 
the number-category 
five to the spatial 
number map. When 
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Original ESpaN model 

Categories one through nine together 

Tens "strip" 

Category Iy 

Recurrent ESpaN model 

Categories one through nine together 

Figure 7. Computer simulation of learned weight amplitudes for different 
categories: magnitude is coded by the shades of gray from dark (small) to light 
(large). A: learning progress for weights connecting categories one through nine 
to the spatial number map; weight patterns for categories one through nine are 
plotted together on each panel. B: learning progress for only the weights 
connecting category f)' to the spatial map; no learning for category ty occurs 
when only single-digit numbers are present in the training set. C: learned weight 
pattern for recurrent ESpaN formulation for categories one through nine plotted 
together; this weight pattern represents the same stage of network learning as the 
bottom right panel of part A of this figure. 
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only one-digit numbers are presented, the weight patterns with each number line resemble the 
activation produced by the analog representation of the input corresponding to five items or 
events as a result of processing by basic mechanisms of the SpaN model (Figure 8, top three 
panels). Incorporation of two-digit numbers into the learning process leads to formation of the 
part of the tens strip that corresponds to the number-category five (Figure 8, bottom three 
panels). The structure of the weight pattern deviates from the regular bell-shaped activations 
obtained from in the SpaN model due to competitive interstrip interactions during the learning 
process and the stochastic nature of weight initialization and ordering of the training set. 

• u 
.~ 
c 

0.1 

go.os 
E 

~ 
~ 0 

primary/ 
number line 

Only 1-digit numbers in the training set 

6 
After 100 After 

Both 1-digit and 2-digit numbers in the training set 

10 
400 

15 

o 

After 800 
examples 

After 1600 

Figure 8. Computer simulation of the learning process for category five. When only I-digit 
numbers are present in the training set (top three panels), weights in the primary strip are 
learned, Presence of 2-digit numbers results in weights growing further from the primary 
number line, in the ty strip (bottom three panels). The irregularities of the weight patterns 
observed in the figure arc clue to the initialization of weights to small random numbers and 
random order of training examples in the training set. 

In addition to the weights from single-digit categories, the weights connecting Iy (or the 
tens) category to the spatial number map are also learned. No learning for the Iy category occurs 
when only the single-digit numbers are presented. When the two-digit numbers are included in 
the training set, a strip of weights spanning the numbers from 2 to 9 along the primary number 
line dimension is learned in approximately the same location as the strip that corresponds to the 
category ty (Figure 7B). Note that numbers from 11 to 19 do not contribute to the learning of the 
tens strip, since in English they are formed by a separate phonetic structure such as teen, as in 
four-teen, and represent a separate category. Model equations for the map learning are given at 
the end of the article. 

Multi-digit number comparison 
The second part of the ESpaN model embodies a mechanism by which the proposed 

spatial number map gets incorporated into simple operations with numbers. This mechanism 
represents an extension of the comparison wave mechanism proposed in the original SpaN model 
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(Grossberg and Repin, 2000). The original comparison wave was able to model successfully 
such properties of human and animal numerical comparison as reaction times and error rates. 

The comparison process occurs when two number-inputs are presented to the network 
with a zero or short delay between them. The activations of different numbers peak at different 
locations within the spatial number map. Build-up of activation due to a second input starts while 
the activation of the first input is still present but may be decaying. The sum of this correlated, 
but spatially displaced, growth and decay of activation produces a bell-shaped activation whose 
peak moves continuously from the location of the first input to that of the second input. Such a 
moving bell-shaped activation was called a comparison wave in Grossberg and Repin (2000). In 
neural models of motion perception, such waves have successfully simulated many data about 
long-range apparent motion (Grossberg and Rudd, 1989; 1992; Baloch and Grossberg, 1997; 
Grossberg 1999). This fact illustrates our hypothesis that many properties of numerical 
estimation have arisen from properties of spatial representation and motion processing in the 
Where cortical processing stream; see Grossberg and Repin (2000) for further discussion. In the 
ESpaN model, multiple comparison waves exist to represent the redistribution of activation 
patterns across the two-dimensional spatial number map in a direction parallel to the primary 
number line. In other words, if one looks at the spatial number map as a set of number lines that 
are pm'allel to the primary number line, then multiple comparison waves occur within the 

Response ~ Right and left 
wave interaction 

Primary~ 
number line 

II 7 JI 4 JI Multidigil 
number-input 

~ 

! ~ Units right 
~ur"u"r wave 

Units left 

Tystrip 

( seven ]+G+[ four )---i~~ 
Number-category channel Number-category space 

Figure 9. ESpaN model in the comparison mode. Multi-digit numerical input activates categories 
in the number-category space. These categories activate specific regions within corresponding 
strips of the spatial number map via connection weights formed during learning. Dynamic 
redistribution of activation across the spatial number map is detected with the help of the 
comparison wave cell layers. The direction of comparison (right or left) is determined from the 
interaction of' comparison waves that occur in different strips. 
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individual number lines. The ensemble of all these waves determines judgements in the manner 
described below. 

The operation of the ESpaN model in the comparison mode is described by the diagram 
in Figure 9. Here, the number comparison process is assumed to take place after a sufficient 
amount of learning has been accomplished, and a weight pattern from number-categories to the 
two-dimensional spatial number map (similar to the example in Figure 7) has been formed. The 
learning stage of the ESpaN model (and the original SpaN model) assumes that the signal whose 
amplitude is proportional to the numerical input is generated by the analog input channel. With 
the weight pattern connecting number-categories to the spatial map already in place, the input 
from the analog channel does not have to be present. As children learn more, they become less 
dependent on the primitive process of counting on fingers. They rely more on numbers that are 
expressed in their symbolic form with the help of spoken number-names or written number­
symbols. Similarly, the ESpaN model assumes that category-based input channel takes a major 
role in number processing after learning has been completed. It is then sufficient for the number­
inputs to directly activate the number-categories that project through the weights onto the spatial 
number map, producing activation patterns similar to the ones that would have been produced 
through the analog input channel alone. During the learning stage, the category input reflects thc 
phonetics of the number-naming structure of the language. As in the case of development of 
mathematical skills, when children start to operate without difficulty with both multiplication 
tables learned in verbal format and Arabic number-symbols, the model assumes that numerical 
information in both visual and auditory modalities can activate the category input channel and 
thus the corresponding number maps and comparison waves. 

Simulated comparison waves for number pairs (32,55) and (38,55) are shown in Figure 
10. In both examples, the processing of the decades digit starts before the units digit as reflected 
in the input temporal structure. Separate comparison waves occur within the tens and units strips 
of the spatial number map. In case of 32 and 55, waves to the right in the tens strip (3<5) and in 

Comparing 32 and 55 Comparing 38 and 55 

Units and Decades input temporal structure - unils ----- tens Units and Decades input temporal structure -- units ----- lens 

..J L I~. ..I l---~~---i 
32 55 38 55 r-----------------t ________ .. _____ j-------··---------[_________ [-----------------l _______________ J-----------------: ________ _ 
Comparisol1Y.{tlves within strips . . 

/~ "', ~- fight units 

" '" -- right tens 
,/ '\ , , , , , ' , \, 

.. _-,,--- lelt units 

,- - ~ left tens 

Comparison waves wiUlin strip_, ~ right units ,/ """ -._ .• _ .... _. lelt lmits 

-- right tens / '~ ~ ~ left tens 

Cumulative comparison waves 
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Time steps 

"" 
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.,"-,-, .. lel1 
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Figure 10. Simulation of the comparison wave for number pairs 32<55 (left) and 38<55 (right) 
presented in the numerical comparison task. Two top lines on each panel illustrate the time course of a 
two-digit number presentation: units digit follows the decades digit after a short delay. Middle graph 
shows that comparison waves occur in both tens and units strips in both directions. Note that only the 
comparison wave that occurs after the onset of the second input contributes to the response. The 
comparison wave before 500 time steps is a by-product of the growth and partial decay of the activation 
of the first input. The inter-strip interaction results in a cumulative left and right comparison wave 
(bottom graph). The comparison wave with a larger magnitude wins and determines the response: if the 
larger wave to the right, then the second number is larger; if the larger wave is to the left, then the 
second number is smaller. 
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the units strip (2<5) are larger than waves to the left. When these waves are added up, the 
cumulative comparison wave moving to the right is significantly larger than the one moving to 
the left (bottom portion of Figure 10), This result corresponds to the judgement that 55 is larger 
than 32, Such an interaction between the comparison waves is assumed to occur during the 
output processing stage or shortly before the response is produced. In case of 38 and 55, the right 
wave in the tens strip (3<5) is again larger than the left one, but the opposite situation occurs in 
the units strip (8)5), where the wave moving to the left wins. The cumulative right comparison 
wave is still larger for this pair of inputs because of the assumption that attention more heavily 
weight the tens strip; see Equations (10) and (11) below, where the weighting coefficients 
modulate the level of attention. The difference between the left and the right is, however, smaller 
than for the number-pair 32 and 55, thereby leading to more errors and slower RTs. Model 
equations for the comparison wave process are given at the end of the article. 

Data simulations 
The ESpaN model allows simulation of the two-digit number comparison experiments 

and thereby offers an explanation of reaction times data (Bryzbaert, 1995) about the reversed 
distance effect. A decades-units interaction mechanism based on the cumulative properties of 
multiple comparison waves is proposed to underlie this paradoxical effect. In the simulated 
paradigm, a pair of two-digit numerical stimuli were presented to the subject with a stimulus 
onset asynchrony (SOA) between the first and the second ranging from zero to several seconds. 
Even for the zero SOA, serial processing of the stimuli assures that processing of the second 
number starts after the first number has already begun to be processed. Processing of a composite 
stimulus such as a two-digit number was treated as a mixture of parallel and serial mechanisms 
in the following fashion: the input signal corresponding to the tens digit started a few 
milliseconds before the input signal corresponding to the units digit. After this brief delay 
(denoted UTA, Units-Tens Asynchrony), both tens and units inputs were present simultaneously. 

The simulations were implemented in MA TLAB environment and run on a 300MHz 
Pentiumll PC. An array of 120x50 cells (along number lines x across number lines) was used for 
both the extended spatial number map and the comparison wave direction-sensitive cells. 
Throughout the simulations, all parameters in the model equations were fixed. The presence of a 
stochastic component due to initialization of the spatial map weights to small random numbers at 
the beginning of the learning process resulted in learned weight patterns that deviate from an 
ideal bell-shaped profile across the map. Therefore, the simulation results of the both error rates 
and the reaction times do not always exhibit an entirely regular structure. All experimental data 
were plotted as dashed lines, and all model results were plotted as solid lines. 

Error rates 
In the simulations, two-digit numbers from 21 to 89 were compared to a fixed standard of 

55. As in the SpaN model, the error rate was determined by the comparison wave amplitude. The 
ESpaN results reported here thus include and extend the results simulated by the SpaN model. It 
is assumed that the larger the relative amplitude of the comparison wave in the left or right 
direction, the more reliable and accurate the response. The cumulative comparison wave was 
generated from the waves that occur in the units and the tens strips. The cumulative wave is 
assumed to be a linear combination of the waves that occur in the tens and units strips. The 
contribution of the wave in the units strip is thus the same for each decade, e.g., X1<55, 
X2<55, ... ,X8>55, X9>55. Thus, if the error rates are averaged within each decade, the difference 
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in the comparison wave magnitudes across the decades is determined solely by the decades digit. 
ESpaN simulations are shown in Figure llA, along with the experimental data. In these 
experiments (Hinrichs et a!., 1981), the subjects were simultaneously presented with a pair of 
two-digit numbers (one was always a standard of 55) on a projection screen. Subjects were 
instructed to respond as quickly as possible by pressing the button associated with either smaller 
or larger response. Both data and simulations demonstrate the Numerical Distance effect; that is, 
an increase in the error rate as the stimuli get closer to the standard. In the ESpaN model 
simulations, the larger distance between the two decades digits resulted in a greater spatial 
separation of the corresponding activations of the spatial number map along the number line 
dimension. Larger spatial separation of the activations caused a more pronounced redistribution 
of the activation between the spatially separated positions along the number lines within the tens 
strip, thus producing a larger cumulative comparison wave. 

The Numerical Distance effect was the only reliable effect related to the error rates that 
was reported in the experimental data known to us. The regular intra-decade pattern of error rates 
(error increase at the end of the decade for numbers smaller than 55, error increase at the 
beginning of the decade for 
numbers larger than 55) was 
generated by the ESpaN model 

" as a result of the decades and i 

A 
Hinrichs at aL (1981) 

units comparison wave 
interactions. This or any other 
fine structure has not yet been 
reported in the experimental 
data. Experiments with more 
subjects and more trials may 
be necessary to clarify this 
Issue. To illustrate the 
argument about the fine 
structure of the error rates, 
ESpaN simulation data are 
shown along with Dehaene et 
a!. (1990) data in Figure lIB. 
In the study by Dehaene et a!. 
(1990) exactly the same 
experimental paradigm as in 
Hinrichs et a!. (1981) was 
employed with the exception 
of a cathode-ray tube used 
instead of a projection screen. 
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Figure 11. Simulated and experimental crror rates. In the experimental 
paradigm, a pair of two-digit numbers was presented (one of them 55) 
and a key-press response to a larger (or smaller) number on the right (or 
left) was required (see text for morc details). Top: error rate data 
averaged across decades; both experimental and simulated data 
demonstrate a general decrease of the number of errors with increasing 
distance from the standard of 55. Bottom: error rate data for all numbers 
presented; experimental data demonstrate no regular pattern besides the 
general decrease away from the fixed standard. 
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The reaction times (RT) for a two-digit number comparison task were simulated for the 
same set of two-digit number pairs from 21 to 89 that were compared to a fixed standard of 55. 
The RTs were computed according to Equation (14) below. Figure 12 shows the reaction times 
simulated with the ESpaN model (panels A and B) and psychophysical data (Hinrichs et a!., 
1981 - panel C) and (Dehacne at a!., 1990 - panel D). 



The general trend of the 
RT curve reflects the temporal 
side of the Numerical Distance 
effect; namely, the RT increases 
for the inputs closer to the 
standard. In the model, the larger 
distance between the two numbers 
results in a greater spatial 
separation of the corresponding 
activations in a single number 
line, and the redistribution of the 
activation occurs between the 
spatially separated positions along 
the number line as opposed to 
activation decay and rise at almost 
the same position in the number 
line. Presence of a substantial 
along-number-line component of 
activation redistribution produces 
a larger amplitude of the 
comparIson wave. 

In order to provide 
evidence in support of the ESpaN 
hypothesis about the decades­
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Figure 12. Reaction times for two-digit numbers compared to 55. 
A: ESpaN simulations, learning as described by Equation (1); B: 
ESpaN simulations, learning as described by Equations (I A) and 
(lB); C: Hinrichs et al. (1981) data; D: Dehaene et al. (1990) data. 
[Reprinted with permission from Hinrichs et al. (1981) and 
Dehaene et al. (1990).] 
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units interaction within the comparison wave (also referred to as the interference model in 
Dehaene et a!. (1990), one must analyze of the intra-decade structure of the simulated RT data 
that extend beyond the conventional distance effect. As already mentioned earlier, most 
experiments reported no fine structure within the individual decades in the reaction time data in 
number comparison experiments. Some evidence for the RT discontinuity on the decade 
boundaries appeared in the study by Hinrichs et a!. (1981), who mentioned a statistically 
significant increase in the reaction time change for the two boundaries between the decades (49-
50 and 59-60) with respect to the adjacent intervals. The most reliable experimental results have 
been obtained by Bryzbaert (1995), who found a pattern of reaction time that increased for 
smaller numerical distance for two-digit numbers across the decades boundaries, therefore 
exhibiting a reversed Numerical Distance effect. In these experiments, two-digit numbcrs were 
prescnted side-by-side in a computer screen. The two numbers appeared asynchronously, with an 
SOA of 0, 200, 400, and 600 ms. Subjects were required to respond by pressing a button on the 
side of the smaller number. The reversed distance effect was observed for all SOAs, and was the 
most pronounced for the SOA of 200 ms. 

In the ESpaN model simulations (Figure 12, panel A or B), a regular structure of the 
intra-decade reaction times is observed. For the inputs smaller than the standard, an additional 
RT increase occurs towards the end of the decade with the peak at X8 or X9. For the inputs larger 
than the standard, a similar increase is present towards the beginning of the decade, peaking at 
X I or X2. This intra-decade effect is explained by the dynamics of the interaction of the 
comparison waves between the tens and units strips. For numbers of the same decade, say 40-49, 
compared to a standard of 55, the largest comparison wave occurs within the tens strip and goes 
from left to right (4X < SX). The right comparison wave (which is larger than the left) that occurs 
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in the units strip propagatcs in the same direction as the tens wave for the numbers from 40 to 44 
(4X < 5X and 40, ... ,44 < 45), adding more to the cumulative right wavc. The opposite happens 
for the numbers from 46 to 49 (4X < 5X, but 46, ... ,49 > 45), when the units right wave is smaller 
than the left wave, thus adding less to the cumulative tens and units right wave. The observed 
intra-decade pattern of reaction times that increase at the end of the decade for numbers smaller 
than 55, and at the beginning of the decade for numbers larger than 55, is produced due to the 
contribution of the units digit. In other words, the comparison wave in the units strip moving to 
the right is larger (so it reaches a fixed threshold Th faster) at the beginning of the decade than at 
its end (40, ... ,44 < 45 vs. 46, ... ,49> 45). When the cumulative comparison wave is generated by 
adding both decades and units waves together, the difference of the units waves for different 
units digits affects how fast the total wave builds up, which is translated into a regular intra­
decade pattern of the reaction times. 

Asynchronous presentation 
The experiments with asynchronous presentation of decades and units digits were used by 

Dehaenc et al. (1990) as the main argument in favor of the holistic model of multi-digit number 
comparison. The ESpaN model assumes that the two-digit number input is fully processed after 
the categories corresponding to both units and decades digits are activated. Therefore, in order to 
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Figure 13. Reaction times for two-digit numbers compared to 55. Left: ESpaN 
simulations [or zero, medium (60 time steps) and large (100 time steps) delay between 
the presentation of units digit following the decades digit. Right: experimental data 
from Dehacne 01 a!. (1990), where two-digit numbers were presented with units 
leading decades by 50 111S, synchronously, and with decades leading units by 50 IllS. 

[Reprinted with permission from Dehaenc ct a!. (1990).] 
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simulate the asynchronous input presentation, the time-delay between the onset of the decades 
and units digits was varied. In this paradigm, decades category input never preceded the units, 
thereby reflecting the structure of number naming in contemporary English. Figure 13 shows the 
input and the comparison wave temporal structures along with the reaction time and error rate 
patterns generated for decades leading units with large delay (100 time steps) between them (top 
panel), medium delay (60 time steps) that roughly reflects a synchronous presentation (middle 
panel), and a zero delay implying units leading decades in the presentation order (bottom panel). 
A zero delay in the latter simulation reflects the case when the units digit has been already 
processed, and only awaits the remaining decades part of the two-digit to activate its 
corresponding category and trigger the comparison process. Both the experimental (Dehaene et 
aI., 1990) and the simulated reaction time data demonstrate similar trends. Based on the fact that 
the response pattern did not depend on the digit order and the delay between digit presentation, 
Dehaene et al. (1990) proposed that they had disproved the possibility that any mechanism 
involving interaction between decades and units digits (interference hypothesis) controls the 
number comparison process. Based on these ESpaN simulation results, we suggest that the 
presence such a mechanism (see Multi-digit Number Comparison Section) does not contradict 
the experimental data, and that the interference hypothesis may thus remain as a plausible 
explanation for the reaction time patterns observed. 

ESpaN learning equations 
The ESpaN model during the learning phase is described by Equations (I) through (6) 

below. These equations generalize the SpaN model one-dimensional spatial number map to a 
two-dimensional map that can be activated by number-categories through a learning process. For 
each training example (a single one- or two-digit number), the learning process is described by 
the system of Equations (I) and (6). Equation (I) describes the evolution through time of the 
activation Pu of each cell of the spatial number map. The index i denotes the node position along 
each number line. The index j designates multiple copies of the number line, with j= I 
designating the primary number line. 

Extended Numbel' Map: 

dp ['" "'] ['" '" ] d
'l = -Dpu + (1- pu) L, r~"S"j + L, I, w'ij - (pu + E) L, G;"S"j + L, p;"U"j . (I) 
t II k /I n 

In (I), parameter D is a constant decay rate, term (I-pu) bounds Pu to remain less than I in 

response to excitatory inputs IF;"S,u + II, W'U from numerical inputs and learned categories, 
/! k 

respectively; and term (Pij+E) bounds Pi} to remain greater than -E in response to inhibitory 

inputs I G;"S"j + I p;"U"j from numerical inputs and recurrent inhibitory feedback, 
" " 

respectively. The parameter E determines the maximal hyperpolarization level. Terms Fik and Gik 

are excitatory and inhibitory kernels that define the on-center and off-surround, respectively, that 
is activated within each strip j in response to the numerical input SlIj. These kernels are thus 

responsible for the intra-strip competition. The term I p;"U"j with kernels Ullj , controls the 

" selection of which strip will respond after inter-strip competition takes place. Inter-strip 
competition allows localization of map activation by the individual number-categories and 
prevents learning from spreading uncontrollably across the strips. All kernels in (I) represent 
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Gaussians with constant scaling factors (F, G, and U) and constant variances (cr, 1;, and pl. They 
are defined according to Equations (2): 

F {I (k-i)'} 
Fik :=: (J.J27C exp -"2 ---;;- , 

G {1(k-iJ'} GI, = c;.J27C exp - 2:l-c;- , (2) 

U {I (12- iJ'} U"i = P.J27C exp -2:l p . 
The input from the k'h number-category multiplies the category output signal h with a learned 
adaptive weight Whj' The learned input from all categories are added via the term LI, W';j at , 
map location (ij). The analog input S"j is generated as follows. An input Si to location i of the 
primary number line is generated by the preprocessor of the SpaN model (Grossberg and Repin, 
2000). The equations describing the preprocessor operation are given in the Appendix. After 

normalization to ~i ,the normalized input is projected onto a strip of the two-dimensional 
L,..Sk , 

spatial map in the direction orthogonal to the primary number line via a spatial gradient ~: 

s 
Su=~·Hj' 

L" s, , 
(3) 

In (3), the gradient Hj has a unit value at the primary number line (j=l), and decays exponentially 
to the opposite side of the spatial number map: 

H . = exp{-l' } . (4) } h 

In (4), h is a constant parameter responsible for the slope of the gradient. The category input h 
takes binary values depending on the activation of a particular category through the category 
input channel: 

I, = {
I, 

0, 

if the category is present 

if the category is absent. 
(5) 

Free parameters in Equation (1) were chosen such that the properties of the original spatial 
number map of the SpaN model in Grossberg and Repin (2000) would be preserved. 

The following learning law describes the learning dynamics of the weights connecting 
nnmber-categories to the spatial number map. 

Number-Category-to-Map learning: 

d:;ij =TJI,fJuW,u[B- ~Wlul (6) 

The value of the weight Whj connecting category k to the spatial map node (ij) is recurrent in 
proportion to the product !,PijWhi of the current category input J" cell activity pij, and the current 
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weight Wkij until the sum of the weights L w lU associated with the node (iJ) attains the maximum 
I 

level B. This latter term defines a competition for a limited weight resource at each map cell. The 
product hpi; defines an associative learning constraint in that learning occurs only if the category 
and the map cell are simultaneously active. In (6), 1) is the fixed learning rate parameter. Before 
the learning process starts, all weights are assigned normally distributed (/1"" aw) small positive 
values. All parameter values used in the simulations are listed in the Appendix. 

The learning paradigm described by Equations (1) through (6) relies on the assumption 
that a single-digit number seven related to the units (seven), decades (seventy), or even hundreds 
(seven hundred) may be processed through the analog input channel via a serial counting-like 
mechanism. For example, when children learn basic numbers, counting on fingers is one way 
that an analog representation of the number of visually presented items may be created. For tens 
or hundreds, the analog input may also be generated through the auditory modality as a result of 
counting by increments of ten or hundred. The process of silent counting often leads to the 
activation of auditory categories (ten, hundred), which may be reflected by lip movement. Those 
categories are activated serially, and then every instance of encountering the category gives rise 
to a transient signal, or an activity burst. The accumulation of such bursts over time gives an 
analog signal whose amplitude is proportional to the number of times any of the categories got 
activated. 

As the process of learning numbers continues, the analog input should be required less 
and less often, as number-words become associated with number categories that develop strong 
connections to the spatial representation. The latter is especially true for the basic numbers from 
1 to 9. In order to model the possibility that number-categories become important as the major 
input for the learning process, even supplanting the role of the analog input channel, we have 
also studied the 
following 
modification of the 
learning process. In 
this recurrent model, 
we assume that 
inputs from both the 
analog and the 
category channels 
are fed to the cells 
of the primary 
number line onl y. 
Other strips receive 
recurrent signals 
from the prImary 
number line and 
learned category 
inputs (Figure 14). 

Recurrent gradient 
connections 

Analog input Si \ .• 

Primary number line Pi! .if6' ,. 

""mb"~'''gmy I.!;'," 

Units strip 
Ty strip 

Spatial number map: extended number line 

Figure 14. Recurrent version of the spatial map learning. The input from either of 
the analog or category input channel activates the primary number line. The 
activation of the primary number line is then extended onto the whole spatial 
number map through recurrent gradient connections. 

This circuitry enables both an analog input and a learned category input to activate the 
primary number line and the corresponding strips of the extended number line via the recurrent 
connections, which decrease in strength via a gradient H;, much as in Equation (4). Thus, as the 
primary number line activation pil grows, whether due to analog or category input, it extends 
onto the whole spatial number map through a recurrent gradient of activation Hj ; see term pi! H; 
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in Equation (1B). Equations (lA) and (1B) below now replace Equation (1). since tbe primary 
number line (l A) now requires a separate treatment as the only place which receives an analog 
input S. 

Recurrent Extended Number Map: 

dPd =-Dp;l +(1-Pd)[LF;"S"J + LlkWW]-(P;l +E)[LG;"S"J + LP;"U"J]' (IA) 
dt II kiln 

d:: = -DpU + (1- Pu {Pd' Hi + f,Jk Wk;j] - (PU + E{ ~P;"U"j ],j;tl. (1B) 

In (1A), the input SIll is defined by (3A): 

(3A) 

The two learning paradigms, described by Equation (1) and Equations (1A) and (IB), 
differ in the amount of learning based on mostly analog estimation of number of items or 
quantity versus learning based on acquired cognitive categories. We believe that both 
mechanisms are mixed in a certain proportion during the initial stages of development of 
numerical abilities in humans. The reaction time simulations shown in Figure 12 (panels A and 
B), demonstrate that both learning paradigms lead to similar results. 

ESpaN comparison wave equations 
Based on the assumption that the input for the comparison process comes only through 

the number-category channel, the spatial number map Equation (1) is simplified by setting inputs 
Sill coming through the analog channel equal to zero (Sill = 0). 

Learned Read-Out fl'om Number-Categories: 

dp ~ ~ 
--" =-Dpu +(1- PU)" .. JkWkU -CPu +E)L..,p;"U,". 
dt k II 

(7) 

In (7), parameters D and E are the same as in Equation (1), and the category inputs h are defined 
according to Equation (5). Thc interstrip competition is also present, as in the learning mode. The 
comparison wave operates along each number line, denoted by a fixed index j, in the same way 
as in the original SpaN model, according to Equations (8) and (9): 

Comparison Waves: 

dqlj;gh, (t) 

dt 

I /'Ii (I) 
cqu . _ C /'Ii() r () (I)]' () --~ - - qlj t + UJ/+m,j t - P'+m,j t - . P!i t . 

(8) 

(9) 

In (8) and (9), parameter C is the constant decay rate, and [xt = max(x,O). Parameter In is a 
constant shift value; (I) and (I-I) denote current time and the time one integration step back. This 
direction-detection mechanism computes the product of activation PU(t) at current position 1 
along the /' number line and the phasic change of activation [P1,,,,./t)-PI±m.l(t-l)t (a derivative­
like operation) at the node shifted In positions to the left (+) or to the right (-) from node I. In 
case of j= I, comparison wave dynamics are reduced to the primary number line, where it detects 
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the redistribution of activation along a one-dimensional array of nodes. Temporal and amplitude 
properties of such a one-dimensional wave allowed the explanation of many properties of 
numerical estimation behavioral data (Dehaene, 1997), including the Number Size and the 
Numerical Distance effects - both RTs and error rates - as described in the original SpaN model 
(Grossberg and Repin, 2000). 

The activities qul'ig'" (q,/'fi) are added to compute the right and left outputs g'ig'" (glefl) from 
the comparison wave at any given time I. The summation spans both dimensions, along 
(1= 1 , ... ,M) and across number lines for each strip (units: j=I,,,. ,P""ils; tens: j=P""il." ... ,P,e".\·, etc.): 

PIfJir., M PU "-" M 
right ( ) _ V '" right () V "'" right () V " g I - ",d,.,. L. q lj I + /c".1 L. L. q Ij I + I"",d, "'.1 L. ... (10) 

j=l 1=] j=I~lIIm 1=1 

P.m'/.\' M l~rm' M 

, 'eft (I) - V "" 'eft (t) V "" 'e!1 () V " g - IIlIilS L,.; L...; q lj + tellS .L..J ,L.; q Ij t + hundreds L. ... (11 ) 
jd /:=:l j=P;"'il.l' 1=1 

In (10) and (II), V''''ils and Viens are fixed weighting coefficients that may depend on attentional 
factors when generating a response. Due to the presence of the gradient during the learning stage, 
the resultant activation of the units strip may become larger than that of the tens strip. Our model 
assumes that different levels of attention may exist for different strips in the output, or response 
generating, stream. According to this hypothesis, more attention is paid to the strips that 
correspond to the numerical categories that are acquired later in the learning process. Thus the 
weighting coefficients obey the following pattern: V,,"iIS < VlellS < V""lIdl'ed,\" The number of number 
lines that comprise each strip (P,,"ils and PtellS ) is not chosen prior to the completion of the 
learning process and reflects the self-organizing strnctnre of the spatial map that is created during 
learning, where the separation of strips is determined by the kernel Ulli in Equation (2). The 
model parameters were chosen such that each strip consists of at least 4-5 number lines in order 
to simulate the properties that emerge from the two-dimensional spatial map and lead to the 
interaction of the waves that occur within individual strips. 

Two types of response were simulated based on the properties of the comparison wave: 
error rates and reaction times. The error rate was determined as the inverse of Gmax in Equation 
(13), namely: 

and 

'l~ 

G m" = f (max {g 'IK'" (I), g /eli (t)} )dt 
1=0 

1 
Error=--­

Gm~x ' 

(12) 

(13) 

where g'iglll and gleli are defined in (10) and (11), and the value of T, (time of response) was fixed 
at 200 steps (~100 ms) for all pairs of number inputs based on the EEG studies of numerical 
comparison discussed in Dehaene (1997). The reaction time for each pair of inputs was 
determined from Equations (10) and (11) as the moment T when the comparison wave magnitude 
max {glefl(n, g,/glll(n} reached a fixed threshold value Th for all pairs of stimuli presented during 
the session: 

RT = min(T), when max {g 'Ighl (T),g'eft (T)) ?: Th . (14) 
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The fixed value of Th implies that the energy of the wave has to reach a certain level in order to 
generate the response. We assumed the simplest hypothesis where this level is equal for all 
stimuli. All parameter values used in the simulations are listed in the Appendix. 

Discussion 
At present, no brain imaging or single-cell recording data are available to either support 

or disprove the hypothesis that a two-dimensional spatial map with a learned strip organization 
underlies the representation of multi-digit numbers in the brain. On the other hand, other 
experimental and theoretical evidence for the existence of mechanisms that link numerical 
competence to spatial attention and motion detection abilities have been described in various 
sources (Dehaene et a!., 1990; 1993; see Grossberg and Repin, 2000 for a review). The simplest 
version of spatial organization, a one-dimensional one, cannot suffice for large numbers, if only 
because the accuracy of such a representation would drop dramatically because of the Weber law 
property. In reality, people are able to perform various mental operations with large numbers 
without a significant decrease in the performance they demonstrate with smaller numbers. 
Combining both the concept of spatial organization and the necessity to represent arbitrarily 
large numbers categorically, leads to the extended spatial number map structure that is modeled 
herein. In this framework, number-category labels supply the additional information that allows 
formation of a compressed and open-ended representation of numbers through interactions with 
the spatial map. These interactions suggest how units, teens, tys, hundreds, thousands, etc. may 
be organized in a natural map representation that accommodates the order-of-magnitude increase 
in numerosity with each successive place value. 

In earlier discussions of the role of lexicographic and holistic approaches for the 
explanation of the number processing (e.g., Dehaene et al., 1990), the emphasis was always made 
on the interaction between the processing of decades and units digits. In the ESpaN approach, this 
interaction may be controlled by an attentionalmechanism that determines how much attention is 
paid to the decades comparison wave relative to the units comparison wave. In one version of this 
concept, the interaction between decades and units occurs just before response generation, or 
during a post-processing stage with respect to the comparison stage. Another possibility is that 
decades and units interact in the pre-processing stage. Such a mechanism would require a larger 
attentionallevel for the decades at the stage where the category input is fed to the spatial number 
map. For the pre-processing formulation, in the model simulations, the decades input (h) in 
Equation (7) would increase relative to the single digit categories and the weights in Equations 
(10) and (11) would be equal (Vlln;/s = Viens). Moving the attentionalmechanism from post- to pre­
processing stage produces almost identical simulation results (Figure 15). Additional 
experimental studies are required in order to dissociate the two possibilities and choose which 
mechanism, pre- or post-processing attentional modulation, is responsible for the behavioral 
patterns observed in the data. 

A possible experimental paradigm that may clarify this issue may exploit the number­
naming differences in different languages, such as Dutch versus English. Different pronunciation 
of two-digit number names such as four-and-twenty in Dutch and twentyfour in English may 
lead to dissociation of processing the number-stimuli during the input or output stages. A study 
performed by Bryzbaert (1995) with Dutch subjects suggested a possible interaction of phonetic 
and spatial representations in the post-processing stage. In that study, the subjects werc asked to 
name the target number after being presented with both prime and target numbers in a visual 
Arabic format. The main effects observed were the Number Size (RT increase with the number 
absolute value increase), the Numerical Distance, and the SNARC (Spatial-Numeric Association 



of Response Codes) effects. The 
SNARC effect (Dehaene et aI., 
1993) demonstrated that left-hand 
responses were faster than right­
hand for the smaller numbers 
within a given set of numbers, and 
conversely for the larger numbers. 
These effects in the reaction time 
data were interpreted as evidence 
for the interaction between a 
spatial representation and number­
names at the response stage. 
Therefore, a psychophysical 
experiment similar to the 
Bryzbaert (1995) paradigm 
applied to both, say, Dutch and 
English subjects (to account for 
the decades-units order in the 
number naming structure) may 
help to determine the actual place 
where the interaction between 
phonetic and spatial representation 
occurs in vivo. 
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Figure 15. ESpaN simulation of reaction times for two-digit 
numbers compared to 55. A: Original ESpaN model, top: 
Interaction between category and spatial representation occurs at 
post-processing stage; bottom: Interaction between category and 
spatial representation occurs at pre-processing stage. B: smne as 
panel A for recurrent ESpaN formulation. 
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Appendix 

Preprocessor 
The time--averaged cell activation x is computed by a leaky integrator with a time 

constant A, where the input I takes the form of a rectangular pulse and y is a constant tonic level: 

dx 
-=-Ax+I+y_ (IS) 
dt 

The habituative transmitter gate z accumulates at rate B to a target levell, and is inactivated 
(released, or depressed) by the mass action coupling -C[xtz with activity x: 

dz [ ]+ - = B(l- z) - c x z. 
dt -

(16) 

In (16), rates Band C are constant, and the value of x is thresholded, or rectified, at zero: 
[xt=max(x,O). The activity y, which is the final output of the preprocessor, integrates (or sums, 
in the discrete time formulation) the output signals xz over a threshold value Y: 

r + 

y = I'[xz-Y] . (17) 

The amplitude of this integrated signal is roughly proportional to the number of items or events 
in a sequence, so that the output reflects numerical properties of the input. Parameter t in (17) 

denotes the current time. The initial conditions for Equations (IS) through (17) are x(O) = r., 
A 

z(O) = B , and yeO) = x(O) . z(O) = r. - B . The threshold Y in (17) is set equal to 
B+Cy/A A B+C/A 

yeO) in order to eliminate the DC component in the integrator final output. For simulations of 
preprocessor dynamics, see Grossberg and Repin (2000). 

ESpaN model parameters 
Parameter values were fixed for all simulations: B=IS, C=2, D=0.7, F=3, G=3, 

H=0.0004, K=800, L=O.IS, M=120, U=lO, Puuits=S, Ptetl.\-=14, Vunirs=l, Vtens=3, h=SSO, m=IO, 
11=0.07, G=S, /;;=32, p=S, Th=12S.0, Tr=200. 
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