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Abstract

For many real-world applications, autonomous robots must execute complex tasks
in unknown or partially known unstructured environments. This work presents a novel
approach to efficient multi-robot mapping and exploration which exploits a market
architecture in order to maximize information gain while minimizing incurred costs.
This systemis reliable and robust in that it can accommodate dynamic introduction and
loss of team members in addition to communication interruptions and failures. Results
showing the capabilities of our system on a team of exploring autonomous robots are
also given.
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1 Introduction

Inherent to many robotic applications is the need to explore the world in order to effec-
tively reason about various plans and objectives. In most real-world scenarios, robots
must be able to perform complex tasks in previously unknown, unstructured environ-
ments. Many environments are hostile and uncertain, and it is therefore preferable or
necessary to use robots in order to avoid risking human lives. In some cases, generating
a map of the workspace is required for other purposegifavigation), while in others
map-building is the main focug(g.reconnaissance, planetary exploration). There are
situations in which we would like to minimize repeated coverage to expedite the mis-
sion, while in other cases some amount of repeated coverage may be desigainle (
dynamic environments). In order to effectively explore an unknown environment, it is
necessary for an exploration system to be reliable, robust, and efficient. In this paper,
we present an approach to multi-robot exploration which has these characteristics and
has been implemented and demonstrated on a team of autonomous robots. The defi-
nition of exploration varies within the literature, but we define it as the acquisition of
attainable, relevant information from an unknown or partially known environneegt (

in the form of a map).

Our approach focuses on the use of multiple robots to perform an exploration task.
Multi-robot systems have some obvious advantages over single robot systems in the
context of exploration. First, several robots are able to cover an area more quickly
than a single robot, since coverage can be done in parallel. Second, using a robot team
provides robustness by adding redundancy and eliminating single points of failure that
may be present in single robot or centralized systems.

Coordination among robots is achieved by using a market-based approach [2]. In
this framework, robots continuously negotiate with one another, improving their cur-
rent plans and sharing information about which regions have and have not already been
covered. Our approach does not rely on perfect communication, and is still functional
(at reduced efficiency) with zero communication (apart from initial deployment). Fur-
thermore, although a central agent is present, the system does not rely on this agent and
will still function if all communication between it and the robots is lost. The role of
this agent is simply to act as an interface between the robot team and a human operator.
Interface agents can be brought into existence at any time, and in principle several can
be active simultaneously. Thus the system is implemented in a completely distributed
fashion.

The remainder of the paper is arranged as follows. Section 2 discusses previous
work in the area of multi-robot exploration. Section 3 outlines our approach to the
problem and section 4 describes the results obtained implementing our approach on
real robot teams of different sizes. In section 5, we present our conclusions and discuss
future research.

2 Related Work

There has been a wide variety of approaches to robotic exploration. Despite the obvious
benefits of using multiple robots for exploration, only a small fraction of the previous



work has focused on the multi-robot domain. Of those, relatively few approaches have
been implemented effectively on real robot teams.

Balch and Arkin [1] investigated the role of communication for a set of common
multi-robot tasks. For the task gfazing(i.e. coverage, exploration) they concluded
that communication is unnecessary as long as the robots leave a physical record of
their passage through the environment (a form of implicit communication). In many
cases, it is not clear exactly how this physical trace is left behind and often physically
marking the environment is undesirable. In addition, searching for the traces decreases
exploration efficiency.

One technique for exploration is to start at a given location and slowly move out
towards the unexplored portions of the world while attempting to get full, detailed cov-
erage. Latimer et. al. [4] presented an approach which can provably cover an entire
region with minimal repeated coverage, but requires a high degree of coordination be-
tween the robots. The robots sweep the space together in a parallel line formation until
they reach an obstacle boundary, at which point the team splits up at the obstacle and
can opportunistically rejoin at some later point. While guaranteed total coverage is
sometimes necessarg.g.land mine detection), in other cases it is preferable to get
an initial rough model of the environment and then focus on improving potentially
interesting areas or supplement the map with more specific detgilplanetary ex-
ploration). Their approach is only semi-distributed, and fails if a single team member
cannot complete its part of the task.

Rekleitis et. al. [5] proposed another method of cooperation in which stationary
robots visually track moving robots as they sweep across the camera field of view. Ob-
stacles are detected by obstructions blocking the images of the robots as they progress
along the camera image. Since there are always some robots remaining stationary,
some of the available resources are always idle. Another drawback is that if one robot
fails, others can be rendered useless.

The methods of Rekleitis et. al. [5] and Latimer et. al. [4] have the disadvantage
of keeping the robots in close proximity and require close coordination which can in-
crease the time required for exploration if full, detailed coverage is not the primary
objective. This also inhibits the reliability of the system in the event of full or partial
communication problems or single robot failures. While these issues are not always
drawbacks in someoverageapplications, for some exploration domaiesg.recon-
naissance, mapping of extreme environments), these are typically undesirable traits.

Simmons et. al. [6] presented a multi-robot approach which uses a frontier-based
search and a simple bidding protocol. The robots evaluate a set of frontier cells (known
cells bordering unknown terrain) and determine the expected travel costs and infor-
mation gain of the cells (estimated number of unknown map cells visible from the
frontier). The robots then submit bids for each frontier cell. A central agent (with a
central map) then greedily assigns one task to each robot based on their bids. As with
any greedy algorithm, it is possible to get highly suboptimal results since plans only
consider what will happen in the very near future. The most significant drawback of
this method, however, is the fact that the system relies on communication with a central
agent and therefore the entire system will fail if the central agent fails. Also, if some
of the robots lose communication with the central agent, they end up doing nothing.

Yamauchi [11] developed a distributed fault-tolerant multi-robot frontier-based ex-



ploration strategy. In this system, robots in the team share local sensor information so
that all robots produce similar frontier lists. Each robot moves to its closest frontier
point, performs a sensor sweep, and broadcasts the resulting updates to the local map.
Yamauchi's approach is completely distributed, asynchronous, and tolerant to the fail-
ure of a single robot. However, the amount of coordination is quite limited and thus
cannot take full advantage of the number of robots available. For example, more than
one robot may decide (and is permitted) to go to the same frontier point. Since new
frontiers generally originate from old ones, the robot that discovers a new frontier will
often be the best suited to go to it (the closest). Another robot moving to the same
original frontier will also be close to the newly discovered frontier. This can happen
repeatedly; therefore, robots can end up following a leader indefinitely. In addition, a
relatively large amount of information must be shared between robots. So, if there is
a temporary communications drop, complete information will not be shared possibly
resulting in a large amount of repeated coverage. Similar to the work by Simmons et.
al. [6], plans are greedy and thus can be inefficient.

3 Approach

The previous examples fall short of presenting a multiple robot exploration system
that can reliably and efficiently explore unknown terrain, is robust to robot failures,
and effectively exploits the benefits of using a multi-robot platform. Our approach is
designed to meet these criteria by using a market architecture to coordinate the actions
of the robots. Exploration is accomplished by each robot visiting a set of goal points in
regions about which little information is known. Each robot produces a tour containing
several of these points, and subsequently the tours are refined through continuous inter-
robot negotiation. By following their improved tours, the robots are able to explore and
map out the world in an efficient manner.

3.1 Market architecture

At the core of our approach is a market control architecture [2]. Multiple robots interact
in a distributed fashion by participating in a market economy; delivering high global
productivity by maximizing their own personal profits. Market economies are gener-
ally unencumbered by centralized planning; instead individuals are free to exchange
goods and services and enter into contracts as they see fit. The architecture has been
successfully implemented on a robot team performing distributed sensing tasks in an
environment with known infrastructure [8].

Revenue is paid out to individual robots for information they provide by an agent
representing the user’s interests (known as the operator executi@gfoed. Costs
are similarly assessed as the amount of resources used by an individual robot in obtain-
ing information.

In order to use the market approach as a coordination mechanism, cost and revenue
functions must be defined. The cost functién, R — R, is a mapping from the a set
of resourcesk to a positive real number. One can conceivably consider a combination
of several relevant resources (time, energy, communication, computation), however



here we use a distance-based cost metric — the expected cost incurred by the robot is
the estimated distance traveled to reach thelgdtie item of value in our economy

is information. The revenue functio®, : M — R*, returns a positive real number
given map information\. The world is represented by an occupancy grid where cells
may be marked as free space, obstacle space, or unknown. Information gained by
visiting a goal point can be calculated by counting the number of unknown cells within

a fixed distance from the gdalProfit is then calculated as the revenue minus the cost.
The revenue term is multiplied by a weight converting information to distance. The
weight fixes the point where cost incurred for information gained becomes profitable
(i.e. positive utility). Each robot attempts to maximize the amount of new information

it discovers, and minimize its own travel distance. By acting to advance their own self-
interests, the individual robots attempt to maximize the information obtained by the
entire team and minimize the use of resources.

Within the marketplace, robots make decisions by communicating price informa-
tion. Prices and bidding act as low bandwidth mechanisms for communicating aggre-
gate information about costs, encoding many factors in a concise fashion. In contrast
to other systems which must send large amounts of map data in order to facilitate co-
ordination [6, 11], coordination in our system is for the most part achieved by sharing
price information.

3.2 Goal point selection strategies

Tasks (goal points which should be visited) are the main commodity exchanged in
the market. This section describes some example strategies for generating goal points.
These strategies are simple heuristics intended to select unexplored regions for the team
to visit, with the goal point located at the region’s centre.

Random. The simplest strategy is random goal point selection. Here goal points are
chosen atrandom, but discarded if the area surrounding the goal point has already
been visited. An area is considered visited if the number of known cells visible
from the goal is greater than a fixed threshold. Random exploration strategies
have been effective in practice, and some theoretical basis for effectiveness of
the random approach has been givery(9]).

Greedy exploration. This method simply chooses a goal point centred in the closest
unexplored region (of a fixed size) to the robot as a candidate exploration point.
As demonstrated previously [3], greedy exploration can be an efficient explo-
ration strategy for a single robot.

Space division by quadtree.In this case, we represent the unknown cells using a
guadtree. In order to account for noise, a region is divided into its four children
if the fraction of unknown space within the region is above a fixed threshold.
Subdivision recursion terminates when the size of a leaf region is smaller than

1path costs are estimated using the D* algorithm [7], which is also used for path planning.
2The value we use is actually an overestimate of the information gain in a sensor sweep in order to
compensate for the fact that the robot can discover new terrain along its entire path to the goal point.



the sensor footprint. Goal points are located at the centres of the quadtree leaf
regions.

Because the terrain in not known in advance, it is likely that some goal points are
not reachable. When a goal is not reachable, the robot is drawn towards the edge of
reachable space while attempting to achieve its goal. This results in more detail in
the areas of the map near boundaries and walls, which are usually the most interesting
areas. Once the incurred travel cost exceeds the initial expected cost by a fixed margin,
the robot decides that the goal is unreachable and moves on to its next goal. This avoids
the scenario in which a robot indefinitely tries to reach an unreachable goal point.

Note that the goal generation algorithms are extremely simplistic. The intention is
that the market architecture removes the inefficiencies consequent in using relatively
simple criteria for goal selection.

3.3 Exploration algorithm

Here we describe the complete exploration algorithm, which implements the ideas dis-
cussed in the preceding parts of section 3.

The robots are initially deployed into an unknown space with known relative posi-
tions. Each robot begins by generating a list of goal points using one of the strategies
described in section 3.2. The robots may uniformly use the same strategies, or the strat-
egy used can vary across robots or even over time on a single robot. If the robot is able
to communicate with th©pExeg¢ these goals can be transmitted to check if they are
new goals to the colony (if th@pExeds not reachable, this step is skipped). The robot
then inserts all of its remaining goals into its current tour, by greedily placing each one
at the cost-minimizing (shortest path) insertion point in thé listext, the robot tries
to sell each of its tasks to all robots with which it is currently able to communicate,
via an auction. The other robots each submit bids, which encapsulate their cost and
revenue calculations. The robot offering the task (the auctioneer) waits until all robots
have bid (up to a specified amount of time). If any robot bids more than the minimum
price set by the auctioneer, the highest bidder is awarded the task in exchange for the
price of the bid. Once all of a robot’s auctions close (all goals on the robot'’s tour have
beensequentiallyffered), that robot begins its tour by navigating towards its first goal.
When a robot reaches a goal, it generates new goal points. The number of goal points
generated depends on how many goals are in the current tour — if there are a large num-
ber of goals in the current tour, fewer goals are generated since introducing many new
tasks into the system could limit performance by increasing computation and negotia-
tion time. The robot then starts off towards its next goal, and offers all of its remaining
goals to the other robots.

The selling of tasks is done using a single-item highest-price sealed-bid auction [10].
A robot may announce an auction for any task in its tour, since it currently owns the
right to execute the task in exchange for payment fronCthExec Given a task under
consideration, a robot’s valuation of the task is computed as the profit expected if the

3This is an example of the traveling salesman problem, which is known 1" Behard. The optimal
tour cannot be found in polynomial time, so a greedy heuristic is used to approximate.



task were added to the current tour (expected revenue minus expected cost). The auc-
tioneer announces a reservation price for the auctnp. is the seller’s valuation of

the task with a fixed mark-up, and represents the lowest possible bid that the seller will
accept. The remaining robots act as buyers, negotiating to receive the right to execute
the task, and therefore payment from tBpExec Each buyer calculates its valuation

for the goal,v;, by finding the expected profit in adding that goal to its current tour.
The bidding strategy is defined by each buysubmitting a bid of

Bi:PT-f-Oé*(Ui—Pr) (1)

wherea is betweerd) and1. We usex = 0.9, which gives seller some incentive to sell
the task to a better-suited robot, while at the same time allowing the buyer to reap a
larger fraction of the additional revenue the task generates.

If the bidder expects to make a profit greater than the reservation priceBthen
from equation (1) will be greater thaR., and the bidder will be awarded the task if
no other robot has submitted an even higher bid. If the bidder expects to make a profit
which is less than the reservation price, thgnwill be smaller than?,., and so no bid
is submitted (or equivalently, the bid is lower than the reservation price so it cannot win
the auction). If none of the bidding robots offer more than the reservation price, then
the seller will make more profit by keeping the goal, and so there is no winner. Given
this mechanism, the robot that owns the task after the auction is in most cases the robot
that can perform the task most efficiently, and is therefore best-suited for the task.

Since communication is completely asynchronous, a robot must be prepared to han-
dle a message regardless of current state. In order to achieve system robustness, it is
important to ensure that some communications issues inherent to the problem domain
are addressed. No agent ever assumes that it is connected to or able to communicate
with any of the other agents. Many of the robots’ actions are driven by events which
are triggered upon the receipt of messages. If for some reason a robot does not receive
a message it is expecting.{.the other party has had a failure, or there are communi-
cation problems) it must be able to continue rather than wait indefinitely. Therefore,
timeouts are invoked whenever an agent is expecting a response from any other agent.
If a timeout expires, the agent is able carry on and is also prepared to ignore the re-
sponse if it does arrive eventually.

Although a single robot can offer only one task at a time, there can be multiple
tasks simultaneously up for bids by multiple robots. Therefore, it is possible for a
robot to win two tasks from simultaneous auctions which may have been wise invest-
ments individually, but owning one may devalue the otleeg.two tasks which may
be equally far from the robot, but far away from each other). In this situation the robot
has no choice but to accept both tasks, but can offload the less desirable task at its next
opportunity to call an auctiore(g.when it reaches its next goal point). In this way,
robots have constantly occurring opportunities to exchange the less desirable tasks that
they may have obtained through auction or goal generation. If two instances of the
samegoal are simultaneously auctioned off and won by different robots, one robot will
eventually own both as it is highly unlikely that these two goals will be auctioned off
at the same time more than once. The solutions will still be local minima in terms of
optimality because we are only allowing single task exchanges.



Robot failure (loss) is handled completely transparently. The lost robot no longer
participates in the negotiations and thus is not awarded any further tasks. The lost
robot’s tasks are not completed, but other robots eventually generate goal points in
the same areas, since those unexplored regions are worth a large amount of revenue.
New robots can also be introduced into the colony if position and orientation relative
to another robot (or equivalently some landmark if available) at some instant of time is
known.

3.4 Information Sharing

Information sharing is helpful in ensuring that the robots coordinate the exploration in
a sensible manner. We would like the robots to cover the environment as completely
and efficiently as possible with minimal repeated coverage. This is achieved in sev-
eral ways, most of which emerge naturally from the negotiation protocol. Information
sharing mechanisms are not crucial to the completion of the task, but rather increase
efficiency of the system. Any communication disruptions or failures do not disable the
team, but can reduce the efficiency of the exploration.

First, the robots are usually kept a reasonable distance apart from one another, since
this is the most cost-effective strategy. If one robot has a goal point that lies close to
a region that is covered by some other robot, the other robot wins this task when it is
auctioned off (this robot has lower costs and thus makes more profit). The effect is that
the robots tend to stay far apart and map different regions of the workspace, thereby
minimizing repeated coverage.

Second, if one (auctioneer) robot offers a goal that is in a region already covered
by another (bidder) robot, the bidder sends a message informing the auctioneer of this
fact. The auctioneer then cancels the auction and removes that goal from its own tour.
This is justified in the market model as the bidder robot is actually giving the auctioneer
robot a better estimate of the profit that can be gained from the task, and keeps the seller
from covering space which has already been seen. In view of this new information, the
auctioneer now realizes that it will not be profitable to go to this waypoint.

Third, there is als@xplicit map sharing which is done at regular intervals. A robot
can periodically send out a small explored section of its own map to any other robot
with which it can communicate in exchange for revenue (based on the amount of new
information,i.e.the number of new known map cells, which is being transmitted). This
information can conceivably be exchanged on the marketplace, where each robot can
evaluate the expected utility of the map segments and then offer an appropriate price to
the seller, who may sell if the cost of exchange (in time and communication required to
send the information) is small compared to the offered price. This type of information
exchange can improve the efficiency of the negotiation process in that robots are able
to estimate profits more accurately and are less likely to generate goals which are in
regions already covered by other team members. In the case of a contradiction between
a robot’s map and the map section being received, the robot always chooses to believe
its own map.

Map information from the robots is gathered upon request fromQpExecon
behalf of a human operator. Tl@pExecsends a request for map data to all reach-
able robots, and then assembles the received maps assuming the relative orientations



of the robots are known. The maps are combined by simply summing the values of the
individual occupancy grid cells where aecupiedreading is counted as-al1 and a
freereading is counted as-al. By superpositioning the maps in this way, conflict-

ing beliefs destructively interfere resulting ihavalue inknown), and similar beliefs
constructively interfere resulting in larger positive or negative values which represent
the confidence in the reading (there is an upper limit to the absolute value a combined
reading can have in order to allow for noise or changes in the environment).

4 Results

4.1 Experimental setup

The experiments were run on a team of ActivMedia Pioneerll-DX robots (Figure 1).
Each robot is equipped with a ring of 16 ultrasonic sensors, which are used to con-
struct occupancy grids of the environment as the robot navigates. Each robot is also
equipped with a KVH BCORE™ 1000 fiber optic gyroscope used to track heading
information. Due to the high accuracy of the gyroscoges ¢ ° drift/hr), we use the
gyro-corrected odometry at all times rather than employing a localization scheme. Us-
ing purely encoder-based dead reckoning the positional error can be as hig¥ as

to 25% of the distance traveled for path lengths on the ordéi0ef00m, while using
gyro-corrected odometry reduces the error to the ordéfbf the distance traveled.
However, an accurate localization algorithm may improve the results, especially if the
experimental runs extend over a much longer period of time (our runs typically take
between 5 and 10 minutes to map areas on the order of several hundred square metres).

Figure 1: Robot team used in experiments.

Test runs were performed in three different environments. The first is in the Field
Robotics Center (FRC) highbay at Carnegie Mellon University. The highbay is nom-
inally a large open space (approximately 45m x 30m), although it is cluttered with
many obstacles (such as walls, cabinets, other large robots, and equipment from other
projects — see Figure 2). Figures 3 and 4 show the constructed maps from two separate
highbay explorations. The second environment is an outdoor run in a patio containing
open areas as well as some walls and tables (size is approximately 30m x 30m). Fig-
ure Ha) shows the resulting map created by a team of five robots in this environment.
The third environment is a hotel conference room during a demonstration in which ap-
proximately 25 tables were set up and in excess of 100 people were wandering about
the rooms and lobbies (size is approximately 40m x 30m). A map created by five robots



is shown in Figure &). The results for the environments shown in Figure 5 were not
guantified, but were provided as examples of wide applicability.

Figure 3: Five robot map of FRC highbay. Approximate size of mapped regighoi®>. The arrows in the
figure show where the photographs in Figure 2 were taken.

4.2 Experimental Results

In order to quantify the results, we use a metric which is directly proportional to the
amount of information retrieved from the environment, and is inversely proportional to
the costs incurred by the team. The amount of information retrieved is the area covered,
and the cost is the combined distance traveled by each robot. Thus, we use the simple

metric:
A

E?:l d;
whered; is the distance traveled by robitA is the total area covered, andis the
number of robots in the team. The sensor range utilized by each robdtisxadm

square (containing local sonar data as an occupancy grid), and so a robot can view a
maximum previously uncovered area®fi? for every one metre it travelg) ., =
4m?/m). This is a considerable overestimate for almost any real environment, as it
assumes that there is zero repeated coverage and that robots always travel in straight
lines (no turning) and never encounter obstacles. Nevertheless, it can serve as a rough
upper bound on exploration efficiency.
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Figure 4: Four robot map of FRC highbay. Approximate size of mapped regld0is?. (The map differs

from the one in Figure 3, as a different set of doors were open and other objects in the environment had been
moved.) The numbered areas in the figure represent the five areas that the robots were required to visit in
order to reach the stopping criteria.

Table 1 shows a comparison of the results obtained in running our exploration al-
gorithm using the three different goal selection strategies outlined in section 3.2, plus
one run in which no communication was permitted between the robots. In each case,
the run was carried out in the FRC highbay using four robots which were initially de-
ployed in a line formation. Exploration was terminated when the robots had mapped
out a rough outline of the complete floor plan of the highbay, which required them to
visit and map the five main areas labeled in Figure 4. Each value in Table 1 is an av-
erage obtained ovd runs with the best and wor§? values discarded. During these
experiments, robots in the team were sporadically disabled in order to demonstrate the
system’s robustness to the loss of individual robots.
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Figure 5:(a) Four robot map of exterior environment. Approximate size of mapped regid@mig. The ‘X’
shaped objects are the bases of outdoor talfl-ive robot map of hotel conference room. Approximate
size of mapped region B50m?2. The rectangular-shaped objects are tables which were covered on three of
their four sides.

The quadtree and random strategies performed equally well, covering on average
1.4m? per metre traveled. The greedy strategy performed relatively poorly, covering an
average of).9m? per metre traveled. The main advantage of the quadtree and random
strategies is the fact that many goal points are selected which are spread out over the
entire exploration space, irrespective of current robot positions. Through negotiation,
the robots are able to come up with plans which allow them to spread out and partition

10



Strategy | Area covered/ distance traveled
[m? /m]

Random 1.4

Quadtree 14

Greedy 0.85

No comm 0.41

Table 1: Comparison of goal selection strategy results

the space efficiently. The greedy approach has a number of drawbacks which limit the
exploration efficiency. By design, the goal points generated by a robot are always close
to the current position, so the robot generating a goal is usually best suited to visit that
goal. Thus, very few tasks are exchanged between robots, and so the efficiency benefits
of negotiating are not exploited by the team. This also means that the plans that the
robots are using do not in general have the effect of globally dividing up the space and
spreading out the paths of the robots.

The final entry in Table 1 shows the effect of removing all negotiation and informa-
tion sharing from the system. This effectively leaves the robots exploring concurrently,
but without any communications they cannot efficiently cover the environment. Robots
used the random goal generation strategy. Without the ability to negotiate, robots did
not have the opportunity to fully improve their tours by exchanging tasks, and to divide
up the space requiring coverage. The resulting coverage efficieneytbhi? /m is
only 29% of the coverage efficiency achieved when coordinating the robot team using
the market architecture. Without communication, the worst possible case for coverage
occurs when all of the robots cover all of the space individually before the combined
coverage is complete (i.eermination occurs whep) A; = N 4; = A, where4; is
the area covered by robotand A is the complete area being mapped). Assuming no
repeated coverage and usingobots, if the robots are allowed to communicate, then
efficiency carat bestbe improved by a factor of. In our results we have come close
to this upper bound by adding negotiations, improving the efficiency by a factod of
when using: = 4 robots.

Figure 6 shows a trace of the paths followed by the robots in one of the experimental
runs using random goal generation. Here we can see the beneficial effect that the
negotiation process had on the plans produced by the robots. Although the initial goal
points were randomly placed, the resulting behaviour is that the robots spread out to
different areas and covered the space efficiently.

5 Conclusions
In this paper we present a reliable, robust, and efficient approach to distributed multi-
robot exploration. The key to our technique is utilizing a market approach to coordinate

the team of robots. The market architecture seeks to maximize benefit (information
gained) while minimizing costs (in terms of the collective travel distance), thus aiming
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Figure 6: Paths taken by four exploring robots in FRC highbay. The robots initially were in a line formation
near the centre of the image and dispersed in different directions to explore the highbay. The small amount
of repeated coverage near the centre of the map is unavoidable, as there is only a narrow lane joining the left
and right areas of the environment (compare with photos shown in Figure 2 and map shown in Figure 4 for
reference).

to maximize utility. The system is robust in that exploration is completely distributed
and can still be carried out if some of the colony members lose communications or
fail completely. The effectiveness of our approach was demonstrated through results
obtained with a team of robots. We found that by allowing the robots to negotiate
using the market architecture, exploration efficiency was improved by a fac84 of

for a four-robot team.

To build on the promising results seen so far, future work will look at several pos-
sible ways to improve the overall performance of the system. Currently, the algorithm
is designed to minimize distance traveled while exploring. Instead of distance based-
costs, using a time-based cost scale will lead to rapid exploration. This will also fa-
cilitize a more straightforward way to prioritize some types of tasks over others in the
market framework, if there are other mission objectives in addition to exploration. A
more complex cost scheme could be implemented which combines several cost factors
in order to efficiently use aetof resources. It may also be worthwhile to include some
simple learning€.g.learning the parameterused in the bidding strategy to split sur-
plusses), which may increase the effectiveness of the negotiation protocol. Character-
izing the dependence of exploration efficiency on the number of robots in the team may
also provide interesting results. In addition, testing different goal generation strategies
(e.g.frontier-based strategies) may lead to performance improvements. Finally, robot
loss can be handled more explicitly which may lead to a faster response in covering the
goals of the lost team member.
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