MFS: an Adaptive Distributed File System for Mobile Hosts

Benjamin Atkin and Kenneth P. Birman
Department of Computer Science

Cornell University, Ithaca, NY
{bat ki n, ken}@s. cornel | . edu

Abstract

Mobility is a critical feature of computer systems, and while
wireless networks are common, most applications that run on
mobile hosts lack flexible mechanisms for data access in an en-
vironment with large and frequent variations in network connec-
tivity. Such conditions arise, for example, in collaborative work
applications, particularly when wireless and wired users share
files or databases. In this paper, we describe some techniques
for adapting data access to network variability in the context of
MFS, a client cache manager for a distributed file system. We
show how MFS is able to adapt to widely varying bandwidth
levels through the use of modeless adaptation, and evaluate the
benefit of mechanisms for improving file system performance
and cache consistency using microbenchmarks and file system
traces.

1 Introduction

Mobility is now an major feature of computer systems: over the
past decade, laptops and hand-held devices capable of wireless
network access have become common, and wireless networks are
also proliferating. Applications that run on hosts in wireless net-
works must cope with constraints on access to data that are gen-
erally not present in wired networks. Distance from a base sta-
tion, contention with other hosts or processes on the same host,
interference, and switching between different wireless media all
compound the variability in network performance to which ap-
plications must adapt if they are to perform well.

This paper focuses on adaptation techniques for management
of data accessed and modified by mobile hosts. We investigate
adaptation in the context of MFS, a client cache manager for a
distributed file system. We concentrate on distributed file sys-
tems because systems in this area are highly developed and have
well understood semantics, although the techniques we describe
should be broadly applicable in other application environments,
such as caching dynamic Internet content or caching to improve
the performance of interactions with web services. We evaluate

The authors were supported in part by DARPA under AFRL grant RADC
F30602-99-1-0532, and by AFOSR under MURI grant F49620-02-1-0233, with
additional support from Microsoft Research and from the Intel Corporation.

MFS using file access traces from Windows NT and Unix, and a
synthetic workload designed to emulate sharing patterns seen in
collaborative engineering systems.

Existing work in cache management for mobile file systems
[7, 13, 15, 18] incorporates mechanisms for making efficient
use of available bandwidth. However, it has mostly focused on
adapting existing systems to cope with periods of low bandwidth,
in a style which we will refer to as modal adaptation. When
bandwidth is high, the application communicates normally; when
bandwidth falls below a threshold, the application enters a low-
bandwidth mode in which communication is restricted or de-
ferred. More generally, an application has a small number of
possible modes and chooses the appropriate one based on the
currently available bandwidth. For example, in the Coda file
system [18], the cache manager operates in either a strongly-
connected, weakly-connected, or disconnected mode, which af-
fects the policy for writing changes to files back to the server.

Modal adaptation schemes are well-suited to environments
in which changes in bandwidth are relatively predictable, such
as switching network access from an Ethernet to a modem, but
not as appropriate in for wireless networks, in which bandwidth
availability is less predictable and varies over a larger possible
range. The notion of “insufficient bandwidth” can vary depend-
ing on how much data the application is trying to send, so that
it may make sense to adjust network usage when the bandwidth
drops by half, rather than just when it falls to modem-like levels.
Selecting a mode according to the available bandwidth can un-
necessarily constrain communication, since it ignores what data
the application actually wants to send over the network. Defer-
ring writing back all modifications to files may not be a sensible
policy if those are the only messages available to send.

We describe MFS (Mobile File System), a flexible cache
manager for a distributed file system client, which differs from
traditional cache manager design in two important respects. First,
MFS uses an RPC library supporting priorities to enable mode-
less adaptation [1], which allocates available bandwidth based
on the types of messages being sent. By assigning priorities
appropriately, foreground activities, such as retrieving files, can
proceed concurrently with background activities such as writing
back changes, under the assurance that if bandwidth becomes
scarce, the background activities, rather than the foreground ones,

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2003 2. REPORT TYPE 00-00-2003 to 00-00-2003
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

MFS: an Adaptive Distributed File System for M obile Hosts £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Cornell University,Department of Computer Science,lthaca,NY,14853 REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Mobility isacritical feature of computer systems, and while wir eless networ ks are common, most
applicationsthat run on mobile hosts lack flexible mechanismsfor data accessin an environment with
large and frequent variationsin network connectivity. Such conditions arise, for example, in collabor ative
work applications, particularly when wireless and wired users sharefilesor databases. In this paper, we
describe sometechniques for adapting data access to network variability in the context of MFS, a client
cache manager for adistributed file system. We show how MFSis ableto adapt to widely varying
bandwidth levels through the use of modeless adaptation, and evaluate the benefit of mechanisms for
improving file system perfor mance and cache consistency using microbenchmarks and file system traces.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18.NUMBER | 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 15
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

will be penalised first. Modeless adaptation using prioritised
communication also allows MFS to be more flexible in response
to bandwidth variations than would be possible with a modal
scheme. Second, MFS incorporates a new cache consistency al-
gorithm to efficiently provide a high degree of consistency for
access to shared files, which is required for collaborative work
applications.

The rest of this paper is organised as follows: Section 2 de-
scribes the MFS design and differences from existing distributed
and mobile file systems, as well as giving an overview of the
MFS RPC library. Section 3 describes the use of prioritised com-
munication in MFS and experiments to evaluate its effectiveness.
Section 4 presents and explains experimental results for the MFS
prefetching mechanism, and Section 5 does the same for the
cache consistency algorithm. Finally, Section 6 concludes and
describes future work.

2 MFSoveview

MFS differs from earlier mobile file systems in adjusting to chang-
ing network conditions using modeless adaptation. It comprises
a core client-server file system, and a number of subsystems that
perform different kinds of adaptation, and can be selectively en-
abled. Figure 1 shows the structure of the system. In this section
we describe the core system, while subsequent sections do the
same for the three main subsystems. We begin with an overview
of mobile file system design and the relation of MFS to previ-
ous work, then briefly describe the adaptive RPC library used in
MFS, and the current MFS implementation.

2.1 MFSdesign and related work

The core of MFS follows a design common to many mobile file
systems [7, 13, 15, 18], which use techniques such as whole-
file caching, and update logging combined with asynchronous
writes, to cope with disconnections or intermittent connectivity.

The design of MFS is closest in structure to that of Coda
[18] and the Low-Bandwidth File System (LBFS) [13]. A host
acting as a client of an MFS file system runs a user-level cache
manager, which receives file system operations intercepted by a
kernel module, interacting with the VFS layer of the local file
system. We adopt the same approach to intercepting VVFS opera-
tions as LBFS, making use of the kernel module provided as part
of the Arla AFS client [21].

The cache manager maintains a cache of recently-accessed
MFS files on the local disk. When a VFS operation is inter-
cepted for a file that is not in the cache, it is retrieved in full from
the appropriate server, and the VFS operation is then resumed.
MFS uses the writeback-on-close semantics first implemented in
the Andrew File System [6]. When a dirty file is closed, the en-
tire file contents are transferred to the server’. The LBFS chunk

1Though MFS is designed to support multiple MFS file servers, in this paper

MFS cache manager MFES server
background incoming
processing traffic
2 =
cache ©
E consistency demand fetch 5 N
g = AN
S ‘ access)
o monitoring | prefetch o
c [N S 1
o
K] outgoing synchronous a
- traffic writeback @
['g:
< update : i asynchronous |
logging writeback 3

Figure 1: MFS architecture. The most important part of MFS is the
cache manager, which intercepts file system operations from application
programs and resolves them into accesses to its local MFS cache or
RPCs to a server. The cache manager has a number of components:
those in solid boxes are part of the core system, those in dashed boxes
are optional extensions which are described in subsequent sections.

scheme for minimising bandwidth utilisation when transferring
files is not used in MFS, although it is orthogonal to MFS adap-
tation and could be added to further improve performance.

The server that stores a file is responsible for maintaining the
mutual consistency of the copies cached by clients. It records
which clients cache the file, and is responsible for notifying them
of changes. MFS implements a variation of the scheme used
by Coda: when a file is retrieved from the server, the server is-
sues a limited-duration “callback promise”, obliging it to inform
the client through a callback if another host modifies the file. If
the callback promise expires without a callback being issued, the
client must revalidate the file before using it. The cache consis-
tency algorithm is described in more detail in Section 5.

2.2 Adaptive RPC library

The fundamental difference between MFS and other file systems
we have described is in the communication between the cache
manager and servers. While LBFS uses a variant of the NFS
RPC protocol [17], MFS, like Coda, uses a customised RPC.
However, unlike Coda’s RPC, the RPC used in MFS incorpo-
rates novel features to allow it to adapt to network variability.
The MFS RPC library is implemented on top of the Adaptive
Transport Protocol (ATP). In discussing MFS RPC, we give an
overview of the parts of ATP which are most relevant to MFS;
ATP and its design motivations have been described in more de-
tail in our earlier work [1].

The hypothesis underlying ATP is that adapting to network
variation by structuring applications according to modes is not
always appropriate, and can sometimes lead to poor performance.
Figure 2 shows the results of an experiment in which modeless
adaptation over ATP achieves higher bandwidth utilisation than

we will concentrate on a system with a single server.

Modal adaptation

—— true bandwidth
bandwidth used

bandwidth (KB/s)

o 50 100 150 200 250 300
time (s)

Modeless adaptation

—— true bandwidth
bandwidth used

bandwidth (KB/s)
»
o
o

o 50 100 150 200 250 300
time (s)

Figure 2: Modal versus modeless adaptation with ATP. The left graph shows performance with modal adaptation, and the right graph shows a
scheme in which there are four classes of messages being sent simultaneously, of increasing priorities (the lowest line corresponds to the highest
priority). Dark horizontal lines represent operating modes on the left, and the highest priority of data being sent during a second on the right. The
modeless scheme achieves higher utilisation (48.5 MB of data sent) because it always has messages to send, while the modal scheme is dependent
on a rapid and accurate estimate of the available bandwidth in order to select its correct operating mode (41.5 MB sent). These graphs are

reproduced from [1].

an equivalent modal scheme. Other experiments have shown
that modeless adaptation can achieve improvements of 10-15%
in bandwidth utilisation, and it is possible to construct cases in
which the improvement is even greater. Work on adaptation
in mobile file systems has generally relied on modal schemes
[7, 18], but our evaluation of ATP demonstrated that it could also
improve the performance of file system-like workloads. We dis-
cuss the implementation of modeless adaptation in MFS further
in Section 3.

ATP is implemented at user level, on top of kernel UDP. It
has a message-oriented interface for communication, in which
messages of an arbitrary size can be reliably transmitted with
their boundaries preserved at the receiver’s side. An application
can send a message synchronously or asynchronously. In the
latter case the sender provides a function to be executed when
transmission of the message completes, and the send operation
itself is non-blocking; this is similar to the Queued RPC devel-
oped for Rover [8]. Unlike Queued RPC, ATP also allows the
sender to attach a priority to each message, to control the or-
der in which the queued messages are transmitted. Messages are
queued at the sender according to their receivers, and each queue
is ordered by priority. Messages of the same priority within a
queue are transmitted in first-in, first-out order. ATP also allows
a sender to specify a send timeout for a message, which causes
the transmission to be suspended if it expires, so that the sender
can react to it. An analogous mechanism is available for receive
operations. Besides detecting when a remote host is inaccessible,
send timeouts do not play a major role in MFS. An additional use
for timeouts would be to detect prefetches which are not making
progress and reissue a prefetch for a different file (see Section 4).

ATP administers priorities by deriving an estimate for the
bandwidth available between the sender and receiver. In order
to minimise the transmission delay when a new message is sent,
ATP uses a form of rate-based flow control. Each second is di-
vided into twenty send periods of 50 milliseconds’ duration, and
at most one-twentieth of the available bandwidth is used during

a single send period. Without such a constraint, ATP would send
as much data as it could on receipt of a low-priority message, and
this data could then be buffered at an intermediate link, delaying
the transmission of any high-priority message which might be
sent later. The disadvantage of this scheme is that heavy con-
tention at the sender may delay a new message by as much as
50 milliseconds, regardless of its priority. This inefficiency of
the ATP implementation is most visible when there is contention
between different priorities at high bandwidth.

2.3 MFSimplementation

The version of MFS described in this paper is implemented in
C and runs on FreeBSD 4.5. Both the client and server have
multiple threads to cope with simultaneous file system requests,
and the RPC library has its own thread: therefore there are two
mandatory thread context switches on any message send or re-
ceive operation. As we shall describe in subsequent sections,
some subsystems have additional threads to carry out background
processing. Unless noted otherwise, our experiments were con-
ducted with a default client cache size of 256 MB.

3 RPCswith priorities

MFS RPCs are implemented on top of ATP in the natural way:
an RPC request constitutes one message, and its reply another.
Priorities are used to differentiate types of RPCs to improve per-
formance: in general, small RPCs, or those which would cause
an interactive client to block, are given high priority. RPCs for
background activities, such as writing back files to the server, or
prefetching files, are performed at low priority, so that they do
not slow down high-priority RPCs. Table 1 shows the priority
levels for different types of RPCs.

Assigning priorities to RPCs allows MFS to adapt to band-
width variation in a straightforward way. At high bandwidths, all
RPCs complete quickly, with or without priorities. As bandwidth

priority level corresponding RPC types section
VALIDATE (high) fetch attributes, callbacks 3
FETCH fetch file data, directory contents 3
STORE-ATTR write back directory and metadata updates 3
STORE-FAST write back shared files 5
STORE-DATA write back unshared files 3
PREFETCH (low) prefetch file data 4

Table 1: Priority levels for MFS RPCs. Symbolic names are given for
the priority levels, listed from highest to lowest priority. The third col-
umn gives the section in which the corresponding RPC types are de-
scribed in detail.

decreases, an implementation without priorities will result in the
completion times for all RPCs increasing uniformly. When pri-
orities are used, a backlog of low-priority RPCs will accumulate,
while the time taken for high-priority RPCs to complete will in-
crease more gradually. Our design is based on the assumption
that when bandwidth is low, an assignment of differentiated pri-
orities will improve the response times for interactive tasks. If a
task which predominantly performs reads executes in parallel to
a task which performs many writes, then with priorities, the first
task will receive a higher share of the bandwidth.

In practice, many applications have patterns of interactive
file access involving both reads and writes. For instance, com-
piling source files involves interspersed reads and writes, but
does not issue concurrent RPCs frequently. Such an application
will have improved read performance when there is contention
with other applications, but will correspondingly be penalised on
writes. This does not match our design goal of having interactive,
“mostly-read” applications obtain a larger share of bandwidth.
We have implemented two solutions to this problem, based on
making writes asynchronous: update logging, used in several
existing systems and incorporated in MFS for the purposes of
comparison, and asynchronous writeback, which is new to MFS.
An alternative approach is to retain synchronous writes, but as-
sign priorities according to some notion of relative importance
of processes. Unfortunately, existing operating systems and ap-
plications generally do not provide this information, so we have
not investigated it further.

3.1 Updatelogging

Update logging, which is implemented in some mobile file sys-
tems (notably Coda [18] and Little Work [7]), removes the re-
quirement that processes wait for writes. Rather than sending an
update to the server as soon as a file is closed, the cache manager
logs the update and periodically flushes logged updates to the
server. These systems enable logging when bandwidth is low, to
improve read performance and reduce write traffic by aggregat-
ing updates to the same file in the log before they are transmitted.

Update logging separates communication with the server into
two distinct streams: updates to files and directories, and all
other traffic. These two types of communication are scheduled

independently and may compete. However, by making writes
asynchronous, update logging pushes read-write contention “into
the future”, to occur at the next log flush. The designers of
Little Work incorporated a low-level priority mechanism at the
IP packet level to further reduce interference between writeback
traffic and other network traffic sent by the client [7].

3.2 Asynchronouswriteback

Though it reduces bandwidth consumption, update logging is
fundamentally unsuitable for use at high bandwidth, since it im-
poses a delay on transmitting updates to the server. Systems us-
ing update logging must therefore switch to a synchronous writes
when bandwidth is high, with a threshold controlling switches
between the two modes. The mode switch also changes the se-
mantics of the file system, and the developers of Coda have noted
that undetected mode changes can surprise the user in undesir-
able ways [18], such as cache inconsistencies arising due to un-
expectedly delayed writes.

Rather than relying on a modal adaptation scheme incorpo-
rating a transition to update logging when bandwidth is low, MFS
uses a modeless asynchronous writeback mechanism, which is
active at all bandwidth levels. Just as with update logging, when
an application performs an operation that changes a file, such as
a write or metadata update (create, delete, create directory and
so on), it returns immediately. The update is then passed to the
writeback subsystem, which sends it to the server when there is
sufficient bandwidth: asynchronous writeback therefore only de-
lays updates when there is foreground traffic. When bandwidth
is high, the performance of asynchronous writeback should be
comparable to purely synchronous writes, but when bandwidth is
insufficient, asynchronous writes will improve the performance
non-update RPCs.

The cache manager’s writeback thread divides updates into meta-
data operations, such as directory modifications and file status
changes, and file writes. The two types of operations are queued
and replayed to the server separately, so that a metadata RPC
can proceed in parallel with a file writeback. When an RPC from
a particular queue completes, we say that the update has been
committed at the server. The next update is then dequeued and
an asynchronous RPC for it is initiated. Separating the small
metadata RPCs from file writes allows remote clients to see sta-
tus changes to files without having to wait for intervening write-
back traffic. A similar motivation underlies the cache consis-
tency scheme for high read-write contention environments we
describe in Section 5.

The chief complexity in implementing asynchronous write-
back lies in resolving dependencies between metadata operations
and updates to the same file. For instance, a file may be created,
modified and closed, and the length of the metadata queue may
be enough to mean that the file update would be initiated first: in
this case the file update must wait. Alternatively, a file may be

test | activity - synchronOL_Js — - logging — - asynchronqus_ -

uniform priorities uniform priorities uniform priorities

GC grep 29(0.2) | 3.4(0.4) 3.2(0.5) 3.1(0.4) 3.3(0.5) 3.1(0.4)
compile | 63.6 (1.0) | 63.0(0.9) | 54.4 (11.7) | 48.1(16.9) | 60.7 (0.8) | 52.6 (11.4)

GW grep 9.2(05 | 89(10) 8.4(0.2) 8.5(0.2) 8.5 (0.4) 8.1(0.1)
write 10.7 (0.5) | 10.8 (0.6) 1.7 (0.5) 1.6 (0.4) 1.7 (0.2) 1.6 (0.2)

RC read 19.2(0.8) | 19.5(0.9) | 20.1(0.8) | 20.1(1.4) | 20.3(1.1) | 19.8(0.7)
compile | 75.7 (L.4) | 78.7(2.3) | 65.0 (12.5) | 66.0 (11.8) | 71.9 (1.3) | 68.0 (1.2)

RW | read | 347(14) | 21.3(14) | 35.0(1.3) | 223(1.3) | 354 (1.7) | 21.4(1L3)
write | 23.8(1.2) | 40.3(1.5) | 3.4(0.4) 3.001) | 37(.7) | 31(0.2)

Table 2: Performance of MFS priorities and writeback schemes. Each test consists of two concurrent processes executing different workloads.
Mean times to completion are shown with standard deviations, over ten executions. Three different policies for writing back files are listed, under
uniform or differentiated priorities (reads take precedence over writes). Values in bold are of particular significance. Note that elapsed times for
write workloads give the time until the process running the workload finishes, not when the log is flushed (this is shown in Figure 3).

modified and then deleted, which requires the file update RPC to
be cancelled if it is still in transmission when the remove RPC is
initiated. An update to a file will supersede any previous queued
updates.

3.3 Performance evaluation

After adding priorities to RPCs, it is natural to ask when they are
beneficial, and to what degree. In addition to comparing MFS
with and without prioritised RPCs, we also investigate the per-
formance impact of replacing synchronous RPCs for file updates
with asynchronous writeback. The performance of these alterna-
tives is compared in a set of microbenchmarks, and with work-
loads gathered from Windows NT file system traces.

Our experimental setup consists of two 1 GHz Pentium Il
desktop machines running the FreeBSD 4.5 operating system,
one of which acts as an MFS server, and the other as an MFS
client. The client machine makes use of the Dummynet traffic-
shaping module in FreeBSD to limit its incoming and outgoing
bandwidth. The experiments we conduct in this section have a
constant bandwidth over the duration of the experiment, but we
analyse the performance of MFS when the bandwidth varies over
the course of an experiment in Section 4.5.

3.4 Microbenchmarks

The first set of experiments compares different MFS configura-
tions for specific types of contention. Four workloads were used:

Grep: executes the gr ep utility several times on each of 256 8-
KB files. The files are present in the cache, but must be validated
before they are used.

Read: accesses 16 1-MB files in sequence, writing the contents
of each file to / dev/ nul | . The files are not initially present in
the cache.

Write: copies 16 1-MB files from the local file system into the
MFS file system.

Compile: compiles the entire MFS file system and its RPC li-
brary (259 files and directories comprising 1223 KB). None of
the files are initially in the cache. This workload performs an in-
tensive pattern of reads and writes files without raising the issue
of concurrent accesses (a topic we tackle in Section 5).

Of these workloads, we classified Grep and Read as foreground
workloads, and Compile and Write as background workloads.
Four combined workloads were then generated by running a fore-
ground and a background workload concurrently: we denote
these as GC (Grep/Compile), GW (Grep/Write), RC (Read/Com-
pile) and RW (Read/Write). Three types of RPCs predominate:
cache validations, fetches of file data, and store operations for
files, in descending order of priority. The aim of the experiments
was to demonstrate that priorities improve the performance of
the foreground workloads.

The four combined workloads were executed on top of MFS
configured with either synchronous writes, update logging or
asynchronous writeback. The update logging mechanism was
configured to delay flushing an update for at least a second. Ev-
ery experiment was repeated ten times at each of five possible
bandwidth values. Table 2 shows the time taken for each work-
load at a bandwidth of 1024 KB/s, and Figure 3 shows overall
results for selected configurations.

The results in Table 2 demonstrate the benefit of priorities
when there is high contention between high-priority RPCs and
writes. In both the 1/0-bound GW and RW workloads, adding
priorities decreases the time required for the foreground work-
load to execute, by up to 38% (see elapsed times for RW-read
with synchronous writes in the table). This is particularly true
in the RW test, where the foreground workload generates heavy
contention by fetching a large volume of data. The greatest ben-
efits are observable for the combination of asynchronous writes
with priorities, since here the performance of the background
workload can also improve by not having to wait for its writes
to be committed at the server. In the GC and RC tests, where
there is lighter contention, the impact of priorities is negligible,
and in some cases results in a slight overhead, but this is chiefly

GC test (compile)

GC test (grep)
30
—&- uniform
f ur!\fqrm < 7| —- priorities
- priorities y ~ O async g
~

25O async

o

relative speedup
relative speedup
IS

&

0
1024 64 128 256 512
bandwidth (KB/s)

64 128 256 512
bandwidth (KB/s)

1024

(a) GC test

RC test (read) RC test (compile)

-8~ uniform %
14 || —t- priorities
O async

—&- uniform
81| —+- priorities
O async

o o~

~

relative speedup
relative speedup

w

0
1024 64 128 256 512
bandwidth (KB/s)

0
64 128 256 512
bandwidth (KB/s)

1024

(c) RC test

GW test (grep) GW test (write)
20 15
~5- uniform ~5- uniform 9
181 | —- priorities —+- priorities
O __async QO __async v/

[N
o

relative speedup
B

a0 S N

relative speedup

6
4
2
0 0
64 128 256 512 1024 64 128 256 512 1024
bandwidth (KB/s) bandwidth (KB/s)
(b) GW test
RW test (read) RW test (write)

25 25

- uniform Y 5 uniform

—t- priorities / —t- priorities

O __async O __async
20 / 20

N
@
N
@

N
o
N
o

relative speedup
relative speedup

:

0
1024 64 128 256 512
bandwidth (KB/s)

0
64 128 256 512
bandwidth (KB/s)

1024

(d) RW test

Figure 3: Performance of prioritised RPC with respect to bandwidth variation. Each pair of graphs in shows the speedup of one of three cache
manager configurations, relative to the time taken by uniform priorities with synchronous RPCs at 64 KB/s. As well as uniform priorities and
synchronous RPCs (“uniform™), the graphs also show curves for differentiated priorities and synchronous RPCs (““priorities™) and differentiated
priorities and asynchronous RPCs (““async™). The values plotted for bandwidth of 1024 KB/s are the same as shown in Table 2.

due to the overhead of priorities for small RPCs mentioned in
Section 2.2.

Comparing the execution time of the foreground workloads
with synchronous writes, update logging and asynchronous write-
back reveals that the latter two options generally perform com-
parably to or better than synchronous writes. Logging and asyn-
chronous writeback greatly improve the performance of the back-
ground workloads, as has been noted previously [7, 18]. We fo-
cus on MFS with asynchronous writeback in the rest of this paper
because it provides comparable performance to logged updates,
allows straightforward modeless adaptation to bandwidth varia-
tion, and is easily extensible to more than one level of priority,
which is required for our cache consistency algorithm.

Since reducing available bandwidth increases the contention
between RPCs of different types, the benefits of RPC priorities
should be more apparent at lower priorities. Figure 3 shows the
experiments of Table 2 extended to a wider range of bandwidth
values. In these and later experiments, we evaluate MFS perfor-
mance with bandwidths from 64 to 1024 KB/s: while 64 KB/s is
not “low” in the sense of prior work, it is low enough to cause
significant contention for the workloads we have considered, and
we believe that our results will hold if available bandwidth and

Grep Write
14 — — 15
—— AFS s
- MFS -
12 © P
_ 0
L

10
— ~ 10
O O
g £
< <
2 5 2
2 2
< <
T S g

4

2

0 0

32 64 128 256 512 32 64 128 256 512

bandwidth (KB/s) bandwidth (KB/s)

Figure 4: Comparison of MFS and AFS performance. MFS with syn-
chronous RPCs and priorities is compared to a version of the Andrew
File System. Speedups for the two workloads of the GW test are shown,
relative to the performance of AFS at 32 KB/s.

traffic are scaled down further in parallel.

The graphs in Figure 3 validate the incorporation of RPC pri-
orities, since all the foreground workloads improve their perfor-
mance substantially at lower bandwidths, relative to MFS with
no priorities. Furthermore, the decrease in throughput for the

Grep in the GW workload even is less than would be expected
with reduced bandwidth: here uniform priorities result in through-
put linear in the bandwidth, while differentiated priorities are less
sensitive. The RC and GC tests show the benefit of asynchronous
writeback, since the updates from the compile workload are com-
mitted sooner to the server than with synchronous writes, due
to the overlap of “think time” with asynchronous writes. Fi-
nally, though uniform priorities provide better performance for
the Write component of the RW test at 1024 KB/s (as is to be ex-
pected, since we are prioritising reads), this benefit largely van-
ishes at lower bandwidths.

Though we have concentrated on determining the benefit of
RPC priorities by a comparison of different configurations of
MFS to one another, we have also performed a few experiments
to compare the performance of MFS to a standard distributed
file system. Figure 4 illustrates the result of running the GW
test over MFS and an Andrew File System (AFS) setup; we
used the Arla implementation of the AFS cache manager [21]
and the OpenAFS server. AFS uses a UDP-based RPC library
without priorities. The results largely correspond to those in Fig-
ure 3. MFS significantly outperforms AFS for the foreground
Grep workload, since AFS effectively uses synchronous RPCs
with uniform priorities. In the background Write workload, AFS
slightly outperforms MFS, but it is both a more mature system,
and more optimised than MFS for this sort of communication.
Since the results of running the other tests are similar, we omit
them for brevity.

3.5 NTFSworkloads

In addition to measuring the performance of MFS with synthetic
workloads, we have also conducted experiments with traces gath-
ered from the Windows NT file system (NTFS) [20]. Although
MFS is implemented on a variant of Unix, and NTFS has a some-
what different interface to the file system, the traces were con-
verted to run on top of MFS with little difficulty. The original
traces recorded file accesses on a set of machines in a LAN. A
majority of the accesses were local but some were to remote ma-
chines. We extracted subintervals from the traces which featured
interesting file system behaviour and processed them to remove
accesses to files over 4 MB in size. This preprocessing was nec-
essary to eliminate the influence of extremely large NT system
files, which made up 50% of the file system traffic in some por-
tions of the original traces. Given that MFS retrieves and writes
back whole files, including these system files would have dis-
torted the experiments at low bandwidths.

Table 3 gives statistics for the three traces: a trace in which
reads predominate, a trace in which writes predominate, and one
containing exceptionally heavy file system traffic. Each trace
was run over MFS with the combinations of synchronous and
asynchronous writes and differentiated and uniform priorities in
previous experiments, and the results are given in Figure 5. To
interpret these graphs, look for instance at the “heavy load” bar

trace
parameter mostly reads | mostly writes | heavy load
duration (s) 101 106 34
applications 25 15 41
unique files 2952 276 3312
total file sizes (MB) 46.61 16.51 125.31
read traffic (MB) 10.82 12.74 27.82
write traffic (MB) 3.44 19.92 9.59

Table 3: NTFS trace parameters. These traces are representative peri-
ods of mixed read and write activity. The durations are from the original
NTFS traces. Note that the total file sizes represent the amount fetched
by MFS during the trace. Where this is exceed by the write traffic, the
additional traffic is due to new files being created or existing ones ex-
tended.

Time spent on RPCs (64 KB/s)

3000 I
%]
2500 %
[
o
&
&
&
2000 &l
K3
K3
& &
L K
o 1500 i
£ K
K3
K3
K3
1000 K
o
o
&
XY mostly reads K
500 [| 222 mostly writes %
B2 heavy load K
[store overhead %
0 N 177125 I N 713% K
priorities uniform priorities uniform
synchronous asynchronous
Time spent on RPCs (512 KB/s)
600 ; " . .
500 ! !
£X] £X]
£ o
%3] £
5! !
B K3
400 5 K
[5
o K3
- K K
O K K
@ 300 & i
£ K K
= oo 634
| o
S K
£
o
200 K
o
X mostly reads
100 [EZ2 mostly writes
B heavy load
[_] store overhead
1NN |71 2% N | 22
priorities uniform priorities uniform
synchronous asynchronous

Figure 5: Graphs of NTFS traces. Each trace ran with synchronous or
asynchronous writes and uniform or differentiated priorities. The total
height of each bar denotes the time from the first to last write, and the
shaded portion denotes the time from the first to last read. The white
portions denote the extra time required to complete all writes after the
last read has finished.

for asynchronous writeback with priorities in the 64 KB/s graph.
This shows that the total duration of the trace with this MFS con-
figuration is 2409 seconds, but all the fetch traffic is completed
within 2220 seconds of the start: this is a significant improve-
ment over the alternative configurations measured. The remain-
ing 189 seconds of the trace are taken up by asynchronously writ-
ing back file updates.

In all cases the traces take significantly longer than they orig-
inally did in NTFS, where they were mostly accessing the local
file system and therefore had no bandwidth constraints. The re-
sults largely repeat those seen in the microbenchmarks, to the
extent that the greatest performance improvements are seen at
low bandwidth when there is high read-write contention, such
as in the mostly-writes trace where there is an 79% decrease in
the time spent to read all the files. However, even at the higher
bandwidth of 512 KB/s, there is a decrease of 30%. The mostly-
reads trace is not much affected by changes in the configuration,
although there is a slight decrease in both read and write times
for prioritised asynchronous writeback. Unusually, at 512 KB/s
the heavy-load trace performs best with uniform asynchronous
writeback: we once again attribute this to inefficiency in the RPC
protocol, since under extremely heavy load and high bandwidth
it performs better when all messages have the same priority.

4 Prefetching

Prefetching is commonly used to improve the performance of lo-
cal file systems, as well as distributed file systems. However,
in a file system with whole-file access, a mechanism is required
to determine appropriate prefetching hints. Earlier work in file
system prefetching has used clustering to derive file groups from
cache access statistics [11], predicted future file accesses from
recent accesses [5], or allowed applications to specify prefetch-
ing hints explicitly [16, 19].

Inter-file dependencies can also be used as a source of hints.
For instance, it may be known that a certain shared library is re-
quired to run a text editor: in this case it would be advantageous
to retrieve the shared library from the server as well as retriev-
ing the text editor executable. Alternatively, explicit informa-
tion such as the operating system’s database of installed software
packages, or other application-specified dependency information
can be used.

Any of these techniques could be used to derive hints for use
by the MFS prefetching subsystem; our evaluation uses hand-
specified dependency information, which is inaccurate in some
cases. Rather than reimplementing an existing hint-generation
mechanism, we focus on the performance of MFS with prefetch-
ing, using a deliberately simple hint mechanism for the purposes
of evaluation. Dependencies between files are conveyed using a
file group, which is a list of file identifiers for the related files.
It is assumed that after one file in the group has been accessed,
it becomes advantageous to prefetch the remainder of the files in

the group. A file group is implemented as a special type of file
within the MFS file system, with its own file identifier, but not
attached to any specific directory. The file group a file belongs
to, if any, is one of its attributes.

The MFS prefetching subsystem derives much of its effec-
tiveness from being combined with prioritised RPCs. While the
prefetching algorithm in MFS is straightforward, it can still make
bad decisions without a large overall performance penalty be-
cause the interference of prefetching with other file system ac-
tivity is minimised. In the same way that some local file sys-
tems execute speculative operations to improve performance [3],
MFS makes use of the “speculative communication” of priori-
tised RPCs in the hope of achieving a benefit through prefetching
files.

4.1 MFS prefetching implementation

The MFS cache manager incorporates a small prefetching mod-
ule, which can be optionally enabled at start-up. When it is ini-
tialised, a prefetching thread starts and initiates prefetch requests
in parallel with the main activity of the cache manager.

The core component of the cache manager alerts the prefetch-
ing module every time an application reads or writes a file, by
callingthe f i | e_access routine. This routine checks whether
the file belongs to a file group — if not, the access is ignored. If
it is a member of a file group, the group is put at the head of
the prefetch list. The prefetch thread periodically examines the
group at the head of the list. If the group file for the group is
not in the cache, it retrieves it from the server. Then it scans the
files in the group in order until it finds the first one which is not
in the cache, or not validated, and issues a prefetch request or
validation request for it. If all the files are valid and are in the
cache, the group is moved to the end of the prefetch list. Once
the prefetch completes, the thread rechecks the head of the list
to find the next file to prefetch: a new group may now be at the
head of the list as a result of further application accesses to files.

Prefetch requests are similar to regular fetch requests for files,
with the exception that they are issued at the lowest level of pri-
ority: all other RPC traffic takes precedence over a prefetch RPC,
as shown in Table 1. Prefetches are synchronous, and only one
prefetch is made at a time. This is more a matter of implementa-
tion convenience than a design decision: other work has shown
the benefits initiating multiple concurrent prefetches from differ-
ent servers [19]. MFS does not currently make use of timeouts
for prefetches, as we have noted earlier, but it could easily to ex-
tended to abandon a prefetching attempt that does not complete
in a timely manner.

The main complexity in implementing the prefetching sub-
system lies in handling a demand fetch (a compulsory fetch to
service a cache miss) for a file which is already being prefetched.
This conflict arises very frequently, particularly when an appli-
cation performs a fast linear scan of files in a file group. An
efficient implementation of prefetching requires that the demand

Bad order

—+— prefetch
—&- no prefetch

Bad groups

—+— prefetch
—&- no prefetch

15

= I
moN ;o

relative speedup
relative speedup

=

o
wn

0
1024 64 128 256 512
bandwidth (KB/s)

Pause

-+ - prefetch
—&- no prefetch

0
64 128 256 512
bandwidth (KB/s)

Multigrep

-+ - prefetch
—&- no prefetch

1024

s
a

20

o
N

15

=
) o

=)

relative speedup
Ek ~
relative speedup

IS
*

0
1024 64 128 256 512
bandwidth (KB/s)

4]
64 128 256 512
bandwidth (KB/s)

1024

Good order

—t+— prefetch T
12| & no prefetch / 12

Read-write

—t+— prefetch
—&- no prefetch

relative speedup
relative speedup

0
1024 64 128 256 512
bandwidth (KB/s)

Simultaneous writeback

0
64 128 256 512
bandwidth (KB/s)

Simulaneous demand fetch

-+ - prefetch
—&- no prefetch

1024

20

-+ - prefetch
—&— no prefetch

15

10

relative speedup

5

relative speedup
N w S (4] o ~ © (=]

LE:

0
64 128 256 512
bandwidth (KB/s)

1024 64 128 256 512
bandwidth (KB/s)

1024

Figure 6: Relative speedup of workloads with prefetching. These graphs show the speedup gained by adding prefetching for a range of bandwidth
values, relative to the time taken with a bandwidth of 64 KB/s and no prefetching. Where a test comprises two separate processes, only the speedup

for the foreground process is shown.

fetch wait for the prefetch to complete, or that the prefetch be
aborted. Issuing a fetch RPC at the same time as a prefetch is in
progress needlessly wastes bandwidth, since it retrieves the same
file from the server twice. The same could be true if we opt for
aborting prefetches, since an aborted prefetch could be very close
to completion. MFS therefore makes the demand fetch wait for
the prefetch, but also raises the priority of the prefetch RPC to
that of a regular fetch operation, to prevent a priority inversion.
This requires an additional “raise-priority” RPC to the server,
which results in more overhead than the case where a demand
fetch occurs without a fetch-prefetch conflict. On the other hand,
the fetch can frequently make use of the data already transferred
and so still results in a faster response to the application.

As we have explained, the implementation of the prefetch-
ing subsystem is not sophisticated. While it will reach an equi-
librium if the total size of the file groups in the prefetch list is
less than the cache size, there is no mechanism to prevent the
prefetching subsystem “running ahead” of actual file accesses
and evicting useful files from the cache, or evicting files which
it has prefetched but have not yet been referenced by the user.
Techniques for preventing this behaviour have been discussed
elsewhere [19].

4.2 Prefetching evaluation

Having added prefetching to MFS, we evaluated whether such
a straightforward algorithm can have a benefit for some repre-

sentative workloads. In order to characterise the effect of adding
prefetching, we ran a set of eight microbenchmarks. The exper-
imental setup was the same as in the priority tests, though this
time MFS was configured to run with asynchronous writeback,
and RPC with priorities, and only prefetching was either enabled
or disabled. The tests were run at a range of bandwidth values,
as in the previous section.

Each microbenchmark consists of one or two processes ac-
cessing files, with some or all of the files forming file groups.
The Read-Write test is the same as in Section 3, with a file group
added for the Read data. The Compile MFS test has six file
groups for the main directories of the system. Multigrep accesses
2 MB of data in 75 text files, forming a single file group. Pause
accesses 4 MB of small files, waits for 4 seconds, and accesses
4 MB more; all the files are in a single file group. Simultane-
ous Demand-Fetch runs as two process. One process accesses
64 files of 64 KB each, which form a file group. The other does
the same, but without a file group. Simultaneous Writeback exe-
cutes in the same way, but the second process writes the files to
the server instead of reading them.

The remaining tests investigate the overhead paid for weak-
nesses in the prefetching algorithm. Bad Groups uses 16 direc-
tories, each containing 64 128-KB files and forming its own file
group; on its first iteration, the workload accesses the first file in
each directory, on the second, the thirty-third, to provoke a large
amount of useless prefetches. Good Order and Bad Order inves-
tigate the effect of the ordered list of files in a file group: Good

Order accesses the files in the group in the same order as the list;
Bad Order accesses them in reverse order.

4.3 Analysisof prefetching

The graphs in Figure 6 show the results of the experiments. Where
a test such as Simultaneous Demand-Fetch incorporates more
than one workload, only the elapsed time for the foreground
workload (the one accessing a file group) is given.

In most of the microbenchmarks, adding prefetching from
the file groups specified has a substantial improvement on the
performance of the workload, varying with how amenable it is to
prefetching. In general, more surplus bandwidth and more think
time result in improved performance: this naturally means that
the greatest improvements from prefetching are evident at higher
bandwidths (six out of eight microbenchmarks run at least 10%
faster when bandwidth is 1024 KB/s). In contrast, at low band-
width most workloads see no benefit, since all the bandwidth is
dedicated to higher-priority traffic.

Only two tests perform worse with prefetching than with-
out. The Read-write test performs slightly worse due to its al-
ready heavy network contention. The Bad Groups test, which ex-
ploits poor prefetching hints, consistently under-performs when
prefetching is used. This effect is due to the useless prefetch-
ing RPCs flooding the outgoing link and imposing minor delays
on each demand fetch: cumulatively these slow down the over-
all performance. An usual phenomenon is that the Bad Order
test consistently outperforms Good Order, even though the latter
triggers prefetches in the “correct” order. The explanation is that,
by design, the Good Order test suffers from the fast linear scan
phenomenon described in Section 4.1 (all prefetches in this test
conflict with demand fetches). In contrast, at the start of the Bad
Order test, the prefetching subsystem is able to prefetch some
files accessed at the end of the test, without conflicting with a
demand fetch. It can therefore achieve a greater speedup.

4.4 Summary of results

Despite the simplicity of the MFS prefetching implementation,
we have shown that workloads which are amenable to file-level
prefetching can achieve speedups of 70% at high bandwidth, and
as much as 10% at bandwidths as low as 64 KB/s. Prefetching
carries a small performance overhead, even when performed at
the lowest priority, which can reduce its effectiveness for fast lin-
ear scan workloads. It is possible to construct combination of file
groups and a workload for which prefetching can significantly
degrade performance.

Within the constraints imposed by our file group representa-
tion, the main conclusion we draw from the test cases exhibit-
ing a “prefetch penalty” is that the implementation could be im-
proved to incorporate a mechanism to inhibit prefetching. The
current prefetching algorithm does not correlate file accesses with
the processes which make them, but if this were done, two changes

10

0 RPC type
fa(p) | fa(n) | fd(p) | fd(n) | pf(p) | df(p) | sd(p) | sdn)
1] 23 | 18 1 7 13 0 7 9
2| 51 | 4 0 15 | 26 2 22 20
3] 54 | 69 0 42 | 24 | 24 | 3B 35

Table 4: Number of RPCs by type in bandwidth variability test. The
entries under ’p’ denote periods in the test. Figure 7 gives the abbrevi-
ations for RPC types.

are likely to be beneficial. The first would reduce the aggressive-
ness of prefetching (for instance, setting a byte threshold) from
a file group if it appeared that a process was not using the files
prefetched based on its prior accesses. This would reduce the
overhead in the Bad Groups case. The second would explicitly
detect a fast linear scan by a process, by counting the instances
of prefetch and demand fetch conflict for a file group, and then
disable prefetching from the group.

45 Prefetching and bandwidth variability

So far, our experimental results have demonstrated the benefits
of MFS adaptation mechanisms at various levels of bandwidth
availability, but not when the bandwidth is changing over the du-
ration of the test. To conclude this section we will describe an
example of MFS traffic under the execution of the Simultaneous
Writeback test described in Section 4.2. This test involves two
simultaneous workloads: one writes files 64 KB to the server and
the other reads 64 KB files from the server, but is slightly mod-
ified from original version to use a longer “think time” of 0.25
seconds when accessing each file (improving the potential for
RPCs to overlap). We enabled asynchronous writeback and ran
the test with the synthetic bandwidth trace shown in Figure 7(a),
which changes the bandwidth once per second. This has three
sections, a brief period when the bandwidth is at 512 KB/s, a
gradual decrease to 128 KB/s over the course of ten seconds, and
then the maintenance of the 128 KB/s rate until the end of the
test.

The test was executed once with prefetching enabled, and
once with no prefetching, and the RPCs were then divided ac-
cording to which period of the trace they terminated in. For each
RPC, four quantities are calculated: the time spent queued for
both the RPC request and reply, and the time taken for each to be
received, from the first to the last packet. This ignores the time
spent at the server servicing the RPC, and the round-trip time
between the client and the server, but these quantities are small
compared to the other costs. These values are added up for each
of the RPCs within a particular period, and the results are shown
in the Figures 7(b), 7(c), and 7(d).

The graphs show how priorities affect RPCs and how prefetch-
ing changes MFS behaviour. In all three time periods, more time
is spent on RPCs to fetch file attributes with prefetching enabled
than without. Since the time to receive a fetch-attributes request
or reply is negligible, the increased time is due to a greater queue-

Bandwidth trace
640 3

RPC times at high bandwidth

Il request queued
request send
25 reply queued
[L reply send

@
a
)

@

@

S
~

15

total time(s)

available bandwidth (KB/s)
B
)

H
N
@

0
fa(p) fa(n) fd(p) fd(n) pf(p) df(p) sd(p) sd(n)
RPC type

(b)

0 2 4 6 8
time (s)

(@)

10 12 14 16

RPC times at intermediate bandwidth RPC times at low bandwidth

Il request queued
8 request send
reply queued
[reply send

Il request queued
request send

reply queued
[reply send

N
N\

total time(s)
total time(s)

0
.

0
fa(p) fa(n) fd(p) fd(n) pf(p) df(p) sd(p) sd(n)
RPC type

(d)

fa(p) fa(n) fd(p) fd(n) pf(p) df(p) sd(p) sd(n)
RPC type

©

Figure 7: RPC traffic with varying bandwidth. Graphs (b), (c) and (d) show the time spent on RPCs during an execution of the Simultaneous
Writeback test from Section 4.2, with the bandwidth varying according to the curve in (a). RPCs are labelled as follows: fa = fetch-attributes, fd =
fetch-data, pf = prefetch, df = demand fetch to raise priority of a prefetch RPC, sd = store-data. The time spent on RPCs is shown with prefetching
enabled, denoted by (p), and disabled, denoted by (n). Note that RPC interactions can overlap so the quantities for different RPC types are not
additive. For some RPC types, the time spent on particular activities is negligible in proportion to the overall time: for instance, fetch-attribute
requests are small and have a very low transmission time relative to their queueing delays.

ing delays; as we have seen earlier, high traffic can cause delays
in the round-trip time for small RPCs. Conversely, store-data
RPCs have a higher outgoing queueing delay in the absence of
prefetching: this is due to the majority of the competing RPCs
being high priority fetch-data RPCs. With prefetching, these
RPCs are mostly replaced by prefetches, which operate at a lower
priority than store-data RPCs, until any point where a concurrent
demand fetch RPC raises their priorities to the fetch-data level.

A comparison of fetch-data and prefetch RPCs reveals the ef-
fect of the bandwidth decrease. To begin with, the test run with
prefetching performs a fetch-data RPC to get the first file, which
triggers prefetching from its file group. Because of the large de-
lay between file accesses, prefetches complete entirely without
any overlapping demand fetches. Over the course of the second
period of time, bandwidth becomes insufficient for a prefetch to
complete during the 0.25 s delay between accesses, and raise-
priority RPCs are triggered by the consequent cache misses. As
the bandwidth decreases, the queueing delays increase as a pro-
portion of the total time spent on prefetches.

5 Cache consistency

Studies of distributed file systems have largely concluded that file
sharing is infrequent in general-purpose environments [2, 10].
However, we have identified a class of cache consistency scenar-
ios as being of high importance and inadequately served by ex-
isting mobile file systems. Suppose that a complex engineering
design is maintained on a server and updated by teams of de-
signers (architects, electrical contractors, engineers, and so on)
while on-site supervisors work from those designs using mobile
devices. These supervisors read from the server and may also
change the design, for example to reflect one of the contingencies
encountered and resolved only as construction proceeds. When

11

such users happen to be working on the same element of the de-
sign, it is clear that satisfying a request from stale data (whether
in from the cache, or on a server that has yet to see a delayed
writeback) would be visible to the user and costly?.

Strong cache consistency is certainly achievable in distributed
file systems [22], but must be implemented with synchronous
RPCs, and requires either readers or writers to incur a delay to
ensure that only the latest version of a file is accessed. In con-
trast, as we have noted in Section 3, sending file updates to a
server asynchronously has two potential benefits: the process
modifying the file need not wait for the write to complete, and,
if the update is delayed in the log for some interval before be-
ing written back, it may be superseded by a later update, and
therefore can be omitted entirely. However, these benefits come
at the cost of reduced cache consistency, since the version of
the file stored at the server is inconsistent during the time that
the update remains queued for transmission. Even though asyn-
chronous writes in MFS are not delayed to aggregate updates,
a burst of updates to a sequence of files may flood the link to
the server and increase the delay before updates towards the end
of the burst are committed. Any other client accessing the file
will access the stale version, rather than one which incorporates
the pending update. We therefore refer to this as a “hidden” up-
date, and the cache consistency problem caused by asynchronous
writes as the hidden update problem.

Mobile file systems such as Coda [18] rely on optimistic con-
currency control to resolve the conflicts generated by hidden up-
dates. An alternative approach is to use a variant of callbacks to
allow a client to replay writes asynchronously, but retain strong
cache consistency. For example, the Echo file system [12] forces

2We thank Larry Felser and his team at Autodesk for their help in understand-
ing the file access patterns that arise in collaborative work applications for very
large architectural and engineering design firms [4].

the modifying client to flush its updates whenever another client
accesses the file, and Fluid Replication [9] separates invalidat-
ing a file from transmitting its update. We have implemented a
similar scheme in MFS, in which an access to a file which has an
uncommitted update at a different client will force the writeback.
The MFS consistency algorithm differs in its incorporation of file
access information. Rather than enforce the same level of con-
sistency for all files, MFS differentiates between “private” files,
which have recently only been accessed by a single client, and
“shared” files, which are accessed by multiple clients. Enforc-
ing cache consistency between clients necessarily requires that
shared files are kept highly consistent, but modifications to pri-
vate files can be written back to the server less aggressively. The
technique of using file access patterns to adjust a cache consis-
tency protocol has been used in the Sprite distributed operation
system [14], though in Sprite changes in caching policy were
made when a file was opened simultaneously at different clients,
while MFS uses longer-term access statistics.

The remainder of this section describes our consistency algo-
rithm in detail, and an evaluation of its effectiveness in reducing
cache inconsistencies.

5.1 The consistency maintenance algorithm

The MFS cache consistency algorithm is intended to achieve a
high degree of consistency, subject to the constraints imposed by
file semantics and the desirability of minimising overhead. We
have opted for a compromise which results in a small overhead
but admits the possibility of a transient inconsistency.

The algorithm requires information about client accesses in
order to divide files according their status, either shared or un-
shared. Since the file server always assumes that an unshared
file has an uncommitted write when it is accessed by an addi-
tional client, incorrect information about the status of a file only
affects the efficiency of the algorithm. Detection of such a mis-
classification results in the file being marked as shared.

The status of files can be specified by the user or by appli-
cations, or can be inferred by the file server according to how it
is accessed. To be effective, automatic inference should incorpo-
rate a heuristic for the sharing status of new files, and a mecha-
nism for converting shared files to be unshared if they cease to
be accessed by more than a single client. The current implemen-
tation in MFS assumes that every new file is unshared, and mon-
itors client accesses to a file according to an overlapping series
of time periods to ensure that files which are regularly accessed
remain shared. Since the MFS file monitoring component op-
erates on a larger time scale than the experiments considered in
this paper, we omit its details for brevity.

When a process modifies a file, an update is scheduled to be
appended to the log, and the process continues executing with-
out having to wait for the server to be contacted. The writeback
thread then checks the status of the file the update modifies: if the
file is unshared, the update is queued for transmission at the reg-

12

host | parameter value
reader | delay between accessing modules 0.25-2s
operations per module 4-10
delay between operations 50-100 ms
writer | delay between accessing modules 1-4s
operations per module 4-20
delay between operations 50-100 ms
size of external files 0-128 KB

Table 5: Configuration parameters for the cache consistency evaluation.
Individual instances are uniformally distributed within the listed ranges.

ular store-data priority. If the file is shared and no other shared
update is being sent, the thread begins transmitting the update at
the store-fast priority. If another shared update is being written
back, a synchronous “forward invalidation” RPC is made to the
server at the highest priority, and then the update is queued for
later high-priority transmission. Effectively, a forward invalida-
tion is only made if the update cannot be transmitted immedi-
ately: in practice it can therefore be omitted at high bandwidth
or when traffic is low. However, sending a forward invalidation
RPC without requiring the modifying process to wait introduces
a transient inconsistency.

When the server receives a forward invalidation for a shared
file, or begins receiving an update for a file, it records the iden-
tity of the writer, marks the file as dirty and issues callbacks to
all the clients caching it. If one of these clients fetches the file
before the update has been committed, the server sends high-
priority “server pull” RPCs to the clients with outstanding up-
dates, which causes them to raise the priority of any store-data
RPCs to expedite transmission. A fetch RPC for an unshared file
which is already cached by a different client always triggers a
server pull, since the server has no way of knowing if the file has
outstanding updates.

Finally, since updates to shared and unshared files are writ-
ten back to the server at different priorities, the original order of
the sequence of updates is no longer entirely preserved. The up-
dates to shared files form a subsequence of the original updates,
as do the updates to unshared files. However, implicit dependen-
cies between file updates are preserved, since the combination of
forward invalidations and compulsory server pull RPCs for un-
shared files prevents a client from accessing new versions of files
in contravention of their update order.

5.2 Experimental setup

At the start of this section we identified large-scale collaborative
engineering design as an example of a scenario which features
a high degree of read-write sharing. At present we have eval-
uated the MFS cache consistency algorithm using a synthetic
trace, though we are hoping to obtain real data from such an
environment in the future.

Average store RPC duration Average duration of reader fetch
4 15

[MFs/cC
async+unif
sync-+diff
B none+diff
Il synchronous

ynchronous

average time (s)

average time (s)
e e

2z BRANZ AN il il
64 128 256 512 1024 64 128 256 512 1024
bandwidth (KB/s) bandwidth (KB/s)

(@) (b)

Invalidations and server pulls Time spent on invalidations

MFS/CC

async+unif

200 B2 sync+diff
[server pulls

number of RPCs
total time (s)
© kM w & 0 » N ® ©

50

N b
64 128 256 512 1024 64 128 256
bandwidth (KB/s)

©

512 1024
bandwidth (KB/s)

(d)

Figure 8: Graphs for cache consistency trace. These graphs show various features of the performance results; in the legends, “async™ denotes
asynchronous invalidations; ““sync” synchronous invalidations, and “none™ no invalidations; ““diff” denotes differentiated writeback priorities
for shared and unshared files, and ““unif”” denotes uniform priorities. “MFS/CC”” is the MFS cache consistency algorithm. In graph (c), the height
of a bar counts the number of invalidations; the white portion counts the number of server-pull RPCs.

Our experimental setup consisting of three hosts: one server,
a “reader” client, and a “writer” client. The bandwidth from the
reader to the server was fixed at 1024 KB/s, and the bandwidth
from the writer to the server was varied according to the experi-
ment. The writer was configured in one of seven different ways:
with synchronous writes; or with asynchronous, synchronous or
no invalidations, and differentiated or uniform priorities for writ-
ing back shared and unshared files. The MFS concurrency con-
trol algorithm (MFS/CC) corresponds to asynchronous invalida-
tions with differentiated priority for shared files. Both clients
access a shared repository of files stored on the file server, which
consists of 40 modules. Each module has a descriptor file and a
set of 4-12 member files. Module descriptor files are about 1 KB
in size and the 334 member files take up an average of 64 KB.
The total size of all the files in the collection is 21 MB.

The writer workload consists of the writer updating modules
in a random order. An update to a module consists of a sequence
of operations, 20% of which are reads and 40% are writes to a
file in the module; the remaining 40% consist of writes to un-
shared “external” files, which are each created with a unique
name. There is a pause between each operation and a longer
pause between updates to modules. The reader workload is sim-
ilar, but an access to a module consists of a series of reads, and
external files are never accessed. The configuration parameters
used to generate the reader and writer workload are listed in Ta-
ble 5. The writer workload has a nominal duration of two min-
utes, while the reader workload is extended to terminate at the
same time as the writer workload actually finishes (since low
bandwidth could extend its running time beyond two minutes).

5.3 Analysisof theresults

Figure 8 shows graphs of some selected results from the experi-
ments. In general, while synchronous writes provide strong con-
currency control, they resulted in the lowest rate of completed
writes in all the tests, since the writer had no possibility of over-

lapping think time with asynchronous writeback. At all band-
width levels the MFS/CC algorithm outperformed synchronous
writes by at least 20%, and was among the options with the high-
est write throughput. This is clear from graph (a), which shows
the average time to complete store RPCs initiated by the writer
(excluding invalidations). Here MFS/CC outperforms all of the
alternatives. This is because of the reduced number of invalida-
tions it generates, and also since, in contrast to most of the other
schemes, it is able to take advantage of both differentiated write-
back, and of server-pull RPCs to raise the priority of its writes.

Graph (b) shows the performance from the reader’s perspec-
tive. While the writer is able to decrease its time spent perform-
ing store RPCs, the reader’s average time spent on fetches in-
creases sharply when the file in question must be pulled from
the writer. Naturally, this cost must be weighed against the ben-
efit of substantially increased writer throughput. Differentiated
writeback succeeds in reducing the time the reader has to wait
when accessing a shared file.

Graphs (c) and (d) show statistics for invalidations and server-
pull RPCs for those writer configurations which make use of
them. MFS/CC significantly reduces the number of invalidations
it must transmit by putting off invalidating a file until it is added
to the log, yet the effect of this policy on the number of server-
pull RPCs is minor. The “async+unif” policy, which differs from
MFS/CC in omitting differentiated writeback, makes more in-
validations and incurs more server-pull RPCs, because its store
RPCs must compete with the RPCs to write back external files.
This increases the commit delay for each file and the likelihood
of it being accessed by the reader while it is being written back.

In conclusion, these experiments demonstrate that for the trace
we have examined, the MFS algorithm of asynchronous inval-
idations and differentiated writeback is able to maintain cache
consistency between the two clients and to allow the writer to
write back changes to the stored data faster than is possible with
the alternative schemes. We intend to further evaluate the perfor-

13

mance of the algorithm to determine its effectiveness under other
workloads, and with more clients.

6 Conclusion

The growing use of mobile computers and wireless networks
has greatly increased the scope for adapting data access to vary-
ing network characteristics. This paper has explored applying
the technique of modeless adaptation to a distributed file system
to improve its performance. The cache manager for our MFS
file system incorporates features that are not present in existing
file systems for mobile hosts: adaptation to bandwidth variation
through the use of prioritised communication, and an efficient
cache consistency protocol using file access information to im-
prove performance.

We have evaluated the effect of these features on performance
at varying bandwidth levels and under both synthetic and real
workloads, including a workload emulating collaborative data
access with high read-write contention, and found that while the
additional costs imposed are mostly hidden, they can have bene-
fits which are very visible. Additionally, the non-modal nature of
adaptation in MFS allows clients to adapt quickly to a variety of
bandwidth conditions without substantial changes in operation.
Our evaluation has included comparisons of MFS to cache man-
ager configurations corresponding to prior work, and confirmed
that there are situations in which MFS would outperform AFS,
Coda and Little Work. However, these earlier systems were de-
signed for a mobile environment which is substantially different
from that available today. Essentially, MFS is able to provide
improved performance in periods of high network contention by
favouring cache validation and RPCs to retrieve files over other
types of traffic. We have not compared MFS with LBFS since
their approaches are orthogonal, and LBFS-style algorithms are
not present in the earlier systems we have compared against. We
anticipate that implementing LBFS file chunks in MFS would
further improve performance its performance.

In future work, we plan to investigate the performance of
modeless adaptation and MFS in wide-area and more web-like
environments, as well as further evaluating the performance of
the MFS cache consistency algorithm. We also intend to use
MFS to further examine the benefits achievable from the auto-
matic generation of caching policies for files.

Acknowledgements

We would like to thank Robbert van Renesse, Werner Vogels,
Emin Giin Sirer and Paul Francis for comments and suggestions
regarding MFS. We also thank Rimon Barr, Indranil Gupta, and
Kevin Walsh for helpful discussions and corrections to this paper.

14

References

[1] B. Atkinand K. P. Birman. Evaluation of an adaptive trans-
port protocol. In Proceedings of the 22nd Annual Joint
Conference of the IEEE Computer and Communications
Societies (Infocom 2003), San Francisco, California, Apr.
2003.

[2] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff,
and J. K. Ousterhout. Measurements of a distributed file
system. In Proceedings of the 13th ACM Symposium
on Operating Systems Principles, pages 198-212, Pacific
Grove, California, Oct. 1991.

[3] F. W. Chang and G. A. Gibson. Automatic I/O hint gener-
ation through speculative execution. In Operating Systems
Design and Implementation, pages 1-14, 1999.

[4] L. Felser. Personal communication, Sept. 2003.

[5] J. Griffioen and R. Appleton. Performance measurements
of automatic prefetching. In Proceedings of the ISCA Inter-
national Conference on Parallel and Distributed Comput-
ing Systems, Sept. 1995.

[6] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West.
Scale and performance in a distributed file system. ACM
Transactions on Computer Systems, 6(1):51-81, Feb. 1988.

[7] L. B. Huston and P. Honeyman. Partially connected opera-
tion. Computing Systems, 8(4):365-379, 1995.

[8] A. D. Joseph, J. A. Tauber, and M. F. Kaashoek. Mo-
bile computing with the Rover Toolkit. IEEE Transac-
tions on Computers: Special issue on Mobile Computing,
46(3):337-352, Mar. 1997.

[9] M. Kim, L. P. Cox, and B. D. Noble. Safety, visibility,
and performance in a wide-area file system. In Proceed-
ings of the First USENIX Conference on File and Storage
Technologies, Monterey, California, Jan. 2002.

[10] J. J. Kistler and M. Satyanarayanan. Disconnected opera-
tion in the Coda file system. ACM Transactions on Com-

puter Systems, 10(1):3-25, 1992.

[11] G. H. Kuenning and G. J. Popek. Automated hoarding for
mobile computers. In Proceedings of the Sixteenth ACM
Symposium on Operating Systems Principles, pages 264—

275, Saint Malo, France, Oct. 1997.

[12] T. Mann, A. Birrell, A. Hisgen, C. Jerian, and G. Swart. A
coherent distributed file cache with directory write-behind.
ACM Transactions on Computer Systems, 12(2):123-164,

1994,

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

A. Muthitacharoen, B. Chen, and D. Maziéres. A low-
bandwidth network file system. In Proceedings of the Sev-
enteenth ACM Symposium on Operating Systems Princi-
ples, Lake Louise, Alberta, Oct. 2001.

M. N. Nelson, B. B. Welch, and J. K. Ousterhout. Caching
in the Sprite network file system. ACM Transactions on
Computer Systems, 6(1):134-154, Feb. 1988.

T. W. Page, R. G. Guy, J. S. Heidemann, D. Ratner, P. Rei-
her, A. Goel, G. H. Kuenning, and G. J. Popek. Perspectives
on optimistically replicated peer-to-peer filing. Software —
Practice and Experience, 28(2):155-180, Feb. 1998.

R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky,
and J. Zelenka. Informed prefetching and caching. In Pro-
ceedings of the Fifteenth ACM Symposium on Operating
Systems Principles, pages 224-244, Copper Mountain Re-
sort, Colorado, Dec. 1995.

R. Sandber, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon. Design and implementation of the Sun network
file system. In Proceedings of USENIX Summer Confer-
ence, 1985.

M. Satyanarayanan. The evolution of Coda. ACM Trans-
actions on Computer Systems, 20(2):85-124, May 2002.

D. A. Steere. Exploiting the non-determinism and asyn-
chrony of set iterators to reduce aggregrate file 1/0O latency.
In Proceedings of the Sixteenth ACM Symposium on Oper-
ating System Principles, pages 252-263, St. Malo, France,
Oct. 1997.

W. Vogels. File system usage in Windows NT 4.0. In Pro-
ceedings of the Seventeenth ACM Symposium on Operating
Systems Principles, pages 93-109, Kiawah Island, South
Carolina, Dec. 1999.

A. Westerlund and J. Danielsson. Arla —a free AFS client.
In Proceedings of the 1998 USENIX Conference, Freenix
Track, New Orleans, Louisiana, June 1998.

J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Volume leases
for consistency in large-scale systems. IEEE Transactions
on Knowledge and Data Engineering, 11(2):563-576, July
1999.

15

