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ABSTRACT 

 
Recent disasters, including the 9/11 terrorist attacks, Hurricane Katrina, the London 

subway bombings, and the California wildfires, have all highlighted the limitations of current 

mobile communication systems for public safety first responders.  First, in a point-to-point 

configuration, legacy radio systems used by first responders from differing agencies are often 

made by competing manufacturers and may use incompatible waveforms or channels.  In 

addition, first responder radio systems, which may be licensed and programmed to operate in 

frequency bands allocated within their home jurisdiction, may be neither licensed nor available 

in forward-deployed disaster response locations, resulting in an operational scarcity of usable 

frequencies.  To address these problems, first responders need smart radio solutions which can 

bridge these disparate legacy radio systems together, can incorporate new smart radio solutions, 

or can replace these existing aging radios.  These smart radios need to quickly find each other 

and adhere to spectrum usage and access policies.  Second, in an infrastructure configuration, 

legacy radio systems may not operate at all if the existing communications backbone has been 

destroyed by the disaster event.  A communication system which can provide a new, temporary 

infrastructure or can extend an existing infrastructure into a shaded region is needed.  Smart 

radio nodes that make up the public safety infrastructure again must be able to find each other, 

adhere to spectrum usage policies, and provide access to other smart radios and legacy public 

safety radios within their coverage area. 

This work addresses these communications problems in the following ways.  First, it 

applies cognitive radio technology to develop a smart radio system capable of rapidly adapting 

itself so it can communicate with existing legacy radio systems or other smart radios using a 

variety of standard and customized waveforms.  These smart radios can also assemble 

themselves into an ad-hoc network capable of providing a temporary communications backbone 

within the disaster area, or a network extension to a shaded communications area.  Second, this 

work analyzes and characterizes a series of rendezvous protocols which enable the smart radios 

to rapidly find each other within a particular coverage area.  Third, this work develops a 



 

spectrum sharing protocol that enables the smart radios to adhere to spectral policies by sharing 

spectrum with other primary users of the band.  Fourth, the performance of the smart radio 

architecture, as well as the performance of the rendezvous and spectrum sharing protocols, is 

evaluated on a smart radio network testbed, which has been assembled in a laboratory setting.  

Results are compared, when applicable, to existing radio systems and protocols.  Finally, this 

work concludes by briefly discussing how the smart radio technologies developed in this 

dissertation could be combined to form a public safety communications architecture, applicable 

to the FCC’s stated intent for the 700 MHz Band.  In the future, this work will be extended to 

applications outside of the public safety community, specifically, to communications problems 

faced by warfighters in the military. 

 

 

 



 iv

Dedication 
I dedicate this dissertation to my family, whose encouragement helped make this endeavor 

possible. 



 v

Acknowledgment 
My work was supported by the Air Force Institute of Technology (AFIT), by the National 

Institute of Justice, Office of Justice Programs, U.S. Department of Justice under Award No. 

2005-IJ-CX-K017, and by the National Science Foundation under Grant No. CNS-0519959.  In 

addition, I would like to thank the Software Defined Radio (SDR) Forum for its support of this 

research.  The views, findings, and conclusions or recommendations expressed in this chapter  are 

those of the author and do not necessarily reflect the views of these sponsors or the official policy 

or position of the U.S. Air Force, the Department of Defense or the U.S. Government.  Lastly, I 

would like to gratefully acknowledge the contributions of my colleagues at Virginia Tech and in 

the wider cognitive research community, and I would like to thank my graduate student peers in 

the Center for Wireless Telecommunications (CWT) research laboratory whose daily interaction 

and assistance made this document possible.   



 vi

Contents 
1. Introduction 1 
 

1.1 Observations: The Public Safety Disaster Communications Scenario .................. 1 
 

1.2 Problem Statement: Radio Discovery and Spectrum Scarcity in Public Safety 
Operations .............................................................................................................. 3 

 
1.3 Recent Developments ............................................................................................ 3 

 
1.4 Presented Solution: Smart Radio and Dynamic Spectrum Access Protocols for 

Improved Public Safety Communications ............................................................. 5 
 

1.5 Methodology .......................................................................................................... 6 
 

1.6 Contributions ......................................................................................................... 6 
 

1.7 Organization of this Dissertation ........................................................................... 7 
 
2. Smart Radio Architecture 2007 8 
 

2.1 Problem Statement .................................................................................................. 8 
 

2.2 Contributions .......................................................................................................... 10 
 

2.3 Previous Work: Historic and Literature Review ..................................................... 11 
 
2.4 Smart Radio 2007 Architecture .............................................................................. 13 

 
2.5 Results ..................................................................................................................... 23 

 
2.6 Conclusions ............................................................................................................. 24 

 
3. Smart Radio Architecture 2008 25 
 

3.1 Problem Statement .................................................................................................. 25 
 

3.2 Contributions .......................................................................................................... 28 
 

3.3 Previous Work ........................................................................................................ 29 
 
3.4 Smart Radio 2008 Architecture .............................................................................. 30 



 vii

 
3.5 Results ..................................................................................................................... 39 
 
3.6 Conclusions ............................................................................................................. 40 

 
4. Smart Radio Network Testbed 42 

 
4.1 Problem Statement .................................................................................................. 43 
 
4.2 Contributions .......................................................................................................... 44 

 
4.3 Previous Work: Review of Smart Radio Architecture ............................................ 44 

 
4.4 Testbed Architecture and Setup .............................................................................. 46 
 
4.5 Experiments: Validation of Universal Framework Architecture ............................ 51 
 
4.6 Results ..................................................................................................................... 52 

 
4.7 Discussion ............................................................................................................... 57 
 
4.8 Conclusions ............................................................................................................. 58 

 
5. Rendezvous Protocol  59 
 

5.1 Contributions .......................................................................................................... 60 
 

5.2 Previous Work ........................................................................................................ 60 
 
5.3 Rendezvous Design Taxonomy .............................................................................. 64 

 
5.4 Problem Statement .................................................................................................. 72 

 
5.5 Experiment .............................................................................................................. 83 

 
5.6 Conclusions ............................................................................................................. 97 

 
6. Channel Change Protocol 98 
 

6.1 Problem Statement .................................................................................................. 99 
 

6.2 Contributions .......................................................................................................... 100 
 

6.3 Previous Work ........................................................................................................ 101 
 

6.4 Presented Solution .................................................................................................. 107 



 viii

 
6.5 Methodology for Evaluation ................................................................................... 110 

 
6.6 Simulation Setup ..................................................................................................... 111 

 
6.7 Simulation Results .................................................................................................. 116 

 
6.8 Testbed Experiments Setup ..................................................................................... 119 

 
6.9 Testbed Experiment Results ................................................................................... 120 

 
6.10 Validation of Simulation Results with Experimental Results ................................ 125 

 
6.11 Stability of Experimental Results .......................................................................... 126 

 
6.12 Summary ................................................................................................................ 131 

 
7. Conclusions  132 
 

7.1 Summary ................................................................................................................. 132 
 
7.2 Contributions .......................................................................................................... 133 

 
7.3 Publications ............................................................................................................. 135 
 
7.4  Application: The 700 MHz Public Safety Band .................................................... 136 

 
7.5 Future Work ............................................................................................................ 137 

  
Bibliography 139 
 
Appendix – Scripts  147 
 



 ix

List of Figures 
 
2.1 Two communicating CWT SR secondary users and a single FRS radio primary user. ...... 11 
 
2.2 Block diagram of the CWT Smart Radio. ........................................................................... 14 
 
2.3 User interface showing four states of operation. ................................................................. 17 
 
2.4 FRS database. ...................................................................................................................... 18 
 
2.4 A basic SDR system based on GNU Radio and USRP. ...................................................... 20 
 
2.5 Radio Framework Multi-threading Control. ....................................................................... 21 
 
2.6 PHY/MAC Radio Framework. ............................................................................................ 22 
 
3.1 Problem Scenario and Requirements. ................................................................................. 28 
 
3.2 CWT Smart Radio 2008 Architecture. ................................................................................ 30 
 
3.3 Scan Tab of the User Interface. ........................................................................................... 32 
 
3.4 Connection Tab. .................................................................................................................. 32 
 
3.5 Configuration Tab. .............................................................................................................. 32 
 
3.6 An example of XML messaging used in radio configuration. ............................................ 33 

 
3.6 An example of XML configuration for two adapters which are bridged together. ............. 34 
 
3.7 The principal components so the Universal Radio Framework. ......................................... 37 
 
3.8 Diagram highlight the Bluetooth scatternet formation process. .......................................... 39 
 
4.1 Scenario and proposed solution. .......................................................................................... 43 
 
4.2 Architecture of the smart radio. ........................................................................................... 45 
 
4.3 Detailed architecture of the network testbed. ...................................................................... 47 
 
4.4 Screenshot of JPerf. ............................................................................................................. 49 
 
4.5 Remote SSH terminals control network configuration of each test node. .......................... 50 
 
4.6 Java-based “NetworkStats” configuration agent. ................................................................ 51 
 



 x

4.7 Summary of Latencies. ........................................................................................................ 53 
 
4.8 Summary of TCP Goodputs. ............................................................................................... 54 
 
4.9 Summary of UDP Goodputs. ............................................................................................... 55 
 
4.10 Summary of UDP Jitters. ..................................................................................................... 56 
 
4.11 Summary of UDP Jitters (linear scale). ............................................................................... 56 
 
4.12 Summary of UDP Packet Loss. ........................................................................................... 57 
 
5.1 Node state information for the single channel, synchronous case. ..................................... 72 
 
5.2 Fraction of undiscovered neighbor log10(1-F) versus the number of nodes, N, for the single-
channel, synchronous case. ......................................................................................................... 76 
 
5.3 Node state information for the multi-channel, synchronous case. ...................................... 77 
 
5.4 Fraction of undiscovered neighbor log10(1-F) versus the number of channels, M, for four 
nodes (N=4), for the multi-channel, synchronous case. ............................................................. 79 
 
5.5 Node state information for the multi-channel, asynchronous case. .................................... 81 
 
5.6 Node state information for the multi-channel, asynchronous case with W=2 slot repetitions. 
.....................................................................................................................................................  82 
 
5.7 Detailed architecture of the network testbed. ...................................................................... 84 
 
5.8 Multi-Channel, Asynchronous, Experimental Results, M=1. ............................................. 89 
 
5.9 Multi-Channel, Asynchronous, Experimental Results, M=1. ............................................. 89 
 
5.10 Multi-Channel, Asynchronous, Experimental Results, M=2. ............................................. 90 
 
5.11 Multi-Channel, Asynchronous, Experimental Results, M=2. ............................................. 90 
 
5.12 Multi-Channel, Asynchronous, Experimental Results, M=5. ............................................ 91 
 
5.13 Multi-Channel, Asynchronous, Experimental Results, M=5. ............................................ 91 
 
5.14 Multi-Channel, Asynchronous, Experimental Results, M=10. .......................................... 92 
 
5.15 Multi-Channel, Asynchronous, Experimental Results, M=10. .......................................... 92 
 
5.16 Multi-Channel, Asynchronous, Experimental Results, M=20. .......................................... 93 



 xi

 
5.17 Multi-Channel, Asynchronous, Experimental Results, M=20. .......................................... 93 
 
5.18 Multi-Channel, Asynchronous, Experimental Results, M=35. .......................................... 94 
 
5.19 Multi-Channel, Asynchronous, Experimental Results, M=35. .......................................... 94 
 
5.20 Multi-Channel, Asynchronous, Experimental Results, M=50. .......................................... 95 
 
5.21 Multi-Channel, Asynchronous, Experimental Results, M=50. .......................................... 95 
 
5.22 Comparison of my optimum transmit probability results, Silvius (experimental) to that of 
Borbash (theoretical). .................................................................................................................. 96 
 
5.23 Comparison of my expected number of discoveries results, Silvius (experimental) to that of 
Borbash (theoretical). .................................................................................................................. 96 
 
6.1 Testing two secondary users and a single primary user node. ............................................ 98 
 
6.2 A 802.11 WiFi secondary user’ UDP goodput is degraded during the transmission of a 
primary user with a GMSK waveform, between t=30s to t=40s. ............................................... 100 
 
6.3 An example of a GNU Radio flowgraph. ............................................................................ 102 
 
6.4 Time plot showing the conceptual operation of the CCP. ................................................... 109 
 
6.5 Modifications to GNU Radio protocol stack to support the CCP. ...................................... 110 
 
6.6 The FSM representation of the MAC layer in OMNeT++. ................................................. 113 
 
6.7 OMNeT++ simulation scenario with six secondary users and one primary user. ............... 115 
 
6.8-9 The CCP reduced duration of received interference as measured in four nodes. ............ 117 
 
6.10-11 The CCP reduced latency between packet arrival times .............................................. 118 
 
6.12 The CCP increased goodput. ..............................................................................................118 
 
6.13 The CCP decreased packet loss. ........................................................................................ 118 
 
6.14 Detailed architecture of the network testbed. .................................................................... 119 
 
6.15 UDP Goodput during GNU Radio Experiment. ................................................................ 121 
 
6.16 UDP Jitter during GNU Radio Experiment. ...................................................................... 122 
 



 xii

6.17 UDP Packet Loss Rate during GNU Radio Experiment. ................................................... 122 
 
6.18 Latency during GNU Radio Experiment. .......................................................................... 123 
 
6.19 Threshold Detection Reliability for a Given Offered Rate into Secondary User Network 
..................................................................................................................................................... 124 
 
6.20 Simplified smart radio network testbed. ............................................................................ 126 
 
6.21 Averaged goodput traces. ................................................................................................... 129 
 
6.22 Averaged jitter traces. ........................................................................................................ 129 
 
6.23 Averaged packet loss curves. ............................................................................................. 130 
 
6.24 Averaged latency curves. ................................................................................................... 131 
 



 xiii

List of Tables  
 
2.1 Operational features provided by CWT Smart Radio. ........................................................ 24 
 
4.1 Equipment used to build network testbed. .......................................................................... 46 
 
4.2 Required software to install using Synaptic Package Manager or from web. ..................... 48 
 
5.1 Rendezvous Design Taxonomy. .......................................................................................... 64 
 
5.2 Applying Rendezvous Design Taxonomy to Related Works. ............................................. 71 
 
5.3 Experiment Configuration Settings. .................................................................................... 84 
 
5.4 Optimum transmit probability for a given value of W and M. ............................................ 85 
 
5.5 Expected number of discovered per minislot, E(h)/W, for a given combination of pT, W, and 
M. ................................................................................................................................................ 86 
 
5.6 Expected number of discovered per slot for a given combination of pT, W, and M. ......... 86 
 
5.7 Average time to discover various fractions of available links per the number of channels, 
using the identified optimum pT and W values from Table 5.4.  ............................................... 86 
 
5.8 Optimum transmit probability, pT, for a given value of W and N single channel, M=1. ... 87 
 
5.9 Expected number of discovered per minislot, E(h)/W, for a given combination of pT, W, and 
N for single channel, M=1. ......................................................................................................... 87 
 
5.10 Expected number of discovered per slot, E(h), for a given combination of pT, W, and N for 
single channel, M=1. ................................................................................................................... 87 
 
5.11 Comparison of my results (experimental) to that of Borbash (theoretical). ...................... 87 
 
6.1 Parameters Used in OMNeT++ Simulations. ...................................................................... 116 
 
6.2 QoS Improvements with CCP Technique over Baseline. ................................................... 125 
 
6.3 Averaged QoS Metrics. ....................................................................................................... 127 
 
6.4 Averaged QoS Metric Change. ........................................................................................... 128 
 



 1

Chapter 1 

Introduction 

 This chapter introduces the current state of mobile communications in use by public 

safety first responders.  Section 1.1 describes typical operational scenarios faced by first 

response officers.  Section 1.2 summarizes these situations and states the problem which this 

research addresses.  Section 1.3 introduces recent research developments.  Section 1.4 states the 

presented solution to these problems.  Sections 1.5 and 1.6 explain the methodology and the 

contributions of this research.  Section 1.7 explains the organization of this dissertation. 

1.1 Observations: The Public Safety Disaster Communications Scenario 

 Recent disasters, including the 9/11 terrorist attacks, Hurricane Katrina, the California 

wildfires, and the Midwest floods, have highlighted the limitations of current mobile 

communication systems for public safety first responders.  Often, these radio systems are 

deficient in fundamental features needed in a joint response environment.  First, in a point-to-

point configuration, legacy radio systems used by first responders from differing agencies are 

often made by competing manufacturers and may use incompatible waveforms or channels.  In 

addition, first responder radio systems, which may be licensed and programmed to operate in 

frequency bands allocated within their home jurisdiction, may be neither licensed nor available 

in forward-deployed federal disaster response locations, resulting in an operational scarcity of 

usable frequencies.  Second, in an infrastructure configuration, legacy radio systems may not 

operate at all if the existing communications backbone has been destroyed by the disaster event.  

A communication system is needed to provide a new temporary infrastructure or to extend an 

existing infrastructure into a shaded region.  Smart radio nodes that make up the public safety 

infrastructure again must be able to find each other, adhere to spectrum usage polices, and 

provide access to other smart radios and legacy public safety radios within their coverage area. 
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The challenges of a public safety disaster scenario have received significant attention 

from researchers in the wireless communication area.  During the last two years, the Software 

Defined Radio (SDR) Forum has sponsored a university challenge to address the inadequacies of 

current public safety communications systems [1].  In the 2007 scenario, a large city experiences 

a major, crippling earthquake.  The city and first responders face a near total loss of the 

previously existing fixed communication infrastructure.  First responders must construct a 

makeshift command center and establish a temporary communication infrastructure for both 

point-to-point communications between individual responders, as well as to and from a central 

mobile command-post.  Compounding this obstacle is the challenge of incorporating the 

communication radios from responding agencies across the country, each with their own 

assortment of frequency allocations, modulations schemes, and message formats.  The 

competition seeks to demonstrate that these requirements can be addressed by using the 

capabilities brought to the scene by smart radio SDRs.  Smart radios can overcome the 

interoperability issue by their ability to adapt to and rendezvous with a vast array of disparate 

radio systems.  They can identify vacancies in the spectrum and can share the use of the 

spectrum with other radio users.  A smart radio is the tool of choice for first responders in this 

earthquake and other disaster scenarios.  In the 2008 challenge scenario, a team of first 

responders arrives on the scene following a major incident in a city subway.  The smart radios’ 

task is to extend communications throughout the subway tunnel.  To accomplish this goal, the 

smart radios must form a mobile ad-hoc network to establish a connection with the hidden radio 

at the end of the tunnel.  Data traffic generated by the hidden radio at the end of the subway must 

be relayed, via a series of repeater radios, to the tunnel’s entrance.  These repeater radios form a 

dynamic, multi-hop, ad-hoc network capable of transmitting pictures, video, and voice messages 

produced by the first responder.  A command radio must act as the ad-hoc extension, bridging 

the ad-hoc network within the tunnel to the fixed communications infrastructure present outside 

of the tunnel.  
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1.2  Problem Statement:  Radio Discovery and Spectrum Scarcity  

in Public Safety Operations 

 Current first responder communication systems face two key problems.  First, they lack 

the ability to automatically locate and connect with other compatible radio systems within a 

disaster site.  Second, they lack usable spectrum to carry out their mission due to both current 

policy and inflexible legacy technology, both of which effectively result in spectrum-scarcity.  

This dissertation presents a solution to both these problems through research and development of 

smart radio technologies, experimental smart radio network testbeds, and dynamic spectrum 

access protocols.  

 Both communication deficiencies have arisen primarily due to the fixed nature of 

traditional radio system design.  Legacy radio systems are often designed with a singular purpose 

in mind, and once that radio system leaves the manufacturing plant, it rarely can be changed or 

reprogrammed by the operator.  Contributing factors include available technology, economics, 

and regulation.  Solid state components and non-reconfigurable application specific integrated 

circuits (ASIC) accomplish signal processing tasks well, but they cannot be modified once 

manufactured.  Until recently, more flexible processing platforms, such as general purpose 

processors (GPP) and field-programmable gate arrays (FPGA) have been cost prohibitive for use 

in inexpensive hand-held radio systems.  Moreover, government regulation of frequency 

assignment has reinforced the singular nature of radios.  Users must apply for a license from the 

Federal Communications Commission (FCC) for their systems to operate on a specific frequency 

range only.  Those systems also have to be further accredited to ensure that they do not radiate 

energy outside their authorized bands.   

1.3 Recent Developments 

 Two recent trends may enable new innovative solutions to public safety’s communication 

deficiencies.  The first is rapid expansion of smart radio technologies, and the second is a change 

in policy direction by the FCC.  
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1.3.1 Smart Radio Technologies  

 We consider the term smart radio to be a general classification that encompasses SDR, 

frequency agile radios, cognitive radios, and associated technologies [2-5].  For this research, we 

say that a smart radio is any sensing radio, programmed to respond to changes in its 

environment in an innovative way [6, 7].  It must build upon its underlying SDR platform by 

adding clever or intelligent algorithms designed to solve specific spectrum access challenges.  A 

smart radio’s awareness of the environment and its understanding of user requirements allow it 

to adapt to dynamic communications scenarios [6].  

 Smart radio technology has increased in prevalence within the past decade, thanks in part 

to the availability of inexpensive GPP technology.  Signal processing, which traditionally could 

only be accomplished in dedicated hardware, can now be accomplished using processors similar 

to those found in traditional desktop computers.  The GNU Radio [8] with the Universal 

Software Radio Peripheral (USRP) radio frequency (RF) front end [9] is one such SDR 

architecture that can run on a desktop computer and one which I used extensively in this 

research.  

1.3.2 FCC Policies and the 700 MHz Public Safety Band  

 Traditionally, licensing regulations by the FCC required that a user maintain a license to 

operate a radio within a specific frequency band.  Operation by the user within only this well-

defined band greatly simplified the rendezvous and channel assignment issues [7].  However, the 

current policy trend at the FCC has changed direction toward allowing one or more users to 

simultaneously share access to particular spectrum band.  The FCC announced that it is now 

adopting new spectrum regulation policies to allow for the growth of Secondary Markets [10] 

and dynamic spectrum access technologies.  In this scheme, secondary users may use unoccupied 

spectrum owned by a primary user, as long as they do not introduce interference to other users.  

Secondary users may either be unlicensed users who squat in unoccupied bands, or they may be 

registered users who sublease spectrum from a licensed primary user. 

 A significant example application of dynamic spectrum access and spectrum sharing is 

FCC’s proposed 700 MHz Public Safety System [11].  In this scenario, a National Carrier has a 

licensed primary access to a 12 MHz portion of the 700 MHz band allocated for broadband 
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usage.  The National Carrier also has secondary, unlicensed access to the remaining portions of 

the band allocated for narrowband usage, which is owned and licensed to local public safety 

jurisdictions.  In this system, dynamic spectrum access protocols could be utilized as an effective 

and efficient way for the National Carrier system to detect narrowband FM public safety radios 

and to coordinate transfers to alternate, unoccupied portions of the 700 MHz band. [12].  

1.4  Presented Solution:  Smart Radio and Dynamic Spectrum Access 

Protocols for Improved Public Safety Communications 

 This dissertation demonstrates that a dynamic spectrum access smart radio can provide a 

solution to the interoperability and spectrum scarcity problems faced by public safety first 

responders.  More specifically:   

 Smart radios, built upon reconfigurable software-define radio architecture, and 

specifically coupled with dynamic spectrum access protocols, with neighbor rendezvous and 

spectrum sharing capabilities, provide a solution to the radio discovery and spectrum scarcity 

problems faced by first responders in public safety disaster response scenarios. 

 To build and field a dynamic spectrum access smart radio, we research four of its key 

building blocks.  First, we design and construct a smart radio platform.  The system builds on a 

SDR architecture which enables rapid reconfiguration, and the ability to span multiple bands, 

and the use of multiple waveforms and protocols.  Second, we use individual smart radio nodes 

to build a network tested.  This testbed enables us to measure the performance for the smart radio 

architecture and as well as the designed dynamic spectrum access protocols.  Third, we research 

the design and development of rendezvous protocols.  The rendezvous protocols allow one smart 

radio to rapidly find another smart radio within a band of interest.  These protocols address the 

current interoperability problem of link formation present in legacy wireless systems, and they 

facilitate the construction of ad-hoc networks.  In this work, we review the design of rendezvous 

protocols already discussed in existing literature and apply a taxonomy to classify these 

strategies.  The review show that more analysis is needed for the multi-channel asynchronous 

case.  We then implement such a protocol on the smart radio network testbed to empirically 

measure its performance.  Fourth, we research a new Channel Change spectrum-sharing protocol 
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that allows secondary users to opportunistically share spectrum with primary users.  This 

protocol addresses the spectrum scarcity problem in legacy communications systems.  We 

implement the Channel Change protocol on the smart radio network testbed to evaluate its 

performance.  In addition, we conclude by discussing how the Center for Wireless 

Telecommunication’s (CWT) Smart Radio and the Rendezvous and Channel Change protocols 

could be applied to a prototype solution for FCC’s new 700 MHz public safety band.   

1.5 Methodology 

 This research solves problems through the use of communication theory, computer 

simulation, and laboratory experiments on fully-functional radio prototypes.  First, we learn from 

previous peers, literature, and existing systems regarding the optimal design strategies for smart 

radios.  Then, we hypothesize and formulate new strategies to improve performance.  Next, we 

simulate these ideas, use computer modeling tools where possible, and build a working prototype 

to test.  We run laboratory experiments to evaluate the performance of these prototypes, which 

are also demonstrated at SDR Forum’s Smart Radio Challenges.  Afterwards, we collect and 

analyze results to further refine the designs and conducting future experiments.  Last, we form 

conclusions on the success or failure of the smart radio research and development process.   

1.6 Contributions 

 This research makes four primary contributions to the field of cognitive radio and 

dynamic spectrum access research.  First, it produces a working, affordable smart radio prototype 

for public safety first responders using commercial off-the-shelf equipment.  Second, it 

assembles these smart radios into a network testbed in which to demonstrate the performance of 

the radio in an ad-hoc network configuration and to evaluate the developed dynamic spectrum 

access protocols.  The value of this testbed, once devised, is that it also provides an educational 

tool which can be used not only to evaluate protocol performance, but also to teach 

undergraduate and graduate students communications and SDR principles.  This testbed is also 

used to evaluate the performance of two dynamic spectrum access protocols, Rendezvous and 
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Channel Change.  Third, this work implements and tests different configurations of the 

Rendezvous protocol, quantifying the expected discovery probabilities for the multi-channel 

asynchronous problem.  Fourth, it researches the Channel Change protocol for opportunistic 

spectrum sharing, whose straightforward design can be applied to current wireless medium 

access control (MAC) protocols, and which improves latency, packet loss, and throughput 

performance by reducing interference between primary and secondary users.  All these 

contributions can be combined with existing CWT technologies to provide a solution for the 

FCC 700 MHz public safety band. 

1.7 Organization of this Dissertation 

 Chapter 2 presents a review of previous work in cognitive radio, and detail the 

architecture and design of the CWT Smart Radio 2007, which was entered in SDR Forum’s 

inaugural Smart Radio Challenge competition.  We show how this radio satisfies the 

requirements of the first responders described in the problem statement.  Chapter 3 describes the 

networking improvements made to this architecture and the design details of the CWT Smart 

Radio 2008, demonstrated at the following year’s radio competition.  Chapter 4 describes how 

the individual smart radio nodes were assembled into Smart Radio Network Testbed.  The 

testbed is used to quantify the results of the performance of the radio systems and to evaluate the 

performance of the developed dynamic spectrum access protocols.  Chapter 5 describes the 

design and evaluation of the Rendezvous protocol, which enables a collection of smart radios to 

discover each other and initialize communication links.  Chapter 6 describes the development 

and evaluation of the Channel Change protocol, which enables primary and secondary users to 

share spectrum and co-exist within a given frequency band.  Chapter 7 summarizes the key 

findings of this research, describes applications to the FCC 700 MHz public safety band, and 

discusses future research plans. 
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Chapter 2 

Smart Radio Architecture 2007 

 Before beginning my research into dynamic spectrum access protocols, I needed to first 

design and develop an underlying cognitive radio architecture.  The architecture would provide 

the framework for running and evaluating the dynamic spectrum access protocols and act as an 

initial prototype communication system, targeted to addressing the communication deficiencies 

of public safety first responders.  As luck would have it, in the fall of 2006, Center for Wireless 

Telecommunications (CWT) laboratory team was presented with the opportunity to compete in 

the Software Defined Radio (SDR) Forum’s “Smart Radio Challenge 2007.”  The SDR Forum is 

a non-profit international industry association, created with the goal of fostering the development 

of next-generation SDR technologies [13].  Their 2007 radio challenge specifically detailed the 

communication problem faced by public safety first responders at the scene of an earthquake 

disaster and became the perfect case study in which to begin our design process.   

 The organization of this chapter is the following.  First, in Section 2.1, I review the 

specific public safety communications problem statement for the Smart Radio Challenge 2007.  

This provides the design requirements and the motivation for the development of our CWT 

Smart Radio 2007 architecture.  Section 2.2 then describes the contributions resulting from 

development of this architecture.  Next, Section 2.3 reviews previous work in the field of 

software defined radio and cognitive radio to give context for our radio.  Section 2.4 describes 

the specific architecture of the CWT Smart Radio 2007, in block by block fashion.  Finally, 

Section 2.5 discusses the results of the competition, and Section 2.6 concludes with a summary 

of the radio’s functionality.   

 
2.1 Problem Statement 
 
 In the Smart Radio Challenge 2007 scenario, a large city experiences a major, devastating 

earthquake.  The earthquake destroys many of the city’s structures and kills numerous citizens.  

Complicating the rescue effort, first responders find that the city’s entire fixed communication 
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infrastructure has been destroyed in the disaster.  Large portions of the city’s power grid have 

been destroyed or disabled.  Cell towers have been knocked down and fixed land-line 

communications have been cut.  First responders arriving on scene must establish their own 

temporary communications infrastructure within the disaster scene.  The infrastructure must 

connect a makeshift command post to all of the responders within the field, as well as provide a 

network in which first responders can communicate amongst each other.  First responders need a 

communication infrastructure that supports not only voice, but data transmission, such as digital 

pictures, video, high resolution maps, and building floor plans. 

 Since the disaster is on such a large scale, the rescue effort becomes too complex for the 

city’s own police, fire, and emergency medical services.  In response to the mayor’s request, 

public safety agencies from all across the country convene on the disaster site in order to assist.  

This significantly complicates the communication difficulties.  Now, personnel must develop a 

way to connect and manage a large assortment of different radio types from many different 

agencies.  Each agency’s radio may use their own combination of frequency allocations, 

modulation schemes, and message formats. 

 To meet these challenges, the SDR Forum asserted that smart radios, with their 

underlying software defined radio architecture, could provide the tools capable of providing 

solutions to the communication deficiencies faced by public safety first responders.  In addition 

to addressing the broad aspects of the earthquake scenario, the SDR Forum enumerated a number 

of specific requirements which a proposed smart radio needs to address.   First, on startup, each 

radio needs to be able to find the other public safety radios around it.   More specifically, the 

radio must be able to identify available spectrum within a pre-defined band, rendezvous with an 

intended receiver, and transmit voice and data using a selected quality of service (QoS).  It must 

interoperate with existing family radio service (FRS) radios using a FM waveform on a 

standardized FRS channel.  It must also be able to create a new communication link with other 

smart radios using a FRS channel selection and the BPSK, QPSK, or 8PSK modulations.  With 

FM, it must support analog voice communications with legacy hand-held FRS radios, and with 

digital modulations, it must support IP data services, including a CVSD-based VoIP protocol.  

The system requires the development of two prototype dynamic spectrum access protocols.  The 

first, a rendezvous protocol, facilitates the detection and initialization of communications links 

with neighboring smart radios.  The second coordinates spectrum sharing between analog 
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primary users and digital secondary users by applying a simple but effective channel-change 

protocol.  The radio must also support expansion, and whenever possible, provide the 

functionality to be used in a dynamic spectrum test bed for smart and cognitive radio research 

[6].  

 
2.2 Contributions 
 
 In this section, we summarize the contributions made during the development of the 

smart radio architecture during the Smart Radio Challenge 2007.  These developed technologies 

also contribute to the field of software defined radio and cognitive radio research.  First, we built 

a new smart radio system architecture.  Some components are completely new and designed 

specifically for use in the new system architecture.  Others were developed by previous students 

in the CWT research laboratory, but adapted for this new architecture.  An explanation of both is 

described in this chapter.  Second, of the new components, the new Master Control module is a 

significant contribution.  This module provides the brains of the smart radio architecture.  It 

responds to the radio’s environment through feedback received from the system sensors, as well 

as feedback from the radio framework.  The Master Control module also runs all subsequent 

dynamic spectrum access protocol logic.  Third, another significant contribution was the building 

and demonstration of an improved radio framework.  The new framework supports higher order 

modulations like 8PSK, as well as a custom CWT developed CVSD-based VoIP protocol.   The 

new radio framework is also capable of running a rendezvous protocol, which facilitates the 

automatic discovery of adjacent radio nodes.  More on the Rendezvous protocol is discussed in 

Chapter 4.  In addition, the smart radio architecture is capable of running a channel change 

dynamic spectrum sharing protocol.  The protocols allow the smart radios, acting as secondary 

users, to share spectrum with other legacy-analog or digital secondary users as shown in Figure 

2.4.  More is discussed on the Channel Change protocol in Chapter 5.  
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Figure 2.1.  Two communicating CWT SR secondary users and a single FRS radio primary user. 

[M. Silvius’ Image from [6].  Used with permission, © 2008 SPIE.] 
 
2.3 Previous Work: Historic and Literature Review 
 
 To understand cognitive radio, we must first understand the origins of software defined 

radio.  There were numerous motivations for moving toward SDR technology particularly in the 

military and public safety arenas.  First, military operations in the 1970s and 1980s began to 

highlight the stovepipe nature of communications technologies and deficiencies in inter-service 

communications interoperability.  Starting in 1992, the Defense Advanced Research Projects 

Agency (DARPA) and the US Air Force began a program called SPEAKeasy.  Its goal was to 

produce a flexible, reconfigurable platform, incorporating commercial technologies to improve 

inter-service interoperability issues [14, 15].  SPEAKeasy was one of the first attempts by the US 

military to design a software defined radio.  Later, in 1996 Wayne Bonser of AFRL established 

the SDR Forum, an organization whose charter was to standardize SDR related commercial 

technologies [15].  The SDR Forum, through its Smart Radio Challenges has been, and continues 

to be, a sponsor and motivator for much of cognitive radio research conducted at Virginia Tech.  

In the mid-1990s, the SPEAKeasy and subsequent SDRs programs evolved into what is today 

the Joint Tactical Radios System (JTRS) program.  The JTRS continues the US military’s work 

to develop an interoperable software-defined communication platform using commercial 

technologies.  The JTRS uses the Software Communications Architecture (SCA), whose goal is 

to facilitate an open-software architecture to support legacy components, as well as new, 

developing commercial technologies and architectures [15].  The development for the SCA is 

still an active research area for an associated research group, the Mobile and Portable Radio 

Group (MPRG), here at Virginia Tech.   

 The next big research breakthrough in the field occurred in 2000 when Mitola presented 

the first formal description of a cognitive radio.  He combined the concept of machine learning 
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and natural language processing with the developing field of SDR technology. He also 

introduced the Radio Knowledge Representation Language (RKRL) as a means for cognitive 

radios to communicate with each other and other devices in a network [16, 17].  He envisioned 

the use of cognitive radio for applications such as spectrum pooling, and explained the etiquette 

policies that cognitive radio would need to follow to make such a collaborative system possible 

[18].  This radio etiquette concept provided an inspiration for my own research in dynamic 

spectrum access protocols for public safety first responders.  Mitoloa’s work and other 

developments in cognitive radio are well summarized in [19]. 

 Starting in 2001, the Center for Wireless Communications at Virginia Tech also entered 

into the area of cognitive radio research.  Christian Rieser developed an initial cognitive radio 

concept for reliable communications in emergency response scenarios [20].  He coined his 

biologically inspired model of cognition for SDR platforms as the cognitive engine.  Tom 

Rondeau continued this work by improving upon the theory and implementation of the cognitive 

engine [21].  He also further enhanced the implementation of the cognitive engine, by mating it 

to a SDR architecture built with the GNU Radio [22], an open source software radio package 

first introduced by Eric Blossom in early 2000.  Bin Le’s research focused on the complete 

process of building a cognitive radio node from the ground up [23].  He also conducted extensive 

research in developing an improved signal detection and classification algorithm for signal 

awareness within the cognitive radio.  He later demonstrated all these contributions by building a 

prototype radio for emergency first responders, called the Public Safety Cognitive Radio [24].   

 The successful design of our CWT Smart Radio, described in this chapter, has much to 

thank to the specific work of Tom Rondeau and Bin Le.  Tom’s vision for a modular 

architecture, in which his centerpiece cognitive engine connects an assortment of sensors, 

memory databases, software defined radio framework, to perform the various cognitive radio 

tasks, forms the model that we emulated when designing our Smart Radio 2007 architecture.  We 

also continued his vision of using standardized XML-based messages to send waveforms 

configurations, commands, and performance feedback data between system blocks over TCP/IP-

based sockets.  Furthermore, Bin’s work in designing a SDR-based radio framework, which 

transformed XML-based waveform configuration information into real digital signals to be 

transmitted via USRP, formed the model we used when designing our own radio framework for 

the Smart Radio 2007.  In fact, our radio framework built on many of his contributions, including 
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his thread-based radio control algorithm and preliminary set analog and digital waveforms, by 

adding additional digital waveforms and additional provisions for dynamic spectrum access 

protocol support. 

 Finally, in 2006, DARPA started the Next Generation (XG) program.  This military 

program had goals similar to earlier programs such as SPEAKeasy and JTRS; that is, to refine 

SDR architecture design and provide improved interoperability.  However, XG also included 

sensors to measure local spectrum usage and to opportunistically borrow or share unused 

spectrum whitespace from secondary users [25].    

 One of DARPA’s most recent communication project out of the Wireless Networks after 

Next (WNaN) effort is PIRANA [26].  PIRANA stands for “Policy-based Information-centric 

Reliable Ad hoc Network” [27].  The goal is to develop a hand-held cognitive radio for military 

personnel whose unit costs falls under $500 each.  The radios will form the cornerstone for the 

military’s next generation, deployable, wireless communication network.  The radio designers 

envision a radio that will be able to identify all cooperative peers in its environment using a 

rendezvous protocol, and then be able to share spectrum available in that theater of operations 

with other radio users by employing a series of dynamic spectrum access protocols.   

 
2.4 Smart Radio 2007 Architecture 
 

This section details the design of the smart radio architecture constructed for the SDR 

Forum Smart Radio Challenge 2007 competition in Denver, Colorado [6].  The CWT Smart 

Radio contains five main components:  the user interface, the master control, the radio 

framework, the FRS and knowledge databases, and signal detection and classification.  In 

addition, modules for formatting and transferring messages assist in connecting the different 

components.  Figure 2.2 depicts these components and their interactions.   

The discussion of the components for the smart radio challenge is divided into two 

sections.  First, we discuss the new components designed specifically for use in new system 

architecture.  Second, we discuss components which were inherited from previous cognitive 

radio research by graduate students within the CWT laboratory and modified to support the new 

smart radio architecture.   
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Figure 2.2. Block diagram of the CWT Smart Radio. 

[M. Silvius’ Image from [6].  Used with permission, © 2008 SPIE.] 
 

 
2.4.1 New Smart Radio Components 
 
 This section describes new components designed specifically for use in our smart radio 

system architecture.  

 
2.4.1.1 Master Control 
 

The Master Control (MC) is the brains of CWT Smart Radio platform.  The MC acts as 

the centerpiece of the architecture, controlling and coordinating the functions of the entire 

system.  First, it receives basic directions from its operator through the user interface module.  

Commands from the operator may include scanning the environment to find other radios, or 

establishing a new communication link with one or more radios using an analog or digital 

waveform.  Upon receipt of these commands, the MC utilizes the other modules to accomplish 

the operator’s objectives.  Second, the MC maintains spectral awareness of its environment by 

managing a set of sensors incorporated within the smart radio architecture.   The most notable of 

these sensors is the power spectrum density (PSD) sensor and classifier developed by CWT in a 

related public safety communication project [24].  The PSD sensor finds sources of transmitted 

radio signals within range, and the classifier attempts to identify the signal’s modulation scheme.  

Feedback from these sensors is relayed back to the MC for action.  Third, the MC enables 

spectrum and signal memory by storing results from the sensors in the knowledge database.  By 
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using this database and a FRS waveform database, the MC can then direct the radio framework 

to create a new communication link on any designated FRS channel frequency using FM, BPSK, 

QPSK, or 8PSK modulations.  The MC can also direct the initialization of communications links 

with other neighboring smart radios by running its rendezvous protocol.  The MC also 

coordinates spectrum sharing between analog primary users and digital secondary users by 

running a simple, but effective channel change protocol.  These two protocols are discussed 

further in the next section. 

 
2.4.1.2 Dynamic Spectrum Access Protocols 
 

To meet the requirements of first responders, the CWT Smart Radio must be able to 

rendezvous with other smart radios in its operating environment and share spectrum with legacy 

FRS users.  Moreover, the CWT Smart Radio must automatically switch channels in response to 

a dynamically changing radio spectrum environment, so that it does not interfere with any other 

active communication traffic.  The CWT Smart Radio accomplished these tasks by using two 

dynamic spectrum access protocols: rendezvous and channel change.  These protocols’ logic 

runs in the MC module, react to feedback collected by the signal sensors, and provide the 

innovative logic that transforms its unintelligent SDR platform into a complete smart radio. 

 We first introduced the rendezvous protocol in [7], reviewing related neighbor discovery 

algorithms, and presenting an initial theoretical framework.  The rendezvous protocol provides 

the logic to allow a CWT Smart Radio to quickly locate another smart radio in the 462-467 MHz 

spectrum band.  The rendezvous protocol facilitates the detection and initialization of 

communications links with neighboring smart radio nodes by broadcasting a series of frequency-

hopped rendezvous beacons which contain node-specific information.  Both the rendezvous 

protocol, and the beacon messages which it transmits, are configured in the radio by using XML 

setup files.  

For the 2007 competition, our radio demonstrated a simplified prototype version of the 

rendezvous protocol, in which one node was designated as the master, and the other as a slave.  

The master node, after performing a spectrum scan, would choose a vacant channel, and then 

begin transmitting beacon messages.  The slave node would scan and classify the radio spectrum 

with the PSD sensor and classifier.  Short message frames classified as BPSK would be 
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identified as rendezvous beacons by the slave node.  Both the slave node and the master node, 

would then tune to the channel used by the rendezvous beacon to begin communications. 

The second of the two dynamic spectrum access protocols used in the CWT Smart Radio, 

is called the Channel Change protocol (CCP).  CCP is a spectrum sharing protocol that allows 

primary and secondary users to co-exist in the same frequency band without interference.  

Specifically, the CCP enables the CWT Smart Radio to detect the return of an analog FRS 

primary user, and to orchestrate the radio reconfiguration procedures to change to an alternate, 

vacant block of spectrum.  The CCP is divided into two main components.  The first, primary 

user detection, is a set of algorithms that continually monitor the current channel in order to 

locate the return of the primary user.  The second, fallback execution, is made of those 

algorithms which halt the current communications, select a vacant channel from a list of fallback 

channels, reconfigure the smart radio framework to operate that new waveform, and restart and 

resume communications.  More design details and experimental performance results pertaining 

to the operation of the rendezvous protocol are given in Chapter 4 and more details of the 

channel change protocol are given in Chapter 5. 

 
2.4.2 Updated Smart Radio Components   
 

This section discusses components which were inherited from previous cognitive radio 

research within the CWT laboratory and were modified to support the new smart radio 

architecture. 

 
2.4.2.1 User Interface 
 

The user interface (UI) acts as the control panel from which a public safety first 

responder can direct the smart radio’s operations.  At startup, the UI prompts the user to select 

one of four primary states, which correspond to the radio’s principal functions, as shown in 

Figure 2.3.  State 0 puts the CWT Smart Radio in idle mode to save power.  State 1 scans and 

classifies the environment, looking for any active signals such as analog and digital waveforms, 

in addition to rendezvous beacons transmitted by other CWT Smart Radio nodes.  State 2 

actively transmits beacons using the rendezvous protocol, so as to initiate communication with 

CWT Smart Radio nodes.  State 3 actively communicates with another FRS or smart radio using 

a FM, BPSK, QPSK, or 8PSK waveform. 
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Figure 2.3. User interface showing four states of operation. 

[M. Silvius’ Image from [6].  Used with permission, © 2008 SPIE.] 
 

 
2.4.2.2 FRS and Knowledge Databases 
 

The CWT Smart Radio features two memory structures to store waveform information 

for transmission and reception.  First, the FRS database is used to store the FCC-approved, 

prototypical waveform definitions for FRS radios.  These definitions are employed when the 

CWT Smart Radio establishes a new communications link with legacy, analog FRS radios.  The 

FRS database accepts a channel number as input and generates an XML file that specifies the 

waveform associated with the channel.  If the smart radio needs to communicate with a legacy 

FRS system, the MC block can poll the FRS database for specifics to generate a waveform on a 

desired channel.  Figure 2.4 shows a conceptual diagram highlighting the database’s purpose.  

Second, the CWT Smart Radio expands the concept of the knowledge database [24] to store the 

actual, measured waveform information for radio signals that it has detected and classified in the 

environment.  The knowledge database is similar in design to the FRS database, except that it 

maintains information on radio signals detected and classified in the environment.  To 

accomplish this, it saves the results of a PSD sensor and classifier into a Python dictionary 

database.  This information can later be recalled by the MC module when it needs to connect to 

an existing communications link with either an FRS radio or a smart radio node.  The MC also 

uses this database when it needs to quickly identify spectral whitespace to establish a new 

communications link, or in the case of the channel change protocol, coordinate the relocation to a 

new vacant channel upon the return of a primary user.   
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Figure 2.4. FRS database. 

[M. Silvius’ Image from [6].  Used with permission, © 2008 SPIE.] 
 

 
2.4.2.3 Inter-Block Data Exchange 
 

The CWT Smart Radio expands on the data standardization and interoperability concepts 

first introduced in [28, 29].  It relies on XML message formatting and TCP/IP sockets for inter-

block communication.  It readily supports the addition of future XML file types and a 

consolidated Python package of socket utilities to assist in communications between CWT Smart 

Radio components.   

 
2.4.2.4 Radio Framework 
 

The radio framework is the foundation on which all the components rest.  The module is 

responsible for the actual signal processing computations required for converting analog voice or 

packetized digital data information into physical waveforms capable of being transmitted and 

received over the air.  The radio framework also encompasses all the algorithms associated with 

the configuration and control of this conversion process.  In this section, we review the key 

aspects of the radio framework used for the Smart Radio Challenge 2007 competition.  These 

include the GNU Radio and USRP SDR platform, the configuration and control algorithms, and 

the physical and medium access control (MAC) layers.   

 
GNU Radio and USRP  
 

The CWT Smart Radio realizes its radio functions by building on the capabilities of GNU 

Radio and the USRP device.  GNU Radio is an open source toolkit for assembling software 

radios [22].  It was developed in early 2000 by Eric Blossom and others and has evolved into a 

mature software-defined radio infrastructure used and supported by a large community of 
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developers.  It was originally designed to run on general purpose processors (GPPs) and minimal 

analog radio hardware.  It allows for software radio development of waveforms, modulations, 

protocols, signal processing, and other communications functions.  The current release of GNU 

Radio already contains an extensive signal processing library which has been packaged in a set 

of operational and developmental blocks.  These blocks perform such functions as:  analog and 

digital waveform modulators, demodulators, filters, and amplifiers and input and output file 

operators.  Programming in the GNU Radio platform uses a combination of C++ and Python, a 

simple, high-level language.  The computationally intensive processing blocks are implemented 

in C++, while the control and coordination of these blocks for applications that sit on top are 

developed in Python [6].    

The USRP is an open source, low-priced SDR hardware platform which implements 

radio front-end functionality, as well as analog-to-digital conversion (ADC) and digital-to-analog 

conversion (DAC), currently using the Universal Serial Bus (USB2) to connect to the computer 

that hosts the device.  The current USRP device consists of a motherboard containing up to four 

high-speed 12-bit 64 MSps ADCs, four high-speed 14-bit 64 MSps DACs, an Altera field-

programmable gate array (FPGA) and a programmable Cypress FX2 USB 2.0 controller. The 

ADCs, DACs, and the FPGA together provide support for intermediate frequency (IF) 

processing.  The FPGA on the board provides four digital up-converters (DUC) and four digital 

down-converters (DDC) to shift frequencies from the baseband to the required frequency.  The 

FPGA can be reprogrammed to provide additional functionality.  Radio frequency (RF) front 

ends are attached in the form of daughter cards which can currently cover all the existing radio 

bands from 0 Hz to 2.4 GHz.  The USRP is fully supported by the GNU Radio library [6].  A 

combined system of both is shown in Figure 2.4. 
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Figure 2.4. A basic SDR system based on GNU Radio and USRP. 
[F. Ge’s Image from [5].  Used with permission, © 2008 IEEE.] 

 
Configuration and Control 
 

The smart radio framework improves upon the configuration and control architecture 

pioneered by Bin Le, an earlier CWT student who worked to apply cognitive and software 

defined radio technologies to public safety communications [23].  The architecture uses three 

independent software threads, written in the Python software language, to manage the data flow 

and signal processing processes within the framework.  This can be visualized as the three nested 

loops in Figure 2.5.  The outer thread is responsible for parsing the waveform configuration 

settings within XML files received from the master control and for initializing all the remaining 

parameters within the framework.  This thread is also responsible for assembling and starting the 

user-requested medium access control (MAC) and physical layer software threads.  The MAC 

layer is responsible for accepting a digitized voice or data information and packetizing it into the 

payload of discrete frames.  The MAC layer also adds addressing and error-checking fields.  The 

physical layer is responsible for accepting these MAC frames, modulating the information bits 

into the complex samples of an analog waveform, and relaying this information to the USRP for 

transmission.  This physical layer contains the signal flowgraph thread, the chain of GNU Radio 

blocks which perform the actual signal processing algorithms required in transmission and 

receptions.  For the CWT Smart Radio 2007, we expanded capabilities of the MAC and physical 

layers and updated the parsing capabilities of the outer configuration thread to support these 

improvements.   
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Figure 2.5. Radio Framework Multi-threading Control. 
[B. Le’s Image from [23].  Used with permission of B. Le.] 

 
MAC Layer  
 
 The Smart Radio 2007 uses multiple MAC protocols as needed to perform the 

communication functions of the radio.  First, when the smart radio needs to communicate with 

other legacy analog radios, the system uses a simple push-to-talk (PTT) MAC.  When the user 

presses the talk button on the smart radio user interface, the radio collects digitized voice 

samples from the computer’s sound card and forwards these to the physical layer for FM 

modulation.  For data communications, the smart radio uses the carrier-sense multiple-access 

(CSMA) algorithm.  Prior to sending out packets, the system senses the channel for other 

transmitting radios.  If the channel is open, it forwards the packet to the physical layer for BPSK, 

QPSK, or 8PSK modulation.  Otherwise, if the channel is busy, the MAC protocol backs-off, 

waiting before re-sensing the channel and re-attempting to transmit the packet.  The CSMA 

MAC interacts with higher layers of the protocol stack in the radio through the use of the GNU 

Radio virtual network interface called the TUN/TAP open source library, also used in [24].  

During transmission, software applications such digital text chat, VoIP, and other multimedia 

programs push TCP/IP packets down into the TUN/TAP interface, where they are received and 

packaged into frames by the MAC layer.  During reception, the reverse occurs, where MAC 

layer frames are de-packaged, and the resulting TCP/IP packets are pushed up through the 

TUN/TAP interface to the software applications.  The location of this MAC layer as a part of the 

radio framework is shown in Figure 2.6.  
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Figure 2.6. PHY/MAC Radio Framework. 

[F. Ge’ Image from [5], adapted from B. Li’s Image from [23].  Used with permission, B. Li, and © 2008 IEEE.] 
 
 
 In addition to the PTT and CSMA MAC protocols, the CWT Smart Radio 2007, contains 

two additional MAC protocols to support the newly developed Rendezvous protocol and 

Channel Change protocol (CCP) dynamic spectrum access protocols.  First, for the Rendezvous 

protocol, the smart radio uses a completely new Rendezvous MAC which involves the 

transmission and reception of pseudo-random frequency-hopped beacon messages.  The beacons 

contain headers including sequence numbers and node address numbers which uniquely identify 

each smart radio to potential receivers.  Upon startup, the Rendezvous MAC runs separately 

from communications operations for the goal of locating other smart radios within range.  When 

found, these radios’ information is added to the knowledge database as introduced in Section 

2.5.2.2.  Second, for the Channel Change protocol, the smart radio uses a new CCP-MAC.  The 

prototype CCP-MAC used during the 2007 radio competition is based on expansions to the 

CSMA algorithm used in traditional data communications.  However, additional timers and 

software control logic are added to measure the frame lengths of signals received.  Given that the 

smart radios use a digital frame of a known length, received signals whose frames are measured 

to be longer are flagged as originating from other primary users of the frequency band.  The 

designs and operation of the Rendezvous protocol and the Channel Change protocol are 

explained in further detail in Chapters 5 and Chapter 6. 

 
Physical Layer  
 

The physical layer contains the flowgraph, the series of blocks responsible for the actual 

signal processing computations which convert the digitized voice and data information into 

samples of a modulated waveform for transmission.  For the Smart Radio Challenge 2007, the 

radio framework supported analog voice communication using FM and digital communication 
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using BPSK, QPSK, or 8PSK.  The incorporation of 8PSK marks an improvement over previous 

framework versions used by CWT [24].  For digital transmissions, these modulations represent 

two different qualities of service (QoS).  The use of BPSK or QPSK at 16 kbps or less defines a 

low bandwidth digital QoS, while the use of 8PSK at 19.2 kbps or greater defines a high 

bandwidth digital QoS.  CWT has also added a new flowgraph block to the existing GNU Radio 

library to allow for the use of continuously-variable slope delta modulation (CVSD) vocoder 

when transmitting voice-over-IP (VoIP) data.  All parameters of the physical layer are fully 

configurable through XML setup file received from the MC and parsed and initialized in the 

radio framework’s outer configuration thread.  

 
2.5 Results 
 
 The Smart Radio Challenge 2007 project represented an enormous accomplishment for 

the Center for Wireless Communications and everyone involved.  Although I served as CWT’s 

project captain and primary representative to the SDR Forum, I was assisted by a team of nearly 

a dozen of graduate and undergraduate students from Virginia Tech’s Electrical and Computer 

Engineering department.  Each contributed to the year-long development process by writing a 

series of monthly research and technical reports exploring optimal SDR designs and authoring 

numerous lines of software code to help implement each smart radio component.  In addition, the 

team members contributed to our initial written design proposal submitted to the SDR Forum at 

the beginning of the competition, and this proposal was selected as one of the top ten entries 

from a pool of over 40 other international universities.  The team also contributed in preparing 

the conference demonstration of the final radio design and in writing the project final report.  

Together, our efforts and the technical contributions of the CWT Smart Radio 2007, won first 

place for the specific public safety earthquake disaster problem, as well as the grand prize of 

entire SDR Forum Smart Radio Challenge 2007 competition.  As an addendum, our written 

proposal for a newer version of the our radio, called the CWT Smart Radio 2008, and submitted 

shortly thereafter, was also selected by the SDR Forum to compete in its Smart Radio Challenge 

2008 competition the following year.  The next chapter of this dissertation, Chapter 3, is 

dedicated to explaining improvements and contributions of this improved CWT Smart Radio 

2008 design. 
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2.6 Conclusions  
 

The CWT Smart Radio 2007 provides a prototype mobile communications package to 

public safety first responders at the scene a natural disaster.  The system can identify available 

spectrum within a pre-defined band, rendezvous with an intended receiver, and communicate 

with voice and data by using one of two selected QoS settings.  The CWT Smart Radio also 

features two dynamic spectrum access protocols called channel change and rendezvous, which 

enable it to detect and initialize communications links with neighboring smart radio nodes, as 

well as to share spectrum between analog primary users and digital secondary users.  The MC 

module enables spectrum awareness by characterizing the radio environment with a power 

spectrum sensor and a signal detection and classification module. The MC also enables spectrum 

and signal memory by storing sensor results in a knowledge database.  By utilizing a FRS 

waveform database, the CWT Smart Radio can create a new communication link on any 

designated FRS channel frequency using FM, BPSK, QPSK, or 8PSK modulations.  The CWT 

Smart Radio leverages the GNU Radio toolkit, and its modular architecture provides a dynamic 

spectrum test bed for future smart and cognitive radio research.  The CWT Smart Radio’s key 

operational features are listed in Table 2.1.  The CWT Smart Radio meets or exceeds all of the 

requirements specified by Smart Radio Challenge 2007, and offers public safety first responders 

a mobile communications prototype for use in disaster relief scenarios.   
 

Smart transceiver 
 5 MHz FRS Band (462 to 467 MHz) 
 25 KHz bandwidth 
Have FRS compliant spectral properties 
Must interoperate with legacy analog FRS users 
Demonstrate at least 2 digital QoS settings 

 At least 16 kbps using BPSK or QPSK 
 CVSD vocoded voice 
 At least 19.2 kbps using 8-PSK  
 CVSD vocoded voice 
Source & destination radios must be able to rendezvous 
Will not produce interference to any other active 
communications traffic 
Dynamically change channels without loss of service 
Table 2.1.  Operational features provided by CWT Smart Radio. 

[M. Silvius’ Table from [6].  Used with permission, © 2008 SPIE.] 
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Chapter 3 

Smart Radio Architecture 2008 

At the end of the SDR Forum Smart Radio 2007 competition, CWT had the opportunity 

to again compete in the following year’s competition.  The team worked together in the fall 

semester to write and submit a proposal to SDR Forum detailing our plan to improve the existing 

radio design to meet the demands of a new, more complex public safety disaster communications 

problem.  The new scenario required our smart radios to go beyond simple point-to-point link 

configurations, and it required a large collection of smart radio nodes to automatically assemble 

themselves into a mobile ad-hoc data network.  Our final proposal was again selected, along with 

a half-dozen other university teams, to compete in the Smart Radio 2008 competition.  This 

chapter describes the details of that proposal, and our efforts to design, build, and test the new 

CWT Smart Radio 2008. 

 The organization of this chapter is the following.  First, in Section 2.1 reviews the new 

public safety communications problem statement for the Smart Radio Challenge 2008.  This 

provides the design requirements and the motivation for improvements to the radio’s architecture 

from the previous year.  Section 2.2 then describes the contributions resulting from the 

development of this new architecture.  Next, Section 2.3 reviews previous work referenced when 

designing our system.  Section 2.4 describes the specific architecture of the CWT Smart Radio 

2008, in block by block fashion.  Finally, Section 2.5 discusses the results of the competition, 

and Section 2.6 concludes with a summary of the radio’s functionality.   

 
3.1 Problem Statement 
 

 The Smart Radio Challenge 2008 scenario closely parallels the London subway 

bombings that occurred in July of 2005 [30].  In this situation, a series of terrorist explosions 

detonated aboard trains within the underground rail system.  The initial public safety first 

responders arriving on scene have to proceed down into the subway tunnels to collect an initial 

assessment of damage and casualty reports, and relay that information back to the first 
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responders waiting at street level.  Unfortunately, there was no active communication network 

within the subway tunnels.  Although some cities may have cell phone repeaters or micro-cells 

within their rail terminals, for this scenario, we can assume that these were not present, or the 

blasts themselves had knocked out power and fixed connectivity to the internal network.  The 

only communication tool available to the first responders were legacy FM-based walkie-talkie 

radios, which given the electromagnetic shielding of the underground subway tunnels 

themselves, would be completely cut-off and incapable of transmitting or receiving signals from 

similar radios above-ground.  In order for first responders to relay damage and causality 

assessments to command-post or triage stations being assembled near the tunnel’s entrance, they 

would need to exit the subway tunnels, or set up a communication bucket brigade, i.e. a manual 

forwarding of information from one officer to the next, down the tunnel, and out toward the 

surface.   

 In this critical public safety communications crisis, the deployment of a system of fully 

networkable smart radios could have saved precious time, and extended real-time voice and data 

communications capabilities to first responders in the rush to find and recover the disaster 

victims.  These networkable smart radios could have established an ad-hoc network and 

temporary infrastructure within the subway tunnel.  First responders could access this network 

either using their existing legacy FM radios, or using newer hand-held version of smart radios.  

The smart radio network would act as a repeater system, relaying voice and data communications 

between the first responders within the tunnel.  Also, smart radio nodes, situated near and at the 

entrance of the subway could also connect and interface with the existing fixed communications 

network at street level.  In this way, the existing wide-area communications infrastructure 

available to public safety responders above-ground, could be extended into the communications 

shaded region of subway tunnel itself. 

 The SDR Forum, in their problem statement for the Smart Radio Challenge 2008, also 

levied specific requirements for the problem.  The smart radio system automatically creates an 

ad-hoc extension to an existing communications network such that voice communications can be 

relayed to/from the incident site out of the shaded area to/from the above communications 

infrastructure.  The network extension utilizes peer-to-peer links among radios and reconfigure at 

least one radio as a repeater.  In addition, the smart radio should incorporate and improve upon 

features introduced in the earlier competitions.  Recalling the features of the CWT Smart Radio 
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2007 from Chapter 2, the system should be to find available spectrum within a pre-defined band 

using a signal detection and classification module, connect with an intended receiver using a 

rendezvous discovery, and transmit data over that band with a pre-determined quality of service 

(QoS).  The system should also corporately share spectrum between analog FRS primary and 

digital smart secondary users using a channel change dynamic spectrum access protocol. 

 In terms of the size, the prototype public safety ad-hoc network should incorporate at 

least six smart radio nodes.  There should be one hidden radio, which represents the public safety 

first responder who is the furthest down the subway tunnel and who is situated in the 

communications-shaded region, completely cut-off the above ground communications 

infrastructure.  There should be at least three repeater radios which form an ad-hoc network 

within the tunnel, and which relay voice and data communications from hidden radio to the 

tunnel’s surface.  There should be one command radio, which is situated as at the entrance of the 

tunnel, and acts as the gateway, bridging the temporary ad-hoc network within subway, to the 

fixed infrastructure above ground.  There should be one infrastructure radio which represents the 

fixed access point to wide-area communications network above-ground.  For our scenario, one 

could think of this is as fixed cell tower, or a public 802.11 WiFi access point.  In addition, each 

smart radio node must be able to intelligently switch between roles as the scenario warrants.  For 

example, before entering the tunnel, all smart radio nodes maybe be directly connected in a 

single-hop fashion to the infrastructure radio.  However, as they are position within the subway 

tunnel, they must automatically detect if and when they become disconnected from the 

infrastructure radio, automatically form an ad-hoc network, assuming the role of a command 

radio, repeater radio, or the hidden radio.  See Figure 3.1 for the picture of this scenario.  Lastly, 

the digital smart radios must support and offer first responders a number of multimedia 

applications, such as text chat, file transfer, streaming video, voice-over-IP 
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Figure 3.1. Problem Scenario and Requirements. 

 
 
3.2 Contributions 
 
 At a macroscopic level, the CWT Smart Radio 2008 architecture contributes to cognitive 

radio research by paving the way for the development of mobile, ad-hoc, heterogeneous 

cognitive radio networks.  In other words, the technologies developed here now allows for a 

smart radio platform to simultaneously use multiple radio frequency interfaces, enabling 

dynamic networks of radios using different, heterogeneous waveforms.  Furthermore, with the 

ability to use multiple interfaces, the smart radio architecture also provides the foundational 

technologies necessary to build a cognitive gateway.  This way, the smart radio can detect and 

bridge multiple different networks together, each using distinct waveforms, and route IP-based 

packet data between them.   

 At the microscopic level, we now describe the specific technical contributions of the 

CWT Smart Radio 2008 architecture.  First, a new universal radio framework includes 

configuration and control of multiple adapter types.  These include 802.11 WiFi, Bluetooth, 

Ethernet, as well control over the GNU Radio and USRP interface.  Second, the internal design 

of the radio framework has been redesigned from the 2007 competition to now allow data from 

connected networks on each of the adapter types to be bridged together.  In this way the radio 

framework can support IP datagram routing between the different networks.  The operation of 

the universal radio framework is described further in the next section.  In Chapter 4, we describe 
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how it can be used to construct a network testbed on which to conduct routing and quality of 

service (QoS) measurements.  Second, we embedded mobile ad-hoc routing protocols into the 

radio framework for use with the 802.11 WiFi and the GNU Radio/USRP interface.  For our 

initial prototype, we incorporated the On-Demand Link State Routing (OSLR) protocol, as well 

as a proprietary routing protocol called MobiMesh developed by the MITRE Corporation [31].  

Fourth, in the use of Bluetooth, we developed our own, new scatternet formation protocol.  The 

Bluetooth scatternet formation process is similar to that of the ad-hoc network formation in 

802.11, with the exception that packet forwarding and routing happens at the MAC layer rather 

than the NET layer.  Fifth, we developed improved network discovery sensors and an improved 

knowledge database.  More specifically, we wrote routines that would have the radio framework 

periodically poll each of the adapters and search for existing networks.  For the 802.11 WiFi and 

Bluetooth, this involved interfacing with these interface cards’ APIs and utilizing the standard’s 

built-in scanning routines.  For the GNU Radio and USRP, this involved running the PSD sensor 

and classifier, as well as the Rendezvous protocol already developed in the CWT Smart Radio 

2007.  The improved knowledge database now stores network status information for all the 

adapter types and displays these on the system’s improved user interface.  Sixth, we developed a 

set of sensors which would monitor the health of an 802.11 WiFi access point.  More 

specifically, when the CWT Smart Radio 2008 associates with an 802.11 WiFi access point, it 

monitors that access point’s power and connectivity to the global Internet.  If the power drops, or 

the smart radio loose connectivity to the access point, a warning message is sent to the radio’s 

Master Control for action.  At this point, the Master Control can search for other access points or 

ad-hoc nodes which with to re-associate.  Sixth, an improved graphical user interface allows 

users to easily change the role and configuration of each node.  The interface also allows users to 

manually configure the node to bridge one or more networks together.  Seven, we physically 

built the system and were able to run real quality of service experiments using it.  More is said on 

the application of these experiments in Chapter 4. 

 
3.3 Previous Work  
 
 The primary source of previous work evaluated in the preparation of the CWT Smart 

Radio 2008 came from the development of the CWT Smart Radio 2007.  However, considerable 

additional literature review was conducted in such areas as: Linux operating system API calls to 
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interface attached 802.11 WiFi and Bluetooth adapters; mobile ad-hoc routing protocols; 

configuration of routing and forward tables within the Linux operating system kernel; as well as 

Bluetooth scatternet formation.  The results of this review are shown in the discussion of the 

smart radio components in the following section. 

 
3.4 Smart Radio 2008 Architecture 
 

This section details the design of the smart radio architecture constructed from the SDR 

Forum Smart Radio Challenge 2008 competition in Washington, D.C.  The CWT Smart Radio 

contains five main components:  the user interface, the master control, the universal radio 

framework, the knowledge databases, and the sensors.  In addition, modules for formatting and 

transferring messages assist in connecting the different components.  Figure 3.2 depicts these 

components and their interactions.  The overall architecture of the new smart radio closely 

resembles that of the CWT Smart Radio 2007.  The components inherit all the capabilities of this 

previous design, but many have improved functionality and capabilities.  In this section, we 

detail the improvements over the previous versions.   
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Figure 3.2. CWT Smart Radio 2008 Architecture. 
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3.4.1 User Interface 
 

The user interface acts as the control panel from which a public safety first responder can 

oversee the smart radio’s operation.  When the radio is deployed, the public safety officer can 

program the radio with basic guidelines or policies for operation.  This includes identifying the 

primary waveform or network that all radios should connect with upon initialization.  Then, the 

user should provide the radio with guidelines for types of actions to perform if this primary 

waveform or network access point fails, or becomes out of range.  However, once the radio has 

received these user’s operational communication requirements, its further actions and operations 

are automatic.  The four tabs of the graphical user interface were designed with this purpose in 

mind.   

 
Scan Tab 
 

The Scan tab provides the user with a visual list of existing and available networks and 

nodes within its immediate radio environment.  This screen contains four tables, which pull their 

information from the WiFi, Bluetooth, and USRP knowledge databases.  The knowledge 

databases are, of course, populated through scans using the sensor and radio framework 

components are be described later.  See Figure 3.3 for a snapshot of the Scan Tab. 

 
Connections Tab 
 

The user can select waveforms or networks listed in the tables under the Scan tab in order 

to build one more connections.  Or, a user can manually enter in a new waveform or network if 

not listed under the Scan tab.  A connection can be thought of as the configuration state of the 

universal radio framework, so it can communicate using one or more interfaces simultaneously, 

and route IP traffic between interfaces as desired.  See Figure 3.4 for a snapshot of the 

Connections Tab. 

 
Configurations Tab 
 

The Configuration tab allows the user to program the radio to switch between 

connections in response to a specific event.  For example, in the subway disaster scenario, the 

public safety officer may want the smart radio to initially connect to a fixed infrastructure above-

ground.  In this case, the officer should program Connection #1 as the 802.11 access point 
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network in listed in the WiFi table.  In the event that the access point falls out of range, the 

officer should program Connection #2 to be a Bluetooth scatternet link to the next closest radio.  

the officer should program Trigger #1 to be “WiFi down.”  See Figure 3.5 for a snapshot of the 

Configurations Tab. 

 

 
Figure 3.3. Scan Tab of the User Interface. 

 
 

     
Figure 3.4 and Figure 3.5.  Connections Tab (left) and Configurations Tab (right) of the User Interface. 
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3.4.2 Inter-Block Data Exchange 
 
 The CWT Smart Radio 2008 adheres to the same data standardization and 

interoperability concepts as its 2007 predecessor.  It continues to rely on XML message 

formatting and TCP/IP sockets for inter-block communication.  However, in this version, the 

XML formatting and parsing routines are more complex and play an even greater role in the 

configuration of the smart radio components.   
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Figure 3.6.  An example of XML messaging used in radio configuration. 
 

Figure 3.6 demonstrates the operation of one configuration.  First, the first responder 

enters in the desired configurations setting in the user interface.  The waveform, network, and 

trigger event information is converted to XML and forward to the Master Control module.  The 

Master Control parses this information, and sends the first connection to the universal radio 

framework module for instantiation.  Next, the Master Control interacts with the sensors block, 

waiting for an event trigger to occur.  Both the sensors and the universal radio frameworks can 

then send feedback to the Master Control, also using XML formatted messages.  After the event 

occurs, the Master Control sends a new, appropriate connection setting to the universal radio 

framework in response.  Figure 3.7 shows an example XML file.  In this connection, the 

universal radio framework is programmed to bridge and route packets between a fixed Ethernet 

network to a mobile Bluetooth scatternet.   
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Figure 3.6.  An example of XML configuration for two adapters which are bridged together. 

 
 
3.4.3 Master Control 
 

The Master Control (MC), as in the previous competition, is the brains of the smart radio 

system.  It receives basic directions from the public safety operator through the user interface.  

From these, it is responsible for directing the operation of all the other modules in the 

architecture.  First, it obtains spectral and network awareness by scanning the environment with 

the attached sensors and network interfaces.  The results of these scans are forwarded and stored 

in the knowledge database, which provides signal and network memory.  The MC then directs 

the dynamic reconfiguration and initialization of the universal radio framework, which includes 

control over the Ethernet, 802.11 WiFi, Bluetooth, and GNU Radio/USRP interfaces.  The MC 

also aids in the assembly of the dynamic routing and forwarding tables, which allow IP data 

traffic from a network on one interface to be bridged with a network on another interface.  One 

of the most significant new responsibilities of the MC in the new 2008 architecture is to monitor 

the health of these attached networks through the use of the smart radio’s network sensors.  

When the MC detects that a network associated with an interface has become idle, disconnected, 

or is out of range, the MC reacts to this trigger event by automatically directing the universal 

radio framework to re-associate with a new network on a different interface.  For example, in the 
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London subway scenario, when MC detects that the 802.11 WiFi infrastructure access point is 

out-of-range of the smart radio, i.e. the smart radio has entered a shaded region, it automatically 

directs the universal radio framework to shut down the 802.11 interface, and start-up and form a 

peer-to-peer scattered network on the Bluetooth interface.  The MC can also direct the 

framework to stop the peer-to-peer network and re-associate with the WiFi infrastructure access 

point, should the radio become within range of the access point again.  Finally, like in the 

previous smart radio design, the MC is responsible for directing the operation and execution of 

the dynamic spectrum access Rendezvous and Channel Change protocols, which aid in the 

discovery of other smart radios and in the sharing of the operational spectrum band with other 

primary user radios.   
 

3.4.4 Sensors 
 

As highlighted in Figure 3.2, the CWT Smart Radio 2008 uses three sets of sensors in 

order to maintain awareness about the status of the radios and networks in its environment.  

First, it uses the power spectral density (PSD) sensor, in conjunction with the GNU Radio/USRP 

interface of the universal radio framework, to locate and capture signals transmitted from other 

radios within range.  Its classifier then works to determine the signal’s modulation scheme, and 

the results are stored in the knowledge database and displayed in the user interface.  The MC can 

then use this signal information when attempting to connect to one or more of these radios, or in 

identifying spectrum whitespaces in which to establish new communication links.  This process 

was discussed in Chapter 2.  Second, the primary user detection sensor, shown in Figure 3.2, is 

actually just the encapsulation of the primary user detection routines previously embedded in the 

universal radio framework, which aid the Channel Change protocol in identifying the return of 

primary users to the operation channel.  It works with the carrier-sensing routines within the 

GNU Radio/USRP interface, and it uses a set of timers to measure the frame lengths of received 

signals.  Frames whose lengths exceed a threshold length are classified as having been 

transmitted by primary user radios.  This process is explained in further detail in Chapter 6.  

Third, the network sensor is the newest of the sensors, specifically designed for the CWT Smart 

Radio 2008.  It works in conjunction with the MC to monitor the health of networks attached to 

the interfaces within the universal radio framework.  The sensors can determine if a network has 

been become idle, disconnected, or is out of range, and then it sends a trigger event message to 
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MC.  The MC can then decide whether to direct the universal radio framework to re-associate 

with a new network on a different interface.  In order to build the network sensor we utilized the 

APIs and built-in scanning routines of the interface cards within the universal radio framework.   

 
3.4.5 Knowledge Databases 
 

The knowledge database stores information on the discovered waveforms and networks 

within range of the smart radio.  The database is partitioned into three tables, called the WiFi, 

Bluetooth, and USRP databases, as shown in Figure 3.2.  These represent the discovered 

waveforms and networks with which the smart radio is capable of connecting to, using the WiFi, 

Bluetooth, and USRP interfaces within the universal radio framework respectively.  The contents 

of the knowledge database are displayed in the user interface, as shown in Figure 3.3. 

 
3.4.6 Universal Radio Framework 
 

The universal radio framework is responsible for the configuration and control of all the 

attached interfaces.  A single interface can be enabled for communications over a single 

waveform or network, or two or more interfaces can be enabled so as to bridge communications 

between multiple waveforms or networks.  The universal radio framework and adapters are 

configured using XML, just like all other modules in the smart radio architecture.  The structure 

and principal components of the universal radio framework are shown in Figure 3.7.  First, the 

XML parser receives configuration information from the MC in XML format and translates this 

into parameter settings for the rest of the framework.  Second, like the radio framework used in 

the 2007 competition and described in Chapter 2, the universal radio framework uses a series of 

nested software threads to configure, manage, and perform any signal process associated with 

each of the attached interfaces.  These threads are generally divided into two categories:  the first 

of these inherited from the CWT Smart Radio 2007 which operate the GNU Radio/USRP 

interface; and the second, are the new set of threads which control the commercial off-the-shelf 

(COTS) interfaces, such as the 802.11 WiFi, Bluetooth, and Ethernet.  Third, the universal radio 

framework contains a module responsible for the ad-hoc network routing and bridging.  This 

module uses ad-hoc network routing protocols such as OLSR to accomplish routing within a 

single network associated with a single interface, as well as algorithms to route IP-based packet 

traffic between networks associated with different interfaces. 
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Figure 3.7. The principal components of the Universal Radio Framework. 

 
 
3.4.6.1  Network Routing 
 

As introduced in the previous section, the universal radio framework uses ad-hoc network 

routing protocols for routing within the network associated with each interface.  To accomplish 

this, we incorporated the On-Demand Link State Routing (OSLR) protocol, as well as a lesser 

known protocol called MobiMesh, developed by the MITRE Corporation [31].  Although 

available to any interface, these protocols work best with 802.11 WiFi and GNU Radio/USRP.  

For the Bluetooth interface, we created a custom scatternet formation and routing protocol, 

described in the next section. 
 
3.4.6.2  Bluetooth Scatternet Formation 
 

Figure 3.8 details the operation of the custom Bluetooth scatternet formation protocol 

used in the Smart Radio Challenge 2008.  The goal of the protocol is to assemble all of the smart 

radio nodes into a chain-like topology using their Bluetooth interfaces, for the purpose of 

extending communications connectivity from the infrastructure radio at street-level, to the 

command radio at the entrance of the subway tunnel, down a line of repeater radios in the 

subway tunnel, and ultimately to the hidden radio at the end of the tunnel.   
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For the purpose of this scenario, we can model the infrastructure radio as an 802.11 WiFi 

infrastructure access point.  Initially, at the beginning of the disaster scenario, all the radios 

nodes are located at street-level.  The public safety operator, using the radios’ user interfaces, 

programs all the smart radios nodes to use this 802.11 infrastructure access point as their primary 

connection; however, if they should enter a shaded region and loose this connection, the operator 

programs the radios to form an ad-hoc scatternet using their Bluetooth interfaces.  The MC 

receives these directions, encoded in XML from the user interface, and then sends the first 

connection setting to the universal radio framework.  The universal radio framework initializes 

each radio’s 802.11 WiFi interface and associates it to the infrastructure access point.  The MC 

also starts up the network sensor to monitor the health of this infrastructure access point.  Next, 

as the radios enter the subway tunnel, i.e. the communications shaded area, the network sensors 

detects that the health of the infrastructure access point is deteriorating.  When the connectivity 

to the access point completely fails, the MC sends the alternate connection setting to the 

universal radio framework, activating each radio’s Bluetooth interface.  The MC then runs the 

Bluetooth scatternet protocol detailed in Figure 3.8.   

For the purpose of the scenario, we also assume that the public safety operator identifies 

one smart radio node to be the command radio, which is permanently positioned at the entrance 

of the tunnel.  The public safety operator uses the user interface on this radio to program it to act 

as the gateway, bridging connectivity from the infrastructure node using 802.11 WiFi to the first 

repeater radio, using Bluetooth.  The MC forwards the connection setting for this gateway role 

to the universal radio framework, which simultaneously starts up both 802.11 WiFi and the 

Bluetooth interfaces, with the appropriate routing settings to forward IP packets between the two.  

This Bluetooth interface is configured to always accept incoming connections from other 

Bluetooth nodes. 

The basic premise of the Bluetooth scatternet formation protocol is that each node 

continually tries to connect to other Bluetooth nodes; however, it only accepts connections from 

other Bluetooth nodes, once it has regained communications connectivity to the outside world.  

Note that in terms of Bluetooth, accepting connections requires the node to switch from a 

personal area network user (PANU) to group ad-hoc network controller (GN).  The first node to 

become a GN and begin accepting connections is the command radio, since by definition, this 

node is still within line-of-sight of infrastructure radio and it has connectivity to the outside 
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world.  The repeater nodes then form a chain, starting from the command radio, down the tunnel 

to the hidden radio at the end of the tunnel, as each radio gains connectivity to the outside world 

and begins accepting connections from other Bluetooth nodes.  It is also not necessary for the 

chain to be static.  The change can operate in a dynamic fashion.  For example, if a radio moves 

out range of an associated peer, it can establish a link and re-associate with the next closest node 

within range. 
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Figure 3.8. Diagram highlight the Bluetooth scatternet formation process. 

[T. Brisebois’ Image.  Used with permission of T. Brisebois.] 
 
3.5 Results 
 

During the Smart Radio Challenge 2008, the judges asked the CWT team to demonstrate 

the ability of their smart radios to detect the loss of connectivity from a fixed infrastructure point, 

and to automatically form an ad-hoc network extension.  The judges had us imitate the subway 

scenario setup by positioning our smart radios in the basement hallway of the conference hotel.  

This setting was ideal, because the radio propagation characteristics of the thick concrete walls 

of the hallway were similar to that of a subway tunnel.   

At the beginning of the demonstration, the team set up all the smart radios in a 

conference room near the entrance of the hallway.  They then configured the infrastructure radio 

to imitate an 802.11 WiFi infrastructure access point.  Then, they configured all the other smart 

radios to initially associate with this fixed infrastructure point.  Next, the team members carried 
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the smart radios one-by-one from the conference room and positioned them along the hotel’s 

hallway in a chain-like topology.  Just as designed, each of the smart radios detected their 

entrance into the communications shaded region and their loss of connectivity from the fixed 

infrastructure point.  Each enabled their Bluetooth interferences, ran the Bluetooth scatternet 

formation protocol described in Section 3.4.6.2, and automatically established an ad-hoc 

scatternet.  This Bluetooth scatternet provided the ad-hoc extension necessary to bridge 

communications from the command radio at the entrance of the hallway, through three repeater 

radios, to the hidden radio at the end of the hallway.  After this successful demonstration, the 

judges awarded the CWT team first place for the subway disaster scenario problem.    

 
3.6 Conclusions 
 
 In this chapter, we presented a conceptual design and initial prototype of the CWT Smart 

Radio 2008, capable of automatically creating an ad-hoc extension to bridge an existing public 

safety infrastructure to a shaded incident response site.  The smart radio continuously monitors 

the health and availability of one or more network access points.  Upon the disappearance of the 

primary access point, the cognitive radio gateway directs the formation of an ad-hoc peer 

cognitive radio network.  The smart radio node in proximity to the next available access point 

becomes the gateway command radio, bridging internal network traffic to the external public 

safety network through this available access point.  The contributions of CWT’s smart radio 

included, first, a new architecture for the configuration and control of radio interfaces called the 

universal radio framework.  The universal radio framework allows an intelligent master control 

module—also known as a cognitive engine—to control one or more heterogeneous radio front 

end adapters.  In the prototype system, these include a Universal Software Radio Peripheral 

(USRP) board, as well as commercial off-the-shelf 802.11 WiFi, 802.15.1 Bluetooth, and 802.3 

Ethernet adapters.  Configuration and cognitive behavioral functions are expressed in the 

eXtensible Markup Language (XML) to provide interoperability between modules.  Second, a 

suite of radio frequency and interface sensors continuously monitor the radio spectrum and 

locate the availability of infrastructure access points and other cognitive or legacy radio nodes.  

Moreover, these sensors monitor the health of infrastructure access points, and allow the 

cognitive engine to select the topology and waveform used in the cognitive radio network to 

optimize bandwidth, latency, and packet loss performance.  Third, additional contributions 
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include a radio knowledge database to maintain neighbor and topology information, dynamic 

spectrum access protocols to allow the smart radio network to share available spectrum with 

other primary users, a Bluetooth network formation algorithm, and a graphical user interface for 

radio configuration, topology and network statistics monitoring.  This chapter also presents 

CWT’s initial performance results, showing the available bandwidth, latency and packet loss 

statistics across multiple waveforms, adapters and network topologies, both in available 

infrastructure and ad-hoc configuration modes. 
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Chapter 4 

Smart Radio Network Testbed 

 This chapter details our efforts to quantify the communications performance of the CWT 

Smart Radio 2007 and the CWT Smart Radio 2008 architectures.  Furthermore, it describes how 

we used these smart radio architectures to design and assemble the Smart Radio Network 

Testbed.  The testbed served four objectives.  First, we documented the details of assembling and 

using the testbed, and turned this into an educational networking tutorial.  The tutorial describes 

how to build the network testbed using commercial off-the-shelf equipment and open-source 

software, and is suitable for undergraduate and graduate students to follow for conducting basic 

network experiments in a laboratory class.  Second, the performance data collected during these 

experiments gives us specific quality of service (QoS) metrics, which represent the baseline 

operational performance of an ad-hoc network of four CWT Smart Radios.  Third, the network 

testbed is used to quantify the performance of the Rendezvous protocol and the ability of four 

smart radio nodes to locate each other in an operational setting.  These results are discussed in 

Chapter 5.  Fourth, the network testbed is used to quantify the performance of the Channel 

Change protocol and the ability of the protocol to improve network QoS of a secondary user 

network when it co-exists with a primary user network.  These results are discussed in Chapter 6. 

 The remainder of the chapter is organized as follows.  Section 4.1 reviews the public 

safety communications problem statement of the Smart Radio Challenge and helps to motivate 

the construction of the testbed.  Section 4.2 reviews the testbed’s contributions.  Section 4.3 

reviews the relevant details of the SDR architecture developed by our research lab during the 

smart radio competitions.  Section 4.4 describes how we assembled an ad-hoc network testbed 

using four desktop and laptop computers, Ubuntu Linux, 802.11 and Bluetooth adapters, the 

Universal Software Radio Peripheral (USRP) radio frequency front end, and GNU Radio open 

source software.  Section 4.5 and Section 4.6 explain how we created network topologies using 

the 802.11, Bluetooth, and USRP and presents the results from measuring the performances of 

these networks using open-source tools.  Section 4.7 discusses the significance of the 

experimental results and Section 4.8 concludes. 
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4.1 Problem Statement  
 

As a review, the motivation to develop an educational testbed stemmed from the CWT 

research group’s entry into the SDR Forum Smart Radio Challenge [1].  During the past two 

years, the Forum has focused much of its attention on the communication problems faced by first 

responders at the scene of public safety disasters.  This 2008 challenge closely mimicked the 

real-world scenario of the London subway terrorist bombing [30].  The competition required our 

team to design, build, and demonstrate a collection of smart radios which could form a network 

extension, capable of bridging a shaded disaster location back to a fixed communication 

infrastructure.  Moreover, upon arriving at the disaster location, each smart radio had to be able 

to detect the loss of connectivity to the fixed infrastructure, locate its peer radios, and 

automatically form ad-hoc network in a chain-like topology.  The temporary public safety 

network had to maintain a QoS which supported the transfer of digital images, video, and two-

way voice.   

802.11

USRP: FM or Digital
Waveform

“Smart Radio
Gateway”

Public Safety
Radio

 
 

Figure 4.1.  Scenario and proposed solution. 
 

 After reviewing this problem, our team hypothesized that the QoS requirements could be 

met by utilizing commercial off-the-self technologies (COTS) such as 802.11 WiFi and 

Bluetooth, in combination with the GNU Radio [8] and USRP [9] SDR platform, as shown in 

Figure 4.1.  To test our hypothesis, the team proceeded to develop the CWT Smart Radio 2008 

architecture to dynamically control the COTS and USRP radio interfaces, as well as the Smart 
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Radio Network Testbed to evaluate the resulting attainable network QoS using these interfaces.  

This chapter presents an overview our new architecture, and details the construction and 

experimental results of our network testbed.  Furthermore, this system provides undergraduate 

students with an educational testbed to conduct future networking experiments and 

measurements in a laboratory environment.   

 
4.2 Contributions 
 
 The principal contribution of this chapter is the design of a network testbed, which 

allowed us to specifically quantify the performance of the CWT Smart Radio 2007 and 2008 

architectures.  The construction of the testbed also forms the basis of an educational laboratory 

tutorial for undergraduate and graduate students illustrating ad-hoc networking and software 

defined radio principles.  After performing the experiments described in this chapter, a student 

reader will acquire the following skills.  First, a reader will gain the basic proficiency for using 

the Ubuntu Linux operating system.  This includes downloading and installing programs using 

Ubuntu’s Synaptic Package Manager, as well as downloading, compiling, and installing 

software such as GNU Radio from source code.  Second, the reader will learn basic networking 

principles, and be able to create simple ad hoc network topologies with 802.11 and Bluetooth by 

executing a series of commands at the Linux terminal.  Third, the reader will learn how to collect 

network performance measurement data on the networks’ latency, bandwidth, jitter, and packet 

loss using open-source monitoring tools.  The results will then be plotted in Matlab.  

 
4.3 Previous Work: Review of Smart Radio Architecture 
 
 Before building the Smart Radio Testbed, let us first review the previous details of the 

smart radio architecture.  Our smart radio architecture provides a framework for the 

configuration and control of the COTS and USPR radio interfaces, as well as the essential 

components in the system.  These components are shown in Figure 4.2.  The user conveys the 

tasks and mission policies to the radio through its graphical user interface. The on-board sensors 

give the radio awareness of its radio frequency (RF) environment, as well as the ability to 

monitor the health of fixed communication infrastructures.  The databases work hand-in-hand 

with the sensors to store scan results in the radio’s memory.  The master control enables the radio 

to adapt to the user’s direction and environmental changes by providing new configuration 
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settings to the universal radio framework.  The universal radio framework dynamically 

reconfigures the attached COTS and USRP radio interfaces. 
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Figure 4.2.  Architecture of the smart radio. 
 

In order to determine if a smart radio using COTS network interfaces, such as 802.11 

WiFi and Bluetooth, as well as the USRP, could meet the QoS for the Smart Radio Challenge, 

our team built the dedicated network testbed shown in Figure 4.3.  This allowed us to evaluate 

such metrics as latency, goodput, jitter, and packet loss in a four node, multi-hop, ad-hoc 

network.  The testbed also proved to be an ideal educational platform for our undergraduate 

students to use to perform network experiments.  The remainder of the chapter is dedicated to 

explaining the step-by-step process of building this testbed, as well as performing four 

experiments using COTS and USRP interfaces. 
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4.4 Testbed Architecture and Setup 
 

After obtaining the necessary hardware, the two primary setup tasks included setting up 

and installing needed software, and configuring the networking equipment to form the testbed 

and its control and data collection backbone. 

4.4.1 Equipment 

All of the experiments conducted in this chapter  were conducted using COTS equipment 

that would be available in most wireless laboratories.  Table 4.1 gives a detailed listing of the 

equipment used in the testbed, as shown in Figure 4.3.  The most exotic device is the USRP [9].  

The USRP is the RF front end to be used with GNU Radio SDR [8] to create an ad-hoc network 

using customized waveforms.   
 

Item Quantity Approximate 
Cost 

Laptop/Desktop (Intel Duo-
Core or better 
recommended) 

4 $1500 

USRP Version 1 
Mainboard 

4 $700 

Flex2400 4 $275 
Linksys Bluetooth USB 
(USBBT100) 

1* $85 

Linksys WiFi USB Card 
(WUSB54GC) 

4 $40 

NetGear WiFi Router 
(WGT624) 

1 $40 

Linksys WiFi USB Card 
(WUSB54GC) 

4 $40 

Total: $~10,185 
* One only card used for desktop computer. 

Table 4.1.  Equipment used to build network testbed. 
 
 

In our experiments, our team used three Dell Inspiron and XPS laptops.  For these, we 

used the laptops’ on-board Bluetooth hardware.  The implementation was quite robust and 

operated well under Linux.  However, we decided to go with external Linksys USB WiFi 

adapters, disabling the internal 802.11 chipset in the laptops BIOS.  The Linksys USB adapters 

proved to be more reliable and easier to configure.  For the Dell desktop computer, we used both 
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and Linksys USB WiFi and Bluetooth adapters, since our desktop did not have native wireless 

support.  As shown in Table 4.1, the entire testbed can be assembled for approximately $10,000, 

or less, if this equipment is available in the lab.   
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Figure 4.3.  Detailed architecture of the network testbed. 

  

4.4.2 Installing Software 

First, we recommend installing Ubuntu Linux version 7.10 [32] on all the laptops and 

desktops.  We have found Ubuntu to be the most user-friendly Linux distribution available, as it 

has good native Bluetooth support, in addition to being tested and verified to work with GNU 

Radio. 
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Package(s) Purpose 
bluetooth 
gnome-bluetooth 
bluez-gnome 
bluez-utils 

Bluetooth drivers and utilities.  
Includes commands such as 
“pand” and “hcitool.” 

bridge-utils MAC layer bridging utility, used 
to interconnect multiple Bluetooth 
links when forming an ad-hoc 
mesh. 

IPerf IP layer bandwidth measuring 
tool for evaluating network 
performance. 

JPerf A graphical interface for IPerf.  
Can be downloaded from [33]. 

Table 4.2.  Required software to install using 
Synaptic Package Manager or from web. 

 
 

Second, we download and install the most recent stable release of GNU Radio (called the 

trunk version).  There are a number of well written tutorials on how to accomplish this [34].   

Third, we use Ubuntu’s “Synaptic Package Manager” to install the required additional tools, 

drivers, and dependencies, as shown in Table 4.2.  Fourth, we download and install JPerf from 

[33].  We make sure the computer has Java Runtime Environment installed. 

Although all the performance measurement statistics can be collected using the 

command-line utility IPerf, as detailed in Script 5 in Appendix 1, a student may want to 

download and experiment with its graphical front-end, JPerf, as shown in Figure 4.4 
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Figure 4.4.  Screenshot of JPerf. 

 

4.4.3 Assembling Testbed Backbone 

Next, we started our experiments by constructing the test network shown in Figure 4.3.  

The four computers are physically connected together using each system’s standard 802.3 wired 

Ethernet adapters.  Script 1 in Appendix 1 gives the example Linux commands to accomplish 

this.  Also, we consulted our wireless router’s documentation [35] on how to disable DHCP and 

allow for the static assignment of IP addresses. 

The wired network forms the communication backbone which is used for collecting 

performance data from each computer.  This also allows the operator, sitting at Node 1, to 

remotely control the other nodes through a series of SSH terminal screens, as shown in Figure 

4.5.   
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Figure 4.5.  Remote SSH terminals control 
network configuration of each test node. 

 
 
 To streamline testing in the future, we also wrote a Java based control agent, which 

allowed us to push out configuration and test commands to multiple nodes simultaneously, as 

shown in Figure 4.6. 
 

 
Figure 4.6.  Java-based “NetworkStats” configuration agent. 
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4.5. Experiments: Validation of Universal Framework Architecture 
 
 First, this section details the metrics collected by the network testbed, as well as explain 

their significance in determining a network’s QoS.  Second, this section describes four 

experiments in which we evaluated the performance of 802.3 wired Ethernet, 802.11 WiFi, 

Bluetooth, and GNU Radio/USRP networks. 

 
4.5.1 Performance Metrics 
 

The metrics collected include:  latency, goodput, jitter, and packet loss.  First, we use the 

standard Ping command built into Linux to measure the round-trip-time (RTT) latency—also 

know as the response time—between the a pair of nodes.  This metric records the total time for a 

ping packet to travel from the server to the client and for the client to send a response packet 

back to the server.  Second, for the remainder of the data collection, we use the Linux package 

called “Internet Protocol Bandwidth Measuring Tool” (IPerf).  To measure bandwidth, we use 

IPerf to send a stream of Transmission Control Protocol (TCP) and User Datagram Protocol 

(UDP) packets from the client Node 4 to the server Node 1, and measure their maximum 

effective received rate.  

TCP uses a reliable transfer protocol, which waits for acknowledgements back from the 

recipient before it transmits out new packets, while UDP uses an unreliable transfer protocol, 

which streams out packets without acknowledgements or feedback from the recipient.  Since our 

bandwidth measurement records the effective rate of new original data traveling from the client 

to server, not counting bits associated with dropped packets or retransmissions, this metric is also 

commonly referred to as goodput.   

To measure packet loss and jitter, we use IPerf to send a stream of UDP packets, from the 

client to the server, at the maximum possible offered rate supported by the network, and record 

the number of lost packets that fail to arrive at the server.  IPerf also measures jitter, which is the 

difference in arrival times of received packets, resulting from queuing and forwarding in the 

network.  Large fluctuations in inter-packet arrival times often results in poor performance of 

real-time applications like Voice-over-IP (VoIP) telephony.  Data collected using the Ping and 

IPerf programs are manipulated using a Python script, and then imported and plotted in Matlab. 
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4.5.2 Experiments for Network Performance Collection 
 

Experiment I:  802.3 Ethernet, Wired Infrastructure Mode 

 

First, to test the readiness of our testbed and our ability to collect and manipulate data, we first 

checked the performance of our 100 Mbps 802.3 wired Ethernet backbone network.  See Script 1 

in Appendix 1 for setup instructions.  The experiment measured baseline results from the 1-hop 

travel of data from Node 1 to Nodes 2, 3, and 4 respectively through the wired router.  This 

configuration produced the lowest latency, jitter, and packet loss, and the highest goodput, and 

we use this as the benchmark to compare all other network types. 

 

Experiment II:  802.11 WiFi, Wireless Ad-Hoc Mode 

 

Experiment III:  Bluetooth, Wireless Ad-Hoc Mode 

 

Experiment IV: GNU Radio/USRP at 100Kbits/s DBPSK, Wireless Ad-Hoc Mode 

 

Then, we measured the performance of our three hop ad-hoc 802.11 wireless network, our 

Bluetooth network, and our GNU Radio/USRP network with 100 Kbit/s DBPSK links.  Script 2, 

Script 3, and Script 4 in the Appendix list these setup instructions respectively.  An example 

resulting static routing table for the computers is shown in Figure A.1 in the Appendix.  The 

experiment measured the QoS metrics between Node 1 and Node 2 (1-hop); between Node 2 and 

Node 3 (2-hops); and between Node 1 and Node 4 (3-hops). 

 
4.6 Results 
 
 This section summarizes the results of all data collected for the 802.3 wired, 802.11 

wireless, Bluetooth, and GNU Radio/USRP four node networks.   All curves represent test traffic 

from Node 1 to Node 4.  All wireless networks are configured in the three-hop ad-hoc topology 

of Figure 4.3.  These results give insight into the performance of the smart radio architecture. 
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4.6.1 Latency 

Figure 4.7 shows the relative latencies recorded for 802.11 WiFi, Bluetooth, GNU 

Radio/USRP and 802.3 wired Ethernet.  802.3 Ethernet’s latency was flat and stable, but GNU 

Radio/USRP’s, 802.11’s and especially Bluetooth’s latency varied up and down.  Variations at 

the high end of the logarithmic scale also correspond to large amplitude fluctuations and these 

variations become more apparent in Section 4.6.3 where we discuss jitter. 
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Figure 4.7.  Summary of Latencies 

 

4.6.2 Goodput 

Figure 4.8 and Figure 4.9 show the measured TCP and UDP goodputs respectively.  The 

TCP curves for 802.11 and GNU Radio/USRP contained discontinuities where goodput dropped 

to zero, resulting from dropped packets, retransmissions, and TCP flow control window 

fluctuations.  However, the UDP curves were smooth, since retransmissions were not required.  

These two curves show that 802.11WiFi’s goodput was one-and-a-half orders of magnitude 
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lower, Bluetooth was nearly three orders of magnitude lower, and GNU Radio/USRP was nearly 

four orders of magnitude lower than 802.3 Ethernet. 
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Figure 4.8.  Summary of TCP Goodputs. 
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Figure 4.9.  Summary of UDP Goodputs.   

 

4.6.3 Jitter 

 Figure 4.10 shows the jitter for the three networks.  GNU Radio/USRP’s and Bluetooth’s 

jitter was four orders of magnitude greater, and 802.11 WiFi’s were three orders of magnitude 

greater than 802.3 Ethernet.  Furthermore, 802.3 Ethernet was the most stable network, except 

for two random spikes at 20 and 26 ms.  The Bluetooth and GNU Radio/USRP networks were 

the least stable, and their jitter curves contained regular oscillating ripples.  The relative 

magnitude of these jitter oscillations is best observed when the vertical axis is linearly scaled, as 

in Figure 4.11.   
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Figure 4.10. Summary of UDP Jitters.   
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Figure 4.11. Summary of UDP Jitters (linear scale).   
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Figure 4.12. Summary of UDP Packet Loss.   

 
 
4.6.4 Packet Loss 
 
 Figure 4.12 shows the packet loss for the three networks.  Surprisingly, 802.3 Ethernet, 

802.11 WiFi, and Bluetooth suffered little to no packet loss.  GNU Radio/ USRP incurred 

noticeable loss, as depicted by the large spikes at times 5, 8, 16, 20, and 28 ms. 

 
4.7 Discussion 
 

First, with regards to all the wireless standards, we discovered that 802.11 WiFi had the 

best overall QoS.  It had the highest goodput, and lowest latency, jitter, and packet loss.  Its only 

downfall could potentially be the noticeable gaps in its TCP goodput curve, resulting from 

dropped packets, retransmissions, and fluctuations in the TCP flow control window.  802.11 

would be the best choice for real-time applications, like streaming video or VoIP.  Second, the 

Bluetooth standard had the second best QoS with middle-of-the-road scoring in latency, goodput, 

jitter, and packet loss.  Bluetooth’s TCP goodput was also much more constant than for 802.11; 

however, Bluetooth demonstrated significant variations in its jitter.  Bluetooth would be useful 
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for non-real-time applications like file transfers and short bursty transmissions like push-to-talk 

audio.  Third, in our experiments, the GNU Radio/USRP network interface, configured at 100 

Kbits/s DBPSK, generally faired worse than any other network interface standard.  It had the 

smallest goodput and the greatest latency, jitter, and packet loss.  Its jitter also varied greatly 

with time.  This interface would most likely have the most difficulty supporting real-time 

applications like VoIP, as well as non-real-time file transfers.  In terms of Smart Radio 

Challenges, all waveforms and adapters tested here, when incorporated and controlled by the 

universal radio framework, would provide acceptable QoS in when used in an ad-hoc network.  

 
4.8 Conclusions 
 

This chapter described how to build an ad-hoc network testbed using commercial off-the-

shelf equipment and open-source software, suitable for conducting basic network experiments, 

by students in a laboratory environment.  The work constitutes a sampling of the core 

technologies used by our lab in the construction of smart radios for public safety disaster 

response scenarios.  The performance data collected during these experiments also give us QoS 

metrics, which represent the baseline operational performance of an ad-hoc network of four 

CWT Smart Radios, when assembled with this same commercial off-the-shelf equipment.  Next, 

we use this Smart Radio Network Testbed to evaluate two dynamic spectrum access protocols, 

Rendezvous and Channel Change, in Chapters 5 and 6 respectively. 
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Chapter 5 

Rendezvous Protocol 

Recent disasters including the 9/11 terrorist attacks, Hurricane Katrina, and the California 

wildfires, have highlighted the limitations of current mobile communication systems for first 

responders.  Responders from differing agencies often possess radio systems made by competing 

manufacturers, which may be programmed for different frequency bands, modulations or 

protocols.  This represents the interoperability problem, where the physical limitations of 

existing legacy radios prevent radios from directly talking with each other [36].  Recent 

cognitive radio research and prototypes have made progress in developing stand-alone cognitive 

radios which can quickly reconfigure themselves to talk directly with competing legacy public 

safety radios, or cognitive radio gateways which can dynamically locate competing public safety 

radios, reconfigure themselves, and automatically bridge them together [5, 24, 37].  These 

cognitive radio solutions effectively join otherwise inoperable systems, and allow the use of 

available existing public safety infrastructures.   

A more complex design challenge is when all previous communication infrastructures are 

completely destroyed or non-existent, as would occur at the scene of a large-scale natural 

disaster.  Here the challenge for communications engineers is to setup a temporary, fixed 

communications infrastructure for public safety first responders.  In recent efforts, researchers 

are working to  apply cognitive radios to solve this problem [38].  Cognitive radios provide ideal 

temporary backbone infrastructures, particularly because of their ability to scan and locate 

available spectrum, or to dynamically share existing spectrum.  Their envisioned cognitive radio 

infrastructure network backbone would be completely digital and would use high-speed digital 

modulations, such as OFDM, between each deployed infrastructure node.  Infrastructure nodes 

would also support the transmission and reception of existing public safety frequencies, 

modulations, and protocols, so as to interoperate with legacy radios at the end-points. 

One challenge is how to quickly deploy and setup this backbone cognitive radio 

infrastructure.  How do these cognitive radios find each other, and how do they determine which 
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channels to use for their initial links?  Can this be accomplished in an automatic and systematic 

way that does not need the intervention of or pre-coordination by communications network 

designers?  Some authors suggest the answer lies in sophisticated spectrum scanning and 

classification strategies [39, 40].  We view this approach as well suited to a heterogeneous 

network consisting of legacy, fixed, or non-cognitive nodes which are incapable of adhering to 

neighbor discovery etiquette.  However, if the system is homogeneous, cognitive, or capable of 

following neighbor discover etiquette, then this approach may be over-kill.  In this case, we 

believe the answer lies with novel sets of active, MAC-layer rendezvous protocols.  Reliable, 

timely, and energy efficient rendezvous algorithms enable cognitive radio nodes to build 

neighbor information and link connection information, and they are the foundational tool in 

building well-connected cognitive radio networks. 

5.1 Contributions 

 This chapter makes the following contributions.  First, we review recent work in the 

development of rendezvous protocols.  Second, we present a taxonomy which enables us to 

classify these authors’ proposed protocols based on its design assumptions.  Our efforts reveal 

the need for more research in asynchronous, multi-channel MAC rendezvous protocols, beyond 

that which has already been done for the Bluetooth system.  Third, we restate the multi-channel, 

asynchronous problem, showing analytical models currently available.  Fourth, we implement a 

few candidate rendezvous protocols on a cognitive radio testbed, to support our mathematical 

analysis and to validate previous authors’ simulation results.  Fifth, we discuss these protocols’ 

incorporation within a cognitive radio, with respect to setting up a cognitive radio network 

infrastructure backbone for use by public safety first responders at the scene of a natural disaster.   

5.2 Previous Work 

 The process of rendezvous, also commonly referred to as neighbor discovery, has been 

the topic of a number of recent papers.  Early authors proposed mobile communication systems 

using a pre-defined number of control channels or common pilot channels in their systems for 
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use in rendezvous.  This is satisfactory when the frequency band is relatively small or when the 

system has exclusive license to the frequency band.  This also works fairly well if the system 

essentially acts as the only primary user in the band, and the risk of one of the pre-defined 

common pilot channels being occupied or unavailable due to a secondary user is low or non-

existent.  Cell phones, pagers, household wireless phones, etc. all use this concept.  To a great 

extent, even the current 802.11 wireless internet standards use this construct [41-43].  For 

example, in 802.11b, all the nodes, including the wireless access point (WAP) and the individual 

network interface cards (NIC), use one of 11 overlapping channels, each 30 MHz wide, in the 

frequency range of 2.400-2.483GHz.  Upon startup, and periodically throughout its operation, 

each NIC scans each of these 11 channels, searching for beacon frames from nearby WAPs. 

 More recent authors have attempted to improve upon the concept of the common pilot 

channel by allowing this location of the pilot to be flexible and mobile within a particular 

frequency band [44-47].  However, these systems still require knowledge about the location and 

characteristics of the pilot channel, or require the use of a centralized infrastructure server to 

manage the pilot channels.  These systems only approach, but do not solve, the dynamic 

spectrum allocation requirements necessitated by the FCC’s move toward spectrum re-use [10].  

The solution genuinely needed is a rendezvous method that uses a truly dynamic pilot channel—

one in which users need little or no a priori knowledge about its location within the frequency 

spectrum.   

In [48], McGlynn presents a set of neighbor discovery protocols which he calls birthday 

protocols, coined after the probability of two or more people in a room having the same birthday.  

He describes a scenario where nodes and their link topology are static, as would be the case in a 

sensor network dispersed randomly throughout a region.  Nodes are assumed to be in one of 

three states—transmit, receive, or sleep—in a given time slot, with fixed probabilities.  He 

computes the fraction of the expected number of links that can be formed as a function of the 

number of nodes present, the number of time slots waited, and their state probabilities.  Energy 

efficiency is obtained by varying the probability of nodes sleeping.  This work forms a 

foundation for rendezvous analysis, but it is limited in that it assumes a single broadcast channel 

for rendezvous, and it assumes that time slots are fixed and synchronized across all nodes in the 

neighborhood.   
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In [49], Alonso also analyzes the problem of rendezvous for a single broadcast channel 

with synchronized time slots.  However, he adds rules for beaconing and listening beyond the 

purely random state switching of McGlynn.  These include the answering protocol, where nodes 

must immediately respond with an acknowledge message after locating a rendezvous beacon, 

and the listen after talking protocol, which conversely requires a node to listen for an 

acknowledgement message after it transmits each beacon.  In [50], Alonso then goes on to 

provide one of the first mathematical analyses where the problem is extended to multi-channel 

broadcast channels.  In [51], Angelosante also analyzes this multi-channel problem, with 

emphasis on physical layer demodulation and decoding.  In [52, 53], Galluccio also addresses the 

multi-channel problem; however, he analyzes the problem of mobile nodes moving in space with 

velocity through the use of Markov chains.  He emphasizes the importance of real systems 

needing to be multi-channel, as is the case for Bluetooth.  

Bluetooth [54] was one of the first, widely-used wireless technologies to employ a multi-

channel, frequency-hopped discovery algorithm based on probabilistic discovery models.  

Discovery occurs in an asynchronous manner using frequency-hopped beacons transmitted in 

slots determined by pseudo-random sequences.  However, discovery is asymmetric.  Some nodes 

must be designated as masters and others as slaves, and the widths of their time slots, as well as 

the algorithm in which beacons are transmitted and received in those slots, are specific to the 

node’s role.  Numerous authors have analyzed Bluetooth’s performance for rendezvous and 

personal area network establishment [55, 56].  

In [57, 58], Salonidis discusses how to overcome the limitation of the asymmetric nature 

of the Bluetooth discovery algorithm, by allowing nodes to randomly switch between master and 

slave roles, so that discovery happens in a symmetric, distributed, and more scalable fashion.  

Salonidis, and as well as Law [59], describes how this modification improves the ability to form 

Bluetooth scatternets.   

Other authors focus their attention on developing their own unique multi-channel, 

symmetric rendezvous strategies, instead of attempting to modify the existing Bluetooth system.  

Avoiding the single-channel limitation of McGlynn, Balachandran [60] describes a multi-

channel, symmetric, frequency-hopped, rendezvous protocol.  The protocol transmits and listens 

for beacons on channels, as determined by a set of pseudo-random codes.  He presents an 

analytical model for computing the probability of a collection of nodes all finding each other on 
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or before a particular discovery time slot, as a function of the number of nodes in the 

neighborhood, and the number of channels used.  Balachandran also introduces the concept of 

dynamic spectrum access to neighbor discovery by limiting frequencies used by the 

pseudorandom hops so as to keep interference to primary users less than a given  interference 

fraction.   

Alternatively, Hamida [61], uses a completely different strategy which involves beacons 

transmitted at random time offsets, rather than at random hop frequencies.  The operation of his 

random protocols is modeled after Aloha, in which nodes transmit beacons at random times 

within a fixed frame, and either receive or sleep for the remainder of the time in that frame.  The 

main limitation of this analysis is that Hamida assumes a single broadcast channel, and nodes 

must have time synchronization in order to align these discovery frames.  In [62], Fang performs 

an in-depth comparison and contrast of the benefits and performance of both the birthday 

protocols of McGlynn,  and the random protocols of Hamida, with regards to protocol duration, 

energy consumption of effective messages, total energy consumption,  and energy efficiency.  In 

[63], Yang finds a general solution relating optimal energy savings to the probability of 

occurrence of the sleep state for the rendezvous between two nodes. 

In [64], Borbash presents one of the first analytical solutions to the general asynchronous 

rendezvous problem, in which nodes transmit and receive beacon messages in slots that are not 

aligned in time.  Fang suggests that this is a generalized combination of the birthday and random 

protocols [62].  Unfortunately, Borbash’s model is only for single broadcast channels, and has 

not yet been extended to the multi-channel problem.  We explore extending Borbash’s analysis 

in Section 5.3.  

In [65], DaSilva introduces a rendezvous algorithm for use in dynamic spectrum access 

cognitive radios.  Similar to Balachandran, as well as in our own previous work [6], nodes 

transmit and listen for beacons on channels whose frequencies are determined by the use of 

pseudo-random hop-sequences.  However, DaSilva investigates the selection of the pseudo-

random sequences so as to improve the probability of rendezvous.  He concludes that completely 

random sequences result in blind rendezvous, which has no upper bound on the time-to-

rendezvous (TTR); however, carefully chosen sequences with specific patterns of periodicity 

result in sequence-based rendezvous, which does have an upper bound on the expected TTR.  

Further, by scanning the spectrum band and by pruning channels which are occupied, the radio 
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can adhere to dynamic spectrum access policies and avoid interference to primary users.  For his 

analysis, DaSilva assumes CR nodes are synchronized and rendezvous slots are aligned in time. 

In [66], Arachchige introduces an asynchronous rendezvous algorithm to be applied to 

cognitive radio networks.  The scheme requires that a node be designated as the single leader.  

The leader performs the task of neighbor discovery and global channel set selection, and then it 

relays this information to the other nodes which it has discovered in the neighborhood.  This 

scheme eliminates the requirement for nodes to be time synchronized, but the centralized 

approach might present limitations when scaled to larger collections of nodes. 

In [67, 68], Horine presents and evaluates a completely different approach to rendezvous 

based on frequency domain statistics.  Instead of transmitting packet data via a digital 

modulation scheme, Horine’s nodes transmit and scan for simple carriers encoded with a number 

of analog sidetones.  The system is built and tested using GNU Radio, and it may prove to be a 

useful alternate strategy in special applications requiring beacons with minimal power, RF 

bandwidth, or risk of unintentional interference to adjacent users. 

5.3 Rendezvous Design Taxonomy 

The design and implementation of rendezvous protocols can be categorized by nine 

significant design attributes.  These considerations are listed in Table 5.1.  We use these when 

discussing configuration and operation of the protocols in Section 5.3. 
 

TABLE  5.1.  RENDEZVOUS DESIGN TAXONOMY 
Parameter Possible Values 

Channels Single / Multiple 
Collection Independent / Shared 
Timing Asynchronous / Synchronous 
Direction 1-Way / 2-Way 
Messages BCN / BCN-ACK 
Slot Widths Equal / Varying 
Roles Ad-Hoc / Master-Slave 
Collision Avoidance None / CSMA 
Stochastic Aspects State / Frequency / Time / None 
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5.3.1 Channelization: Single or Multiple 

Channelization describes the number of frequencies in use by the radios during execution 

of the rendezvous protocol. While most systems reviewed assume a single radio transceiver 

operating in half-duplex mode, designers vary in their allocation and use of channels.  Some rely 

on a single channel broadcast operation, as has been customary for sensor networks or early 

wireless communications systems, like 802.11.  Others use multiple channels, typically involving 

frequency-hopping via a set of pseudo-random codes, as in Bluetooth, or newer cognitive radio 

architectures. 

5.3.2 Neighbor Information Collection: Independent or Shared 

In an independent neighbor information collection design, the responsibility for radio 

discovery and rendezvous rests solely with the end nodes.  Nodes are not required to share this 

information with their neighbors.  This strategy works well when all nodes are nearby in a 1-hop 

configuration, or in a sensor or energy-limited network, where the overhead of neighbor table 

coordination and sharing would be prohibitive.  In a shared collection scheme, nodes collaborate 

in collecting and sharing neighbor discovery information.  This can either happen in a centralized 

fashion, where a single host or server directs and manages the operations of radio discovery for 

the entire network, or in a distributed fashion, where nodes exchange local discovery information 

with their nearby peers until the information is eventually disseminated throughout the 

neighborhood.   

5.3.3 Discovery Timing: Synchronous or Asynchronous 

A synchronous rendezvous protocol requires that all nodes have a precisely aligned 

clock, and that all of the slots for the transmitted and received message frames are in alignment.  

This requires that the radio system can maintain sufficient timing requirements, has minimum 

latency issues, and can adhere to rendezvous slot boundaries.  Asynchronous systems do not 

require precisely aligned system clocks and levy less strict requirements on hardware precision, 

timing, and latency.   
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5.3.4 Discovery Direction: 1-Way or 2-Way 

Broadly speaking, discovery direction addresses the question of symmetry in the 

discovery process and the nature of the communications between the locating and located nodes.  

In an one-directional scheme, Node A may be able discover Node B by recovering its beacon; 

however, since the discoverer’s communication link is essentially one-directional, B will not be 

aware of A’s presence.  Conversely, if a discovery communication is two-directional, then when 

A recovers B’s message, B is also notified of A’s presence.  In this way, mutual discovery is 

made regardless of which node initially transmitted or received a beacon message.  Practically 

speaking, two-directional discovery requires the transmission of an acknowledge message at the 

MAC or high layer in the protocol stack after the initial discovery.  We say more about message 

types in the next section.  

5.3.5 Discovery Messages 

During the Rendezvous protocol’s execution, we envision the use of at least two types of 

MAC-layer packets, depending on the required discovery direction.  In the 1-Way discovery 

strategy, the locating nodes only need to transmit out beacon (BCN) messages.  However, in a 2-

Way discovery process, the located node may also send a MAC-layer acknowledgement (ACK) 

response message back to the locating node after successfully recovering the original BCN 

message.  Discovery messages must have a header which includes the message type, sequence 

number, transmission identifier, and optionally, a channel number.  Sequence numbers are 

required if the discovered node is configured to transmit ACK messages.  An ACK message will 

contain the sequence number of the BCN packet which it is acknowledging.  The BCN 

messages, as well as the ACK response message, may contain node-specific information such as 

MAC and IP addresses, etc.  

5.3.6 Discovery Slots Widths: Equal or Varying 

In the rendezvous process, the term slots refers to the internal time scheduling of the 

radio node, during which it performs its rendezvous operations.  For example, during each time 

slot, the radio may be in either a transmit mode (Tx), when it is actively sending out beacon 

messages; receive mode (Rx), when it is actively receiving or scanning for other beacons; or in 
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an idle mode, when it is essentially asleep to conserve energy.  In a fixed-slot system, all nodes 

in the system use slots of equal, fixed length.  In a variable-slot system, nodes use slots with 

unequal, variable lengths.   

5.3.7 Nodal Roles: Master-Slave or Ad-Hoc 

During the rendezvous process, systems can opt to assign two types of roles to individual 

nodes in the network.  In the Master-Slave configuration, a small fraction of the nodes is 

designated as masters, while the remainder is designated as slaves.  Masters typically initiate the 

rendezvous process by actively transmitting beacon messages.  Slaves typically scan, or 

passively monitor the spectrum, and they only respond when they receive a beacon message 

from a master.  In the Ad-Hoc configuration, all nodes have equal responsibility for transmitting 

and receiving beacons in the rendezvous process.  They essentially must perform all tasks 

normally associated with both master and slave nodes.   

5.3.8 Collision Avoidance: None or CSMA 

Rendezvous protocols can also be classified by the degree to which they attempt to 

prevent packet collisions when actively transmitting beacon and acknowledgement messages.  

Excessive packet collisions reduce the effectiveness of the discovery protocol and reduce energy 

efficiency through wasted transmissions.  Furthermore, excess packet collisions introduce undue 

interference into the operational frequency band, and in dynamic spectrum access scenarios, this 

may result in degraded performance for other primary users in that band.  Some rendezvous 

protocols have little or no provisions for collision avoidance.  This approach may be satisfactory 

if neighborhood sizes are small, the number of discovery channels is large, the nodes transmit 

beacons with a relatively low duty cycle, or the length of the rendezvous process is sufficiently 

long so as to account for any lost transmissions.  Other systems use a more active carrier-sense, 

multiple-access (CSMA) scheme to sense the channel for activity prior to transmitting beacon 

messages.  
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5.3.9 Stochastic Aspects: State, Frequency, Time, or None 

The majority of the rendezvous protocols reviewed rely on probabilistic strategies to 

accomplish rendezvous.  These tend to be more scalable than deterministic schemes for larger 

networks.  However, systems vary on which elements of the system are random.  First, many let 

the transmission state, e.g. transmit, receive, or sleep, be determined randomly via pre-

determined probabilities.  Second, if the system is multi-channel, some designers may let the 

operating channel for each rendezvous slot be determined randomly, or by a set of pseudo-

random sequences.  Third, other systems model their rendezvous scheme after Aloha, and 

transmit beacons at random times within a fixed frame structure.   

5.3.10 Applying to Related Work 

Applying these classifications to the related work discussed in Section 5.1 results in the 

Table 5.2.  The table allows us to determine trends and identify which aspects of Rendezvous 

need more research attention.  The key findings are: 

 

1. The foundational papers on rendezvous, such as McGlynn, Hamida, Borbash, focused only 

on the single channel instance.  This highlights the need for more multi-channel analysis, 

particularly since many real world systems, as well as upcoming cognitive radio systems, 

will require operation on multiple channels.   

 

2. Most rendezvous schemes are based on independent neighbor information collection, 

meaning that each node is responsible for scanning and building up its neighbor table.  This 

leaves open the possibility for future research in collaborative rendezvous, regardless of 

whether that uses a centralized or decentralized approach. 

 

3. The large majority of rendezvous algorithms currently available require at least some degree 

of time synchronization between the nodes in the networks.  In our opinion, this is a tenuous 

assumption that may be difficult or impossible to achieve in real systems.  This is further 

evidenced by the fact that one of best well known and successful wireless networking 
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systems, Bluetooth, is asynchronous.  More research and analysis is needed for alternate 

asynchronous strategies.   

 

4. Few systems have analyzed or experimentally tested varying-width rendezvous slots.  

Nearly every scheme assumes fixed slots of equal length, with the exception of Bluetooth, 

where the slave’s slots are M times the lengths of the master’s slot, where M is the number 

of hop frequencies uses in discovery.  This gap warrants more exploration.   

 

5. Most systems have aimed to be symmetric rather than asymmetric.  This is mostly like the 

appropriate trend, for ease of deployability and scalability.  Bluetooth uses asymmetric 

rendezvous, but authors frequently have cited this as a limitation, and many have suggested 

modifications to make the algorithm symmetric.   

 

6. Few rendezvous strategies use active collision avoidance schemes like CSMA or 

CSMA/CA. Instead, most allow collisions to occur, but assume that rendezvous will still 

succeed on average, with an expected duration. This opens the door to experimentally 

evaluating protocols that use active collision avoidance schemes to see if the performance 

increase is worth the carrier sensing and processing overhead.   

 

7. Last, most algorithms only use stochastic and probabilistic methods to configure the state of 

the node, i.e. transmit, receive, or sleep, as well as the current operating frequency.  

However, few have used probabilistic methods to vary the time positioning of the 

rendezvous beacons within their discovery slots.  This likewise warrants more research; 

however, we assert that designing a system using beacons with random time-offsets is 

equivalent to designing an asynchronous system.  Relaxing the requirement for time 

synchronization of rendezvous slots naturally results in random time-variation in the 

transmission and reception of beacons.   

 

In the remainder of this chapter , we address Area 1 and Areas 3 for more research in multi-

channel asynchronous, MAC rendezvous protocols.  We also experiment with using varying-
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width rendezvous slots.  We now detail the multi-channel, asynchronous problem, showing 

analytical models currently available.  
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Table 5.2. Applying Rendezvous Design Taxonomy to Related Works. 
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5.4 Problem Statement 
 

 In this section, we present the multi-channel, asynchronous problem, and develop an 

analytical model to predict its behavior.  For simplicity, our presentation assumes independent 

neighbor information collection, 1-way discovery direction, only beacon (BCN) messages, ad-

hoc roles (i.e. symmetric operation), with no active collision avoidance system enabled.  First, 

our strategy is to review the derivation of an analytic model for the single-channel problem, and 

then extend this to the multi-channel case.  Second, we take the synchronous cases and extend 

these solutions to the asynchronous cases.   

5.4.1 Single-Channel, Synchronous 

The single-channel, synchronous model here parallels that which is presented in 

McGlynn [48] and in the first half of  Borbash [64].  First, assume that we observe a Node X and 

compute the number of neighbor discoveries it makes with N-1 other nodes around it.  These 

other nodes are labeled Y1 through YN-1.  We assume each node can either be in transmit (Tx) 

mode with probability pT, or a receive mode (Rx) with probability pR=(1-pT) in any given 

rendezvous slot.  There are a total of S rendezvous time slots. We can view the states of Node X 

and the other Nodes Yi, at a given instance using a table, as shown in Figure 5.1.   

 
Node
X Tx, Ch1 Rx, Ch1 Tx, Ch1 Tx, Ch1 Rx, Ch1 Tx, Ch1 … …
Y1 Rx, Ch1 Rx, Ch1 Rx, Ch1 Rx, Ch1 Rx, Ch1 Rx, Ch1 … …
Y2 Rx, Ch1 Tx, Ch1 Rx, Ch1 Rx, Ch1 Rx, Ch1 Tx, Ch1 … …
Y3 Rx, Ch1 Rx, Ch1 Tx, Ch1 Rx, Ch1 Rx, Ch1 Rx, Ch1 … …
Y4 Tx, Ch1 Rx, Ch1 Tx, Ch1 Tx, Ch1 Rx, Ch1 Rx, Ch1 … …
… …
…
…
…
Y(N-1) Rx, Ch1 Rx, Ch1 Rx, Ch1 Rx, Ch1 Tx, Ch1 Tx, Ch1 … …
Time 1 2 3 4 5 6 … S  

Figure 5.1.  Node state information for the single channel, synchronous case. 
[M. Silvius’ Image from [69].  Used with permission, © 2009 IEEE.] 

 

Since this scheme uses a single broadcast channel, any time more than two nodes are in 

the Tx state in the same time slot (i.e. column), there will be a collision of beacon messages.  

Although real systems may still be able to receive beacon information if there is a significant 
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different in power levels between the transmitting nodes, for our analysis, we assume that the 

information will be corrupted and rendezvous will not occur.  Also, if we assume a 1-Way 

Discovery, the only way that Node X can find another node, is for it to be listening in the Rx 

state, with one, and only one other of the (N-1) Node Yi’s transmitting a beacon message in the 

Tx state.   

First, we let h equal the number of discoveries X hears in a given time slot.  A number of 

h values with their associated scenarios are given below in (1).   
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As we can see, the number of discoveries equals zero for the instances when no Yi are 

transmitting, when more than one Yi is transmitting, or when X is transmitting.  Next, we 

compute the expected number of discoveries per rendezvous slot, E(h).  This computation is set 

up in (2) 
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To compute this probability, remember that the number of nodes transmitting down a column of 

Figure 5.1 follows Binomial distribution, since it has a discrete probability distribution 

consisting of a series of N-1 independent events, each with a two states, transmit (Tx) and 

receive (Rx), and with fixed probabilities, pT and pR=(1-pT) respectively.  
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 Since we know from (1) that we can only make one discovery in any particular 

rendezvous slot, expression (3) also represents the probability that Node X finds any other Node 

Yi in a specific slot, or 

 { }( ) Pr  finds any  in a specific slotiE h X Y=  (4) 

As discussed in [64], since all nodes act identically, and due to the symmetry of problem, the 

probability that Node X finds a specific Node Yi is 1/(N-1) of this value, or  

 { }1
( )Pr  finds a specific  in a specific slot

1i
E hp X Y
N

= =
−

 (5) 

Now, the goal is to compute how many of Node Yi’s will be discovered by Node X 

during the duration of the rendezvous process across all S slots.  We start by computing the 

number of times, k, Node X successfully discovers a specific Node Yi.  This follows the 

Binomial distribution,  
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K k p p

k
−⎛ ⎞

= = −⎜ ⎟
⎝ ⎠

 (6) 

However, since S is typically large and the probability p1 is small, the Binomial distribution can 

be approximated using the Poison distribution,  
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where the average number of the successes in a specific time interval, α, is given by 
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The probability that a specific Yi is discovered in at least one of the slots is one minus the 

probability of not being found, or 
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As suggested in [64], one metric for the rendezvous process is the fraction of links discovered 

during its execution, or 

 
( )( ) d tF t E
z

⎧ ⎫= ⎨ ⎬
⎩ ⎭

 (10) 

where z is the total number of links available and d(t) are those links discovered during a 

duration of time, t.  In our case, z=(N-1).  Due to the symmetry of the problem, we can assume 

that the probability of finding a specific Node Yi is equal to finding any other Node Yj. 

Therefore, the total number of discovered links is 

 { } { }( ) ( 1) Pr  finds a specific  at least onceiE d t N X Y= − ⋅  (11) 

Substituting this back into (10), and assuming that each of the S slots has duration, T, we have, 

 
( )
1( ) 1

S E h
NF ST e
⋅⎡ ⎤−⎢ ⎥−⎣ ⎦= −  (12) 

Plotting expression (12) versus the number of nodes, N, leads to Figure 5.2.  The first two traces, 

when pT=0.10 and pT=0.14 are identical to the ones depicted in [64].  The last two are those with 

the higher transmit probabilities pT=0.25 and pT=0.50.  Note that these higher transmit 

probabilities work well only for small collections of nodes, e.g. N≤3 and N≤5 respectively.  
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Figure  5.2.  Fraction of undiscovered neighbor log10(1-F) versus the number of nodes, N, for the single-channel, 
synchronous case.  

 

Furthermore, we can compute the transmit probability, pT, that maximizes E(h), the 

probability that Node X finds a Node Yi within a specific slot by setting the first derivative of  

(3) and solving for pT. 

 ( )1( ) ( 1) (1 ) 0N
T T

T T
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which yields, 

 
1

Tp
N

=  (14) 

Therefore, the transmit probability that maximizing discovery is equal to one over the number of 

nodes, N, or if not known, the estimated number of nodes, N .  In Figure 5.2, we can see that the 

lowest fraction of remaining nodes is achieved when set pT=1/N.  This is shown by the bottom, 

innermost trace of tightest curvature. 
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5.4.2 Multi-Channel, Synchronous 

This multi-channel, synchronous case has setup similar to that described in Section A, but 

in this case, each node can be on one of M channels.  Rendezvous occurs when Node X is Rx 

mode on a channel, and only one other (N-1) Node Yi’s are in Tx on that same channel, as shown 

in Figure 5.3. 

 
Node
X Tx, Ch1 Rx, Ch2 Tx, Ch6 Tx, Ch2 Rx, ChM Tx, Ch8 … …
Y1 Rx, Ch2 Rx, Ch1 Rx, Ch8 Rx, Ch9 Rx, Ch3 Rx, Ch2 … …
Y2 Rx, Ch3 Tx, Ch2 Rx, ChM Rx, Ch3 Rx, Ch4 Tx, Ch6 … …
Y3 Rx, Ch4 Rx, Ch3 Tx, Ch7 Rx, Ch4 Rx, Ch7 Rx, Ch4 … …
Y4 Tx, Ch5 Rx, Ch5 Tx, Ch3 Tx, Ch8 Rx, Ch5 Rx, Ch5 … …
… …
…
…
…
Y(N-1) Rx, ChM Rx, Ch7 Rx, Ch2 Rx, Ch1 Tx, ChM Tx, Ch3 … …
Time 1 2 3 4 5 6 … S  

Figure  5.3.  Node state information for the multi-channel, synchronous case. 
[M. Silvius’ Image from [69].  Used with permission, © 2009 IEEE.] 

 

Again, we let h equal the number of discoveries X hears in a given time slot.  A number 

of h values with their associated scenarios are given below in (15).  
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Next, we compute the expected number of discoveries per rendezvous slot, E(h).  This 

computation is set up in (16) 
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To compute this probability, remember that the number of nodes transmitting on a channel down 

a column of Figure 5.3 follows Binomial distribution, with probabilities pT and pR, times the 

probability of residing on a specific channel m, or pM.  If we let, 

 { }i2 Y XPr ( )and (f ==f )ip Y Tx= ==  (17) 
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then, we have,  
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Simplifying yields the equation involving the number of nodes, N, the number of channels M, 

and the transmit probability of each node pT=(1-pR). 
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It is important to note, that when only one channel is used, i.e. M=1, expression (20) simplifies 

to expression (3), as would be expected.  Likewise, as in (5), 
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The remainder of the derivation follows exactly the same as in the single-channel case, with the 

end result being again that after S slots with duration, T, we have the expected number of 

discovered links being, 
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Using expression (22), we plot the excepted fraction of undiscovered links (i.e. one minus the 

expected discovered links), to produce Figure 5.4.  Unlike in Figure 5.2, where we plotted this 

fraction as a function of the number of nodes, here, we fix the nodes at N=4, and we vary the 

number of channels, M.  As expected the fraction of undiscovered nodes increases as the number 

of channels increase.  However, unlike in Figure 5.2, large transition probabilities, such as 
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pT=0.25 and pT=0.50, produce better results than lower probabilities, pT=0.10 and pT=0.14, for a 

given number of channels. 
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Figure  5.4.  Fraction of undiscovered neighbor log10(1-F) versus the number of channels, M, for four 
nodes (N=4), for the multi-channel, synchronous case. 

 

Furthermore, we can compute the optimum transmit probability, pT, that maximizes E(h), the 

probability that Node X finds a Node Yi within a specific slot and channel m by setting the first 

directive of (20) to zero and solving for pT.   

 
2

( ) 1 1( 1)(1 ) 1 0
N

T T T
T T

dE h d N p p p
dp dp M M

−⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞= − − − =⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭
 (23) 

yields, the expression, 

 

1/221 1 4( 1) ( 1) 2
2 2T

M M Np N N
N N N M M

⎧ ⎫⎪ ⎪⎡ ⎤= − + ± − + −⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭
 (24) 
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When M is large, the optimum transmit probability tends toward pT≈1/2, but when M is small, 

the optimum transmit probability tends toward pT≈1/N. 

At this point, it’s worthwhile to discuss other synchronous derivations and how they 

compare.  In particular, we consider the derivation of the multi-channel synchronous case in 

Balachandran [60].  In his derivation, he presents an expression for the probability of discovery 

between two nodes.  In a formula that resembles our expression for E(h) in (20), he states,  

 
{ }Pr  finds Y in a specific slot

2 (1 ) /d T R f

X
p p p I M= = −

 (25) 

where pT and pR are the transmit and receive probabilities of a specific node, and M is the 

number of discovery channels in use.  The factor of two is introduced, because Balachandran 

also assumes a 2-Way discovery strategy, since rendezvous success occurs regardless of which 

node originates and which receives the beacon message.  If is a quantity that addresses deferring 

transmission of beacons on channels occupied by primary users.  This expression holds only 

when Nodes X and Node Y are the only two nodes running the rendezvous protocol.  If 

neighborhood sizes increase beyond N>2, excessive collisions make this estimate overly 

optimistic.  Likewise, our initial attempts to use expression (25) to compute the rendezvous of 

entire neighbors of nodes, N>>2, did not address the degradation of collisions, and may be 

overly optimistic [6].  One possible way to solve this issue would be to include an active 

collision avoidance technique like CSMA or CSMA/CA. 

5.4.3 Multi-Channel, Asynchronous 

In this section, we consider the problem of rendezvous when neighboring nodes do not 

have time synchronization.  Most of the configuration information stated in Section 5.4.2 still 

applies.  We observe a Node X and compute the number of neighbor discoveries it makes with N 

other nodes around it.  These other nodes are labeled Y1 through YN-1.  We assume each node 

can either be in transmit (Tx) mode with probability pT, or a receive mode (Rx) with probability 

pR=(1- pT) in any give rendezvous slot.  Each can be in one of M channels, which are equally 

likely.  There are a total of S rendezvous time slots.  We can again view the states of Node X and 

the other Nodes Yi, at a given instance using a table, but this time, the alignment of the slots in 

time is random.  This is shown in Figure 5.5.  
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Node
X
Y1
Y2
Y3
Y4
…
…
…
…
Y(N-1)
Time

Tx, ChM Tx, Ch3 … …Rx, ChM Rx, Ch7 Rx, Ch2 Rx, Ch1

Rx, Ch5 Rx, Ch5 … …Tx, Ch5 Rx, Ch5 Tx, Ch3 Tx, Ch8
Rx, Ch7 Tx, Ch4 … …Rx, Ch4 Rx, Ch3 Tx, Ch7 Rx, Ch4

Rx, Ch4 Tx, Ch6 … …Rx, Ch3 Tx, Ch2 Rx, ChM Rx, Ch3
Rx, Ch3 Rx, Ch2 … …

Tx, Ch1 Rx, Ch2 Tx, Ch6 Tx, Ch2 Rx, ChM Tx, Ch8 … …
Rx, Ch2 Rx, Ch1

1 2 3 4 5 6 … S

Rx, Ch8 Rx, Ch9

 
Figure  5.5.  Node state information for the multi-channel, asynchronous case. 

 
 

Unlike in Figure 5.1, the difficulty in the rendezvous results not only from the random 

nature of the transmit/receive states and the operating frequency, but also the alignment in time.  

In the simple scenario shown above, rendezvous can also only occur if Node Yi’s time slot is 

correctly aligned with Node X.  Otherwise, part of the transmitting node’s beacon will be 

truncated when it arrives at Node X.  For example, if Node Yi leads Node X in time, the beacon 

packet’s headers may not be received, and if it lags, the payload and CRC error-check 

information will not be received.  Unless the design of a real system builds in some excess width, 

and sizes the slots a little larger than the actual beacon packet length, perfect alignment is 

difficult and improbable to achieve.  

To solve this problem, designers often configure the system to transmit or receive 

multiple-slots on the same frequency in a row.  For example, each slot is doubled or tripled back-

to-back.  This would look like the scenario in Figure 5.6. For example, if Node X had two 

receive slots in a row on a channel, it could start receiving a beacon message transmitted by 

Node Yi in the first slot, and successfully finish receiving the beacon in a second slot.  This 

loosens the requirement that slots have to be aligned for rendezvous to occur and improves 

discovery access. 
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Node
X
Y1
Y2
Y3
Y4
…
…
…
…
Y(N-1)
Time S

Tx, Ch8 Tx, Ch8

4 5 6 …

Rx, Ch6 Rx, Ch6

1 2 3

…
Rx, Ch7 Rx, Ch7

Rx, Ch4 …
Tx, Ch1 Tx, Ch1 Rx, Ch2 Rx, Ch2 Tx, Ch3 Tx, Ch3 … …

Rx, Ch4
Rx, Ch4 Rx, Ch4 … …

… …Tx, Ch5 Tx, Ch5 Tx, Ch8 Tx, Ch8
Tx, ChM Rx, Ch1 Rx, Ch1

Rx, Ch5
Rx, Ch9 Rx, Ch9

Rx, Ch5
… …

Tx, Ch2 Tx, Ch2 Tx, Ch3 Tx, Ch3 … …

Tx, ChM

Rx, Ch9 Rx, Ch9

Rx, ChM Rx, ChM

 
Figure 5.6.  Node state information for the multi-channel, asynchronous case with W=2 slot repetitions. 

[M. Silvius’ Image from [69].  Used with permission, © 2009 IEEE.] 
 
 
Borbash [64] uses this strategy when presenting a solution to the single-channel, 

asynchronous problem.  Here, he divides each main rendezvous slot into W minislots.  Each of 

the transmissions or receptions occurs W times in a row.  In this case, the total number of slots, S, 

now includes all minislots, and is given by,  

 
m m

t tS
WT WT
⎢ ⎥

= ≈⎢ ⎥
⎣ ⎦

 (26) 

Where t is the total duration of the rendezvous protocol’s execution, and Tm is the duration of a 

minislot.  In this case, Borbash [64] asserts that expression (22) still holds, given that (26) is 

substituted use for S, or  

 
( ) 1

1( ) 1 m

t E h
T W NF t e
⎡ ⎤

− ⋅ ⋅⎢ ⎥−⎣ ⎦= −  (27) 

The challenge now is to compute E(h) appropriately for the asynchronous slot alignment.  

Borbash does a very thorough job of this is in [64] for the single-channel case.  Our goal now is 

to determine E(h) for the multi-channel, asynchronous case.  We opt not to derive a new 

mathematical expression due to the complexity.  Instead, in the remainder of this chapter, we 

measure E(h) through the use of laboratory experiments  

At this point, it’s worthwhile to discuss how other asynchronous systems handle this 

scenario.  One of the best known multi-channel, asynchronous systems now in use is Bluetooth.  

Bluetooth also uses slot repetitions to increase the probability of successful rendezvous.  

However, unlike in Borbash’s model, where all nodes use W repetitions for both transmit and 
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receive states, Bluetooth uses only repetitions for the receive state.  In this case, Bluetooth nodes 

in the receive mode, repeat their receive slot on a specific channel WR=M times before hopping 

to the next channel.  M is the number of channels used for rendezvous.  On the other hand, 

Bluetooth nodes in the transmit state, only repeat their transmit slot WT=1 time, before hopping 

to the next channel.  This maximizes the probability that the Bluetooth node in the receive state 

successfully intercepts a beacon message from another transmitting node, since transmitting 

nodes are guaranteed to sweep through the receiving nodes operating channel at least once per 

cycle [54-56].   

Note that in Bluetooth, the roles of the rendezvous process are divided asymmetrically 

among Slaves and Masters.  Slaves generally remain in the receive state, except when 

transmitting an acknowledgment message back to a Master.  Masters generally remain in the 

transmit state, except when pausing to listening for an acknowledgement message from a Slave 

after each beacon transmission.  As mentioned earlier, authors such as Salonidis [57, 58] have 

suggested modification strategies to overcome these limitations and allow nodes to operate in a 

symmetric fashion.   

5.5 Experiment  

 In this section, we determined the number of expected discoveries, E(h), for the multi-

channel, asynchronous case through experiments on a four node laboratory testbed.  This 

allowed us to generate tables with empirically based values for E(h) for permutations of the 

design parameters M, W, and pT, with N=4.  These experiments also allowed us to determine 

which values maximized the performance for a given configuration.  We used N=4 here, because 

this was the size of the CWT Smart Radio testbed described in Chapter 4.   

5.5.1 Setup 

All experiments were conducted using the four node cognitive radio network testbed 

using asynchronous timing, shown in Figure 5.7.  Nodes were setup on a laboratory bench in 

linear fashion with separations between 5-10 feet.  Each node consists of a Dell desktop or laptop 

computer running Ubuntu 7.10 Linux, in combination with GNU Radio 3.1 [8] and an Universal 

Software Radio Peripheral (USRP) [9].  Table 5.3 summarizes the PHY layer configuration 
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variables used in conjunction with the MAC rendezvous parameters.  We used USRP 

daughterboards designed for the 400 MHz frequency band, and we assigned 100 KHz wide 

channels.  We also used GMSK modulation with a bitrate of 100 kbit/s.  Experiment 

configuration and control was accomplished via a backbone Ethernet network, connected to each 

test node.  The experiments focused on independent neighbor information collection with node X 

collecting statistics on the arrival and decoding of rendezvous beacons from nodes Y1, Y2, and 

Y3.   
Table 5.3.  Experiment Configuration Settings 

[M. Silvius’ Table from [69].  Used with permission, © 2009 IEEE.] 
Variable Value 

Number of Nodes, N 4 

Run Time, tx 25s 

Band 400 Mhz 

Channels 100 KHz 

Modulation GMSK 

Bit Rate 100 kbits/s 

Beacon Message Size 1024 bytes 

 
 
 

 

Figure 5.7.  Detailed architecture of the network testbed. 
[M. Silvius’ Image adapted from [69].  Used with permission, © 2009 IEEE.] 
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5.5.2 Procedure 

 We began by starting up node X and nodes Y1, Y2, and Y3 using the Ethernet control 

network.  We then executed a test script which iterated over the range of design parameters, M, 

W, and pT.  Each experiment lasted t=25s, and started every half-minute.  For each combination 

of parameters, we averaged the results of 10 experiments.  We first iterated over the transmit 

probabilities pT=[0.1, 0.2, 0.3, 0.4, 0.5], then the number of channels M=[1, 2, 5, 10, 20, 35, 50], 

and finally, the slot repetition factor W=[1, 2, 5, 10, 15, 20], for a total of 2100 experiments.  We 

counted the number of beacon messages that node X successfully received from nodes Y1, Y2, 

and Y3 and divided this by S to approximate E(h).  Remember that the number of slots is given 

by S≈(t/WTM), and S decreases as repetition factor increases.  The optimum transmit probability, 

pT, which produced the largest E(h)/W was recorded in Table 5.4, with the corresponding values 

of E(h)/W and E(h) recorded in Table 5.5 and Table 5.6 respectively .  Note that in case where 

W>1, the expected number of discoveries per slot, E(h), could be greater than one.  By dividing 

the probability of detection by E(h) by the slot repetition factor, W, and selecting the largest 

quotient, we determined the optimum W for a given value of M.  This value is highlighted in 

Table 5.5.  The quantity, E(h)/W, can be thought of as the expected number of times node X 

finds any other node Y in a given minislot, which we would also like to maximize through the 

optimum selection of W.  The corresponding values of pT and E(h) for the optimum value of W 

were then highlighted in Tables 5.4 and Table 5.6.  Last, we recorded the first time node X finds 

another node Yi, and displayed the results for the run with these optimum parameter settings in 

Table 5.7. 

 
Table 5.4.  Optimum transmit probability, pT, for a given value of W and M. 
[M. Silvius’ Table from [69].  Used with permission, © 2009 IEEE.] 

W=1 W=2 W=5 W=10 W=15 W=20
1 0.1 0.2 0.2 0.2 0.2 0.2
2 0.0 0.1 0.3 0.2 0.2 0.2
5 0.0 0.1 0.3 0.3 0.3 0.3
10 0.0 0.3 0.3 0.3 0.4 0.3
20 0.0 0.1 0.3 0.3 0.4 0.3
35 0.0 0.2 0.3 0.2 0.4 0.3
50 0.0 0.3 0.4 0.1 0.4 0.2

pT_optimum in {0.1, 0.2, 0.3, 0.4, 0.5} for N=4

M=
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Table 5.5.  Expected number of discovered per minislot, E(h)/W, for a 
given combination of pT, W, and M.  Largest value of E(h)/W for a given 
channel, M, (i.e. largest value in a given row) is highlighted here, and used 
to identify the corresponding tables entries containing the optimum 
parameters in Table 5.4 and resulting expected number of discoveries, E(h), 
in Table 5.5. 

W=1 W=2 W=5 W=10 W=15 W=20
1 0.0003 0.0549 0.1409 0.1815 0.2329 0.2803
2 0.0000 0.0199 0.0544 0.1098 0.1609 0.2148
5 0.0000 0.0085 0.0358 0.0500 0.0804 0.1007
10 0.0000 0.0045 0.0237 0.0403 0.0635 0.0502
20 0.0000 0.0037 0.0119 0.0227 0.0284 0.0370
35 0.0000 0.0030 0.0059 0.0108 0.0154 0.0249
50 0.0000 0.0015 0.0056 0.0083 0.0144 0.0114

M=

Eh/W(pT_optimum,M,N=4)

 
 
 

Table 5.6.  Expected number of discovered per slot, E(h), for a given 
combination of pT, W, and M.  [M. Silvius’ Table from [69].  Used with 
permission, © 2009 IEEE.] 

W=1 W=2 W=5 W=10 W=15 W=20
1 0.0003 0.1097 0.7047 1.8145 3.4933 5.6053
2 0.0000 0.0398 0.2718 1.0977 2.4140 4.2951
5 0.0000 0.0171 0.1788 0.4997 1.2067 2.0135
10 0.0000 0.0090 0.1183 0.4029 0.9518 1.0033
20 0.0000 0.0074 0.0596 0.2275 0.4266 0.7393
35 0.0000 0.0060 0.0296 0.1085 0.2306 0.4985
50 0.0000 0.0031 0.0281 0.0828 0.2161 0.2286

Eh(pT_optimum,M,N=4)

M=

 
 
 

Table 5.7.  Average time to discover various fractions of available links per 
the number of channels, using the identified optimum pT and W values from 
Table 5.4.  A value of 25s indicated that the link was not found during the 
experiments.  [M. Silvius’ Table from [69].  Used with permission, © 2009 
IEEE.] 

1/3 Links 2/3 Links 3/3 Links
1 2.3445 7.3102 12.4989
2 2.1974 5.6615 13.8959
5 3.0547 12.9175 21.2930
10 4.2382 10.1417 21.8081
20 11.6389 18.9586 25.0000
35 11.7182 22.9695 25.0000
50 18.3236 21.2095 25.0000

Ave. Discovery Time in Seconds, N=4, t=25s

M=

 
 

In a subsequent experiment, we conduct additional investigation of the asynchronous 

case, in order to compare to the theoretical results presented by Borbash in [64].  The procedure 

is identical as before, except that we fix the number of channels to M=1, and we varied the 

number of nodes, N, operating in simultaneously in the testbed of Figure 5.7 over N=[2, 3, 4].  



  87

We also use smaller step sizes for the transmit probability for greater resolution, pT=[0.05, 0.10, 

0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50], and we varied the number of slot repetitions over 

W=[1, 2, 3, 4, 5].  Like before, we list the optimum transmit probability, pT, for a given 

combination of N and W in Table 5.8.  We compute and list the corresponding values of E(h)/W 

and E(h) in Table 5.9 and Table 5.10 respectively.  The largest E(h)/W value is highlighted in 

Table 5.9, and this table cell location is used to identify the optimum transmit probability, pT, and 

slot repetition faction, W, in Table 5.8  The corresponding E(h) value for these optimum 

parameters is listed in Table 5.10.  The results of this experiment are compared against 

Borbash’s theoretical results in Table 5.11. 

 
Table 5.8.  Optimum transmit probability, pT, for a given value of W and N 
single channel, M=1. 

W=1 W=2 W=3 W=4 W=5
2 0.00 0.25 0.35 0.35 0.25
3 0.15 0.25 0.15 0.15 0.25
4 0.15 0.15 0.20 0.20 0.15

N=

pT_optimum in {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5} for M=1, N

 
 

Table 5.9.  Expected number of discovered per minislot, E(h)/W, for a given 
combination of pT, W, and N for single channel, M=1. 

W=1 W=2 W=3 W=4 W=5
2 0.0000 0.0388 0.0625 0.0781 0.1061
3 0.0004 0.0408 0.0885 0.1017 0.1315
4 0.0004 0.0490 0.0724 0.1092 0.1328

N=

Eh/W(pT_optimum,M=1,N)

 
 

Table 5.10  Expected number of discovered per slot, E(h), for a given combination 
of pT, W, and N for single channel, M=1. 

W=1 W=2 W=3 W=4 W=5
2 0.0000 0.0776 0.1874 0.3124 0.5307
3 0.0004 0.0815 0.2655 0.4067 0.6577
4 0.0004 0.0981 0.2173 0.4367 0.6642

N=

Eh(pT_optimum,M=1,N)

 
 

Table 5.11  Comparison of my results (experimental) to that of Borbash (theoretical). 

N W pT_optimum E(h) W pT_optimum E(h)
2 5 0.25 0.5307 2 0.423 0.385
3 5 0.25 0.6577 2 0.261 0.434
4 5 0.15 0.6642 2 0.189 0.454

Silvius (experimental) Borbash (theoretical)
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5.5.3 Results 
 

The results of the experiments were presented in Tables 5.4-5.6.  A few general trends 

can be seen on inspection.  First, proceeding vertically downward on Table 5.6, we can see that 

the expected number of discoveries per slot, E(h), decreased as the number of channels in use, M, 

increased, as predicted.  However, the transmit probability, pT, required for optimum 

performance tended to increase as M increased, though not in all cases.  It is informative to note 

that rendezvous did not occur for the multi-channel cases with no slot repetitions (W=1, M>1), 

for any value of transmit probability, pT, for the reasons discussed in Section 5.4.3.  Second, 

proceeding horizontally across Table 5.6, we can see that increasing the repetition factor, W, in 

every instance, increased the number of expected discoveries.  This occurred even though doing 

so decreased the total number of slots, S, used during the rendezvous process.  Third, Table 5.7 

shows that the time necessary to establish a given fraction of links during each run generally 

increased as the number of channels increased.  The results of Tables 5.4-5.6 can be plotted.  

Figures 5.8-5.21 show these results for M=[1, 2, 5, 10, 20, 35, 50].  The maximum peak value for 

the set of traces in each figure correspond to the highlighted optimum values identified in Tables 

5.4-5.6. 

The results of the subsequent single-channel experiments were presented in Tables 5.8-

5.11.  Graphical plots of this data are also shown in Figures 5.22-5.23.  My determined values of 

E(h) tended to be larger than those predicted by Borbash.  I believe that this is due to practical 

limitations of the underlying GNU Radio and USRP SDR architecture used in the smart radio 

nodes of the testbed in Figure 5.7.  Higher E(h) may be due to the systems correctly receiving 

beacon messages, even during what should be considered collision conditions.  One possibility is 

that there may have been sufficient differences in USRP powers in transmitting nodes for the 

receiver to discriminate one of them over the others.  Or, another possibility is that due to clock 

time errors, the slot widths for transmitting and receiving of beacons may not have been equal.  

For example, the receive slots might have actually been longer than transmit slots, allowing for 

more beacons to be received in each receive slot than theoretically predicted.  
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Figure 5.8.  Multi-Channel, Asynchronous, Experimental Results, M=1. 
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Figure 5.9.  Multi-Channel, Asynchronous, Experimental Results, M=1. 
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Figure 5.10.  Multi-Channel, Asynchronous, Experimental Results, M=2 
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Figure 5.11.  Multi-Channel, Asynchronous, Experimental Results, M=2 
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Figure 5.12.  Multi-Channel, Asynchronous, Experimental Results, M=5. 
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Figure 5.13.  Multi-Channel, Asynchronous, Experimental Results, M=5. 
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Figure 5.14.  Multi-Channel, Asynchronous, Experimental Results, M=10. 
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Figure 5.15.  Multi-Channel, Asynchronous, Experimental Results, M=10. 
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Figure 5.16.  Multi-Channel, Asynchronous, Experimental Results, M=20. 
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Figure 5.17.  Multi-Channel, Asynchronous, Experimental Results, M=20. 
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Figure 5.18.  Multi-Channel, Asynchronous, Experimental Results, M=35. 
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Figure 5.19.  Multi-Channel, Asynchronous, Experimental Results, M=35. 
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Figure 5.20.  Multi-Channel, Asynchronous, Experimental Results, M=50. 
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Figure 5.21.  Multi-Channel, Asynchronous, Experimental Results, M=50. 

 
 



  96

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Single-Channel, Asychronous Rendezvous (M=1)

Channels, N

O
pt

im
um

 tr
an

sm
it 

pr
ob

ab
ili

ty
, p

T_o
pt

im
um

 

 
Borbash (theoretical)

Silvius (experimental)

 
Figure 5.22  Comparison of my optimum transmit probability results, 

 Silvius (experimental) to that of Borbash (theoretical). 
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Figure 5.23  Comparison of my expected number of discoveries results, 

Silvius (experimental) to that of Borbash (theoretical). 
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5.6 Conclusions 

 The use of an experimental testbed enabled us to estimate the optimum operating 

parameters for the multi-channel, asynchronous rendezvous problem for a four node 

neighborhood.  The results demonstrated the feasibility of building and testing a rendezvous 

protocol in a prototype system and offered a starting point for optimum parameter selection for 

future simulation and experimentation.   
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Chapter 6 

Channel Change Protocol 

 This chapter describes the development of the Channel Change protocol (CCP), a 

dynamic spectrum access protocol developed for the CWT Smart Radio communication 

platform.  The protocol enables the smart radio to detect the return of legacy analog family radio 

service (FRS) and smart radio primary users, and to orchestrate the change-channel procedures 

to an alternate, vacant block of spectrum.  In this way, the CCP allows primary users and 

secondary users to co-exist in the same frequency band without interference as shown in Figure 

6.1.  CWT originally designed the CCP specifically to meet the requirements of the public safety 

earthquake response scenario for SDR Forum’s Smart Radio Challenge 2007, as described in 

Chapter 2; however, the CCP was also incorporated into the CWT Smart Radio 2008 

architecture, as detailed in Chapter 3.  This chapter uses OMNeT++ simulations, as well as 

experiments on the Smart Radio Network Testbed from Chapter 4 to evaluate the protocol’s 

performance. 

 

 
Figure 6.1.  Testing two secondary users and a single primary user node. 

[M. Silvius’ Image from [6].  Used with permission, © 2008 SPIE.] 
 

 The remainder of the chapter is organized as follows.  Section 6.1 reviews the problem 

scenario that motivated the development of the CCP.  Section 6.2 summarizes the contributions 

of this chapter.  Section 6.3 reviews previous MAC designs in the literature and explains how 

CWT incorporated aspects of these features into the design of the CCP.  Section 6.4 explains, in 

depth, the design and conceptual operation of the CCP.  Section 6.5 explains the used to evaluate 
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the CCP.  Section 6.6 and Section 6.7 detail the setup and the results of OMeT++ simulations to 

evaluate the performance of the CCP.  Section 6.8 and Section 6.9 summarize the setup and 

results of laboratory experiments to also evaluate its performance.  Section 6.11 compares the 

results of the simulations and the experiments, and Section 6.11 discusses an additional 

experiment to evaluate the stability of the experimental results. 

 
6.1 Problem Statement 
 

White space studies highlight the underutilization of the frequency spectrum and 

emphasize the utility of dynamic spectrum sharing communication systems [70].  Here, 

secondary users operating in this scenario would need to detect the presence of an actively 

transmitting analog or digital radio, and immediately vacate the channel, resuming operation on a 

different unoccupied channel.  An existing, fixed wireless data communications system, such as 

802.11 WiFi, would be a poor choice for a secondary user system.  Currently, this system does 

not fulfill the necessary sensing and adaptability requirements.  This popular wireless LAN 

technology has little provision to continually sense the channel for primary users, or to adapt and 

reconfigure itself to use to an alternate channel when the primary user appears.  As a result, its 

data communications would be corrupted from the interference from the primary user, in same 

way it would corrupt the voice/data communications of other primary users with its interference. 

In an experiment, we demonstrated how 802.11 WiFi is degraded by other wireless 

communications waveforms.  In this mock scenario, WiFi had a noticeable decrease in QoS, 

even with a single burst of data from a primary user transmitting a GMSK waveform, as shown 

in Figure 6.2.  Here, the goodput of the WiFi link drops to zero during the duration of the 

primary user’s transmission.  The large spike at t=40 represents the rapid transmission of packets 

that had been buffered during the period that the goodput was zero.  Likewise, the primary user’s 

QoS would be degraded by the presence of the WiFi user’s signal.  To address this issue, we 

present a straightforward and flexible primary user avoidance technique—the Smart Radio 

Channel Change Protocol (CCP).  This protocol could be retrofitted in an existing wireless LAN 

technology like 802.11 WiFi, or be readily implemented in a software defined radio (SDR) based 

cognitive radio.  This radio access protocol allows a secondary user to avoid the interference 

generated by competing legacy analog and digital primary user radios in the environment, so as 

to improve overall user QoS.  We apply our initial prototype to the problem of co-existence 



  100

between digital cognitive radios and analog and digital radios in a wireless communication 

network.  This chapter builds on CWT’s recent efforts in cognitive radio and dynamic spectrum 

access systems [5, 6, 24, 71, 72]. 
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Figure 6.2. A 802.11 WiFi secondary user’ UDP goodput is degraded during
the transmission of a primary user with a GMSK waveform, between t=30s to
t=40s.  The large spike at t=40 represents the rapid transmission of packets
that had been buffered during the period that the goodput was zero. 
[M. Silvius’ Image from [72].  Used with permission, © 2009 IEEE.] 

 
 
6.2 Contributions 
 

The primary contribution in this chapter is the Channel Change protocol.  The CCP is a 

spectrum sharing, dynamic spectrum access protocol which enables a secondary smart radio to 

share spectrum with other primary users in the band.  It also allows a network of secondary users 

to co-exist in the same band as a network of primary users, reducing the interference between the 

users and improving the resulting network QoS.  One of the significant advantages of the CCP is 

that it is a straightforward and flexible primary avoidance technique, which could be retrofitted 

in an wireless LAN technology like 802.11 WiFi, or be readily implemented in a SDR-based 

cognitive radio.  In this chapter, we also demonstrate the performance our protocol by 

implementing the CCP in the CWT Smart Radio, built on the GNU Radio and USRP foundation.  
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This chapter also contributes by presenting QoS measurements on the effectiveness of the CCP 

using both OMNeT++ simulations and laboratory experiments in the CWT Smart Radio 

Network Testbed.  Both sets of results complement each other and show that the use of the CCP 

in mixed primary and secondary user scenarios leads to an increased goodput and reduced jitter, 

packet loss, and latency over scenarios not using the CCP. 

 
6.3 Previous Work 
 

The CCP-equipped smart radio parallels related developments in multi-channel wireless 

network systems with its ability to rapidly change its operating frequency in response to dynamic 

interference conditions.  However, the CCP provides a significant advantage over these other 

systems’ frequency management schemes in terms of design simplicity and implementation.  The 

CCP could be paired with any smart radio system’s MAC layer, given that it is based on the 

carrier-sense multiple access (CSMA) approach.  The CCP provides a quick and inexpensive 

means of incorporating spectrum sensing dynamic spectrum access capabilities, requiring few 

modifications to the existing subsystems.  

In its operation, the CCP, in combination with the underlying MAC protocol, shares 

many commonalities with legacy MAC layer designs, as well as recent dynamic spectrum 

extensions.  As a starting point, this chapter reviews the operation of the 802.11 wireless and the 

hybrid GNU Radio MAC designs, and discuss the modifications required of these to implement 

CCP.  It also reviews similar recent developments in multi-channel MAC schemes from 

literature.  These multi-channel schemes use links of multiple channels in order to maximize 

network capacity as well as to dynamically avoid interference from other non-cooperative nodes.  

They are also very similar to frequency-hopped spread-spectrum schemes, which include 

systems such as Bluetooth and associated Slotted Seeded Channel Hopping (SSCH) [73].  In 

addition, recent Bluetooth improvements allow for the dynamic adaptation of the pseudo-random 

hop sequences in response to changing interference conditions in a way that minimizes 

interferences and maximizes throughput. 

 
6.3.1 GNU Radio 
 

GNU Radio is a free software toolkit for building software radios [8].  It is designed to 

run on a general purpose processor, i.e. desktop and laptop computers.  Combined with minimal 
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hardware, GNU Radio allows the construction of simple software radios.  By introducing signal 

processing blocks, GNU Radio turns a typical hardware problem into a software problem.  Each 

block functions in a single signal processing task, such as I/O operation, modulation, 

demodulation, filtering and so on, so that GNU Radio offers the ability to create radios that 

change on the fly. 

GNU radio provides a library that contains many commonly used signal processing 

blocks.  New blocks can be added as needed.  A radio is built by connecting the blocks to form a 

flowgraph, which is a fundamental concept in GNU Radio.  Figure 6.3 shows an example of 

flowgraph.  The rectangles are GNU Radio blocks and the arrows show data streams.  
 

 
 

Figure 6.3.  An example of a GNU Radio flowgraph. 
[Y. Shi’s Image.  Used with permission of Y. Shi.] 

 
 

The Universal Software Radio Peripheral (USRP) [9] is an hardware board which 

incorporates analog-to-digital/digital-to-analog converters (ADC/DACs) and a field-

programmable gate array (FPGA) which performs the computationally expensive pre-processing 

of the input signal [74, 75].  The USRP is a very flexible USB device that is well suited as a RF 

end for GNU Radio.  

6.3.2 GNU Radio’s MAC 

CWT used GNU Radio in its implementation of its CWT Smart Radio, and we will 

likewise use the GNU Radio MAC layer as a model for the simulations in this chapter, with the 

goal of better understanding its current capabilities.  However, we recognize that the GNU Radio 

MAC layer suffers from a number of limitations.  We will summarize these limitations in further 

detail in this section.  CWT is actively working to improve the GNU Radio MAC layer for future 

releases of the smart radio.  For now, we have coded our OMNeT++ simulations to accurately 

mirror the current smart radio implementation with the goal of understanding and improving the 

overall smart radio system’s design.   



  103

GNU Radio gives much flexibility to the design, implementation, and reconfiguration of 

radios.  However, due to some of inherent features, implementing a Carrier Sense Multiple 

Access with Collision Avoidance (CSMA/CA) MAC protocol has several challenges.  GNU 

Radio was originally designed to support signal processing on a continuous data stream, instead 

of processing discrete packets or frames.  The fundamental concept of flowgraph in GNU Radio 

is based on this streaming-centric design mechanism.  GNU Radio uses a scheduler, which is 

implemented as a single thread, to execute processing blocks sequentially in the flowgraph.  

However, a true CSMA/CA MAC requires more complex controls on the scheduling of actions.  

In GNU Radio, a radio is built by setting-up two independent paths, a transmit path and a receive 

path.  CSMA/CA needs to coordinate between transmit and receive, and unfortunately, GNU 

Radio cannot build the two paths in one flowgraph.  Another concern is the latency introduced 

by the GNU Radio/USRP platform.  For a typical CSMA/CA MAC layer, the required 

turnaround time is usually on the degree of tens of microseconds, or at most, one hundred 

microseconds.  According to the study of [76], the minimum receive latency through USRP 

hardware, USB port and GNU Radio processing is 600 microseconds and the minimum transmit 

latency is 200 microseconds for burst data, given that both use general purpose hardware and 

simple signal processing.  

Future versions of GNU Radio may address these issues better.  Nevertheless, how to 

design an appropriate MAC layer with GNU radio for packet-based network is an open problem.  

Note that the challenges of implementing an efficient CSMA/CA MAC protocol not only lie in 

GNU Radio, but also all other software defined radio platforms. 

6.3.3 The IEEE 802.11 MAC 

The IEEE 802.11 MAC protocol employs CSMA/CA based on an exponentially 

increasing random backoff strategy.  Access to the wireless medium is controlled by 

coordination functions.  It first checks to see that the medium is clear before transmitting.  To 

avoid collisions, network hosts use a random backoff after each frame, with the first transmitter 

seizing the channel.   

Data communication can be preceded by an exchange of control packets, such as request-

to-send (RTS) or a clear-to-send (CTS).  When a source S wants to transmit to a destination D, it 

first senses the local channel with physical carrier sensing.  If the channel is busy, it backs-off 



  104

using an exponentially increasing backoff window algorithm.  Otherwise, if the channel is idle 

for more than a Distributed Coordination Function, Inter-Frame Space (DIFS), the source 

transmits an RTS control message to the destination.  If the local channel around D is free, D 

replies with a CTS message.  After this exchange, data packets can be transmitted from S to D, 

and an ACK packet transmission from D to S follows.  If the channel around D is busy, S times-

out waiting for the CTS message and it retransmits the RTS packet. 

Both RTS and CTS packets contain the duration of upcoming transmissions.  Nodes 

located in the vicinity of communicating pairs overhear one or both of these control messages 

and must defer transmission for this proposed duration.  This is called virtual carrier sensing 

which is performed in addition to the physical carrier sensing mentioned earlier.  It is 

implemented by means of the Network Allocation Vector (NAV).  A node updates the value of 

its NAV whenever it hears an RTS or CTS packets.  Thus the nodes lying within the 

transmission range of the transmitter or the receiver have multiple chances to update the channel 

condition.   

The CSMA/CA MAC protocol uses a backoff interval to resolve channel contention.  

When a node needs to transmit data or control frames, it senses the local medium.  If the medium 

is busy, the node will defer transmission until the medium is free for DIFS.  

After DIFS, if the node’s current backoff value is zero, the node will choose a random 

backoff time and then transmit packets.  In mathematical terms, 

 Backoff time = Random() × slot time  (28) 

where Random() is a random integer in the range [0, cw] and cw represents the contention 

window which varies between cwmin and cwmax.  Both depend on PHY layer parameters. 

After the sender chooses a backoff time, it will decrement its backoff counter by one after 

every idle slot time.  The sender transmits its packet once the counter reaches zero.  If collision 

happens, the sender increases its cw exponentially, and chooses a new random number from the 

new window range and then tries to retransmit.  The contention window size doubles after every 

collision until it reaches a maximum threshold, cwmax, and cw will remain at this value until it is 

reset.  In the backoff stage, if a node senses the channel is busy, it freezes its backoff counter.  

When the channel becomes idle for DIFS, the counter resumes counting down from its frozen 

value.  The contention window size is always one less than a power of two. 
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6.3.4 Multi-Channel and Frequency-Hopped MACs 

 The CCP-equipped smart radio parallels related developments in multi-channel wireless 

network systems with its ability to rapidly change its operating frequency in response to dynamic 

interference conditions.  The system’s design involves the combination of the best aspects of 

other multi-channel MAC systems. 

The overall goal of multi-channel MAC designs is to use multiple-channel links to 

improve overall network capacity.  Multiple channels may be achieved through the use of 

multiple dedicated radio interfaces operating in parallel, or through a single radio interface, 

approximating the operation of multiple interfaces through a pre-determined switching schedule.  

The trade-off in each design is the improved capacity at the expense of the level of complexity 

required to manage such a network.  More specifically, improved capacity may be interpreted as 

improved goodput and as reduced latency and lower packet loss. 

One approach to grouping the various MAC layer designs, is to classify each by the 

strategy it uses to establish its control channel(s) [77].  A control channel is the logical channel 

used by the nodes in the radio network to exchange configuration information or control frames.  

This configuration information could include, but is not limited to channel allocation, routing or 

topology information.  In single channel MAC, all of the control frames must flow over the same 

link as the convention data frames.  This can happen on a random or as-needed basis, or by a 

specific time schedule.  For example, in a Time Division Multiple Access (TDMA) system, there 

is a very specific frame schedule where control frames, as well as data frames from each user, 

are sent in pre-coordinated time slots.  In multi-channel MAC systems, the radio nodes now have 

much more flexibility on how to organize their logical control channels.  They may be on a 

dedicated frequency-channel on one radio interface, or spread out over multiple frequency-

channels over multiple radio interfaces.  On any particular link, they may happen in a random or 

as-needed basis, or in a pre-coordinated scheduled time.   

Control channels can also be Single Rendezvous, meaning there is only one logical 

channel being used at any one time to exchange configuration information; or Parallel 

Rendezvous, where there can be multiple logical control channels operating simultaneously at 

any given time [77].  In [77], Mo also defines four main categories of multi-channel MACs, to 

include Dedicated Control Channel like [78], Common Hopping, Split Phase like MMAC [79] 
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and Multi-channel Access Protocol (MAP) [80], and Parallel Rendezvous like SSCH [73]. 

Another type of multi-channel MAC systems is a traditional frequency hopped spread-

spectrum system (FH-SS) like Bluetooth. [41, 54, 81].  Here, the system uses one radio interface 

and all nodes hop among all the available frequencies allotted to the system.  A logical channel is 

determined by the specific hopping sequence used by one or more nodes.  Bluetooth nodes in a 

direct master-slave relationship are in the same personal area network (PAN), and are all 

synchronized to the same pseudorandom hopping sequence.  

 
6.3.5 Comparisons and Advantages of the CCP 
 

This CCP-equipped smart radio’s design incorporates many of the relevant features from 

previously introduced multi-channel MACs.  First, unlike the frequency hopping systems 

discussed in [77], the CCP-equipped smart radio does not require strict global time 

synchronization.  Primary user detection and channel-switching can occur on a localized basis in 

response to interference.  This provides greater tolerance to timing delays.  Despite the channel 

switching synchronization and delay, the requirements are not as severe as in a TDMA or 

frequency-hopped system.  Second, it does not require a fixed common control channel.  Control 

information is transmitted over the same link as data traffic.  This alleviates the control channel 

bottleneck problem that is found in dedicated control channel systems.  This chapter assumes 

that the initial combined control/data link waveform is either known or determined at the start of 

the network.  For instance, a rendezvous protocol [6, 7] would enable smart radio nodes to find 

and identify all of their neighbors in the network.  Third, unlike many multi-channel systems, a 

smart radio using the CCP can operate with a single radio interface, avoiding the complex 

overhead of multiple interfaces.  This is possible due to CCP’s primary focus on in-band 

monitoring for incumbent radios, with only occasional pauses to monitor for out-of-band 

incumbents.  Moreover, the out-of-band spectrum scanning can occur on a centralized basis, on a 

dedicated spectrum scanning node, not located within the data node.  This reduces the 

complexity and delay which can be an issue with the spectrum scanning routines needed for 

other dynamic spectrum access protocols and systems.  Fourth, the protocol can be easily ported 

to any existing 802.11 hardware, and the CCP could be paired with any smart radio system’s 

MAC layer, given that it is based on the CSMA approach.  The CCP provides a quick and 

inexpensive means of incorporating spectrum sensing dynamic spectrum access capabilities, 
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requiring few modifications to the existing subsystems.  Fifth, except for the channel switch 

initiated immediately after a primary user is detected, the majority of the time the CCP enabled 

radio remains on a single channel.  Unlike in frequency-hopping systems, the CCP strategy 

minimizes the switching delay by changing to a new operating channel, which can be a 

significant limitation in such systems as SSCH.  Also, since the fallback channels are pre-

determined and pre-negotiated before the occurrence of the interference condition with the 

establishment and dissemination of a fallback dictionary, the CCP eliminates the delays 

associated with channel negotiation during switching.  This eliminates the mass transmission of 

new time-critical waveform negotiation messages which can clog up a control or data channel.  A 

priori fallback channel negotiation and dissemination can then occur more gradually and with 

less bandwidth.  Sixth, the CCP focuses on the concept of interference mitigation to/from the 

primary user, and less on cooperation or coordination.  This simplifies the problem by not 

requiring complicated network etiquette protocols as discussed in [82, 83].  When the primary 

user is detected, the CCP does not expend effort by trying to classify the signal or to negotiate a 

time-based sharing schedule of the channel.  It just vacates the channel so as to preclude 

interference.  This eliminates the processing overhead involved with scheduling or signal 

classification.  Seventh, the CCP is well suited for being integrated into a smart radio system for 

several reasons.  Firstly, the CCP is well suited for implementation on a smart radio’s SDR 

platform.  SDR platforms excel at rapidly changing channel settings, reconfigurability, and 

adaptability, and they can utilize more diverse waveforms than are provided by existing 802.11 

adapters.  Secondly, CWT’s current work in spectrum sensing [5, 24] can be directly applied to 

the selection of the CCP’s fallback dictionary.  Thirdly, the CWT cognitive engine [71] can be 

used to optimize the selection of channel, i.e. waveform parameters.  In other words, the CCP 

could be viewed as a waveform change protocol, where waveforms can be selected and designed 

in an optimal fashion to fill and operate in a band identified by the spectrum scanner.   

 
6.4 Presented Solution  
 

 The CCP enables the CWT Smart Radio to detect the return of a primary user and to 

orchestrate the change-channel procedures to an alternate, vacant block of spectrum.  In the 

smart radio, when a primary user is detected, the protocol will stop current communications, 

switch to a vacant channel, and then restart communications.  The new channel can be selected in 
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a random fashion, or after consulting a dictionary of pre-arranged fallback channels.  The CCP 

relies on sensors that have been embedded in the physical (PHY) and MAC layers of the smart 

radio’s framework. 
 
6.4.2 Conceptual Operation 
 

 The first task of the CCP is primary user detection.  We exploit the frame length to 

distinguish between the primary and secondary waveforms.  We use a timer, coupled to the PHY 

and MAC layers of the base system to measure the lengths of the incoming transmissions.  The 

system starts the timer when the PHY and MAC layers detect the presence of the carrier of an 

incoming frame.  If a complete digital frame is received and demodulated within the predicted 

signal duration, the CCP resets the timer.  If the signal persists longer than the expected frame 

duration, the CCP warns the radio resource manager that a primary user has been detected.  At 

this point, the resource manager—such as a master control module or cognitive engine—can 

pause the current communication session, and direct the PHY and MAC layers to change to a 

different operating frequency.  See Figure 6.4 for a timing plot showing the CCP’s conceptual 

operation.  

Although the proceeding discussion explained how the CCP incorporated into a digital 

radio could detect and avoid an analog radio, the same principles could be used to distinguish 

between two different digital radios.  The technique is equally applicable to digital waveforms 

such as BPSK, QPSK, 8PSK, and GMSK.  In the current design, the primary user would need to 

have a well-known digital signal structure, and its standard frame length would need to be longer 

than that used by the secondary user system.  However, in future version of the protocol, we plan 

to allow for a variable secondary frame length and use a cognitive engine to automatically adjust 

the CCP threshold for multiple secondary user types. 
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Figure 6.4. Time plot showing the conceptual operation of the CCP. 
[M. Silvius’ Image from [72], adapted from [6].  Used with permission, © 2009 IEEE, © 2008 SPIE.]   

 
 
6.4.2 Implementation 
 
 To implement the CCP in a prototype radio for initial testing and evaluation, we selected 

the GNU Radio [6] and USRP SDR architecture [7].  The pictorial in Figure 6.5 highlights the 

modifications made to GNU Radio’s carrier-sense-multiple access (CSMA) MAC layer.  In 

particular, we added an additional timer to the carrier sensing (CS) module to measure the frame 

lengths of incoming signals.  The bolstered carrier sense module also interacts with the transmit 

(TX) and receiver (RX) modules.  The status of the primary user detection timer is monitored by 

the radio’s master control module (MC).  This radio resource manager directs the PHY and MAC 

layers to switch to a different operating frequency when needed to avoid the primary user. 
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Figure 6.5.  Modifications to GNU Radio protocol stack to support the CCP.  In particular, this diagram highlights 
the operation of carrier sense (CS) module and transmission (TX) and receive (RX) modules. 
[M. Silvius’ Image from [72].  Used with permission, © 2009 IEEE.] 
 
 
6.5 Methodology for Evaluation 
 

 We sought to evaluate the CCP using two strategies.  In a initial effort, we conducted 

simulations to model the performance of the CCP using the OMNeT++ software package [84].  

In a later effort, we performed laboratory experiments of the CCP when implemented on the 

Smart Radio Network Testbed, as detailed in Chapter 4.  In the remainder of this chapter, we 

summarize the results of the simulation and experimental work. 

To evaluate the performance of the CCP, this work uses OMNeT++ and testbed 

experiments to collect three primary metrics: goodput, packet loss, and delay.  Goodput is a 

measure of the number of useful bits per unit of time forwarded by the network from a certain 

source address to a certain destination, which excludes protocol overhead and retransmitted data 

packets [85].  Goodput should not be confused with throughput, which is a measure of the raw 

bits per time flowing in link or through a node in a network.  When compared to throughput, 
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goodput gives us an indication of how efficiently data is flowing through the network and how 

much bandwidth is being wasted as a result of retransmissions, noise, or inefficient management, 

or sharing of the channel.  The definition of packet loss is straightforward.  It is a measure of the 

percentage of transmitted packets that are dropped while being sent to their recipient.  When 

computing packet loss, one can count only the original transmitted packets, as was done when 

computing goodput, or one can count the loss rate for all packets, both original and retransmitted, 

as well as acknowledgements.  This dissertation only counts original packets toward the packet 

loss calculation.  Lastly, we define latency as the total time it takes to successfully transmit a 

data packet to a receiver, and for the sender to successfully receive an acknowledgement in 

return.  In this way, we use the round-trip definition of latency, rather than the one-way [85].   

 
6.6 Simulation Setup 
 

 Since OMNeT++ is a discrete-event simulator, the software does not model events in the 

continuous time domain.  Rather, important events are scheduled along an event timeline using 

the simulator master clock.  The majority of the protocols used in wireless systems can be 

thought of as operating as Finite State Machines (FSM).  For example, a MAC protocol is 

typically only performing the tasks for one operation at a time; however, it can switch to 

executing a different set of tasks in reaction to internal and external events.  For the simulations 

in this dissertation, the author and his colleagues built a custom MAC layer for use with the 

CCP, as well as simplified application, transport, network, and physical layers broadly modeled 

after the 802.11 standard. 

 
6.6.1 Medium Access Control Layer (MAC) with CCP Model 
 

 Our initial MAC implementation was based on the CSMA algorithm included in GNU 

Radio and used in the CWT Smart Radio 2007 and 2008 projects. The operation of the MAC 

layer can be best viewed as a FSM, containing four primary states.  First, it is in the idle state 

while it waits for packets to arrive up from the PHY layer or down from the NET layer.  Second, 

if a packet arrives down from the NET layer, it switches to the carrier-sense state, where it sends 

a carrier sense request message down to the PHY layer.  It waits until the PHY layer responds 

with a measurement of RF power currently in the channels.  Third, if there is no carrier power 

present, it then progresses to the transmit state, where it sends its data frame down to the PHY 
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layer for transmission.  If there is carrier power present in the channel from the other nodes, it 

enters its backoff state.  It remains in this state, delaying for a period of time, whose maximum 

possible value is determined by the number of previous retransmission attempts.  After 

completing the backoff state, the MAC reenters the carrier-sense state, where it again measures 

the carrier power present and attempts to retransmit.  If the unsuccessful retransmission attempts 

exceed a predetermined threshold, the MAC simply drops the frame and goes back to the idle 

state.  Figure 6.6 details the FSM representation of the MAC layer. 

To implement primary user detection, the CCP keeps track of the number of times the 

MAC detects the presence of a carrier and enters the backoff state for each data frame.  It also 

keeps track of the current backoff value, as well as the total accumulated backoff delay that the 

MAC waits for each frame it wishes to transmit.  This is equivalent to incrementing the frame 

length counter discussed in Section 6.4.2 and shown in Figure 6.4. 
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Figure 6.6.  The FSM representation of the MAC layer in OMNeT++. 
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6.6.2 Remaining Protocol Stack Layer Models 
 

For our simulation, we modeled our APP/TL as a simple Stop-and-Wait protocol [86].  In 

general terms, the TL would only transmit one data packet over the network at a time.  On 

transmission, it would schedule a timeout clock event, and then begin to wait for an 

acknowledgement message from the intended recipient.  If a positive acknowledgement (ACK) 

arrived from the recipient, it proceeds with sending out the next new data packet. If a negative 

acknowledgement (NAK) arrived from the intended recipient, or if the timeout clock event 

occurs, the TL will re-send out the most recent data packet.   

 The NET’s FSM is much more simplistic than for the APP/TL layer.  The NET layer has 

three main states.  First, by default, is the idle state where it is waiting for a packet.  Second, if it 

receives a packet from the TL, it sends the packet down to the MAC layer.  Third, if it receives a 

packet up from the MAC layer, it must analyze the packet’s headers.  If the packet is addressed 

for its host node, it sends the packet directly up the TL layer.  Otherwise, if the packet is destined 

for another node, the NET layer updates both the next-hop and the previous hop fields of the 

packet, and sends it back down to the MAC layer to be forwarded. 

 Like the other protocol stack modules, the operation PHY layer can be viewed as very 

simple FSM with four states.  First, it is idle while waiting for packets to arrive up from the 

channel or down from the MAC.  Second, if a packet arrives down from the MAC layer, it 

switches to the transmit state where it transmits the packet onto the channel.  Third, if a packet 

arrives up from the channel, it switches to the receive state where it forwards the packet up to the 

MAC layer.  Last, PHY is capable of sending the MAC layer measurements of the received RF 

power currently present in the channel, to be used by the MAC for an exponential backoff 

routine for CSMA, or for locating the presence of a primary user. 

 
6.6.3 Primary User Model 
 

 Figure 6.7 depicts the node topology for the dynamic scenario when one primary user is 

present in the radio environment.  In this scenario, one can also view the primary user as a 

jammer, interfering with the communication links of a secondary user network.  In the 

simulation, the primary user node closely resembles the operation of the other secondary user 

nodes, except for two significant differences.  First, it transmits only in a broadcast mode, which 

in terms of the OMNeT++ simulation, means that it sends copies of its frames to all the other 
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nodes in the network.  This is shown by the directly-connected arrows tying the primary user to 

the other secondary user nodes.  Second, the primary user transmits frames that are significantly 

longer in length than its neighboring secondary user nodes.  For most simulations these frames 

were on the order of five to ten times longer than frames used by the secondary user nodes.  The 

differences in these frames’ lengths will be used by the CCP to discriminate between their 

primary and secondary senders.   

 

 
Figure 6.7.  Our OMNeT++ simulation scenario with six secondary users and one primary user.  The links shown 
here are logical links, and they operate in parallel with the simulation’s wireless propagation model. 
[M. Silvius’ Image from [72].  Used with permission, © 2009 IEEE.] 
 
 
6.6.4 Configuration Parameters 
 

Table 6.1 lists the parameters used in our OMNeT++ simulations.  The transmit powers 

of the nodes were set to 30 mW, which is the standard transmit power of network interface cards 

(NIC).  The receive sensitivities were set to -95 dBm, which corresponds to the sensitivity of 

NICs that receive signals at the 1024 Kbit/s linkrate.  The CCP measures the duration of the 

noise carrier.  If the carrier’s duration is longer than the 

PU_DETECTION_THRESHOLD_DURATION, the CCP will initiate the fallback channel 

change within the MAC layer.  It will then begin to transmit on the new channel.  If a node is 

unable to transmit due to interference exceeding PhyTxNoiseThreshold, then it will start an 

exponential backoff timer and sense the carrier again after the timeout.  This procedure will 

occur with a maximum number of times as defined by MAX_BACKOFF_RETRIES. Failure to 
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transmit will result in a dropped packet at the MAC layer.  IFFactor is a correction to the 

interference which compensates for adjacent channel interference between nodes.  

AIR_TRANSMIT_DELAY is calculated based on the Msgsize and linkrate, with varying 

linkrates for multiple scenarios.  PhyInterfThreshold, is the maximum noise threshold for a 

received packet.  PhySignalThreshold is the minimum signal threshold for a received packet.  

PhyTxNoiseThreshold is the maximum threshold for sensed noise for determining whether a 

channel is busy.  The APP/TL layer will timeout and re-transmit a packet if ACK has not been 

received during the TIMEOUT_DURATION time.  The total duration of the simulation was 8 

seconds. 

 
TABLE 6.1.  PARAMETERS USED IN OMNET++ SIMULATIONS. 

Variable Value Units Comment 

pSend (SU Node) 30 mW Transmit power  
alpha (SU Node) 3.5 n/a Channel attenuation  
PUpSend (PU Node) 50 mW Transmit power 
PUalpha (PU Node) 3.5 n/a Channel attenuation  
Msgsize 16-768 Kbits Data packet length 
Linkrate 1024 Kb/s Link bit rate 
fchannel(0-5 Nodes) 1.8-2.4 GHz SU Tx frequency 
Distances between nodes (0-5) 5-30 m Distances between SUs 
DELAY_CARRIER_SENSE_DURATION 0.02 sec Carrier sense delay 
AIR_TRANSMIT_DURATION n/a sec Transmit delay 
DELAY_BACKOFF_DURATION 0.02 sec Min. backoff delay 
PU_DETECTION_THRESHOLD_DURATION 0.6 sec PUD threshold 
MAX_BACKOFF_RETRIES 8 n/a Max backoff  retries 
MAX_DATA_RETRANSMISSIONS 8 n/a  Max TL data retries 
MAX_ACK_RETRANSMISSIONS 8 n/a Max TL ack retries 
TIMEOUT_DURATION 0.6 sec TL retransmission timer 
NOISE_TRANSMIT_DURATION 0.8 sec PU noise Tx duration 
PhyInterfThreshold -85 dBm Noise threshold 
PhySignalThreshold -95 dBm Signal (Rx) Sensitivity 
PhyTxNoiseThreshold -90 dBm Carrier threshold for Tx 
IFFactor f(freq) dBm Interference attn’ factor 
PU0fchannel 2.4 GHz PU Tx frequency 
Fallback(0-7 channels) 1.8-2.4 GHz SU fallback channels 

These parameters were used in the OMNeT++ simulations. 
 
 
6.7 Simulation Results 
 
 After completing our simulations, we plotted the generated OMNeT++ data to quantify 

how effectively the CCP-equipped, secondary user smart radios mitigated the interference from 

the primary user.  For each QoS metric, we plotted both the control scenario without the primary 

user, and the experimental scenario, where the primary user suddenly started transmitting on the 

secondary users’ operating channel at two time intervals.  

Figures 6.8-6.13 summarize the results of our simulations where a primary user began 

transmitting at t=2.22 and t=4.62.  First, Figures 6.8-6.9 record the measured in-channel 

interference strength (i.e. signal + noise + interference power) received by four of the secondary 

user radios nodes in the network.  In the CCP case, the technique reduced the time that 
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interference was observed from 1.4s to 0.26s—an interference reduction of approximately 81.4% 

from the non-CCP case, where there is no primary user detection or avoidance enabled.  In both 

cases, the four curve traces in the figures represent the interference power measured by four of 

the nodes in the simulation.  The noise floor was approximately -85 dBm. 
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Figure 6.8 and 6.9.  In our OMNeT++ simulation, the CCP reduced duration of received interference, as measured in 
four nodes, shown here by the four curve traces.  [M. Silvius’ Images from [72].  Used with permission, © 2009 IEEE.]

 
 

Second, Figures 6.10-6.11 depict the time plots of the MAC layer; i.e. more specifically, 

the blue and red dots indicate when Nodes 1 and Node 4 transmitted frames respectively.  The 

large horizontal gaps between the points indicate delays (i.e. latencies), resulting from outgoing 

frames being queued, rather than transmitted, as result of primary user interference.  Mirroring 

the previous results, these timing plots show that the latencies due to interference decreased from 

1.4s to 0.26s, that is, by 81.4%, in the CCP-enabled case 
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Figure 6.10 and 6.11. In our OMNeT++ simulation, the CCP reduced latency between packet arrival times.  (Node 1 
represented by blue dots, Node 4 represented by red dots.)  [M. Silvius’ Images from [72].  Used with permission, 
© 2009 IEEE.] 

 

Third, we measured average goodput and packet loss incurred during the simulation as a 

function of the secondary user’s frame length, for the both the CCP and non-CCP case, as shown 

in Figures 6.12-6.13.  For the CCP-enabled case, received goodput increased by 21% to 

40Kbit/s, and packet loss decreased by 25% to an average loss rate of 22%. 
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Figure 6.12. In our OMNeT++ simulation, the CCP increased goodput (left).  Figure 6.13. Conversely, the CCP 
decreased packet loss (right).  [M. Silvius’ Images from [72].  Used with permission, © 2009 IEEE.] 
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6.8 Testbed Experiment Setup 
 
 In addition to software simulations using OMNeT++, we also evaluated the performance 

of the CCP by using Smart Radio Network Testbed described in Chapter 4.  However, for this set 

of experiments, we expanded the network testbed from four to five nodes, so as to include an 

extra radio to imitate the action of a primary user.  See Figure 6.14 for an updated diagram of 

this configuration. 
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Figure 6.14.  Detailed architecture of the network testbed. 

 
 

Using this updated network testbed design, our physical laboratory setup more closely 

matched the simulation setup in Figure 6.7.  The first four nodes were smart radio nodes, built 

using the GNU Radio and the USRP, housed on Linux-based laptop computers, and running the 

CCP.  The fifth node acted as a primary user and source of interference.  In all our experiments, 

the primary user transmitted twice, first at t=10-20s using analog FM, and then at t=30-40s using 

GMSK.  All secondary users used GMSK at 500Kbit/s using a maximum frame length of 2200 
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bytes.  The primary user, when in digital mode, also transmitted GMSK at 500 Kbits/s, but with 

a minimum frame length of 2500 bytes.   

 First, to measure the QoS of the network formed by the secondary users, we used the 

IPERF open source software tool [87].  IPERF allowed us to measure the UDP goodput, packet 

loss, and jitter of the three-hop path from Node 1 to Node 4.  When configuring IPERF, we used 

a stream of 1 Kbyte sized UDP segments at an offered rate of approximately 100 Kbit/s.  By 

transmitting our test stream at less than our link rate of 500 Kbit/s, we ensured that there was 

space between the outbound transmitted frames, and therefore, our IPERF generated plots were 

generally smoother and more reproducible.  We also used the standard PING command, 

available in Linux, to measure the round-trip-time along this path. 

 Second, we evaluated the precision of the CCP’s threshold in detecting the primary user.  

In this experiment, we designated that the maximum secondary user packet size to be 2200 bytes.  

We set our goal CCP threshold to be slightly higher than this value, at 2300 bytes.  Then we had 

the primary user send a stream of digital frames with frame lengths varying between 100 bytes 

and 4096 bytes, with step sizes of 100 bytes.  For each frame size we ran 100 experimental 

iterations.  We recorded the results for three network conditions: first, when the network was 

idle; second, when Node 1 streamed packets to Node 3 at an offered rate of 50 Kbit/s; and third, 

when Node 1 streamed packets to Node 3 at an offered rate of 100 Kbit/s.   

 
6.9 Testbed Experiment Results 
 

Figure 6.15 shows the UDP goodput response of the five node cognitive radio network.  

In the non-CCP case, the effective goodput of the secondary user network essentially dropped to 

zero during the two 10s intervals where the primary user was transmitting.  Note that at t= 32s 

and t=36s, the secondary user network was able to successfully transmit and receive a handful of 

packets, slipping them past the primary user, during the inter-packet quiet periods of the primary 

user’s transmission cycle.  In the CCP case, the technique was able to successfully detect the 

presence of the primary user and then switch to an alternate operating channel.  The periods of 

network outage due to interference dropped by over 50%, from 10s to 5s, resulting in a 33% 

increase in goodput.  Moreover, the width of the trough in the CCP-case represents a maximum 

of 4-5s of switching time, specific to our SDR platform’s implementation.  This time could be 

shorten if alternate, high-performance platform was used.  Note that the little upticks in trace 
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represent the granularity of our measurement system.  In additional measurements, we also 

recorded the jitter, packet loss, and latency response in the UDP stream from Node 1 to Node 4, 

as shown in Figures 6.16-6.18.  The CCP technique, with its ability to avoid the primary user, 

reduced the periods of instability from 10s to approximately 4-5s, and reflected 65%, 55%, and 

42% decreases in these metrics respectively as shown next. 
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Figure 6.15. UDP Goodput during GNU Radio Experiment. 
[M. Silvius’ Image from [72].  Used with permission, © 2009 IEEE.] 

 

 
Figure 6.16 shows the jitter response in the UDP stream from Node 1 to Node 4.  Large 

jitter plateaus resulted during both periods of transmission of the FM and GMSK primary user.  

The values soared from an average of 3-5ms to maximum recordable value 100ms.  However, 

like in Figure 6.15, the CCP technique, with its ability to avoid the primary user, reduces the 

periods of instability from 10s to approximately 3-4s, for a 65% improvement.   
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Figure 6.16. UDP Jitter during GNU Radio Experiment. 

[M. Silvius’ Image from [72].  Used with permission, © 2009 IEEE.] 

 
Figure 6.17 shows the packet loss in the stream from Node 0 to Node 4.  The flat plateaus 

should be viewed not only as periods of packet loss, but also as periods of time when packets 

were being queued by the transmitter and unable to be sent as a result of primary user 

interference.  As compared to the non-CCP case, the CCP-cased reduced channel outages from 

approximately 10s to 5s, for a 50% improvement. 
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Figure 6.17. UDP Packet Loss Rate during GNU Radio Experiment. 
[M. Silvius’ Image from [72].  Used with permission, © 2009 IEEE.] 
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Figure 6.18 shows the round-trip latency of the four node cognitive radio network, as 

measured with the PING for both the CCP and non-CCP case.  The spikes and plateaus in the 

curves resulted when one or more of PING’s ICMP packets successfully returned with a RTT 

equal to or greater than 500ms, or when the ICMP packet was completely lost during its trip, i.e. 

with an RTT of infinity.  For the non-CCP case, latency soars from an average of 35-40ms to the 

maximum graph value of 500ms during both the 10s primary user transmission windows.  

However, for the CCP case, the periods of excessive delay were reduced to approximately 5s and 

3s respectively, for 42% improvement.   

Interestingly, in the CCP case, the Figure 6.18 also showed a short period of instability 

following the channel switching operation, as shown at t=22-24 and t=39-43.  This could 

possibly be an idiosyncrasy of the CCP’s interaction with the GNU Radio PHY and MAC layer 

in the SDR platform.  However, this evidence of this phenomenon did not appear in the IPERF 

generated jitter plot in Figure 6.16, we believe these additional spikes to be an artifact with the 

way the PING program schedules and transmits its ICMP packets. 
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Figure 6.18. Latency during GNU Radio Experiment. 

[M. Silvius’ Image from [72].  Used with permission, © 2009 IEEE.] 
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The resulting curve in Figure 6.19 shows the precision of the CCP’s threshold in 

detecting the primary user.  The detection break-point occurred sharply at 2350 bytes, as desired.  

Detection reliability was also the highest for the idle condition, and gradually decreased as the 

offered rate increased. 
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[M. Silvius’ Image from [72].  Used with permission, © 2009 IEEE.] 
 

 

 
 

The threshold results in Figure 6.19 highlight a noteworthy trade-off between available 

network bandwidth and primary user detection reliability.  The probability of successfully 

detecting the primary user is proportional to the length of time the secondary user system spends 

sensing the carrier.  As the secondary user system’s maximum offered rate was reduced, the 

spectral awareness of the secondary user radio increased and the probability of cross-network 

interference decreased.  In terms of spectrum sharing protocol design, the offered rate determines 

the spacing between transmitted packets, known as the quiet period, in which the node conducts 

carrier sensing and primary user detection.  If packets are transmitted without any spacing—i.e. 

the quiet period between them—the CCP has no time to sense the channel, and the probability of 

detecting the primary user drops.  However, if there is ample inter-packet spacing, the CCP 

probability of success greatly improves.  This sets a limitation on the maximum duty-cycle for 

transmission of packets.  Initial experiments suggest that a duty cycle of no more than one-half 
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produces the best results, with a reasonable tradeoff between transmission rate and probability of 

primary user detection. 

 
6.10 Validation of Simulation Results with Experimental Results  
 
 Although we first introduced the conceptual operation of the CCP in [6], at that time, our 

evaluation consisted of a simple  scenario consisting of two digital cognitive radio secondary 

users and one analog FM primary user.  Initial observations established that the CCP-enabled 

cognitive radios did successfully detect the FM radio and switch to a vacant channel, when the 

primary user keyed the audio microphone.  However, this dissertation quantified to what degree 

the CCP improved the network QoS of a multi-hop configuration of cognitive radios, and it 

evaluated the reliability of the detection scheme under varying offered network loads.  It also 

verified that the CCP performed as initially conceived in [6], through the use of OMNeT++ 

simulations and five node laboratory experiments. 

Table 6.2 summarizes the results of both the OMNeT++ simulations and the five node 

experiments.  Both sets confirmed that the CCP did indeed improve the network QoS metrics. 

Although implementation differences in the protocol stacks of OMNeT++ and GNU Radio 

prevent us from doing an exact comparison, the performance trends coincide and verify that the 

CCP does operate as conceived, enabling wireless co-existence between primary and secondary 

users.   
 

TABLE 6.2.  QOS IMPROVEMENTS WITH CCP TECHNIQUE OVER BASELINE 
[M. Silvius’ Table from [72].  Used with permission, © 2009 IEEE.] 

QoS Metric Simulation Result Experimental Result 

Inteference Duration -1.14s (-81%)   ≤ -5s  (≤ -50%) 

Goodput +40Kbit/s (+21%) +24Kbit/s (+37%) 

Jitter        n/a -25ms (-67%) 

Packet Loss -22% loss (-25%) -25% loss (-64%) 

Latency -1.14s (-81%) -59ms (-29%) 
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6.11 Stability of Experimental Results 
 
 In order to verify the stability of the experimental results, we ran one further set of 

laboratory experiments.  Here, we used a simplified version of the Smart Radio Network Testbed 

of Chapter 4 consisting of three nodes, as shown in Figure 6.20.  This simplified setup was 

required due to configuration time and hardware usage constraints.  Two nodes were digital 

smart radio nodes, and the third imitated a primary user.  Again, we used USRPs with 700 MHz 

daughterboards.  The secondary users used the GMSK modulation with a link rate of 500 Kbits/s 

and an offered rate of 100 Kbits/s.  As in Section 6.7 and Section 6.8, we again had the primary 

user transmit twice, first at t=10-20s using analog FM, and then at t=30-40s using GMSK.  

Unlike in the previous experiments, we averaged twenty iterations of experiments together to 

plot each mean QoS curve.  We also summarized the mean QoS metrics in Table 6.3 and Table 

6.4. 
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192.168.40.3

 Secondary 
User #2

Ethernet
192.168.5.3
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192.168.10.6
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Figure 6.20.  Simplified smart radio network testbed. 
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 With the exception of the first row, each cell in Table 6.3 contains two pieces of 

information.  The first number is the mean of the metric for all experiments.  The second is the 

standard deviation of the metric across the experiments.  Take for example, the experimental 

results for goodput.  There were 20 experiments, each lasting 50 seconds.  The mean goodput for 

all the 50 second runs was 97.26 Kbits/s.  This is an excellent result, considering that the offered 

to the link rate was set to 100 Kbits/s.  From one experiment to the next, the mean goodput had a 

standard deviation of 2.35 Kbit/s.  This reflects that the average goodput varied between 

experiments, most likely as result of the precision of the Channel Change protocol threshold, as 

is discussed next.  

The mean interference duration was computed by inspecting the resulting goodput curves 

from Figure 6.21.  From the baseline goodput metric results, we set a threshold of the three 

deviations below and above its mean.  This corresponded to 90.51 Kbits/s and 109.17 Kbits/s.  

Anytime one of the traces in Figure 6.21 went below or above these limits, we flagged the 

interval as having interference and recorded the time duration.  We used to these results to 

populate row one of Table 6.3.  Table 6.4 summarizes the change in metrics between the 

experiment and the control data. 

 
TABLE 6.3.  AVERAGED QOS METRICS  

(MEAN OF METRIC, STD OF METRIC ACROSS EXPERIMENTS) 

QoS Metric Baseline 
(No PU, No CCP) 

Control 
(Yes PU, No CCP) 

Experiment 
(Yes PU, Yes CCP) 

Inteference Duration (sec)  0.00, n/a 20.48, n/a 8.36, n/a 

Goodput (Kbits/s) 99.84, 0.00 92.38, 0.43 97.26, 2.35 

Jitter (sec) 0.82, 0.07 20.00, 1.17 7.84, 1.24 

Packet Loss (%) 0.00, 0.00 18.31, 0.94 5.96, 1.97 

Latency (sec) 40.07, 19.84 104.01, 25.36 148.49, 74.78 
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TABLE 6.4.  AVERAGED QOS METRIC CHANGE  
(ABSOLUTE CHANGE, PERCENT CHANGE) 

QoS Metric Experiment WRT 
Control 

Inteference Duration (sec) -12.12  (-59.18%) 

Goodput (Kbits/s) +4.88 (+5.28%) 

Jitter (sec) -12.16  (-60.80%) 

Packet Loss (%) -12.35  (-67.45%) 

Latency (sec) +44.48 (+42.77%) 
 

 

Inspecting these results, one can make a number of conclusions.  First, in looking at the 

control data with respect to the baseline data, we can see that the presence of the primary user 

significantly degraded each of the metrics.  However, the primary user did not significant change 

the variability of these results from one run to the next—the process was stable.  Second, in 

looking at the experimental data with respect to the control data, we can see that the Channel 

Change protocol significantly improved each of the metrics.  However, the Channel Change 

protocol increased the variability of these results from one run to the next—it made the process 

less stable.  This was most likely due to the variability and precision of the Channel Change 

protocol’s threshold.  As we showed in Figure 6.19 in Section 6.9, occasionally, the Channel 

Change protocol fails to detect the primary user.  A failed detection would adversely degrade the 

metrics’ means and increase their standard deviations.  Note, it should be stated that the large 

spike in all the traces, appearing after the primary user stops transmitting, or the after the node 

changes channel, is the result the rapid transmission of packets that were queued during the 

interference period. 
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Figure 6.21.  Averaged goodput traces. 
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Figure 6.22.  Averaged jitter traces. 

  
 



  130

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

UDP Packet Loss

P
ac

ke
t L

os
s 

(%
)

time (sec)

 

 
Baseline (No PU, No CCP)
Control (Yes PU, No CCP)
Experimental (Yes PU, Yes CCP)

 
Figure 6.23.  Averaged packet loss curves. 

 
 

The latency traces in Figure 6.24 show more variation, and they deserve additional 

discussion.  First, it is important to note that the latency experiments were run separately, at a 

later time than the goodput, jitter, and packet loss experiments in Figures 6.21-23.  Therefore, the 

individual features in the latency curve are not correlated with the features in the other curves.  

Second, in Figure 6.24, the tails after the spikes, i.e. during t=20-30s and t=40-50, represent 

times when the CCP should have switched channels, but did not, due to a failure to detect the 

primary user.  Stated in another way, the two secondary radio nodes in the testbed became out of 

synchronization during these times, because one of the nodes failed to detect the primary user 

and switch channels.  Third, the latency metric was measured with the PING program, while the 

other metrics were measured with the IPERF program.  The traces demonstrate that the PING 

tool’s results are unstable, produce numerous spike artifacts, and that the PING tool is inferior 

with respect to the IPERF tool. 
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Figure 6.24.  Averaged latency curves. 

 
 
6.12 Summary 
 
 The Channel Change protocol offers secondary users a straightforward technique for the 

detection and avoidance of primary users.  This technique allows for reduced interference and 

improved co-existence between competing communications networks.  It can be applied to 

existing wireless LAN technologies or readily implemented in SDR-based cognitive radios.  The 

result is improved the network quality of service for both primary and secondary users in the 

band. 
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Chapter 7 

Conclusions 

 This chapter summarizes the contents of this dissertation, highlights the research 

contributions made, discusses applications of the developed technologies, and proposes areas of 

continued and future research.  

7.1 Summary 

 This dissertation presented the results of research to develop technologies and protocols 

which could provide solutions to communication problems faced by public safety first 

responders.  It demonstrated that smart radios, assembled on top of reconfigurable software-

defined radio architectures and coupled with dynamic spectrum access protocols such as 

neighbor rendezvous and spectrum sharing capabilities, can provide a solution to one of the radio 

discovery and spectrum scarcity problems faced by first responders in public safety disaster 

response scenarios. 

 Chapter 2 summarized the design and development of the CWT Smart Radio 2007.  This 

smart radio was used to demonstrate communications capabilities needed for public safety first 

responders in an earthquake disaster scenario, and it formed the foundation for later evaluation of 

the dynamic spectrum access protocols researched and designed in this dissertation.  Chapter 3 

describes the improvements of this design and the subsequent development of the CWT Smart 

Radio 2008.  This improved radio was used to demonstrate more advanced networking 

capabilities for the public safety first responders in a subway bombing response scenario.  

Chapter 4 described how to build the CWT Smart Radio Network Testbed using commercial off-

the-shelf equipment and open-source software suitable for conducting network experiments by 

researchers in a laboratory environment.  The testbed also provided an architecture to conduct 

tests and measurements on the dynamic spectrum access protocols described in Chapters 5 and 6.  

This work built on the core technologies used in the construction of smart radios for public safety 
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disaster response scenarios and from both smart radio challenges.  Chapter 5 detailed our 

research in the development of rendezvous protocols.  This chapter reviewed previous work by 

other authors in the design of these protocols, and it presented a taxonomy which enabled us to 

classify these previously proposed rendezvous protocols based on their design characteristics.  In 

this chapter we further investigated the multi-channel, asynchronous problem, by implementing 

candidate rendezvous protocols on the CWT Smart Radio Network Testbed of Chapter 4, and we 

collected and analyzed discovery statistics to determine its performance as a function of the 

number of channels, nodes, and rendezvous beacon repetitions.  Chapter 6 detailed the research 

and development of the Channel Change protocol.  This dynamic spectrum access enabled our 

smart radio to detect the return of designated primary users and to orchestrate the change-channel 

procedures to an alternate, vacant block of spectrum.  The Channel Change protocol allowed 

primary users and secondary users to co-exist in the same frequency band without interference. 

7.2 Contributions 

 The principal contributions of this dissertation are as follows: 

 

1. Developed smart radio prototypes which met the interoperability, spectrum 

sharing, and networking requirements of public safety first responders at the 

scene of an earthquake nature disaster scenario, as well as at the scene of a 

subway bombing response scenario, as enumerated by SDR Forum during the 

Smart Radio Challenge 2007 and 2008 competitions respectively.  The prototypes 

were built on the GNU Radio and USRP software defined radio architecture, and 

they were able to identify available spectrum within a pre-defined band, 

rendezvous with an intended receiver, and transmit voice and data using a 

selected quality of service.  The systems were also able to share spectrum 

between analog primary users and digital secondary users using our newly 

developed Channel Change dynamic spectrum access protocol.  For the 2008 

competition, the smart radio could also determine when it had entered a 

communication shaded region, and automatically form an ah-hoc extension to 

reach back and connect to a fixed infrastructure point. 
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2. Developed a smart radio network testbed that allowed us to evaluate the 

performance of the smart radio architecture and dynamic spectrum access 

protocols.  Specifically, the system measured the QoS metrics of goodput, jitter, 

packet loss, and latency, using a three-hop, ad-hoc network of four smart radios.  

The smart radios were capable of rapid protocol stack reconfiguration and could 

transmit and receive with multiple waveforms using a combination of Bluetooth, 

WiFi, and USRP air interfaces. 

 

3. Extended current research knowledge in the design and development of 

rendezvous radio discovery protocols for smart radios.  Developed a taxonomy to 

classify the characteristics and discovery strategies of these protocols.  

Determined and enumerated the expected rendezvous probabilities for the multi-

channel, asynchronous discovery problem through experimental tests with a 

candidate rendezvous protocol, using our four node smart radio testbed.  

Measured expected rendezvous probabilities as a function of the nodes, channels, 

and beacon repetitions. 

 

4.  Developed a spectrum sharing, dynamic spectrum access protocol called the 

Channel Change protocol.  The protocol allowed primary users and secondary 

users to co-exist in the same frequency band without interference.  The 

performance of the design was tested using both OMNeT++ simulations and 

experiments in our newly developed smart radio network testbed.  Results 

demonstrated that the Channel Change protocol decreased packet loss and jitter 

and increased goodput with an acceptable increase in latency.  Additional 

experiments validated the accuracy of the primary user detection threshold and 

plotted this accuracy as a function of the offered data rate to the network.  

Furthermore, the experimental results from the testbed validated and paralleled 

results from the OMNeT++ simulations. 
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7.3 Publications 

 This research in this dissertation has resulted in a number of publications as well as 

important project reports and whitepapers.  The papers published or accepted to be published 

include: 

 

• M. D. Silvius, A. B. MacKenzie, and C. W. Bostian, “A Survey of Neighbor Discovery 
Protocols in Modern Wireless Systems and their Application to the Design and 
Implementation of ‘Rendezvous’ Algorithms in Smart and Cognitive Radios,” in Virginia 
Tech Symposium on Wireless Personal Communications, Blacksburg, VA, June 6-8, 
2007. 

 
• M. D. Silvius, F. Ge, A. Young, A. B. MacKenzie, and C. W. Bostian, “Smart Radio: 

Spectrum Access for First Responders,” in Society of Optical Engineering (SPIE): 
Wireless Sensing and Processing III, Orlando, FL, March 17-18, 2008. 

  
• M. D. Silvius, R. Rangnekar, A. B. MacKenzie, and C. W. Bostian, “The Smart Radio 

Channel Change Protocol: A Primary User Avoidance Technique for Dynamic Spectrum 
Sharing Cognitive Radios to Facilitate Co-Existence in Wireless Communication 
Networks,” in 4th International Conference on Cognitive Radio Oriented Wireless 
Networks and Communications (CROWNCOM), Hannover, Germany, June 22-24, 2009. 

 
• R. Rangnekar, F. Ge, A. Young, M. D. Silvius, A. Fayez, and C. W. Bostian, “A Remote 

Control and Service Access Scheme for a Vehicular Public Safety Cognitive Radio,” in 
70th IEEE Vehicular Technology Conference (VTC), Anchorage, AK, September 20–23, 
2009. 

 
• M. D. Silvius, A. B. MacKenzie, and C. W. Bostian, “Rendezvous MAC Protocols for 

use in Cognitive Radio Networks (Accepted),” in IEEE Military Communications 
Conference (MILCOM), Boston, MA, October 18-21, 2009. 

 

The important project reports and whitepapers include:  

 
• M. D. Silvius, T. Brisebois, C. Chen, Q. Chen, F. Ge, G. Marballie, Y. Wang, A. Young, 

and C. W. Bostian, “Spectrum Access for First Responders: Smart Radio Challenge 2007 
Final Report,”  Project Report: Wireless@Virginia Tech--CWT, September 30, 2007. 
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• M. D. Silvius, T. Brisebois, Q. Chen, A. Fayez, F. Ge, B. Li, G. Marballie, S. Nair, R. 
Rangnekar, Y. Shi, Y. Wang, A. Young, and C. W. Bostian, “Communications from an 
Infrastructure Damaged Area: Smart Radio Challenge 2008 Final Report,”  Project 
Report: Wireless@Virginia Tech--CWT, September 30, 2008. 

 
• M. D. Silvius, R. Rangnekar, A. B. MacKenzie, and C. W. Bostian, “An Educational 

Testbed Illustrating Ad-Hoc Networking and Software Defined Radio,”  Unpublished 
Whitepaper, November 28, 2008. 

7.4 Application: The 700 MHz Public Safety Band 

 A significant application of dynamic spectrum access and spectrum sharing is FCC’s 

proposed 700 MHz Public Safety System [11].  In this scenario, a National Carrier will have 

licensed primary access to a 12 MHz portion of the 700 MHz band allocated for broadband 

usage.  The National Carrier will also have secondary, unlicensed access to the remaining 

portions of the band allocated for narrowband usage, which will be owned and licensed to local 

public safety jurisdictions.  In this system, dynamic spectrum access protocols and smart radio 

technology could be utilized as an effective and efficient way for the National Carrier system to 

detect narrowband FM public safety radios and coordinate transfers to alternate, unoccupied 

portions of the 700 MHz band. [12].   

One approach to devising a solution to this scenario would to combine all of the 

technologies developed for the Smart Radio Challenge 2007 and 2008 and this dissertation’s 

research with the Rendezvous and Channel Change protocols.  Together with other foundational 

software defined radio technologies, these could form the basis of a prototype solution to the 700 

MHz Public Safety Band scenario.  More specifically, first, each smart radio used will support all 

of the features involved in the 2007 competition.  Each will be able to scan the operational 

spectral band, rendezvous with both analog FRS radios and digital smart radio nodes, and 

communicate using FM, BPSK, QPSK or 8PSK modulations.  The smart radio nodes, acting as 

secondary users, will be able to share spectrum with FRS or legacy public safety radios, acting as 

primary users.  Second, the smart radio will support interface types such as 802.11, Bluetooth, 

and will be able to route data seamlessly between them.  Third, the smart radios will incorporate 

ad-hoc routing protocols that automatically allow it to update their network routing tables, as the 

repeater nodes move and change topology.  Fourth, the master control module will be able to 
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analyze the smart radio’s surroundings and automatically reconfigure its role as a command, 

repeater, or hidden node as the situation requires.  A scanning module will enable the nodes to 

detect the loss of network connectivity from the infrastructure point and automatically 

reconfigure each node to ad-hoc mode.  As in the 2008 competition, these capabilities will 

enable the nodes to provide a temporary fixed infrastructure or act as a network extension 

bridging the ad-hoc network in the shaded region to an existing public safety network.   

7.5 Future Work 

 My future research goals are to adapt and to expand this dissertation’s research to 

similarly-focused military communications research.  Just as for public safety first responders, I 

see smart radios as effective tools for solving existing discovery, interoperability, and spectrum 

sharing and utilization problems faced by military warfighters.  However, instead of needing 

temporary communication infrastructures at the scene of a natural disaster, warfighters need 

communication connectivity at forward deployed and austere locations.  In these situations, I 

foresee a solution involving inexpensive, ground-based smart radio nodes, deployed via 

traditional aircraft or newly-developed unmanned aerial vehicles (UAV).  Similar to the Smart 

Radio Challenge 2008, these smart radio nodes will continue to monitor for the presence of allied 

troops, aircraft, vehicles, and fixed communication networks.  When connectivity or fixed 

infrastructure is not present, the nodes will automatically form a temporary ad-hoc network 

infrastructure.  As emphasized in this dissertation, the principal formation tool will be the nodal 

discovery rendezvous protocols.  Inter-nodal communications will also similarly adhere to the 

spectrum policy of the theater of operations, avoiding designated primary users and minimizing 

interference through the use of frequency spectrum scanners and the Channel Change protocol or 

similar dynamic spectrum access protocols.  Individual smart radio nodes will act as smart 

gateways and repeaters, bridging existing or legacy military radio systems within a localized 

region.  However, the smart network of nodes can extend the range of these legacy systems by 

providing a digital extension between individual and groups of legacy radios.  In addition, the 

smart radio nodes can provide an ad-hoc network extension from the legacy system out of a 

connectivity-shaded region back to a fixed infrastructure for wide-area or global connectivity. 
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 For my own research, I would like to develop a laboratory testbed in a secure facility, 

which would be capable of housing and operating actual military radio systems and secure 

military waveforms.  The goal would be for the testbed to be developed by military masters level 

students, so as to provide a hands-on system design and software coding educational experience.  

In this way, the system testbed would not only be viable as a military operational testbed, but 

also as an educational testbed for military communications researchers and students.   

 A subsequent goal for the individual smart radios, as well as for the entire network 

testbed, would be the packaging and minimization process, to facilitate the mobility of the 

testbed to outdoor and field locations for further testing.  Further minimization would be needed 

prior to real experiments involving the deployment of smart radio using aircraft and UAVs. 

I firmly believe that field testing and operational evaluation by real users is key to the 

successful research and design process.  In future research, I would strive to continue to build 

smart radio network prototypes which could be tested in military exercises and in near-real world 

scenarios.  I envision seeking partnerships with military laboratories and test range facilities to 

test the suitability of the researched smart radio designs for meeting the military warfighters’ 

communications requirements. 
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Appendix  

Scripts 

 

 
Script 1.  Setting up the 802.3 wired network. 

 

 
Script 2.  Setting up a 802.11 WiFi ad-hoc network. 

 

 
Figure A.1.  Static routing table in Linux; example from Node #1. 

 

 

sudo modprobe bnep     # Load the bnep module 
sudo brctl addbr pan     # Create a bridge called ‘pan’ 
sudo brctl setfd pan 0     # Set bridge forward delay to 0 
sudo brctl stp pan off     # Set STP off for this bridge 
sudo brctl show      # Show all bridges 
 
sudo ifconfig pan 192.168.20.2 netmask 255.255.255.0  # Assign IP address to the bridge 
sudo ifconfig pan up      # Bring the bridge interface up 
sudo hcitool scan –flush     # Scan for new Bluetooth devices 
 XX:XX:XX:XX:C9:A4 cwt-sdr-1 # Node 1. 192.168.20.2 
 XX:XX:XX:XX:85:61  cwt-sdr-2 # Node 2. 192.168.20.3 
 XX:XX:XX:XX:BC:D7 cwt-sdr-3 # Node 3. 192.168.20.4 
 XX:XX:XX:XX:9A:7E cwt-sdr-5 # Node 4. 192.168.20.5 
 
sudo pand –listen      # Listen for Bluetooth connections 
sudo pand --connect XX:XX:XX:XX:85:61   # Connect to a MAC address  
pand –show      # Show current list of Bluetooth connections 
sudo ifconfig bnep0 0.0.0.0     # Set bnep IP address to 0.0.0.0  
sudo ifconfig bnep0  up     # Bring bnep up 
sudo brctl addif pan bnep0     # Add bnep to the bridge 

$ route -n 
Kernel IP routing table 
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface 
192.168.10.5    192.168.10.3    255.255.255.255 UGH   0      0        0 wlan2 
192.168.10.4    192.168.10.3    255.255.255.255 UGH   0      0        0 wlan2 
192.168.5.0     0.0.0.0         255.255.255.0   U     0      0        0 eth0 
192.168.10.0    0.0.0.0         255.255.255.0   U     0      0        0 wlan2 
0.0.0.0         192.168.5.1     0.0.0.0         UG    100    0        0 eth0 

sudo ifconfig wlan2 down     # Bring wireless interface down 
sudo iwconfig wlan2 mode ad-hoc essid "testbed" channel 3 key off # Setup wireless parameters 
sudo ifconfig wlan2 192.168.10.5    # Set IP Address 
sudo ifconfig wlan2 up     # Bring interface up 
 
# Routing setup example for Node 1 (192.168.10.2) 
sudo route add -host 192.168.10.5 gw 192.168.10.3  # Route packets for .10.5 to .10.3 
sudo route add -host 192.168.10.4 gw 192.168.10.3  # Route packets for .10.4 to .10.3 
sudo sysctl -w net.ipv4.ip_forward=1    # Enable IP Forwarding on the machine 
more /proc/sys/net/ipv4/ip_forward    # To check if IP Forwarding is enabled 

sudo /etc/dbus-1/event.d/25NetworkManager stop  # Turn off GUI Network Manager 
sudo ifconfig eth0 down   # Bring wired interface down 
sudo ifconfig eth0 192.168.5.x   # Set IP address; set last digit to 2, 3, or 4   
sudo ifconfig eth0 up   # Bring wired interface down 
sudo route add default gw 192.168.5.1 dev eth0 # Set the default gateway 
sudo “namserver 192.168.5.1” > /etc/resolv.conf # Set the default DNS server 



  148

Script 3.  Setting up a Bluetooth network. 

 
Script 4.  Setting up a GNU Radio/USRP ad-hoc network. 

 

Script 5.  IPerf commands example 
 
 
 

iperf -s -P 0 -i 1 -p 5001 -f k    # Start the iperf server (-s) 
# Accept connections –P,  0 = Unlimited connections 
# Report interval -i, 1 second 
# Port number –p, default iperf port 5001 
# Data format –k, display in Kilobytes (k) 
# Accept TCP (default mode) data 

 
iperf -s -u -P 0 -i 1 -p 5001 -f k    # Server, accept UDP (-u) data 
   
 
iperf -c 192.168.5.2 -P 1 -i 1 -p 5001 -f k -t 120  # Start the iperf client and begin sending data (-c) 
      # Send data to server at 192.168.5.2 
      # Number of parallel streams (-P), set to 1 
      # Report interval -i, 1 second 
      # Port number –p, default iperf port 5001 
      # Data format –k, display in Kilobytes (k) 
      # Time to run test –t, 120 seconds 
      # Send TCP (default mode) data 
 
iperf -c 192.168.5.2 -u -P 1 -i 1 -p 5001 -f k -b 1M -t 30 -T 1 # Time to Live –T, 1 hop 

# Client, sends UDP (-u) data 

cd <gnuradio_home>/gnuradio-examples/python/digital 
 
#Start tunnel.py script with parameters 
sudo /work/gnuradio/gnuradio-examples/python/digital/tunnel.py -m dbpsk -f 462.6125e6 -v -r 100e3 
 
# Sample configuration for Node 1 
sudo ifconfig gr0 down    # Bring down GNU Radio interface gr0 
sudo ifconfig gr0 192.168.40.2    # Assign IP to the interface 
sudo ifconfig gr0 up     # Bring the interface up 
sudo sysctl -w net.ipv4.ip_forward=1   # Enable ip forwarding 
sudo route add -host 192.168.40.4 gw 192.168.40.3 # Route packets for .10.4 to .10.3 
sudo route add -host 192.168.40.5 gw 192.168.40.3  # Route packets for .10.5 to .10.3 


