Cooperative Microsystems

Dr. Adel Saleh

Program Manager,
DARPA’s Microsystems
Technology Office

The views and opinions presented by the invited speakers are their own and should not be interpreted as representing the official views of DARPA or DoD.

Approved For Public Release, Distribution Unlimited
Cooperative Microsystems

Defense Advanced Research Projects Agency, Microsystems Technology Office (MTO), 3701 North Fairfax Drive, Arlington, VA 22203

Approved for public release; distribution unlimited
“Cooperative Microsystems”

Adel A. M. Saleh
DARPA / MTO
4 March 2009
Definition of a Cooperative System

Control Plane (Signaling)

Interconnect Network or Fabric (Data Plane)

Smart Subsystem

Smart Subsystem

Smart Subsystem

Smart Subsystem
Definition of a Cooperative System

Interconnect Network or Fabric (Data Plane)

Smart Subsystem
Smart Subsystem
Smart Subsystem
Smart Subsystem

Approved for Public Release, Distribution Unlimited
A Cooperative Mega-System
(Global-Scale IP/Optical Network)

DARPA CORONET Program

The Network Nodes **Cooperate** to Accomplish:

- Fast, automatic end-to-end provisioning of IP and Optical Services
- Fast, automatic recovery from multiple network failures (self healing)
- Secure, low blocking, low latency, high efficiency, and huge capacity

Approved for Public Release, Distribution Unlimited
Let Us Shrink the Network by Factors of 10
Each Case is a Cooperative System of Its Own

Wide-Area Network (WAN) ~5,000 km

Regional Network ~500 km

Greater Metropolitan-Area Network (MAN) ~50 km

Fiber-Optic WDM LAN ~50 m

WDM Local-Area Network (LAN) for Avionic Platforms ~500 m

Campus-Scale Local-Area Network (LAN)

Metropolitan-Area Network (MAN) ~5 km

DARPA NEW-HIP Program

Approved for Public Release, Distribution Unlimited
Outline of the Rest of the Talk

• A Vision for the Next-Generation, High-Performance Cooperative Microsystems Consisting of Chips, Cards, Shelves and Racks

• Chip-to-Chip Optical Interconnects
 – *Current and Future Vision*

• On-Chip Cooperative Microsystems
 – *We will hear two talks on this*

• Summary of the Vision

• Quantum-Scale Cooperative Microsystems
 – *We will hear two talks on this*

• Biological Cooperative Microsystems
 – *We will hear one talk on this*
Let Us Consider one Shelf or Chassis in a High-Performance Computer, a Multi-Terabit IP Router, or a Large Data Center Shelf

A Vision for the Next-Generation, High-Performance Cooperative Microsystems

The Heart of the Vision is Configurable, Optical, WDM-Based Interconnects to Realize a Plug-and-Play, Multi-Terabit Bus

Shelf

Optical Backplane

Micro-Chips

Approved for Public Release, Distribution Unlimited
A Vision for the Next-Generation, High-Performance Cooperative Microsystems

The Heart of the Vision is Configurable, Optical, WDM-Based Interconnects to Realize a Plug-and-Play, Multi-Terabit Bus

Let us now build a Multi-Shelf Rack

Shelf

Optical Backplane

Micro-Chips

Cards

Rack
A Vision for the Next-Generation, High-Performance Cooperative Microsystems

The Heart of the Vision is Configurable, Optical, WDM-Based Interconnects to Realize a Plug-and-Play, Multi-Terabit Bus

Let us now build a Multi-Rack System or Data Center
Pushing the Vision Down to the Board and Chip Levels

Chip-to-Chip Optical Interconnect

The DARPA C2OI Program

• Board-level and off-board, chip-to-chip optical communication
• Utilizing an array of VCSEL transmitters, parallel waveguides, and photo-diode receivers
• Enables higher bandwidth (>>1 Tbps) and lower power (5 pJ/bit) communication as compared to electronic alternatives.
• Do we need to add **WDM** and **Configurability** to this Vision?

Approved for Public Release, Distribution Unlimited
Why/How to Add WDM and Configurability?

Static, Parallel Optical Interconnect
* Reference architecture

Use WDM to Increase Capacity?
* Multi-\(\lambda\) transmitters and receiver are large and power hungry
* I do not believe that this is why one would want to do WDM

Arbitrary-\(\lambda\)
Fixed Lasers

Photo Diodes with no Filters

Multi-\(\lambda\) Sources
\(\lambda_1, \lambda_2, \ldots, \lambda_N\)

Multi-\(\lambda\) Receivers
\(\lambda_1, \lambda_2, \ldots, \lambda_N\)

Parallel Optical Waveguides
Crisscrossing Optical Interconnect

- Hard to fabricate crossing waveguides with low loss and low cross-talk
- Once made, interconnection is static
- Not an elegant solution!

Specific-λs
- Fixed Lasers
 - λ₁, λ₂, ... , λₙ
- Fixed-Filter Photo Diodes
 - λ₁, λ₂, ... , λₙ

Crisscrossing Optical Waveguides

* More elegant solution
* But, we need specific-λs, fixed lasers and filters for this vision
* Nominal loss = 1/N
* WDM in the fabric, not at the ends
Why/How to Add WDM and Configurability?

Configurable Optical Interconnect
- We need tunable lasers and specific-λs fixed filters for this vision
- Nominal loss = 1/N
- WDM in the fabric not at the ends

We need tunable lasers and specific-λs fixed filters for this vision
- Same end device requirements
- The fabric can be a static AWG or a tunable cross-bar switch
- No nominal 1/N loss
- WDM in the fabric not at the ends
The DARPA UNIC Program: Ultraperformance Nanophotonic Intrachip Communications

SUN Microsystems: Macrochip design providing 10 TB/s bisection bandwidth for 64 cores providing 10 TFLOPS

MIT Lincoln Lab: Optimization of optical communication networks among cores, and between cores and memory

Two Talks:

- Ashok Krishnamoorthy (SUN) – Intrachip Photonic Communications Networks with Seamless Off-chip Communications: Vision for the Future

- Jeremy Kepner (MIT/LL) – Photonically-enabled Optimized Embedded Microprocessors, Shared Memory Optimizing Multicore Cooperation

Approved for Public Release, Distribution Unlimited
Cooperative Systems of Various Orders of Magnitudes Benefiting from WDM Optical Networking

• Of course, the very same devices and components do not work at all scales of the vision

• But the same basic ideas and architectures promise higher performance (capacity and flexibility) at a reduced cost, size and power for all scales of the vision

• Much more work is needed at all scales to realize this vision of multi-terabit-per-second cooperative microsystems
Today, scientists have succeeded in realizing secure Quantum Key Distribution (QKD) over ~100-km free-space or fiber-optic links using the BB84 Protocol conceived by Bennett and Brassard in 1984. The holy grail of QKD is to extend the distance to continental scale, using entanglement-based “quantum repeaters.”

Part of the vision in this sub-session is related to the DARPA QuEST Program.
And finally for something completely different!

A Talk by:

- Joe Pancrazio (NIH) – on “Prosthetics, Interconnects, Neuro-Photonics”

Note that Interconnects is a common theme, other than that, it is a completely different story.