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The Interaction of High-Speed Turbulence with Flames: Turbulent Flame Speed

Abstract

Direct numerical simulations of the interaction of a premixed flame with subsonic, high-speed, homogeneous,
isotropic, Kolmogorov-type turbulence in an unconfined system show anomalously high turbulent flame speeds, S 1.
Data from these simulations are analyzed to identify the origin of this anomaly. The simulations were performed
with Athena-RFX, a massively parallel, fully compressible, high-order, dimensionally unsplit, reactive-flow code.
A simplified reaction-diffusion model represents a stoichiometric Hj-air mixture under the assumption of the Lewis
number Le = 1. Global properties and the internal structure of the flame where analyzed in an earlier paper, which
showed that this system represents turbulent combustion in the thin reaction zone regime with the average local flame
speed equal to its laminar value, S;. This paper shows that: (1) Flamelets inside the flame brush have a complex
internal structure, in which the isosurfaces of higher fuel mass fractions are folded on progressively smaller scales.
(2) Global properties of the turbulent flame are best represented by the structure of the region of peak reaction rate,
which defines the flame surface. (3) The observed increase of S relative to S exceeds the corresponding increase
of the flame surface area, Ar, relative to the surface area of the planar laminar flame, on average, by = 30% and
occasionally by as much as 50% in the course of system evolution. This exaggerrated response of St shows that
Damkohler’s paradigm breaks down for sufficiently high-intensity turbulence, namely at Karlovitz numbers Ka 2 20,
even in the flows characterized by Le = 1. (4) The breakdown is the result of tight flame packing by turbulence,
which causes frequent flame collisions and formation of regions of high flame curvature 2 1/6;, or “cusps,” where
or, is the thermal width of the laminar flame. (5) The local flame speed in the cusps substantially exceeds its laminar
value, which results in a disproportionately large contribution of cusps to S 7 compared with the flame surface area in
them. (6) Results suggest the existence of two distinct regimes of flame evolution: the linear regime present at lower
turbulent intensities when S o Az, and the nonlinear regime, which is dominated by the contribution of cusps to S 7
and in which S becomes a nonlinear function of Ar. (7) Finally, the criterion for transition to this nonlinear regime
is established, and key properties and implications of this regime are discussed.

Key words: Turbulent premixed combustion, Turbulence, Flamelet, Turbulent flame speed, Hydrogen

1. Introduction

One of the fundamental questions of combustion research concerns our ability to understand and predict the rate
of energy release, or equivalently the speed, of the turbulent flame, which is typically the main factor controlling the
evolution and dynamics of the overall system. To achieve this, two key aspects of the combustion process must be
determined: (1) its local properties, namely the local speed of flame propagation, and (2) its global characteristics,
i.e., the overall structure of the turbulent flame that connects the local burning velocity at each point of the flame
surface with the turbulent flame speed. In general, such local and global characteristics are not universal for the
combustion process. They can vary substantially both in space and time due to the unsteadiness, inhomogeneity, and
anisotropy of the turbulent flow associated with the system geometry, presence of walls and boundaries, change in the
flow conditions, etc.

A remarkably simple yet powerful paradigm, which suggests a description both of the local flame properties and
of their connection with the turbulent flame speed, was proposed by Damkohler almost 70 years ago [1] (also see
reviews by [2, 3]). Today it still remains a cornerstone of our understanding of turbulent combustion. This paradigm
is formulated for a turbulent flame that is, on average, a planar, quasi-one-dimensional structure propagating in a
steady, homogeneous, and isotropic turbulent flow.

According to the Damkohler’s suggestion, the local flame speed, S, is determined only by the intensity of turbulent
motions on scales smaller than the laminar flame width, §;. If that intensity is sufficiently low, the flame propagates
at each point of its surface with the laminar flame speed, S ;. On the other hand, if small-scale motions are energetic
enough, they are able to penetrate the internal structure of the flame and broaden it. Thus molecular diffusivity
becomes enhanced by the turbulent transport associated with such small-scale turbulence, thereby increasing the local
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flame speed, so that S; ~ S (Dr/ D)2, where D and Dy are, respectively, the molecular and the effective turbulent
diffusivities.

At the same time, the overall structure of the turbulent flame is determined by large-scale turbulent motions
which stretch and fold the flame, thereby increasing its surface area, Ar. Consequently, since at each point the flame
propagates with the speed S/, the increase of the turbulent flame speed, S r, relative to that of the planar laminar flame
is equal to the increase of the flame surface area, i.e., St/S; = Ar/AL, where Ay is the surface are of the planar
laminar flame. Therefore, in this paradigm, in order to determine S, it is sufficient to model only one aspect of the
process of flame wrinkling and folding by turbulence, namely the resulting increase in the flame surface area.

This is essentially a kinematic model which neglects any potential feedback of the flame on the turbulent flow. At
its root is one key assumption: S is determined only by scales 4 < §r, and it is constant throughout the flame surface.
This implies that S; cannot depend on the local flame geometry, i.e., flame curvature, which varies between different
points of the flame surface. Consequently, S; cannot depend on scales 4 > ¢, that determine such local geometry.
Damkohler’s concept is thus, in effect, a local model, since in it the long-range velocity correlations do not affect
the local properties of the combustion process. This assumption then allows one to reduce the full complexity of the
three-dimensional (3D) configuration of the turbulent flame to one very simply measure — flame surface area. The
result is a remarkably simple way to connect the local flame properties with the global characteristics of the turbulent
flame, namely its speed.

The limitations of this assumption were known practically at the time when this model was proposed [4]. When
the Lewis number Le # 1, the local flame speed can vary with the curvature of the flame. In particular, if thermal
conduction is stronger than molecular diffusion, S; will increase in concave regions of the flame and decrease in
convex regions. As a result, scales 4 > ¢, also affect §; by stretching and folding the flame. These effects of flame
strain and curvature can then be incorporated into the relation between Ar and Sy by means of the stretch factor /
([31, also see [5] for the review of the theory of flame stretch),

L L
In principle, at this point the simplicity of the description of the turbulent flame structure is lost, since I requires
knowledge not just of the flame surface area but of how the flame is actually folded inside the flame brush. Neverthe-
less, for the Le = 1 reactive mixtures, / by definition must be unity, and the details of the flame configuration should
not affect the local speed of flame propagation.

Despite the broad acceptance of this picture, there are only a few studies aimed at directly verifying it. From an
experimental point of view, simultaneously determining A7 and S r in a highly turbulent flow with sufficient accuracy
is associated with substantial practical difficulties. Resulting uncertainties typically do not allow robust verification of
the balance between these two quantities.

Several numerical studies, however, do consider this issue. Bell et al. [6] analyzed this balance in the 3D direct
numerical simulations (DNS) of the statistically planar turbulent methane flame and determined that / deviates from
unity by < 10%. A similar estimate was obtained by Khokhlov [7] in the 3D simulations of the Rayleigh-Taylor
driven thermonuclear flames in degenerate matter. Both of these studies, however, considered reactive mixtures in
which Le # 1 and, therefore, I would not be expected to be exactly equal to one. In this context, the result of [7] is
particularly interesting since degenerate matter is characterized by Le > 1 and typically in excess of 10°. Both studies,
however, did consider fairly low turbulent intensities, which precluded the formation of complex, tightly folded flame
configurations. For instance, in [6], the characteristic turbulent velocity was ~4.3S;, while in [7], it reached values
< 12§ ,. Hawkes & Chen [8] analyzed the balance between Ar and St in the simulations of lean statistically flat
turbulent methane flames at higher turbulent intensities < 28.5S ;. They found the values of I generally within a few
percent of unity, with the exception of the methane-hydrogen flame for which / = 1.18 was determined. Interpretation
of the results of [8], however, is complicated by the two-dimensional nature of their simulations and by the fact that
the turbulent integral scale was <y, which substantially suppressed flame wrinkling and prevented the formation of
the tightly packed flame structure.

These studies generally support Damkohler’s concept by showing that the increase in S r is heavily dominated by
the growth of Ar with the effects of the flame configuration inside the flame brush playing a minor role. They do not,
however, answer the following two questions. First, while I appears to be close to unity for the Le # 1 mixtures, is
I indeed exactly equal to one in the case of Le = 1? Since realistic reactive mixtures typically do not have Le = 1
exactly, this question should be understood in the sense whether / — 1 as Le — 1. Second, how does the value of
I change with turbulent intensity? In other words, does there exist a regime in which Damkdhler’s concept can be
expected to break down, leading to values of I substantially different from unity not only for Le # 1, but also for
Le =1 systems?

The last question is of particular importance since the existence of such a regime would also imply the breakdown



of flamelet models that focus on determining A7 or its volumetric equivalent, flame surface density X7, in order to
predict S 7. Furthermore, in such a regime the local flame speed would no longer be determined only by the small
scales A < ¢p, but, rather, by the full turbulent spectrum. This would mark the breakdown of the locality inherent in
Damkohler’s model. In particular, flame propagation in this regime could no longer be considered as a local process
on any scale, since the local quantity S; would depend on the nonlocal long-range velocity correlations that potentially
span the full size of the system.

The objective of this paper is to begin addressing these two questions by considering the balance between Ay and
St in the ideally infinite, statistically planar, turbulent flame interacting with the high-speed, steady, homogeneous,
isotropic turbulence. We focus on the Le = 1 situation to exclude thermodiffusive effects as a potential source of the
non-unity values of /.

This paper continues the analysis of the simulations first presented by us in [9]. These calculations model flame
interaction with turbulence of sufficiently high intensity to represent the regime that is borderline between thin and
broken reaction zones, according to the traditional combustion regime diagrams [10, 11, 12] (cf. Fig. 2 in [9]). In other
words, we consider the fastest turbulence which has been hypothesized to allow the existence of flamelets with the
internal structure of the reaction zone essentially unaffected by the turbulent transport. The turbulent r.m.s. velocity of
the flow in cold fuel is U,,,; ~ 35S 1, leading to the Damkohler number Da = 0.05 and Gibson scale Lg ~ 3 X 10746,
(Table 2).

The primary focus of [9] was a detailed study of flame properties and evolution in the presence of such high-speed
turbulence. In particular, a method was presented which allowed the direct determination of the internal structure
of the flame based on its actual 3D configuration inside the flame brush. The analysis showed that the preheat zone
is broadened by turbulence while the reaction-zone structure remains virtually identical to that of the planar laminar
flame. This study demonstrated that, even under the action of such intense turbulence, the system indeed can be
robustly classified to represent the thin reaction zone regime.

The accurate determination of the reaction-zone structure in [9] showed that turbulence is not able to penetrate the
flame and thus does not enhance diffusive processes. Consequently, the flame must propagate locally with the laminar
speed S .. Given that we are considering the Le = 1 system, this would imply that S7/S; = Ar /AL with a high degree
of accuracy, according to Damkohler’s concept.

Before the relation between S r and Ay can be studied, however, the question of the definition of the flame surface
area must first be revisited. This question, which has a seemingly simple answer at low turbulent intensities, becomes
quite non-trivial in the case of a high-speed flow such as the one considered here. The flamelet structure determined
in [9] is the manifestation of the fact that the ability of the turbulent cascade to penetrate the flamelet interior changes
substantially from the colder parts of the flamelet in the outer preheat zone to the hotter regions in the reaction zone.
One prominent consequence of this, observed in [9], was wrinkling of the turbulent flame on much smaller scales on
the fuel side than on the product side. This shows that effects of turbulent motions on scales 1 < §, vary significantly
throughout the flamelet interior, causing varying response of its different parts to the stretching and folding action
of turbulence. Therefore, the flamelet, packed into the flame brush by intense turbulence, can be expected to have a
complex internal structure with the isosurfaces of different values of the fuel mass fraction, Y, or temperature, 7', not
being parallel to each other and, most importantly, not having the same surface area.

Our starting point in this work is thus the following question: What is the flame surface area in high-speed turbulent
flows? Answering this will then allow us to determine whether there is indeed a perfect balance between the increase
of the burning speed of the turbulent flame and its surface area, as suggested by Damkohler’s concept, when Le = 1.

2. Numerical method and simulations performed

2.1. Physical and numerical models

Here we summarize the physical model, the numerical method used, and key aspects of the simulation setup. A
detailed discussion can be found in [9].

We solve the system of unsteady, compressible, reactive flow equations,

ap _
=tV w = 0, 2)
ag;tu+v-(pu®u)+VP = 0, 3)
OE .
Rk ((E+Pu)+V-(KVT) = pq¥, )
dpY .
% +V-(pYu) + V- (oDVY) = pV. (5)



Here p is the mass density, u is the velocity, E is the energy density, P is the pressure, Y is the mass fraction of the
reactants, ¢ is the chemical energy release, and Y is the reaction source term. The coefficients of thermal conduction,
K, and molecular diffusion, D, are

T" K T"

D=Dy—, — =xo—, (6)

P pCp I%
where Do, ko, and n are constants, and C, = yR/M(y — 1) is the specific heat at constant pressure. The equation of
state is that of an ideal gas. Chemical reactions are modeled using the first-order Arrhenius kinetics

— =Y =—pYBexp

ay . (
dt

0
RT )’ ™
where B is the pre-exponential factor, Q is the activation energy, and R is the universal gas constant.

Table 1 summarizes the parameters of the physical model used as well as the resulting properties of the planar
laminar flame [9]. These parameters are based on a simplified reaction-diffusion model designed to represent the
stoichiometric H-air mixture [13].

Egs. (2)-(7) are solved using the code Athena-RFX [9] — the reactive flow extension of the magnetohydrodynamic
code Athena [14, 15]. Athena-RFX is a fixed-grid, massively parallel, finite-volume, fully conservative code. It
implements a variant [15] of the fully unsplit corner-transport upwind (CTU) algorithm [16] and its 3D extension pre-
sented in [17], in conjunction with the PPM spatial reconstruction [18] and the approximate nonlinear HLLC Riemann
solver. Overall, the code achieves 3’“-order accuracy in space and 2"?-order accuracy in time. A detailed description
and an extensive suite of tests of the hydrodynamic integration algorithm can be found in [14, 15]. Implementation
of the reactive-diffusive extensions in Athena-RFX, along with the results of tests including convergence studies, is
discussed in detail in [9, 19].

The simulations presented here model flame interaction with steady, homogeneous, isotropic turbulence, described
by the classical Kolmogorov theory [20]. Turbulence driving is implemented using a spectral method [9, 19] similar
to the one used in [21, 22]. In this method, velocity perturbations oli(k) are initialized in Fourier space with each
component 64(k) being an independent realization of a Gaussian random field superimposed with a desired energy
injection spectrum. Subsequently, non-solenoidal components of §ii(k) are removed to ensure that V - su(x) = 0.
An inverse Fourier transform of §fi(k) gives du(x), the velocity perturbation field in the physical space. The du(x) is
normalized to provide the constant rate € of kinetic-energy injection, and the total momentum in the perturbation field
is subtracted from ou(x) to ensure that no net momentum is added to the domain, i.e., f pou = 0. Resulting velocity
perturbations are added to the flow field u(x) on every time step, and the overall perturbation pattern is regenerated at
every time interval At,, ~ 5Ax/c,, where ¢, is the maximum sound speed in the domain.

Energy is injected only at the scale of the domain width, L, to obtain the Kolmogorov-type spectrum. The resulting
turbulence is statistically steady, isotropic, and homogeneous with the inertial range of the energy cascade extending
all the way to the energy injection scale (cf. Fig. 1 in [9]). Moreover, since the velocity perturbation field is divergence-
free, no compressions or rarefactions are artificially induced as a result of driving.

It can be seen in eqs. (2)-(5) that we do not explicitly include physical viscosity, but instead we rely on numerical
viscosity to provide the kinetic-energy dissipation. By systematically varying the resolution in this approach, the
energy spectrum can be extended to progressively smaller scales 4 < ¢; while maintaining the spectrum constant on
larger scales. This allows us to vary the intensity only of the small-scale turbulent motions, and thus to investigate
their effects by differentiating them from the effects of large scales. Such analysis also shows the range of scales
which must be resolved in a numerical simulation in order to capture accurately the evolution of the turbulent flame.
This is particularly important in the context of high-speed turbulent reactive flows, in which it is typically impossible
to resolve the Kolmogorov scale. The analysis presented in [9] demonstrated that scales 4 < §;, have virtually no
effect on the properties of the turbulent flame with the exception of the degree of flame surface wrinkling on the fuel
side. This showed that the evolution of the turbulent flame can be accurately reproduced without the need to resolve
scales 4 <« dr. We refer to [9] for the detailed discussion of this issue and, in particular, for the discussion of the
applicability of the obtained results to the actual stoichiometric H,-air mixture.

2.2. Summary of simulations

Key parameters of the simulations discussed here are summarized in Table 2. The main difference between the
three calculations is the resolution, which progressively increases from Ax = ¢,/8 in S1 to Ax = 6,/32 in S3. The
domain in all cases was initialized with uniform density py and temperature Ty (see Table 1). In S1 and S2, initial fluid
velocities were set to 0. In contrast, the velocity field in S3 was initialized with the ideal energy spectrum E(k) oc k=>/3
extending from the energy injection scale L to the numerical Kolmogorov scale 7 = 2Ax. This initial spectrum was
normalized to ensure that at ¢ = O the total kinetic energy in the domain was equal to its predicted steady-state value
as described in [19]. In S1 and S2, the flow field was allowed to evolve for the time t;,, = 37,4, and in S3 for the
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time t;,, = 27,4, to develop the steady-state turbulent flow field. At the time #g,, a planar laminar flame with its front
parallel to the x—y plane1 was initialized in the domain with the values of p, T, and Y based on the exact laminar flame
solution. The velocity field was not modified, thereby preserving the structure that developed during the equilibration
stage.

Prior to f;4,, all domain boundaries are periodic. At t;,,, boundary conditions (BCs) along the left and right z-
boundaries are switched to zero-order extrapolation in order to prevent pressure build-up inside the domain and to
accommodate the resulting global fluid flow. Reflections of the acoustic perturbations caused by such BCs can be
neglected in comparison with the acoustic noise generated by the turbulent flow field itself, and overall such choice of
the BCs was found not to introduce any unphysical artifacts and thus not to affect the solution accuracy. Furthermore,
any potential effect of the outflow BCs was minimized by the large length-to-width ratio of the computational domain,
which allowed us to keep the flame brush sufficiently far from the boundaries at all times [9]. Hereafter, for simplicity
we refer to the moment of ignition as ¢ = 0.

Energy is injected into the domain with the constant rate € per unit volume for the total duration of the simulations
to provide steady driving of the turbulent flow. The value of & was chosen to produce a high-intensity turbulence field
that, however, was weak enough to minimize the probability of creating weak transonic shocklets arising from the
intermittency in turbulent flow. The characteristic turbulent velocities and the turbulent integral scale of the steady-
state flow prior to the moment of ignition are listed in Table 2. Corresponding values of the Damkohler number and
the Gibson scale, given in the table, show that Da < 1 and Lg < §;. Prior analysis of the resulting structure of the
turbulent flame demonstrated that, despite the high turbulent intensity, small-scale turbulence fails to penetrate the
internal structure of the flame and the system evolves in the thin reaction zone regime [9].

Detailed discussion of the turbulent flame evolution in the simulations is given in [9]. Here, for completeness, we
reproduce in Fig. 1 the time histories of the flame-brush width, é7, normalized by ¢, as well as S 7, normalized by
S 1, (see Fig. 4 in [9]) for all three calculations, since these two quantities are used extensively in this work.

The width of the turbulent flame brush is defined as

5T = Z1,max — Z0,min>» (8)
where zg i, and zj gy are defined as

Zo.min = Max(z) : Y(x,y,2z) < 0.05V (x,,z < 20min),
Z1,max = min(z) : Y(X, Yy, Z) >095V (X, y,z> Zl,max)-

©)

In other words, zg i, marks the rightmost x-y-plane to the left of which is pure product, while z; ,,,,, marks the leftmost
x-y-plane to the right of which is pure fuel. This is illustrated in Fig. 2. The turbulent flame speed is defined as

g

ST = 5>
pol?

(10)
where 7itg is the total rate of fuel consumption inside the flame brush, i.e., the total mass of reactants which is trans-
formed to product per unit time. The detailed discussion of this choice of the definition of S can be found in [9].
Finally, Table 3 lists the time-averaged values of both 67 /6, and S /S 1 [9] as well as of other key characteristics
of the turbulent flame discussed below. Table 3 also shows the corresponding order of self-convergence for each
quantity listed. Since the computational cell size decreases progressively by a factor of 2 for each simulation, the
order of self-convergence O(¢) of a variable ¢ is defined as
s 1 _¢S3|]' an

09) = log (|¢sz — ¢s3l

3. Flame surface area and its relation to the turbulent flame speed

3.1. Surface area of the fuel mass fraction isosurfaces

Fig. 3a,b shows the evolution of the surface areas Ag; and A9 of the fuel mass fraction isosurfaces of ¥ = 0.01
and Y = 0.99, respectively. We use the notation Ay, = A(Y = Y’), and all isosurfaces are constructed using the
“marching cubes” algorithm. These isosurfaces represent two outer boundaries of the flame brush, separating it from
pure product and pure fuel. All values are normalized by the domain cross-section L? corresponding to the surface area

I'The longest dimension of the domain is along the z-axis.



of the planar laminar flame unperturbed by turbulence. In principle, the normalization should be performed over some
average surface area of the flame brush, thus reflecting its overall large-scale shape. With sufficiently good accuracy,
however, the turbulent flame in the system considered here can be viewed, on average, as a planar propagating front,
and thus we normalize over its area L.

Fig. 3a shows that A, exhibits substantial variability, similar to 67 and St (cf. Fig. 1). There is a clear corre-
spondence between the peaks and troughs in the values of Apg; and S7 and, to a lesser extent, 7. Moreover, in a
manner similar to §7 and S 1, Ag0; shows less variability with increasing resolution, and it appears on average to have
converged.

Such manifest correlation in the behavior of Ago; and S 7 is the reflection of the evolutionary cycle of the flame
brush, discussed in [9]. It was shown that in the turbulent flame, which on average is in a steady state, the influx
of fresh fuel and the rate of its consumption never perfectly balance each other. Instead, periodically either one or
the other process dominates. In particular, an increase in the flame surface area inside the brush, and the associated
increase in d7, leads to a higher S 7. This causes rapid consumption of fuel inside the brush, decreasing both the flame
surface area and the overall width of the flame brush. As a result, a slower, less convolved flame emerges, which is
thus more susceptible to the action of turbulence. This leads to increased folding and stretching of the flame, and the
cycle repeats.

The behavior of Aggg is pronouncedly different. There appears to be no correlation between variations in Ag g9
and either o7 or S 7. Moreover, with increasing resolution, the magnitude of the variations increases, and there is no
evidence of convergence of the growing average values of Agg9. We will consider the correlation between A(Y) and
both §7 and dr in a more quantitative form in § 3.3.

These conclusions regarding the change of Ago; and Ag g9 with resolution are supported by Fig. 3¢, which shows
the full normalized time-averaged distributions Z(Y)/ L2 for all values of Y. In simulation S1, Ag ¢; and Ag g9 are nearly
equal. With increasing resolution, however, they diverge to the point that, in S3, there is almost a factor of 2 difference
between them. Values of Ag o steadily decrease and they indeed demonstrate convergence. At the same time, Ao 99
increases with resolution, and the difference between S2 and S3 is only marginally smaller than between S1 and S2.

This behavior is part of a broader qualitative change in the overall shape of the distribution of A which occurs
around Y ~ 0.5, i.e., at the boundary of the reaction and preheat zones. The lower resolution of S1 suppresses small-
scale turbulent motions, which, in turn, causes less flame wrinkling in the preheat zone. As a result, the flame-brush
surface appears similar both on the product and fuel sides (cf. Fig. 3 in [9]). With higher resolution, however, turbulent
flame wrinkling becomes more pronounced with increasing distance from the reaction zone, and the distribution of
A develops a distinctive inverted-S shape. The consequence of this was observed in [9] (see Fig. 3 therein), which
showed a much more highly convolved flame-brush surface on the fuel side in calculations S2 and S3. We will discuss
the role of small-scale turbulence in further detail in § 4.2.

Profiles of A in S2 and S3 are closer to each other in the reaction zone than in the preheat zone. Table 3 shows that
in the region of peak reaction rate, i.e., at ¥ ~ 0.15, A(Y)/L? exhibits the 3"?-order convergence. This is substantially
faster than what would be expected for an overall 21d_grder-accurate code. Moreover, in all three calculations, A varies
the slowest inside the reaction zone, i.e., for Y ~ 0.15 — 0.5. This shows that isosurfaces of the fuel mass fraction,
on average, follow each other closely within the reaction zone, which is thus folded and stretched by turbulence as a
coherent structure. This is in agreement with the very low variability in the reaction zone of the instantaneous profiles
of Y and T, which represent the internal flamelet structure [9].

3.2. Relation between S and A(Y)

Results presented in § 3.1 demonstrate that the flamelet, folded inside the turbulent flame by high-intensity tur-
bulence, has a complex internal structure with a distinctly different response of its various parts to the action of
turbulence. Consider the modified eq. (1)

Sr_, AW

St L
in which the surface area of the turbulent flame A7 is now represented by the isosurface area A(Y), and we set the
surface area of the planar laminar flame A; equal to the domain cross-section area L?. Using data for A(Y) and
Sr, eq. (12) then allows us to assess the extent to which Damkohler’s concept is valid in the regime modeled in our
simulations. Since A is not a constant, however, but rather it depends on the choice of Y, I now also, formally, becomes
a function of Y.

As an example, Fig. 4a shows the evolution of the stretch factor Ip15 = I(Y = 0.15) based on the area of the
isosurface that corresponds to the peak reaction rate in the flame. Even though it is fairly constant on average, Iy ;5
exhibits quite strong variability. In all three simulations and at all times after the flame has reached its quasi-steady
state, Iy |5 remains above unity becoming as high as 2.0 in S1 and 1.5 in S3. Similarly to other quantities we have
considered, Iy 15 shows less variability with increasing resolution. Time-averaged values of /j |5 are given in Table 3.
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In particular, To1s = 1.30 in S3, and this value can be viewed as converged to within a few percent with the overall
rate of convergence being somewhat faster than linear.

In order to assess the dependence of I on the choice of the value of Y, consider the time-averaged distributions
of 1(Y) shown in Fig. 4b. In particular, we show 1Y) = (S7/S1)/(Ar(Y)/L?).2 In all simulations, I is substantially
larger than unity throughout the reaction zone. Also, I > 1.0 for all values of Y, with the only exception being the
outermost region of the preheat zone in S3, where I < 1.0 for Y > 0.93. In the higher resolution simulations S2 and
S3, I decreases monotonically with increasing values of Y. Similarly to A, I varies the least inside the reaction zone,
i.e., forY =~ 0.15-0.5. For example, the difference between To.15 and T 5, which corresponds to the boundary between
the reaction and preheat zones, is 2% in S1, ~5% in S2, and ~8% in S3.

Finally, the +o standard deviation of individual values of /(Y) in S3 is shown in Fig. 4b as a shaded gray area.
The o is the smallest in the reaction zone, where it is < 15% of I. It becomes > 30% in the preheat zone as a result of
the stronger variability of A at large values of Y (cf. Fig. 3). Note that throughout the reaction zone, i.e., for ¥ < 0.5,
the 7 + o interval is above unity.

3.3. What is the flame surface area?

Distributions of the time-averaged stretch factor 7, shown in Fig. 4b, fail to answer the question concerning the
validity of Damkéhler’s concept in the regime considered here. Large values of 7, found in the reaction zone, indicate
a significant departure from Damkéhler’s model. At the same time, values of I close to unity, present in the outer
regions of the preheat zone, suggest that the increase in S 7 can be completely accounted for by the increase in A.

This demonstrates the importance of the question previously raised in § 1: What is the surface area of the flame
in such high-speed turbulent flows? In particular, since the response of different parts of the flamelet to the action of
intense turbulence is pronouncedly distinct, what value of ¥ most fully and accurately represents the overall behavior
of the turbulent flame?

These questions can be addressed by considering the correlation of A(Y)) with two global properties of the turbulent
flame, its speed and width. Fig. 5 shows correlations between S /S and A(Y) /L? calculated for three representative
values of Y: Y = 0.15, corresponding to the region of peak reaction rate, ¥ = 0.5, corresponding to the boundary
between the reaction and the preheat zones, and ¥ = 0.95, corresponding to the coldest part of the preheat zone.
The left panels of Fig. 5 show the time-evolution of all quantities, while the right panels show the corresponding
correlation scatter plots.

Since both the local flame speed and the induction times of the unburned fuel have finite values, there must be a
delay in the response of S 7 to the changes in the flame configuration, represented by its surface area. Therefore, the
degree of correlation between S 7 and A(Y) must be a function of a time lag, At, between these two quantities. For each
value of Y in Fig. 5, we determined the time lag, At., that produced the best correlation. This was done by directly
calculating the cross-correlation between S 7(¢)/S ; and A(Y,)/L* and finding its maximum. The value obtained for
At was verified by determining the least squares fit for the distribution of S 7(£)/S 1 vs. A(Y,t— At')/L* and by finding
Ar;. that maximized the slope of the fit and minimized its residuals. The values of A(Y) /L2 in Fig. 5 were then shifted
in time with respect to S /S 1. by the corresponding time lag A¢, given in the lower right corner of the panels (a), (c),
and (d).

The first key conclusion emerging from Fig. 5 is that S 7 and A become progressively less correlated with increas-
ing values of Y. While the correlation is pronounced throughout the reaction zone and is exceptionally strong near the
peak reaction rate, S 7 and A are only very weakly correlated in the colder parts of the preheat zone. Note that panels
(b), (d), and (f) have the same scale, which shows the relative increase in the scatter of the distribution and its overall
shift to higher values of A in the preheat zone.

Note in Fig. 5b that at the peak reaction rate, the scatter of the distribution is the largest near the average values of
St and Ag 5. At extreme values, however, the scatter becomes very small with data points located very close to the
fit line. This effect is much less pronounced for ¥ = 0.5, and for Y = 0.95 the scatter appears to increase substantially
toward extreme values of Agos.

The time delays that give the best correlation between the two quantities are positive, and thus they show that S 7
does indeed lag behind A. Moreover, the magnitude of Az, increases with increasing Y. Qualitatively, this agrees with
the fact that S 7 at a given moment is primarily determined by the region of the highest reaction rate, which corresponds
to the lowest values of Y. Consequently, the time delay between S and the area of the isosurface representing the
peak reaction rate is very small, namely 0.0471,4. Since turbulence reorganizes the flame on a timescale ~ 7.4, such a
small lag is too short for the flame structure to change in any significant way. Therefore, the correlation between Ag ;5
and Sr is very strong.

2Note that using instead the expression 1Y) =S 1/SL)/Ar(Y)/L?) gives virtually the same result.



At the same time, since the reaction rate is fairly low at ¥ = 0.5, the contribution of this region to the overall
turbulent flame speed is small. Burning still needs to accelerate substantially in this area in order for it to become the
new region of peak reaction rate, which will then predominantly determine the magnitude of Sr. The time required
for this to occur results in a longer time delay, namely 0.17,,. During this time, however, turbulence is able to change
the flame structure more strongly than in the case of ¥ = 0.15. As a result, the degree of correlation between Ay s and
S 7 decreases.

In the coldest regions of the preheat zone, there is no correlation between S 7 and Ag g5 at small values of Az.. We
found evidence of weak correlation for a much larger time delay Az, = 0.587,4. This value, however, is comparable
to the time during which the turbulence completely reorganizes the structure of the turbulent flame. Therefore, by
the time burning reaches the reactants in the outer regions of the preheat zone, the connection between their original
distribution and the resulting turbulent flame speed is significantly disrupted.

We also found weak correlation between Aggs and Ap s with the time lag for Aggs similar to that in the case of
S 1, namely Az, = 0.567,4, and the slope of the least squares fit of 0.4907. This weak correlation between A 5 and
Ap.os 1s in agreement with a similarly weak correlation between St and Apgs. In particular, it reflects the fact that
after the time ~ (0.56 — 0.587,4, burning reaches the outer part of the preheat zone. As a result, the former ¥ = 0.95
region becomes the new Y = 0.15 region and thus the new site of the peak reaction rate which now determines S 7.
Substantial change in the flame-brush structure during this time, however, leads only to weak correlation between
Ag.15 and Aggs.

The computed time delays can be compared with the characteristic propagation time of the laminar flame,
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and with the adiabatic induction time for the reaction model used in this work,
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where T;,4 is based on the Frank-Kamenetskii approximation [23]. In eq. (13), we used the values of L and U given
in Table 2.

Eq. (14) is derived under the assumption that heating of a fluid element by chemical energy release greatly ex-
ceeds its cooling due to thermal conduction. Therefore, eq. (14) applies only in the reaction zone. There 7,4 is the
controlling timescale and it is 1 — 2 orders of magnitude smaller than 7. For a planar laminar flame,

Tind = 0.0175 ~ 0.057,4, forY =0.15, (15)
Tina = 0.067s =~ 0.217,4, forY =0.5.

This shows that for Y = 0.15, 7,4 is practically equal to the corresponding time lag, while for Y = 0.5, 7;,4 is within
a factor of = 2 of At (Fig. 5a,c). Using in eq. (14) the specific heat at constant volume, C, = R/M(y — 1), instead of
C,, i.e., assuming that burning occurs at constant volume rather than at constant pressure, would decrease the values
of 7,4 by = 15% to 0.047,.4 and 0.187,4, respectively.

In the preheat zone, 7;,; rapidly becomes much larger than 75, since heating and ignition of the reactants now
are controlled by heat transfer and the propagation of the flame as a whole. For ¥ = 0.95, however, the time delay
At, = 0.587,4 =~ 0.167s. Furthermore, it is an order of magnitude smaller than the time 7 ~ 1.676./S; = 1.677s,
which is necessary for the flame to propagate over the characteristic distance separating Y = 0.95 and Y = 0.15 in the
flamelet structure (cf. Fig. 7 in [9]). This shows that while in the reaction zone the time delays are in good agreement
with the corresponding 7;,4, in the preheat zone At, is substantially smaller than the characteristic propagation times
of the laminar flame.

In addition to the strong correlation between the values of St and Ag s, the distribution shown in Fig. 5b has
another important property that is not present at higher values of Y. As the flame becomes less convolved, it will
behave progressively more like a planar laminar flame. This means that Ay/L? for the isosurface most representative
of the flame surface and S 7 /S ; must approach unity simultaneously. Consider now the linear least squares fit for the
case Y = 0.15, shown with a solid line in Fig. 5b. It has the form

St Ag.15
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For Ag 15/L? = 1, this expression gives S /S = 1.03, which is the deviation of only 3% from unity. In fact, the line
which passes exactly through the point S7/S; = Ao.15/L* = 1 and also, as required for the least squares fit, through



the center of mass of the distribution, i.e., the point S /S = St/S. and Ags/L* = Agys/L2, is

S_T: (_§T/SL)_1 Aois (§T/EL)_(ZOA15/L2) =1.46M—0.46. an
Su | @Aois/LH -1 L2 (Ao1s/L) - 1 L?

Here S7/S and Ag ;5/L? are the time-averaged values given in Table 3. Expressions for the coefficients in eq. (17)
approximate the first and second coefficients in eq. (16) with the accuracy of = 1% and ~ 12%, respectively.

This demonstrates that the distribution of S7/S . as a function of Ag 5/L> (Fig. 5b) closely follows the trend that
has the correct limiting behavior as Aois/L? — 1. Linear least squares fits for the two other values of Y, shown in
Fig. 5d.f, do not recover the value of S7/S; = 1 as A(Y)/L* — 1. Itis particularly important to consider such limiting
behavior for ¥ = 0.5, where a reasonably good correlation between S 7 and A 5 could suggest that this value of ¥ can
also be viewed as representative of the flame properties.

Next consider the correlation of A(Y) with the second key global characteristic of the turbulent flame, namely its
width, 67. Fig. 6 shows the correlation between A(Y) /L* and 67 /L for the same three values of Y as in Fig. 5. Since
both A and &7 represent the same instantaneous configuration of the flame, no time delay between them would be
expected.> Consequently, no time shift was applied to either quantity in Fig. 6.

The distribution of 67 /L as a function of A(Y)/L? shows the same trend observed for S7/S .. In particular, the
correlation between the two quantities is also the strongest for ¥ = 0.15, and it decreases with increasing Y. The
values of 67 /L and Aggs appear to be almost completely uncorrelated. Note, however, that overall the correlation in
the reaction zone, and, in particular, in the region of peak reaction rate, is weaker for 07 than S with the distributions
of 67 having a much larger scatter.

The decrease in correlation between 67 /L and A(Y)/L? with increasing Y reflects the fact that the isosurfaces of
higher Y tend to be wrinkled on progressively smaller scales, as discussed in § 3.1 (also see [9]). As a result, while the
areas of these isosurfaces increase, they contribute less to 67 which is determined predominantly by the flame folding
on the largest scales. Therefore, o7 is best correlated with A(Y) at the lowest values of Y, where the folding on such
large scales is most pronounced.

The strong correlation of Ag ;5 with S 7 and d7, which represent both the global energetics and the global structure
of the turbulent flame, as well as the correct limiting behavior of the distribution of S7/S; as Ag,5/L*> — 1 present a
compelling case. These results show that ¥ = 0.15 most accurately characterizes the overall evolution of the flame.
Consequently, the flame surface area, Ay, is best represented by the isosurfaces of Y close to the peak reaction rate.

3.4. Stretch factor and the balance between St and Ar

We can now revisit the question of the actual values of the stretch factor, /, in the regime considered here.* Our
results demonstrate that / ;5 must be viewed as most characteristic of the system evolution. The time history of Iy ;5
(Fig. 4a) and its time-averaged values (Table 3) show pronounced deviation from Damkdohler’s concept on the order
of 30% as the turbulent flame speed exhibits a strong exaggerated response to the increase in the flame surface area.

This exaggerated response is illustrated in Fig. 5 as the shaded gray area. In particular, the shaded region in Fig. 5b
is a measure of the relative increase of the actual values of S /S with respect to the values given by Ag 5/ L?, which
are shown as a dash-dot line. At larger values of A s/L2, the overall distribution deviates progressively more from
the S7/S. = Ao.15/L? line. This demonstrates the following crucial fact: the magnitude of the exaggerated response
of S 7 grows with increasing flame surface area. We examine this result in more detail in § 4.3.

Finally, the time-averaged value of the stretch factor / ~ 1 in the coldest region of the preheat zone (Fig. 4b) was,
in fact, simply the result of time averaging. Fig. Se,f shows that [y 95 has a much larger range of variability than / s,
namely 0.5 — 1.7 (also consider the +o standard deviation of /(Y) shown in Fig. 4b). At the same time, in a system
in which S 7 is determined only by Az, I by definition must be unity and constant. This further shows that I ~ 1 at
large values of Y in simulation S3 cannot serve as evidence of the fact that the observed S 7 is determined only by the
increase in the flame surface area.

3 As a check, we verified that, indeed, the cross-correlation had its maximum at the zero time lag.

4In light of the fact that S 7 and A(Y) are best correlated when A is shifted in time with respect to S 7, the question arises whether such time shift
should also be applied to A when calculating /, i.e., whether the expression I(Y,#) = (S7(#)/S1)/(AY, t — At.)/L?) should be used. In principle, an
argument could be made that, due to the inherent delay in the response of St to the changes in the flame structure, the current value of S is the
result of A that existed earlier in time and, thus, / must be calculated using this earlier value. At the same time, as was shown, the time lag Af. is
extremely small for ¥ = 0.15, which as we have concluded should be used to estimate /. During this time, the change in the flame surface area is
negligible and applying the time shift in the expression for / does not cause any appreciable change in the result.



4. Flame surface density and its relation to the turbulent flame speed

4.1. Surface density of the fuel mass fraction isosurfaces

The analysis of the flame surface area does not address the question of how the flamelets are organized inside the
flame brush and, in particular, how tightly they are packed. It can be seen in Fig. 6b that the relative variation of Ag ;5
is =~ 50% larger than that of 7 with the ratio of the maximum and minimum values of Ay ;s being ~ 3 as opposed to
~ 2 for 67. This suggests that the change in the flame surface area cannot be accounted for only by the variations in
the turbulent flame thickness, but it must also be related to how the flame surface is folded inside the flame brush.

Consider the surface density of the fuel mass fraction isosurfaces, defined as the isosurface area normalized by the
effective flame-brush volume
A(Y)
orL?
Detailed discussion of this definition of £(Y) and, in particular, of the choice of the uniform normalization by the full
flame-brush volume is given in Appendix A.

The evolution of Xy g; and Xy 99, Where Xy, = Z(Y = Y’), is shown in Fig. 7a,b. The overall trends are similar to
those exhibited by Ag; and Aggg (cf. Fig. 3a,b). In particular, X is lower on the product side of the flame. Moreover,
similar to A, X appears to converge at lower values of ¥ and shows virtually no convergence in the preheat zone. Most
important, there is substantial variability in X, especially on the fuel side, where X changes by up to a factor of 3.
This tighter packing of the isosurfaces, which periodically occurs in the course of system evolution, suggests that the
increase in the flame surface area is indeed associated with the increase not only of §7, but also of X.

Fig. 7c shows time-averaged distributions of X(Y) in simulations S1 - S3. Comparison with Fig. 3c demonstrates
that both A(Y)/L? and Z(Y) show remarkably similar behavior. The time-averaged values of 3 are also not constant,
but, instead, they progressively increase through the flamelet from its product side to the fuel side. The resulting
inverted-S shape of the profiles is very similar to that of A(Y) with both A and T at the two extreme values of ¥
(Y = 0.01 and 0.99) differing in S3 by almost a factor of two. Similar to A, X varies the least in the interior of
the reaction zone, i.e., for Y ~ 0.15 — 0.6, while outside this region it shows strong dependence on Y. Just outside
the reaction zone, individual profiles begin to diverge from each other with the variation between them becoming
progressively larger for higher values of Y.

In the reaction zone, values of 3 for all three calculations are much closer than those of A. In fact, Table 3 shows
that 2(Y) exhibits 4”-order convergence compared with 3?-order convergence for A. As a result, values of T are
virtually identical for ¥ ~ 0.01 — 0.4 in S2 and S3. On the other hand, in the preheat zone, the profiles of X diverge
more than in the case of A. This shows that the effects of small-scale turbulent motions on the reaction and the preheat
zones are, in fact, even more disparate in terms of their ability to provide tight folding of the isosurfaces compared
with their ability to increase the isosurface area.

Flame surface density is a quantity used both in experimental and theoretical combustion research. In particular,
Y nax 1s defined as the surface density in the region of the flame brush with mean reactedness ¢ = 0.5, where ¢ =
(T —Ty)/(Tp — Ty). It can then be shown that [3]

X(Y) = (18)

A*
Zax = ﬁ’ 19
= SrAT (19)
where A ¢ is the flamelet surface area based on ¢ = 0.5, and Aj represents the average area of the flame brush. In

a system described by the one-step Arrhenius kinetics, ¢ = 0.5 corresponds to ¥ = 0.5. Therefore, Ajs = Ags.
At the same time, in a planar brush A] = L2, as was discussed in § 3.1. Thus, X,y is equivalent to Xy 5 as given
by eq. (18). It is reasonable then to compare values of Xy s in our simulations with those of %,,, obtained in other
experimental and numerical settings. In particular, in S3, E()As =0.73 mm™!. This is comparable to the range of values
of Zyax = 0.12 — 0.6 mm~! obtained in a number of experimental studies using a wide variety of flame configurations
(see [3] for a summary table). The fact that the value in S3 is somewhat larger is not surprising, given that the turbulent
intensity in it is substantially higher.

Overall, however, the traditional definition of X given in [3] is not equivalent to the definition used here unless
Y = 0.5. Therefore, unlike Z,,,,, Xo 5 is not necessarily the maximum value of X for all values of Y. Fig. 7c shows that
while in S1 X5 is indeed approximately the largest value, this is not the case in S2 and S3. At the same time, in all
three calculations, fgs is representative of the values of 3 throughout the reaction zone with the difference between
Yo and g ;5 being ~6—9% in the higher-resolution cases.

4.2. Distributions of Z(Y) and E(Y) and the effects of small-scale turbulence

How do these results concerning the distributions of A(Y) and Z(Y) relate to previous conclusions [9] regarding the
inability of the turbulent cascade to penetrate the flamelet interior and the role of small-scale turbulent motions? As
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was discussed in § 2.1 (also see [9] for further details), the progressive increase in resolution from S1 to S3 extends the
turbulent cascade to smaller scales, and this leads to a substantial increase in the energy of turbulent motions on scales
A < 6, in nonreactive turbulence. This increase in resolution was found to cause the flame surface on the fuel side to
be wrinkled on progressively finer scales, while remaining virtually unchanged on the product side. It was determined
that the deviation of the internal flamelet structure from that of the planar laminar flame increases with decreasing
temperature. These two results showed that the effects of small-scale turbulent motions are most pronounced in the
coldest parts of the preheat zone. These effects diminish with increasing temperature and completely disappear once
the reaction rate becomes significant [9].

Results presented in this paper are consistent with this picture. The steady growth of A/L? and T on the fuel side
of the preheat zone with increasing resolution shows that more intense small-scale motions indeed fold isosurfaces
on progressively finer scales. It must be emphasized that the change in A alone does not necessarily mean that it is
caused by finer wrinkling on smaller scales. Only when viewed in conjunction with the surface density, which shows
a very similar dependence on Y, does such increase in A serve as a strong indication of the small-scale wrinkling.

With increasing temperature, not only do A/L? and I decrease rapidly, but also, most importantly, individual
profiles for S2 and S3 begin to approach each other. This demonstrates that the main difference between these two
simulations, namely the presence of more energetic small-scale turbulence in S3, is being eliminated and, thereby,
motions on scales A < ¢y are gradually suppressed. Since it is these small scales that enhance the diffusive transport,
which in turn broadens the preheat zone, their suppression causes the internal flame structure to approach that of the
planar laminar flame [9].

As the reaction rate becomes substantial at ¥ < 0.5, both A/L? and T become similar in S2 and S3. At this point the
only energetic scales are A 2 ¢,, which are originally the same in both calculations (cf. Fig. 1 in [9]). Consequently,
they generate similar isosurface areas and densities. Since these scales cannot support small-scale diffusive transport,
any broadening of the internal flamelet structure effectively disappears at ¥ < 0.5 [9]. Further decrease in A/L? and
T is the consequence of the continued suppression of the progressively larger scales A > ;.

There is one important distinction between the distributions of A/L? and T and the time-averaged profiles of ¥
and T, which represent the internal flamelet structure [9]. The Y and T profiles showed very little variation between
simulations S1-S3 not only in the reaction zone, but also in the preheat zone. This is in contrast with the distributions
A/L? and T, which differ substantially in the preheat zone even between the S2 and S3.

This suggests that small scales, A < ¢, contribute differently to the turbulent diffusive transport and to the wrin-
kling of the isosurfaces. The former is primarily governed by the largest of these small scales, i.e., scales not much
smaller than ¢, since these scales have the highest velocities associated with them. The energy on these scales is the
same in all three simulations and, thus, they produce the same structure of the broadened preheat zone. At the same
time, all scales smaller than §; contribute to the isosurface wrinkling and the different energy content of these scales
causes the distributions of A/L? and X to differ substantially in the preheat zone.

Qualitatively, both the internal flamelet structure described in [9] and the distributions of A and X presented here
create a consistent picture of the profound transformation that turbulence undergoes as it passes through the flame.
Changes in the energy budget between different scales, which are most certainly accompanied by the development of
both anisotropy and inhomogeneity of the velocity field, are complex. While the evidence presented here and in [9]
provide hints about the nature of this transformation, the details remain unknown. For instance, are the energy release
and the resulting fluid expansion the only effects responsible for altering the turbulent field and redistributing energy
between different scales? What are the relative contributions of various small scales to the increase in A and £? How
does the shift in balance between small and large scales with increasing temperature change at different turbulent
intensities? All of these questions need to be addressed in future studies.

4.3. Correlation between S and Z(Y)

Peaks and troughs in values of X o; in Fig. 7a can generally be associated with those in values of S 7 in Fig. 1b. This
suggests that the density of the flame surface, packed inside the flame brush, is a dynamically important characteristic
affecting the energetics of the system and, thus, its evolution. In order to consider this question more rigorously, we
show in Fig. 8 the correlation between S /S and X(Y) for the same three values of Y as in Figs. 5-6.

As with A, one would expect S 7 to respond with a certain delay to the changes in £. Even though both A and £
represent the same instantaneous flame structure, we chose not to make an a priori assumption that the magnitude of
that delay is the same as it was in the case of A. We determined the time lag, Az, which produced the best correlation
between S r(#)/S ;. and Z(Y, ¢), for each individual value of Y following the same procedure as was used in § 3.3. The
values of X(Y) in Fig. 8 were shifted in time by Az, given in the lower right corner of the panels (a), (c), and (d).

The principal result is the strong correlation of the values of Zj 5, corresponding to the region of the peak reaction
rate in the flamelet, with S 7. The scatter of the distribution of S 7/S 1 as a function of £y ;5, however, is larger than for
Ap.15- AtY = 0.5, the correlation of S with X5 is weaker, as for A s, although it is still quite pronounced. Finally,
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similar to Ao s, X095 shows at most only very weak correlation with St at Az, = 0.587,, (Fig. 8f). In addition, we
found some evidence of weak anticorrelation of Xp9s with S at Az, = 0, with the slope of the least squares fit of
—3.007. This is in contrast to Aggs, which was completely uncorrelated with St at values of Az, close to zero. It
is not clear, however, what the physical significance of this anticorrelation is, since it is unlikely for St to have an
instantaneous response to the distribution of cold unreacted fuel.’

The time delays for  in the reaction zone are similar to those obtained in the case of A. Moreover, At for Zg 5
is much closer to the magnitude of the induction time given in eq. (14), than it was for Ag s, being within 25% of the
corresponding value of 7;,,.

These results are further evidence that Y close to the peak reaction rate is most representative of the dynamics of
the turbulent flame. Therefore, as Ag ;5 was concluded in § 3.3 to represent the flame surface area, X ;5 can be viewed
to represent the flame surface density, Xy. Consequently, the fact that larger values of S are correlated with larger
values of X ;5 shows that the increase of S 7 is closely associated with more tightly packed flame configurations.

So far we have considered the correlation between S7, Ag 15, and Zo 15 separately. In order to demonstrate the
close connection between these three quantities, we colored each data point in Fig. 3b according to the corresponding
magnitude of Xy ;5. It can be seen that, indeed, larger values of S and A ;5 are associated with larger values of X ;5.
In particular, an increase in the value of /j 15 from ~ 1.2 to ~ 1.36 is associated with the increase in Z ;5 by more than
a factor of two from ~0.4 mm~! to ~0.85 mm™" .

This finally leads us to the following two key conclusions:

1. Larger values of Ar are associated with larger values of 7. This shows that increase in the flame surface area
in the course of the flame evolution is primarily due to the much tighter folding and packing of the flame, rather
than only due to the increase in the overall extent of the flame brush.

2. Increase in Ar and X7 leads not only to larger values of St but, most importantly, also to a larger deviation of
St/S . from Ar /L2, i.e., from the value predicted by Damkohler’s concept. In other words, in the presence of
the high-speed turbulence, the increase in the flame surface area and the associated tighter packing of the flame
result in the progressively more exaggerated response of St to such increase in Ar. This, therefore, causes a
substantially accelerated burning.

5. Mechanism of the turbulent flame speed increase

5.1. Potential causes of the increase of the local burning speed

The substantial deviation of / from unity observed in the simulations brings up the following question: What
mechanism is responsible for raising S 7 beyond what can be attributed to the increase in A7 ?

According to Damkohler’s concept, I > 1 results from the change in the local flame speed, S;, which is the
consequence of the enhancement of diffusive processes by turbulent transport. Therefore, this change cannot be
episodic and local, but rather it must be a reflection of the statistically dominant state. It was demonstrated in [9],
however, that there is no evidence of such enhancement, as the average internal flamelet structure in the reaction zone
is virtually identical to that of the planar laminar flame, and the resulting thermal width of the flamelets is practically
equal to d;. Since for the first-order Arrhenius kinetics there is a unique correspondence between the flame structure
and speed, this showed that, on average, the flame propagates locally with the speed close to S ;. Furthermore, there
is no significant fuel preconditioning by the turbulent flow, which could increase S;. For the full duration of the
simulations, the pressure in the domain remains smooth and close to its initial value Py. The fuel temperature rises by
the end of the simulation to ~ 330K, which is not sufficient to increase S ; appreciably.

These considerations show that the observed anomalous increase in S ; cannot be accommodated within Damkohler’s
paradigm. Consequently, a different mechanism must augment the effect of the increased flame surface area.

Instead of being the result of a uniform global increase of §; compared to S ;, throughout the flame brush, enhanced
values of S 1 could be caused by a significant local increase in S;. Two immediate causes for such local enhancement
can be envisaged: (1) local inhomogeneities in the thermodynamic state of the fuel, and (2) intermittency of the
turbulent flow.

We did not find, however, either of them to be a significant factor in causing the observed increase in S7. In
particular, in a subsonic turbulent flow, such as the one considered here, with the turbulent Mach number Ma substan-
tially less than unity (see Table 1), local variations of density or temperature are much too small to affect §; in any
appreciable way.

SWe note that we were unable to find any statistically significant correlation or anticorrelation between Z( 15 and X5 at any time lag. This is
in contrast with the weak correlation between Ag 15 and Ag s discussed in § 3.3.
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The potential role of turbulence intermittency on the flame has been studied by Pan et al. [24] in the context
of the Rayleigh-Taylor-driven thermonuclear flames in the interior of a white dwarf during the Type Ia supernova
explosion. Their results suggested the possibility that intermittency in the velocity field causes local disruption and
broadening of the flame, which potentially would also increase the local burning speed. It is not immediately clear,
however, to what degree their conclusions would apply to the system discussed here. The conditions in the white
dwarf interior considered in [24] are substantially different from the ones in S1 - S3. Moreover, their analysis did not
consider any feedback of the flame on the turbulent field and, in particular, it did not include fluid expansion due to
heat release which invariably affects intermittency of the flow. While we do observe intermittency in the flow field in
our simulations, we find that regions of large velocity enhancement are statistically too rare, their spatial extent is too
small, and they are much too short lived to increase S; and, thus, to make any significant contribution to the overall
increase in Sr. At the same time, the role of intermittency in the dynamics of turbulent flames does require further
investigation. In particular, it would be extremely important to extend the analysis of Pan et al. [24] by including the
feedback of the flame on turbulence under conditions characteristic of chemical rather than thermonuclear flames.

5.2. Local increase of S in cusps formed by flame collisions

According to the theory of flame stretch (see [5] for a review), under the Le = 1 conditions, the flame is not
affected either by the flow-induced strain or curvature, in accordance with Damkohler’s concept. In particular, a
stationary spherical flame supported by a point source of mass, which is an example of a curved unstrained flame, has
the internal structure, and thus local burning velocity, identical to that of a planar laminar flame [5]. Such analysis,
however, is typically performed in the regime when curvature radius r. > ¢y. Our simulations of an idealized
spherical or cylindrical flame collapsing into a stationary fuel corroborate this result. Furthermore, they show that
S; = St not only when r. > §;, but up until the moment when the flame curvature becomes ~ 1/, i.e., until
the flame effectively collapses onto itself. At this point, S; increases substantially. Beyond this moment, however,
the flame itself effectively ceases to exist and, therefore, the local flame speed looses its meaning. Such idealized
situation is hardly representative of the conditions arising in an actual turbulent flame. Nonetheless, regions of large
flame curvature ~ 1/6;, are frequently created in the high-speed turbulent flow considered here, and we now show how
they naturally provide a mechanism for a significant local enhancement of S ;.

We have demonstrated above that in the presence of intense turbulence, larger values of I are well correlated with
the increase in £ and, thus, with much tighter folding and packing of the flamelets inside the flame brush. The inverse
of the surface density is a measure of an average separation between surface elements. Given that o145 = 0.67 mm™!
in simulation S3, the average distance between individual flame sheets is 1/50,15 ~ 1.49 mm ~ 4.76;. At the same
time, Zo.15 can be as high as 0.97 mm™! (Figs. 5b, 8b), resulting in an even lower average separation of ~3.26;. This
is comparable to the full width of individual flamelets (cf. Fig. 7 in [9]). Such tightly folded flamelet configurations
invariably result in frequent collisions of individual flame sheets.

Fig. 9 gives an example of such collision in simulation S3. The figure shows the flame-brush structure at three
times: 11.867.4 (upper panel), as well as 0.17,4 = 3 us and 0.27,; = 6 us later (middle and lower panels, respectively).
Initially, a region with highly convolved flame develops in the flame brush (region A). At this time, S; = S locally
throughout region A and self-propagation of the flame can be neglected on timescales considered in Fig. 9. As
turbulent motions continue to bring individual flame sheets closer to each other, the curvature radius of the flame
becomes close to d;,, and the preheat zones begin to overlap substantially over an extended region of the flame surface.
This marks the formation of two regions of high flame curvature > 1/6, (regions B), which we will hereafter refer to
as “cusps.” Regions C in the lower panel show that 3 us later the flame sheets have merged and formed two extended
reaction zones, which suggests substantially accelerated burning in that area of the flame brush. Note also a rapid
decrease of the area of the ¥ = 0.5 isosurface represented with the thin black line. Comparison of regions B and C
shows that this isosurface propagated over the distance =~ (0.5 mm over the time 3 us, which implies the propagation
speed (but not the local burning speed) =555 ;.. During the time shown in Fig. 9, two other highly elongated regions
of flame collision have formed near the upper face of the domain. Thus, Fig. 9 illustrates the fact that flame collisions
are ubiquitous in the turbulent flame, and they do produce regions of large flame curvature. Moreover, their evolution
in Fig. 9 suggests substantial increase of both the local burning and propagation speeds in the cusps.

5.3. Structure and properties of cusps

Cusps were first considered by Zel’dovich [25] (also see [26]), who suggested them as a mechanism of flame
stabilization that prevents the unbounded exponential growth of the flame surface under the action of the Landau-
Darrieus instability [27]. Such regions would have a high propagation velocity, causing rapid annealing of the flame
surface, and thus providing an efficient mechanism to counterbalance the flame instability [25]. It was also suggested
in [25] that S; near the tip of the cusp ceases to be equal to S, and the cusp region develops a structure similar to
the tip of the Bunsen flame. The flame in the analysis given in [25, 26], however, was considered to be a gasdynamic
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discontinuity, and so its internal structure was ignored. As a result, the actual increase of the local flame speed in the
cusp could not be determined.

In order to analyze quantitatively the effect of flame collisions and to determine the actual increase of S; in the
resulting cusps, consider an idealized model of the cusps observed in Fig. 9. In particular, consider two symmetrically
located planar flame sheets approaching each other with the inclination angle to the mid-plane @. At the point of
collision, the flame sheets merge and form a cusp. Its properties, such as its structure, speed of propagation, and
effective burning velocity, are determined in this configuration only by two parameters, S and a.

Fig. 10 illustrates the flame structure formed in this situation. It shows the distribution of the fuel mass fraction in
two simulations performed for @ = 1° and @ = 4° with Athena-RFX using the same physical model as in simulations
S1 - S3. The domain has the resolution Ax = §;,/32 and zero-order extrapolation boundary conditions on all sides. At
t = 0, two intersecting flame sheets were initialized with the exact structure of the planar laminar flame, and uniform
pressure Py and zero velocities were assumed. After the initial transient stage, the flame develops the structure shown
in Fig. 10. The structure of the cusp itself does not change with time, provided that the planar flame sheets extend
sufficiently far from it. Therefore, Fig. 10 can be viewed as a steady-state solution.

Fig. 10 shows that flame collision at very low inclination angles results in the formation of a highly elongated
structure. It is formed by rapid heating and, subsequently, ignition of a larger amount of fuel than in the planar
laminar flame due to the focusing of the thermal flux from two approaching flame sheets. Consequently, its extent is
determined by the size of the region in which the preheat zones of approaching flames overlap and, thus, create the
necessary enhanced thermal flux. Since the width of the preheat zone is = §;,, very small values of @ are required for
the cusp to be substantially broader than ¢;. This can further be seen in the distributions of the fuel mass fraction,
Y, temperature, T, and reaction rate, ¥, along the symmetry axis of the cusp shown in Fig. 11. The structure of the
reaction zone in the cusp very quickly approaches that of the laminar flame with two becoming very close to each
other already at @ ~ 4°. At the same time, the preheat zone of the cusp remains substantially broadened for much
larger values of a.

There are three characteristic speeds in this problem. Sufficiently far from the tip of the cusp, the flame locally
propagates normal to its surface with the laminar flame speed S, i.e., there §; = S ;. The cusp itself moves into the
fuel with the phase velocity D, which results simply from the two inclined planar surfaces colliding with each other.
This speed can be determined based on purely geometrical considerations [25],

St

D, = —%. (20)
Nlyes

This cusp propagation speed, normalized by S, is shown as a solid line in Fig. 12a along with D./S  determined
as the velocity of the leftmost point of the ¥ = 0.5 isosurface in simulations for four values of a. Eq. (20) is within
< 1% accuracy of the computed values. D, approaches the laminar flame speed as @ — 90°, i.e., when the two flame
sheets cease to advance toward each other. At the opposite limit of small @, D, can be quite large and, in principle,
infinite when @ — 0°. In particular, at @ ~ 0.5°, D, becomes larger than the sound speed in cold fuel indicated with
the horizontal dashed line in Fig. 12a. Note also that at @ = 1°, the value of D, ~ 57§ is very close to the high
propagation velocity =555 1, of cusps in regions B - C in Fig. 9 estimated in § 5.2.

The third characteristic speed, which is of most importance to us, is the local burning speed in the cusp, S;. The
broadened reaction zone at low flame-inclination angles (Figs. 10 and 11b) causes more fuel to be consumed per unit
flame surface area than in the planar laminar flame, and, therefore, it leads to a larger local flame speed S; > S ;. Since
the reaction zone width is the largest at the tip of the cusp, S, has its maximum there and it gradually decreases to its
laminar value S in the planar regions of the flame sufficiently far from the cusp. The maximum value of S, at the
cusp tip can be found as

1 . B
S} =max(S;) = — prdx =—-— fszexp( - g)d)c. 21
Po PO RT

Here eq. (7) was used for Y, and the integral is taken along the symmetry axis of the cusp shown in Fig. 10. Fig. 12b
shows the computed values of S normalized by S ;. for the same four inclination angles as in Fig. 12a.

Two key conclusions emerge from Fig. 12. First, S is substantially lower than D,, being less by more than an
order of magnitude at the values of @ considered. Second and most important, S} can indeed be substantially higher
than S, at small inclination angles.
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5.4. Connection between the increase of S in cusps and St

We are interested, however, not just in §; but, rather, in the burning speed of an extended flame region, as this is a
direct equivalent of the turbulent flame speed. The total burning speed of the flame configuration shown in Fig. 10 is
m
Se=—, (22)
Po
where iy is the total mass of reactants converted into product per unit time. If the flame were to propagate everywhere
with the speed S, then S, = AS, where A is the surface area of the flame in such a configuration based on the
isosurface of Y = 0.15 representing the peak reaction rate. Otherwise,

S

I =
ASy

> 1. (23)

Here I again is the stretch factor, which is equivalent to the definition used in eq. (12) in the context of the turbulent
flame speed. Substituting the definition of S 7 given by eq. (10) into the definition of / given by eq. (12), it can be seen
that indeed rig /pg = IAS L = S ..

Since S ; monotonically decreases away from the cusp, both S . and / depend on the size of the flame region being
considered. This size can be represented by the length /., illustrated in Fig. 10, which is defined as the distance from
the leftmost point of the isosurface of Y = 0.15 in the direction of cusp propagation. Considering different values of /,
is equivalent to varying the fraction of the total surface area of the flame in Fig. 10 represented by the planar section
in which §; = S ;. Consequently, this allows one to vary the relative contribution to S, and thus to /, of the cusp in
which § ;> S L.

The stretch factor, calculated using eqs. (22)-(23), is shown in Fig. 13b for four values of « as a function of /. /5.
At smaller /. close to the width of the reaction zone for a given a (Fig. 11b), I essentially reflects only the values of
S, in the immediate vicinity of the tip of the cusp. On the other hand, at larger /., the surface area of the planar flame
region, in which §; ~ S, is larger and, thus, such region represents a greater fraction of the total surface area of the
flame configuration shown in Fig. 10. As a result, the contribution of the planar flame starts to dominate that of the
cusp, which causes / — 1 as seen in Fig. 13b. At lower inclination angles, however, the region in which S§; > S,
extends progressively further from the cusp tip. In particular, at @ = 1°, I is substantially greater than unity even at
[ >> 6. At the same time, already at @ = 4°, I drops to < 1.04 at [, = 55, which shows that S, recovers its laminar
value within a few laminar flame widths from the cusp tip.

These results show that the formation of a cusp due to the collision of planar flame sheets indeed produces values
of I substantially larger than unity and comparable to those observed in the simulations presented here. As a result
of a higher local flame speed in a cusp, its contribution to the global turbulent burning speed is disproportionately
large compared to the fraction of the instantaneous flame surface area in it. A more complex flame configuration,
consisting of multiple planar flame sheets that approach each other and collide forming multiple cusps, can then be
viewed as a simple model of the turbulent flame. If the flame surface density in this system is increased, flame sheets
will get closer to each other causing flame collisions to become more frequent and the resulting cusps to become
more numerous. Consequently, the fraction of the flame surface area contained in cusps will increase and I will grow
rapidly and significantly, which is demonstrated by the increase in / with decreasing /..

This simplified model does not take into account the full complexity of an actual turbulent flame. Such flame does
not consist of perfectly planar flame sheets that merge, but instead it is constantly wrinkled and folded on a variety
of scales. The analysis presented in § 5.3 shows that in a curved flame, S, unlike D., does not gradually rise with
increasing curvature. Instead, S, remains very close to its laminar value until the curvature becomes very large, i.e.,
2 1/6., which is consistent with the behavior of an ideal collapsing spherical or cylindrical flame discussed in § 5.2.
Turbulence can create regions of such large curvature either by folding the flame, thereby, gradually increasing the
curvature at a specific point of the flame surface until it becomes 2> 1/6,, or by bringing two flame sheets together
until they merge. Both of these situations, however, are, in fact, flame collisions. When they occur, the cusp forms
and only then the local flame speed in it increases.

Based on these considerations, the following picture emerges. At low turbulent intensities, the flame surface is
wrinkled (or folded) primarily on larger scales with the curvature radius at each point > ;. Consequently, the flame
propagates locally with its laminar speed, and the total S7 o« Ar. Individual cusps can form even at low turbulent
intensities as a result of the collision of individual flame sheets. At low values of X, however, cusps are infrequent
and they represent only a small fraction of the total flame surface resulting in / ~ 1. This is analogous to the situation
considered above when /. is large. As the turbulent intensity increases, turbulence is not able to disrupt the internal
structure of the flamelets causing flamelets to retain locally their laminar structure and velocity. Instead, turbulent
motions are much more efficient at folding the flame with increasingly greater curvature, creating a tightly packed
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configuration with large X. This increases the frequency of flame collisions and results in a much higher rate of cusp
formation. Consequently, a progressively larger fraction of Ay is contained in cusps, which, by analogy with lower
values of /., leads to I > 1.

This picture reconciles the seeming contradiction discussed above between the need for the enhanced local flame
speed, as suggested by values of I > 1, and the absence of such enhancement globally throughout the flame by the
turbulent diffusive transport, as evidenced by the absence of the flame broadening. The flame speed can be significantly
enhanced locally in cusps due to thermal flux focusing and not because the flame itself is disrupted and broadened by
turbulence.

This simple model of cusp formation demonstrates the mechanism through which S can produce an exaggerated
response to the increase in Ar. At the same time, in an actual turbulent flame cusps will form in a multitude of
configurations. For instance, in addition to the purely two-dimensional situation considered here, there will also be
3D flame collisions which will result in even higher local flame speeds in the cusps and, thus, will have an even
larger effect on the magnitude of /. Therefore, in order to predict a particular value of / which can be expected in the
turbulent flow of a specific intensity, it is necessary to understand the types of cusps which can form, the local flame
speed of each type, its probability of formation, and, thus, the contribution of each type to the exaggerated response
of S 7. Such detailed analysis is the subject for future studies.

5.5. Criterion for onset of the cusp-dominated regime of flame evolution

The model of cusp formation can be used to determine the critical turbulent intensity above which the evolution
of a turbulent flame can be expected to be dominated by cusps, thereby, leading to values of / substantially larger
than unity. Consider a section of an idealized curved flame front containing a cusp and perturbed with a wavelength
A and an amplitude /., schematically shown in Fig. 14. This type of structure was considered by Zel’dovich [25] as
a model of the flame formed under the action of the Landau-Darrieus instability in order to analyze the stabilizing
effect of cusps. Such idealized flame, however, can develop under the action of any destabilizing process, e.g., the
Rayleigh-Taylor instability or, in our case, turbulence. In particular, Fig. 14 can represent the flame surface deformed
by two adjacent counter-rotating vortices of size A..

As discussed in § 5.3 (Fig. 12), the speed of cusp propagation, D., (Fig. 14) is much larger than both §; and the
maximum local flame speed in the cusp, S;. Moreover, unlike S7, D, > S even at large flame inclination angles,
and, thus, it increases gradually with curvature. Therefore, D, is the primary factor responsible for decreasing the
amplitude of the cusp and smoothing the flame surface. In particular, the rate of decrease of the cusp amplitude is [25]

() =5la ) @

The angle @ and, thus, (dl./dt)—, will change with the cusp amplitude. In order to relate « and /., a parabolic shape of
the flame was assumed in [25], and eq. (24) can then be rewritten as

dlc.) 2
— ] =-85.=. (25)
(dt - A2

The net rate of change of /. is determined by the balance of the stabilizing process described by eq. (25) and a
destabilizing one, which gives
dle _ Y- 8S ﬁ
dar baz

c

(26)

In the turbulent flow, flame perturbations can be assumed to grow linearly in time as they are being stretched by the
turbulent speed U, characteristic of the scale A.. This gives the growth rate ¥ = U,. By setting dl./dt = 0, the
limiting value of /.(4.) can be determined. It was shown by Khokhlov [7] in the context of Rayleigh-Taylor-unstable
flames that nonlinear flame stabilization due to cusp propagation can be expected to fail once /. 2 A.. Therefore, by
setting [, = 1., ¥ = U,, and dl./dt = 0 in eq. (26), he found the critical value of the turbulent velocity on a given
scale A, [7]

U,=8S. (27)

This is the value of U, that is needed to overcome the stabilizing effect of cusps and, thereby, to deform the flame on
scale A.. This result was used to demonstrate that, in order for the flame to be unstable at a wavelength A, under the
action of turbulent motions, the turbulent speed on that scale must be substantially larger than S ;, [7].

This shows that given a specific turbulent cascade, the flame will be smooth on scales smaller than some critical
wavelength A7 on which the condition in eq. (27) is satisfied. It was shown above that in order for the cusps to have
a pronounced effect on the flame evolution, the flame must be folded on scales comparable to the full flame width /r,

16



which in our case is = 26;. Therefore, by setting A7 = /r and using eq. (27), we find that the flame will be curved
on scales ~/r when turbulent velocity on that scale becomes ~ 85 ;. In a turbulent flow with the Kolmogorov energy
spectrum, the corresponding critical value of the integral turbulent velocity then is

I\
Ul ~ SSL(—) . 28)
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This gives the critical values of the Karlovitz number, Ka*, and the Damkohler number, Da*, written using their
traditional definitions [10] ]
Ka' =L = (Zi) " g~ a0,
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Here tr = I /S is the characteristic flame time, #, is the Kolmogorov time, t7 = [/U] is the characteristic turbulent
time on the integral scale, and Lg = I(S /U 1)? is the Gibson scale.

The range of the regimes, in which [ is expected to be larger than unity according to the eq. (28), is shown on a
traditional combustion regime diagram [10] in Fig. 15 as the orange region. The filled red square corresponds to the
simulations presented here. We also determined the time-averaged value of / in a simulation with approximately twice
lower turbulent intensity which, however, was still above the Ka ~ 20 line. In this calculation, which is represented
with the open red square in Fig. 15, we found I 15 ~ 1.16. Details of this calculation will be presented in a separate
paper.

Despite the simplicity of the cusp model used here, eqgs. (28)-(29) provide a rather accurate criterion for the onset
of the cusp-dominated regime of the turbulent flame evolution. In particular, the decrease in the value of I ;5 between
the two turbulent intensities considered in Fig. 15 suggests that below the Ka = 20 line, I deviates from unity at most
by a few percent. Consequently, this line can be viewed as an approximate upper range of validity of Damkdohler’s
concept.

(29)
Da* =

5.6. Nonlinear regime of turbulent flame evolution

Finally, how will the distribution of St/S; as a function of Ag.15/L?* shown in Fig. 5b vary with the change in
turbulent intensity?

Based on the model discussed in § 5.3-5.4, the total turbulent flame speed can be viewed as consisting of two
components. The first is the contribution of the smoothly curved flame regions with the curvature radius > d;, in which
S, = S.. The second is the effect of cusps. Since S; > S in cusps, their contribution depends nonlinearly on the
flame surface area contained in them, as evidenced by Figs. 13.% Therefore, the total fuel-consumption speed of the
turbulent flame can be written as 7 /oo = (1 — f)S AT + .S . F' (A7), where ' (Ar) is some nonlinear function, and
f¢ is the fraction of the flame surface area contained in cusps. This can be rewritten in terms of S defined in eq. (10)
as

AT) _Ar ~(AT ) 30)
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where F and F are nonlinear functions.

The balance between the linear and nonlinear terms in eq. (30) is controlled by f, and, therefore, by the rate
of cusp creation, (d(f.Ar)/dt).. The following qualitative physical model can be used to estimate this rate (see
also [7]). Consider a structure consisting of planar flame sheets, as was discussed in § 5.4. If the flame surface
density of such configuration is X7, then the average flame separation is 1/X7. Such flame sheets will move toward
each other with the speed S + Ur, where Uy is some characteristic turbulent velocity responsible for the advective
transport of the flame. Since Uj is the largest velocity of coherent turbulent motions, then Ur can be approximated
with U;. Consequently, the flame sheets will merge and annihilate in the time 7. ~ 1/(Zr(St + U;)). The quantity
(d(f.Ar)/dt)+ will depend on the total surface area of the flame sheets times the frequency of their collisions, i.e.,
d(fAr)/dt)y o< Ap/[t, o< ArZp(St + U;). While, in principle, the change in X does not imply a similar change in
Ar, and vice versa, it was shown in § 4.3 that Ay and X1 are well correlated. Therefore, Ay can be viewed as simply
proportional to X7 and, thus, finally
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Note that the flame surface area of the configuration shown in Fig. 10 does not depend on @ and is a function only of /..
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Note that this expression is very similar to the destruction term often used in the balance equation of the flame surface
density (see [28] for a review of a number of such models). This is also analogous to the rate of collisions of gas
molecules with 27 playing the role of number density and the turbulent intensity playing the role of temperature in
determining the speed with which constituents approach each other.

In § 5.4 we noted that in the actual turbulent flame, there will exist other types of flames collisions besides the ones
that can be represented with planar flame sheets. Such configurations will result in an even faster rate of cusp creation
that would likely be proportional to the higher powers of X and, possibly, U;. The probability of the formation of
such flame collisions, however, will rapidly decrease with the increase in their complexity [3, 7].

Eq. 31 shows that the flame surface area contained in cusps in the turbulent flame grows faster than the total Ar.
Consequently, with increasing Ar and X7, the balance in eq. (30) shifts rapidly toward the nonlinear term associated
with cusps.

This picture then shows how the distribution of S7/S; as a function of A/L?, given in Fig. 5b, changes with
turbulent intensity. At a specific U;, a variety of different flame configurations with different values of Ar and X
are realized in the course of flame evolution. Larger values of Ar lead to larger X7, which increases the frequency
of occurrence of cusps, i.e., f.. As a result, the nonlinear term in eq. (30), which rapidly grows with Az, begins to
dominate, and this causes a progressively more exaggerated response of St to the increase in Ar. Moreover, since a
flame with a given surface area can exist in a variety of configurations with different numbers and types of cusps, this
creates a scatter in the distribution of S /S vs. Ap /L.

At lower turbulent speeds, the distribution of S /S vs. Ar /L? should collapseontothe S1/S; = Ar /L? line since,
in the limit of complete absence of cusps, there is a unique correspondence between these two quantities. Eq. (30)
suggests that such behavior would indeed take place. As U; becomes smaller, the flame will be less convolved, causing
the center of mass of the distribution to shift toward smaller values of A7 /L? and, thus, S7/S ;. Since the surface area
contained in cusps depends not only on A7 but also on U, (eq. (31)), smaller U; will cause the cusps to be less prevalent
at a fixed A7 /L?. As a result, the nonlinear term in eq. (30), will be smaller and the overall distribution S7 /S vs.
Ar/L? will be closer to the S /S = Ar/L? line. Moreover, since all potential statistical variations in the distribution
are associated with cusps and are, thus, represented by the nonlinear term % (A/L?), the decrease in the latter will also
lead to the decrease in the distribution scatter.

At larger U, the behavior will be opposite. The center of mass of the distribution will shift to larger values of
Ar/L? and S /S ;. The nonlinear term in eq. (30) will become progressively more dominant, causing larger values of
Sr/SL atagiven Ar/ L? and, thus, enhancing the exaggerated response of S 7.

As the turbulent intensity increases, the overall distribution of St/S; vs. Ar /L* will not only deviate more
strongly from the S /S = Ar/L? limit, but it will also become more pronouncedly curved upward. This is the result
of the fact that =

81l (32)
dA2
and the magnitude of d*S+ (AT)/dA% at every point increases as U; becomes larger. Here St (Ar) represents the
time-averaged value of S 7 in the limit of large statistics.

To show that inequality (32) holds, consider first the limiting value of X7. The fact that the flame is not an
infinitely thin surface means that such limit does exist. Once X becomes large enough so that the individual flame
sheets come into contact, X7 cannot increase beyond that. This maximum value X7 ,,, can be estimated assuming
that the minimum flame separation is equal to the full flamelet width /r, which in our case is =25, (cf. Fig. 7 in [9]).
Then’

z:T,ma)( = z:()A15,ma)( = ﬁ ~ 1.5 mm_1~ (33)
It was discussed in [9], based on the comparison of the results of that work with the results of Aspden et al. [29], that
the turbulent flame width, d7, is primarily determined by the integral scale, /, (and, therefore, by the driving scale, L).
A similar conclusion was also reached by Peters [10] (cf. eq. (2.175) therein). If L is held fixed, then / will also remain
constant as the turbulent intensity increases. Consequently, 57 will not change with increase in U,. Substituting the
value of 67 obtained in simulation S3 (see Table 3) into eq. (18), and setting X1 = X7 .4+, the corresponding maximum

value of the flame surface area is A A

T.max _ 0.15,max -~

2 = ~© 7.2. (34)
Part of the increase in Ay is typically associated with the increase in 67 and not only 7. Therefore, actual values of
AT max /L? can be somewhat larger than the one given above. Thus eq. (34) should be viewed as a more approximate

limit than eq. (33).

"Note that 2T may 18 different from %,,,,, typically used in combustion research and discussed in § 4.1.
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The situation when all of the flame surface is in contact with itself corresponds to the infinite local flame speed
and, thus, infinite S 7. Therefore, as Ap/L* — AT,,,W/LZ, both S7/S; — oo and dS/dA; — 0. On the other hand,
at small values of A /L%, the slope of S is finite and, in fact, as Ay JL? — 1, d§r/dAT — S, /L%. This shows that
the slope of the distribution S /S, cannot be constant and instead dfT/dAT has to be a monotonically increasing
function, which proves the inequality (32). Since this inequality is the consequence of the creation of cusps in the
turbulent flame, the magnitude of d>S 7 (Ar)/ dA% will increase with increase in the frequency of creation of cusps
and, thus, with increase in both Ay and U;. Therefore, as turbulent intensity becomes larger, the curvature of the
distribution will become pronounced at progressively lower values of Ar.

6. Conclusions

This work continued the analysis of the set of three numerical simulations first presented in [9]. These calculations
model the interaction of the premixed flame with high-speed, subsonic, homogeneous, isotropic turbulence in an
unconfined system, i.e., in the absence of walls and boundaries. The turbulent r.m.s. velocity, U,,;, is ~ 35 times larger
than the laminar flame speed, S ;. The resulting Damkdohler number based on the turbulent integral scales is Da = 0.05.
It was demonstrated in [9] that this system represents turbulent combustion in the thin reaction zone regime. Even in
the presence of such intense turbulence, the turbulent flame consists of highly convolved flamelets with the reaction-
zone structure virtually identical to that of a planar laminar flame and with the preheat zone broadened by a factor
2.

The fact that turbulence is unable to penetrate and disrupt the internal flame structure showed that diffusive pro-
cesses are not enhanced on small scales by turbulent transport, and flamelets propagate locally with the speed of the
planar laminar flame [9]. This raised the following question: Can the magnitude of the turbulent flame speed in the
presence of high-intensity turbulence be fully accounted for by the increase in the flame surface area, as was originally
suggested by Damkohler [1]? Here we summarize the main findings of our study of this issue.

Analysis of the area and density of the fuel mass-fraction isosurfaces, A(Y) and X(Y), showed that the flamelet,
folded inside the flame brush in the presence of high-speed turbulence, cannot be viewed as a thin uniform structure,
in which all isosurfaces are parallel to each other. Different regions of the flamelet have quite different response to the
action of turbulence. In the higher-resolution calculations S2 and S3, both A and X, on average, increase monotonically
through the flamelet with decreasing temperature, which is manifested in the distinctive inverted-S shape of their time-
averaged distributions. As a result, isosurfaces of higher fuel mass fractions are folded by turbulence on progressively
smaller scales. This causes the substantially finer wrinkling of the flame surface on the fuel side than on the product
side observed in [9].

Distributions of A(Y) and X(Y) showed that in the presence of the high-speed turbulence considered here, the
definition of the flame surface area, Ay, must be revisited before the balance between Ay and the turbulent flame
speed, S, can be considered. In particular, it must be determined which value of Y characterizes the evolution and
global properties of the turbulent flame most fully and accurately. In order to answer this question, we analyzed the
correlation of A(Y)/L? with quantities that characterize both the energetics and the global structure of the turbulent
flame, namely its normalized speed, S /S 1, and width, 67 /L. We also analyzed the correlation of X(Y) with S /S .
This analysis demonstrated that global properties of the turbulent flame are best represented by the structure of the
region of peak reaction rate. For the reaction-diffusion model used in this work, this corresponds to ¥ =~ 0.15.
Therefore, the isosurface of this value of Y must be viewed as the flame surface and A7 = Ag 15.

Larger values of Ay are associated with larger flame surface density, Zy. In other words, Ay grows primarily
as a result of the much tighter folding and packing of the flame, rather than only due to the increase in the overall
width of the flame brush. Given the absence of any broadening of the reaction zone observed in [9], this shows that
high-intensity turbulence is much more efficient at tightly packing the flamelets inside the flame brush rather than at
disrupting and broadening their internal structure (also see [10]).

Consideration of the stretch factor, /, calculated at Y = 0.15, and, more generally, of the distribution of S7/S [ vs.
Ag.15/L? led to the following key conclusion of this work: In the presence of high-speed turbulence, the magnitude
of the turbulent flame speed cannot be attributed purely to the increase in the flame surface area. In particular, in
the highest-resolution simulation S3 at all times /y ;5 > 1 and, thus, S7/S1 > Ao.15/L?. The deviation of Ij ;5 from
unity is, on average, ~30% and occasionally reaches as high as 50%. Since the local flame speed is not increased by
turbulence [9], this shows that Damkohler’s concept breaks down for sufficiently high-intensity turbulence, even for
the flows characterized by Le = 1.

The deviation of S /S ;, from Ay /L? becomes larger as Ar and Z7 increase. In other words, an increase in the flame
surface area, and the associated tighter packing of the flame, result not just in a larger turbulent flame speed but, most
importantly, in the progressively more exaggerated response of S to the increase in Ar. This causes substantially
accelerated burning.
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Tightly packed flame configurations, produced by high-speed turbulence, result in frequent flame collisions, which
lead to the formation of regions of high flame curvature > 1/6,, or “cusps.” This results in significant focusing of
the thermal flux over an extended region of the flame surface which increases the local flame speed in the cusp, S/,
over its laminar value, S ;. Due to the large values of S, the contribution of cusps to the total S 7 is disproportionately
large compared to the flame surface area in them. This provides a natural mechanism for the formation of the exag-
gerated response of S 7. The increase of S; in cusps is inherently local, and it does not require flame broadening and
acceleration by turbulent transport, in agreement with the results of [9].

Our results suggest that there exist two distinct regimes of flame evolution. At low turbulent intensities, the
turbulent flame evolves in the linear regime. Here the role of cusps, and thus of the nonlinear term in eq. (30), is
negligible and St oc Ar. High turbulent velocities mark the onset of the nonlinear regime, which is dominated by
cusps formed in the tightly packed turbulent flame. The nonlinear increase of S in cusps, and, therefore, the nonlinear
dependence on Ar of the contribution of cusps to S, causes a strong exaggerated response of S 7 to the increase in
Ar.

The onset of the nonlinear regime of flame evolution marks the breakdown of Damkéhler’s concept. Moreover, in
this regime, flame propagation can no longer be viewed as a local process. In particular, the local flame speed at each
point of the flame surface is no longer determined only by the local thermodynamic state of the flow or by turbulent
motions on scales 4 < dz. Instead, in this regime, S, is also determined by long-range velocity correlations, which
produce flame collisions and can span the full size of the system.

Both the criteria given by eqgs. (27)-(29) and the results of numerical simulations show that the transition to the
nonlinear regime occurs well within the thin reaction zone mode of combustion and, in particular, at Ka 2 20 (Fig. 15).
Above this critical value of Ka, the flame evolution likely remains in the nonlinear regime at all turbulent intensities,
since the turbulence is more efficient at packing the flame than at broadening it. In particular, at high enough values
of U, turbulence will eventually break the internal flame structure, which will increase the local flame speed. This
will, in turn, make the right-hand side of eq. (27) larger, thereby, enhancing the stabilizing effect of cusps. On the
other hand, the flame width, /r, will also grow, increasing the critical flame separation necessary for the onset of the
nonlinear regime. Since S, is determined by smaller-scale turbulence, while flame folding is governed by the faster
larger-scale motions, it is unlikely that S; can grow fast enough to compensate for the increase in both /r and the
turbulent speeds which fold the flame. Consequently, at higher U, i.e., even in the broken reaction zone mode, the
linear regime most likely cannot be recovered. This issue, however, requires further investigation in future studies.

The increase of S; in cusps is discussed here for Le = 1. It is well known, however, that when Le # 1, S; can
increase with the curvature of the flame [3]. Therefore, due to the large flame curvature in cusps, any imbalance be-
tween thermal and diffusion fluxes can significantly exacerbate the enhancement of S;. Consequently, the exaggerated
response of S r, discussed here, can be substantially larger for the reactive flows characterized by Le # 1.

Results presented in this work show that for the large range of turbulent intensities and system sizes, knowledge
of Ar is no longer sufficient to predict the magnitude of Sr. For instance, at the turbulent speeds considered here,
using Ar as a guide results in errors on the order of 30 — 50%. Such errors are quite substantial given that the flow
evolution is typically very sensitive to the rate of energy release. Therefore, it is particularly important to account for
the nonlinear effects in subgrid-scale models that primarily focus on determining the evolution of A (e.g., [7]).

Furthermore, the formation of cusps and the resulting rapid flame propagation in certain regions is a crucial part
of the turbulent flame-brush evolution in the high-speed regime. Thus, properly capturing this regime in numerical
models requires the domain size to be larger than the integral scale in order to accommodate the folding of the flame
by turbulence. Making the domain smaller than / would significantly hamper this process, while making the domain
smaller than ~§;, would completely eliminate it.

Finally, two possibilities exist for the flame evolution in the nonlinear regime. If the turbulent intensity is not
too high, an equilibrium is established between flame-surface creation and its rapid destruction in cusps. This results
in the turbulent flame propagating in a steady state, which is the situation observed here. On the other hand, if the
turbulent intensity continues to rise, eventually X1 and Ar will approach their limiting values given by egs. (33) -(34).
In this regime, as was discussed in § 5.6, both S 7 and dS r/dAr can become arbitrarily large. Such singular behavior
suggests that, in reality, at some point the steady state ceases to exist and the system must undergo a qualitative
transformation in order to accommodate the rise in S or, equivalently, in the rate of energy release per unit volume.
Such qualitative change may indicate the transition from the deflagration to a detonation. Detailed discussion of this
non-steady regime will be presented in a separate paper.
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Appendix A. Definition of the flame surface density

The definition of £(Y), given in eq. (18), relied on the isosurface area normalization by the full width of the flame
brush. It is, however, not clear a priori whether all isosurfaces occupy the full interior of the flame brush and are not
confined to a smaller part of it. Consider Fig. 2. It can be seen that neither the ¥ = 0.05, nor the Y = 0.95 isosurface
extend over the full width of the flame brush, and they indeed occupy a smaller volume.

In order to give this a more quantitative representation, we define zg ., and zy i, by analogy with zg i, and zy yax
that were used to specify or in egs. (9)-(10). In particular,

20,max = min(z) : Y()C, Yy, Z) >0.05V (X, v,z > ZO,maX)s

Zymin = Max(z) : Y(x,y,2) <095V (x,y,2 < 21 min)- (35)

In other words, zg 4, is the z-coordinate of the rightmost cell with pure product, while z; ,;,, respectively, is the
z-coordinate of the leftmost cell with pure fuel. Thereby, zg . and zj »;, effectively measure the furthest extent of
product and fuel penetration into the flame brush. Given the definitions of zg ,;, and zy 4y, provided in § 2.2, zg in
and 2 4, bound the volume confining the Y = 0.05 isosurface, while z ,,;, and zy ;4 bound the Y = 0.95 isosurface.
At the same time, if 21 iy < Zomax, these two variables bound the region of macroscopic mixing of product and fuel in
the flame brush, i.e., the region in which both pure fuel and pure product can be found. Fig. 2 provides the illustration
of all four of these quantities.
Next, we define the position of the turbulent flame brush as
2y mint T e

=T (36)

Modified Zy 5, and Z , are then defined as offsets of zg ., and zy ,,,;, With respect to zr normalized by §7, namely

B = = T (37)
6]" ’ 6T

Z0,max =

Thus, Zgmey and Zy ,;, are the relative measure of the extent to which pure fuel and pure product penetrate into the
flame brush. It follows from the definition (37), that both quantities take on values in the interval [-0.5,0.5]. For
example, in a planar laminar flame, they are constant with Zg .y = —0.5, Z| min = 0.5. In the turbulent flame brush,
zero values would indicate that both fuel and product reach the midpoint of the flame brush, they are confined to
the left and right halves of the brush, and there is no macroscopic mixing of fuel and product. If Zj,,, = 0.5 and
Z1 min = —0.5, then both pure product and pure fuel can be found throughout the entire volume of the flame brush.

Fig. 16 shows the evolution of Zy ;. and Z; ,;;, for simulations S1 - S3. In all cases, both parameters exhibit fairly
similar evolution oscillating around zero. Overall, pure fuel and product tend to be separated in the flame brush. As
the system evolves, however, it undergoes recurring transitions between periods of enhanced fuel-product mixing and
episodes of their near complete separation. The correlation between these quantities and S 7 is much less prominent
compared, for instance, with that between A(Y) and S 7, although it is possible to associate some peaks and troughs
with the corresponding changes in the turbulent flame speed.

It follows from Fig. 16 that throughout the course of the simulation, both the ¥ = 0.05 and Y = 0.95 isosurfaces
occupy the region smaller than the full flame-brush volume. This is also the case for other isosurfaces (cf. Fig. 2).
Consequently, an argument can be made that when calculating X(Y), normalization should be performed not over the
full volume of the flame brush, but rather over the respective volume bounding the given isosurface. For instance, for
Y = 0.05 this volume is Lz(zoymax — Zo.min)- Such definition of X(Y) would be a more accurate measure of how tightly
a given isosurface is folded. Fig. 16 shows that, on average, both the Y = 0.05 and Y = 0.95 isosurfaces are confined
to about half of the total volume of the flame brush. Then with this modified definition of Z, its corresponding values
in Figs. 7-8 should be multiplied by a factor of two. Ultimately, however, we are interested in determining how the
overall flamelet, rather than individual isosurfaces, is folded inside the flame brush since only the flamelet as a whole
has actual physical significance. Therefore, we find that the uniform normalization over the total volume occupied by
the flamelet represents a more physically grounded choice.

Further motivation for our choice of normalization in the definition of X (18) comes when one considers how the
values of Zy ., and Z, ,;, would change for larger system sizes. Pure fuel and product are always separated by the full
width of the flamelet. In particular, in our system the characteristic distance between the points ¥ = 0.05and Y = 0.95
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in the flamelet structure is 20, (see Fig. 7 in [9]). It then follows that
Z1,max — Z20,max Z 26L’ Z1,min — Z0,min Z 2(SL (38)

Using eqs. (8), (36), and (37), inequalities (38) can be transformed into the following conditions which must be
satisfied at each moment in time

26 26
Zomar < 0.5 — 6—;, Elin > —0.5 + 6—;. (39)

Horizontal dashed lines in Fig. 16 show the average limiting Zo ., and Z; ,;, based on the values of o7 /61 listed in
Table 3 for each simulation. In particular, in all three calculations Zg ., must be <0.36 while Z; ,,;, must be = —0.36,
which closely agrees with the data shown in Fig. 16.

This demonstrates that both isosurfaces of ¥ = 0.05 and Y = 0.95 can never occupy the full volume of the flame
brush simply because, by definition, they are separated from the boundary of the flame brush by the flamelet thickness.
The latter, in our case, is a substantial fraction of the total flame brush width. It was discussed in § 5.6 that 67 increases
with the turbulent integral scale, or, equivalently, with the system size and energy injection scale ([9], also see [10]).
It then follows from eq. (39) that as 7/, — oo, then Zy . — 0.5 and 2y, — —0.5. Therefore, in larger systems the
flame brush width becomes large in comparison with the width of the flamelet and, as a result, the volume bounding
each isosurface becomes well approximated by the total volume of the flame brush. Consequently, in the limit of large
values of o7, the uniform normalization for all values of Y in eq. (18) becomes equivalent to the normalization by the
actual volume bounding a given isosurface.

References

[1] G. Damkohler, Z. Elektrochemie und Angewandte Physikalische Chemie 46 (1940) 601-626. English translation: NASA TM No. 1112
(1947).
[2] R.W. Bilger, S.B. Pope, K.N.C. Bray, J.F. Driscoll, Proc. Combust. Inst. 30 (2005) 21-42.
[3] J.E. Driscoll, Prog. Energy Combust. Sci. 34 (2008) 91-134.
[4] Ya.B. Zel’dovich, Theory of Combustion and Detonation of Gases. Izd-vo AN SSSR, Moscow-Leningrad, 1944.
[5] C.K.Law, CJ. Sung, Prog. Energy Combust. Sci. 26 (2000) 459-505.
[6] J.B.Bell, M.S.Day, J.F.Grcar, Proc. Combust. Inst. 29 (2002) 1987-1993.
[7]1 A.M. Khokhlov, Astrophys. J. 449 (1995) 695-713.
[8] E.R. Hawkes, J.H. Chen, Combust. Flame 144 (2006) 112-125.
[9] A.Y. Poludnenko, E.S. Oran, Combust. Flame 157 (2010) 995-1011.
[10] N. Peters, Turbulent Combustion, Cambridge University Press, 2000.
[11] P.A.Libby, FA. Williams, in: P.A. Libby, F.A. Williams (Eds.), Turbulent Reacting Flows, Academic Press, 1994, 1-61.
[12] F.A. Williams, in: A. Yoshida (Ed.), Smart Control of Turbulent Combustion, Springer-Verlag, 2001, 1-11.
[13] V.N. Gamezo, T. Ogawa, E.S. Oran, Combust. Flame 155 (2008) 302-315.
[14] J.M. Stone, T.A. Gardiner, P. Teuben, J.F. Hawley, J.B. Simon, Astrophys. J. Supp. 178 (2008) 137-177.
[15] T.A. Gardiner, J.M. Stone, J. Comp. Phys. 227 (2008) 4123-4141.
[16] P. Colella, J. Comp. Phys. 87 (1990) 171-200.
[17] 7. Saltzman, J. Comp. Phys. 115 (1994) 153-168.
[18] P. Colella, PR. Woodward, J. Comp. Phys. 54 (1984) 174-201.
[19] A.Y. Poludnenko, T.A. Gardiner, E.S. Oran, Naval Research Lab. Memorandum Report (2010), in press.
[20] A. Kolmogorov, Dokl. Akad. Nauk SSSR 31 (1941) 538-541.
[21] J.M. Stone, E.C. Ostriker, C.F. Gammie, Astrophys. J. 508 (1998) L99-L102.
[22] M.N. Lemaster, J.M. Stone, Astrophys. J. 691 (2009) 1092-1108.
[23] D.A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics. Nauka, Moscow, 1987.
[24] L. Pan, J.C. Wheeler, J. Scalo, Astrophys. J. 681 (2008) 470-481.
[25] Ya.B. Zel’dovich, J. Appl. Mech. & Tech. Phys. 7 (1966) 68-69.
[26] Ya.B. Zel’dovich, A.G. Istratov, N.I. Kidin, V.B. Librovich, Combustion Sci. Tech. 24 (1980) 1-13.
[27] L.D.Landau, Zh. Eksperim. i Teor. Fiz. 14 (1944) 6; L.D. Landau, E.M. Lifshitz, Fluid Mechanics, Pergamon Press, Oxford, 1987.
[28] J.M. Duclos, D. Veynante, T. Poinsot, Combust. Flame 95 (1993) 101-117.
[29] A.J. Aspden, J.B. Bell, M.S. Day, S.E. Woosley, M. Zingale, Astrophys. J. 689 (2008) 1173-1185.

22



Table 1. Input model parameters and resulting computed laminar flame properties
Input

Ty 293 K Initial temperature

Py 1.01 x 10° erg/cm? Initial pressure

00 8.73 x 107* g/cm’ Initial density

b% 1.17 Adiabatic index

M 21 g/mol Molecular weight

B 6.85 x 10'2 cm’/(g s) Pre-exponential factor

(0] 46.37 RT, Activation energy

q 4328 RTy /M Chemical energy release

ko 2.9%107° g/(scm K")  Thermal conduction coefficient

Dy 29x107 g/(scm K™)  Molecular diffusion coefficient

n 0.7 Temperature exponent

Output

Tp 2135 K Post-flame temperature

op 1.2 x 107 g/cm? Post-flame density

oL 0.032 cm Laminar flame thermal width

SL 302 cm/s Laminar flame speed

Table 2. Parameters of simulations?®
S1 S2 S3 Description

D 64 x 64 x 1024 128 x 128 x 2048 256 x 256 x 4096 Domain grid size
Dy Ix1x16 Domain aspect ratio
L 0.259 cm = 84, Domain width, energy-injection scale
Ax 4.05x 1073 cm 2.02x 1073 cm 1.01 x 1073 cm Cell size
(A% 8 16 32 61/ Ax
710 1.95 cm = 7.52L Initial flame position along z-axis
£ 1.26 x 10° erg/(cm? s) Energy-injection rate
Us 4.53 % 10% cm/s = 155, Turbulent velocity at scale ¢,
U 9.07 x 103 cm/s = 305, Turbulent velocity at scale L
U, s 1.04 x 10* cm/s = 34.48S . Turbulent r.m.s. velocity
U, 5.60 x 10% cm/s = 18.54S Integral velocity
/ 6.04 x 1072 cm = 1.875, Integral scale
Ted 286 %107 s Eddy turnover time, L/U
Lign 3.07,y 3.07, 2.07,4 Time of ignition
tiotal 16.07,4 Total simulation time from #;y,
Da 0.05 Damkdohler number? (1/U;)/(26../S 1)
Lg 9.47 x 107% cm = 2.96 x 10746, Gibson scale, I(S . /U))?
Mayp 0.25 Mach number in fuel, U(yPy/po)~"/?
Map 0.09 Mach number in product, U(yPy/pp)~"/?

# Parameters common to all simulations are shown only once in S2 column.

b In this definition of Da, 26, indicates the full flame width. See [9] for further discussion.
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Table 3.

Time-averaged properties of the turbulent flame brush?®

ST /oL O(ET /0L) §T /St 0(§T /S¢L) Z0.15/L2 O(Zo.ls/Lz) E0.15» mm™! 0(20.15) 70.15 0(70.15)
S1 16.13 6.09 3.91 0.74 1.52
S2 14.86 1.96 4.50 2.29 3.23 2.84 0.67 4.07 1.39 1.29
S3 14.42 4.09 3.12 0.67 1.30

* Time-averaging for all variables is performed over the time interval [27,4 — 167.4].
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Figure 1 (a) Evolution of the turbulent flame width 67 normalized by ¢;. Note that domain width L = 8¢, indicated
with the horizontal dashed line. (b) Evolution of the turbulent flame speed S 7 normalized by S ;. In both panels: black
lines correspond to simulation S1, red to S2, and green to S3. (Reproduced from [9].)

t

zl), min zl, min z0, max z], max

Figure 2 Isosurfaces of Y in simulation S2 at ¢t = 137,4 (cf. Fig.3, middle row, left panel in [9]). Isosurface values
are 0.05 (red), 0.6 (green), 0.95 (blue). Red and green isosurfaces bound the flamelet reaction zone. Green and blue
isosurfaces bound the preheat zone. The z ;, and z 4, mark the flame-brush bounds. The zy ., and z; ,,;, indicate,
respectively, the maximum extents of product and fuel penetration into the flame brush (see Appendix A for further
discussion of zg gy and zi ). (Reproduced from [9].)
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Figure 3 Evolution of the normalized flame surface area (a) Ao /L* and (b) Ap.g9/L?. () Time-averaged normalized
flame surface area Z(Y)/Lz. Time averaging is performed over the time interval [27,4 — 167,4], circles represent
calculated values and solid lines are the Akima spline fits. Shaded gray region shows the distribution of the reaction
rate, Y, in the exact laminar flame solution normalized by its peak value Y,,,. = 9.5 x 10* s!. In all panels: black
corresponds to simulation S1, red to S2, and green to S3.
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Figure 4 (a) Evolution of the stretch factor [y ;5. (b) Time-averaged distribution of the stretch factor I(Y). Circles
represent calculated values and solid lines are the Akima spline fits. Time averaging is performed over the time
interval [27,4 — 167.4]. The shaded gray area shows +o standard deviation of the instantaneous values of /(Y) in
simulation S3. In both panels: black corresponds to simulation S1, red to S2, and green to S3.
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Figure 5 Correlation between A(Y)/L? and S7 /S in simulation S3. A(Y) is considered for three values of Y: (a, b)
Y =0.15,(c,d) Y = 0.5, and (e, f) Y = 0.95. In panels (a), (c), and (e) A/L? is shifted in time to the right by the time
lag At shown in each panel. Graphs in panels (b), (d), and (f) are constructed based on the data shown, respectively,
in panels (a), (c), and (e) excluding the time (0 —2)7,, during which the turbulent flame develops its equilibrium state.
In panel (b) each data point is colored according to the corresponding value of the surface density £(Y) with the color
scale given in units mm~"' (cf. Fig. 8a,b). In panels (b), (d), and (f) dashed lines show time-averaged values of A/L>
and S7/S 1, solid lines show the least squares fit with its slope given in each panel, and dash-dot lines correspond to
S7/S1 = A/L?. Shaded gray regions in panels (a)-(e) illustrate the exaggerated response of S 7 to the increase of A.

27



slope: 0.2390 1
R B

6.0 7.0

slope: 0.1923

60 7.0

slope: 0.0880
NP

60 7.0

Figure 6 Correlation between A(Y)/L?* and 67 /L in simulation S3. A(Y) is considered for three values of ¥: (a, b)
Y =0.15,(c,d) Y = 0.5, and (e, f) ¥ = 0.95. Graphs in panels (b), (d), and (f) are constructed based on the data
shown, respectively, in panels (a), (c), and (e) excluding the time (0 — 2)7,.4 during which the turbulent flame develops
its equilibrium state. In panels (b), (d), and (f) dashed lines show time-averaged values of A/L* and & /L, while the
solid lines show the least squares fit with its slope given in each panel.
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Figure 7 Evolution of the flame surface density (a) Zg0; and (b) Xy 99. (c) Time-averaged flame surface density E(Y).
Time averaging is performed over the time interval [27,;, — 167.4], circles represent calculated values and solid lines
are the Akima spline fits. Shaded gray region shows the distribution of the reaction rate, ¥, in the exact laminar flame
solution normalized by its peak value ¥, = 9.5 x 10* s7!. In all panels: black corresponds to simulation S1, red to

S2, and green to S3.
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Figure 8 Correlation between X(Y) and S7/S; in simulation S3. X(Y) is considered for three values of Y: (a, b)
Y =0.15,(c,d) Y = 0.5, and (e, f) Y = 0.95. In panels (a), (c), and (e) X is shifted in time to the right by the time lag
At, shown in each panel. Graphs in panels (b), (d), and (f) are constructed based on the data shown, respectively, in
panels (a), (c), and (e) excluding the time (0 — 2)7,4 during which the turbulent flame develops its equilibrium state.
In panels (b), (d) and (f) dashed lines show time-averaged values of £ and S 7/S 1, while the solid lines show the least
squares fit with its slope given in each panel.
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Figure 9 Flame collision and the formation of cusps in the turbulent flame. Shown is the flame-brush structure based
on the isovolume of the fuel mass fraction in simulation S3. Bounding isosurfaces represent Y = 0.05 and ¥ = 0.95
and the flame brush is shown from the product side. Upper panel corresponds to the time ¢ = 11.867,4, while the
middle and lower panels show the flame structure, respectively, 0.17.; = 3 us and 0.27,; = 6 us later. The thin black
line, corresponding to ¥ = 0.6, marks the boundary between the preheat and reaction zones. The thin white line,
corresponding to ¥ = 0.2, shows the location of the peak reaction rate. Regions A, B, and C show the three main
stages of the flame collision and the formation of a cusp discussed in § 5.2. Note also two elongated regions of flame
collision forming near the upper face of the domain.
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Figure 10 Structure of a cusp formed by the collision of parallel flame sheets. Shown is the distribution of Y for the
flame inclination angle @ = 1° (upper panel) and @ = 4° (lower panel). Scale of the panel axes is given in units of
or. Away from the cusp tip, the flame propagates in the direction normal to its surface with the laminar flame speed,
S 1, causing the tip to move to the right with the speed D.. Also shown is the length, /., of the collision region (see
text). Thin black line marks the boundary between the reaction and preheat zones, while the thin white line indicates

the region of peak reaction rate. Note the substantial broadening of the flame, and thus the reaction zone, near the tip
of the cusp at @ = 1° compared to @ = 4° (cf. Fig. 9).
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Figure 11 Structure of a cusp formed by the collision of parallel flame sheets for four flame inclination angles, a.
Shown are distributions of (a) the fuel mass fraction, Y, and temperature, T, as well as (b) the reaction rate, Y, along
the symmetry line of the cusp (cf. Fig. 10). Dashed lines in both panels indicate the exact planar laminar flame

solution. Profiles of T and Y are normalized by their respective maximum values in the exact laminar solution, i.e.,
Tp (see Table 1) and Yy, = 9.5 x 10* s~
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Figure 12 (a) Dependence of the normalized speed of cusp propagation, D./S 1, on the flame inclination angle, a.
Solid line corresponds to the analytic expression given in eq. (20), red circles show the computed values. Horizontal
dashed line indicates sound speed in cold fuel. (b) Dependence of the maximum normalized local burning speed in
the cusp, §7/S 1, given by eq. (21), on @. Red circles show the computed values, solid line is the Akima spline fit.
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Figure 13 Dependence of the stretch factor, /, given by eq. (23) on the normalized length of the flame-collision region,
l./61, for four values of @. Shaded gray area indicates the full laminar flame width 2. See text for further details.
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Figure 14 Illustration of the idealized perturbed flame stabilized by the propagation of a cusp with the speed D, (cf.
Fig. 10).
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Figure 15 Combustion regime diagram according to [10]. Orange region above the Ka =~ 20 line shows the range of
the regimes in which the formation of cusps is expected to result in values of / substantially above unity according
to the criterion discussed in § 5.5. Filled red square corresponds to the simulations presented in this work, while the
open red square shows the regime in which the value of /15~ 1.16 was determined. Flamelets are typically suggested
to exist in the regimes below the Kas = 1 line [10]. The traditional form of the diagram was also modified by adding
the Mar = U(yPo/po)~"? = 1 line indicating the region of supersonic turbulence in the cold H;-air fuel under the
atmospheric conditions. See text for further details.
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Figure 16 Evolution of the normalized maximum extents of product and fuel penetration into the flame brush Zg gy
and Z; i, (see text for the definition and Fig. 2 for the illustration) for simulation S1 (a), S2 (b), and S3 (c). Zp mayx 1S
shown with red line, Z, ,,;, — with blue line. Shaded regions mark the extent of macroscopic mixing of pure fuel and
product inside the flame brush. Horizontal dashed lines show the average limiting values of Zg 4y and Z ,,;, given by
the condition (39) and calculated using the values of 67 /6, listed in Table 3.
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