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Executive Summary 

The aerospace industry is experiencing exponential growth in the size and complexity of onboard 

software. It is also seeing a significant increase in errors and rework of that software. All of those 

factors contribute to greater cost; the current development process is reaching the limit of afforda-

bility for building safe and reliable aircraft and spacecraft. The size of software in aircraft with 

respect to source lines of code (SLOC) has doubled every four years since the mid-1990s; the 27 

million SLOC projected for 2010-2020 is estimated to cost more than $10 billion. Studies into the 

role of software in spacecraft accidents and the increasing complexity of flight software indicate 

the need for improvement in requirements elicitation and architecture, in particular for validation 

early and throughout the life cycle through modeling and analysis that complement testing. 

In order to improve predictability, the system and software engineering communities are practic-

ing model-based engineering, where models of different aspects of a system are developed and 

analyzed. However, industrial experience has shown that such models, developed independently 

over the life cycle, result in multiple versions of the “truth” (i.e., they are not consistent with each 

other and the evolving architecture). The SAE Architecture Analysis and Design Language 

(AADL) standard addresses this issue of multiple truths due to inconsistency between analytical 

models by providing an architecture modeling notation with well-defined semantics that can ac-

commodate multiple analysis dimensions through annotations and allow for auto-generation of 

these analytical models from a single source. 

The Carnegie Mellon  Software Engineering Institute, L-3 Communications - EITS, and the Jet 

Propulsion Laboratory (JPL) have collaborated in a use of model-based engineering for the Na-

tional Aeronautics and Space Administration (NASA) Software Assurance Research Program 

(SARP) project named “Model-Based Software Assurance with the SAE Architecture Analysis 

and Design Language (AADL).” The work involved applying the AADL to the Mission Data Sys-

tem (MDS) architecture. The SAE AADL industry standard for modeling and analysis of embed-

ded software system architectures was chosen because of its ability to support analysis of non-

functional properties, such as robustness, safety, performance, and security. The MDS was chosen 

because it takes an architecture-centric view by defining a multi-layered reference architecture for 

autonomous systems, whose dynamics are managed by feedback loops, and promotes state analy-

sis through goal-oriented modeling to address uncertainty and faults. By combining the two tech-

nologies, we can take into account the impact of the embedded software’s runtime architecture on 

these non-functional properties in the validation of systems. 

The result of that project shows that the AADL can  

 effectively model MDS top-level constructs (e.g., hardware adapters, separation of estima-

tion and control, the layering of planning and control) 

 effectively represent the MDS reference architecture and support an instantiation of this ar-

chitecture for a sample system 

 
  Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University. 
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 address key MDS architectural themes (e.g., state-based closed loop control, separation of 

estimation from control and data management from data transport, ground-to-flight migra-

tion) 

 provide a foundation for the analysis of critical MDS performance elements and system as-

surance concerns (e.g., latency, task scheduling, integral fault protection) 
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Abstract 

This report documents the results of applying the Architecture Analysis and Design Language 

(AADL) to the Mission Data System (MDS) architecture. The work described in this case study is 

part of the National Aeronautics and Space Administration (NASA) Software Assurance Research 

Program (SARP) research project “Model-Based Software Assurance with the SAE Architecture 

Analysis and Design Language (AADL).” The report includes discussion of modeling and analyz-

ing the MDS reference architecture and its instantiation for specific platforms. In particular, it 

focuses on modeling aspects of state-based system behavior in MDS for quantitative analysis. 

Three different types of state-based system models are considered: closed loop control, goal-

oriented mission plan execution, and fault tolerance through mission replanning. This report de-

monstrates modeling and analysis of the MDS reference architecture as well as instantiations of 

the reference architecture for a specific mission system. 
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1 Introduction 

This document presents the results of a case study of the application of the Architecture Analysis 

and Design Language (AADL) to the Jet Propulsion Laboratory (JPL) Mission Data System 

(MDS). The work under this project is a collaboration of the Carnegie Mellon  Software Engi-

neering Institute, L-3 Communications - EITS, and the Jet Propulsion Laboratory (JPL). This ef-

fort is part of the National Aeronautics and Space Administration (NASA) Software Assurance 

Research Program (SARP) project “Model-Based Software Assurance with the SAE Architecture 

Analysis and Design Language (AADL).” The project is an expansion and continuation of the 

work completed under the NASA IV&V Facility Funded project “The Application of SAE Archi-

tecture Analysis and Design Language (AADL) to IV&V of NASA Flight Projects.”
1
   

The work described in this case study is motivated by the effects of exponential growth in the size 

and complexity of onboard software. Studies have revealed the increased role of software in 

spacecraft accidents [Leveson 2004] and an increase in complexity in flight software [NASA 

2009]. Furthermore, industry statistics indicate that the size of software in aircraft measured in 

source lines of code [SLOC] has doubled every four years since the mid-1990s and is expected to 

grow to 27 million SLOC for the decade of 2010-2019 at a cost of more than $10 billion. Those 

statistics also show significant increases in errors and rework of embedded software: 70% of the 

errors are introduced early, during requirements specification; however; 80% of the errors are de-

tected and repaired later and at higher cost, during system integration, acceptance test, and opera-

tion [SAVI 2009].  

Model-based software assurance is the application of model-based engineering techniques (i.e., 

the use of models and abstractions to perform typical engineering tasks) to the verification and 

validation of software. Model-based software assurance relies on analytical practices using analy-

sis and modeling languages and supporting tools. Validation through analysis and simulation of 

models in the application domain is common practice (e.g., the use of Simulink for controls sys-

tems, and state analysis in MDS [Ingham 2004]). The AADL [SAE AADL 2004/2009] and its 

supporting tools such as the Open Source AADL Tool Environment (OSATE) [SEI 2010] have 

been designed to capture the architecture of embedded software systems in terms of the applica-

tion software as a runtime architecture deployed on a particular computer system. This model al-

lows V&V personnel to develop a thorough understanding of and insight into (1) critical characte-

ristics vital to a system’s correct operation and (2) the impact the runtime architecture and 

computer system deployment on the non-functional system properties. These characteristics in-

clude considerations such as sensor/command data latency and update rates; CPU throughput; 

synchronous/asynchronous task management; and data-bus packet definitions and update rates.  

  

 
  Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University. 

1
  IV&V is independent verification and validation. 
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The models and analyses presented in this report are results of a case study effort that is applying 

the AADL to represent and analyze the MDS, with a focus on state-based system behavior. The 

report is organized as follows: 

 Section 2 provides an overview of the MDS architecture and observations on MDS architec-

tural themes as they relate to AADL technology and state-based system modeling.  

 Section 3 presents AADL models of the MDS reference architecture and discusses specific 

approaches for organizing the AADL model and for modeling the multi-layered architecture 

in AADL in terms of a control system, a system under control, and a computer platform.  

 Section 4 presents an instance of the MDS architecture namely the heated camera system 

example extracted from the Jet Propulsion Laboratory tutorial “Software Architecture 

Themes in JPL’s Mission Data System” [Bennett 2006] and illustrates two examples of 

system engineering analysis (mass analysis and coarse-grained power analysis).  

 Section 5 discusses how (1) the closed loop control layer of the MDS architecture can be 

modeled as a flow-oriented architecture while preserving the notion of control states and (2) 

this model can be utilized in performing end-to-end latency analysis on the control loop.  

 Section 6 discusses an approach to model how the planning layer can be used to 

 drive the execution of the control layer based on a goal network  

 perform analysis of the workload the control layer tasks impose on the computer plat-

form   

 Section 7 discusses how management of mission goal failures, replanning, and reconfigura-

tion of controllers can be represented in the AADL model and included in a processor re-

source analysis.  

 Section 8 provides a summary of the key insight of this case study.  

In addition, the appendix includes detailed listings of AADL textual models, and a glossary of 

acronyms and list of references are included at the end of this document. 
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2 Mission Data System Overview 

The JPL initiated the MDS project in April 1998 with these principal objectives: 

1. “to define and develop an advanced multi-mission architecture for an end-to-end information 

system for deep-space missions”  

2. to address “several institutional objectives: earlier collaboration of mission, system and 

software design; simpler, lower cost design, test, and operation; customer-controlled com-

plexity; and evolvability to in situ exploration and other autonomous applications” [Dvorak 

2000]  

This section provides an overview of the key MDS architecture themes, the state-based control 

approach, the separation of concerns within the MDS architecture, and their relation to AADL and 

model-based engineering.  

2.1 State-Based Behavior in MDS  

The MDS approach is characterized by a set of architecture themes [Dvorak 2000]. In this section, 

we associate AADL-specific capabilities with some of the MDS architecture themes. These ob-

servations provide guidance in developing analysis strategies and approaches, identifying critical 

issues, and defining specific views and models for the MDS case study. The MDS themes and 

AADL-specific capabilities are summarized in Table 1. 

Table 1: MDS Architectural Themes and Associated AADL Capabilities 

Theme Description AADL Capabilities 

Take an Architec-

tural Approach  

Construct subsystems from architectural 

elements, not the other way around 

AADL is an architecture description language 

for real-time systems. 

Ground-to-Flight 

Migration  

Migrate capability from ground to flight, when 

appropriate, to simplify operations 

AADL clearly separates the application archi-

tecture from its deployment on physical and 

computer platforms. 

State & Models are 

Central  

System state and models form the founda-

tion for information processing. 

AADL supports modeling of systems using 

shared variables as well as flow-oriented 

modeling through ports and connections. 

This report maps the MDS state variable 

view into a flow-oriented view. 

Explicit Use of 

Models 

Express domain knowledge explicitly in 

models rather than implicitly in program logic 

AADL is a formal language that supports 

rigorous modeling of systems as software 

and hardware components and their interac-

tions. 

Goal-Directed  

Operation  

Operate missions via specifications of de-

sired state rather than sequences of actions 

(Goals are constraints on state variables 

over a time interval.) 

The goal network representation of a mission 

plan acts as a task plan that is interpreted by 

the goal executive. The result is a set of 

action requests to the control layer of the 

system. 

Closed Loop  

Control 

Design for real-time reaction to changes in 

state rather than for open-loop commands or 

earth-in-the-loop control 

AADL supports modeling of closed loop flow-

oriented architectures through data ports for 

deterministically communicating state, in-

cluding mid-frame and phase-delayed state 

transfer. 
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Theme Description AADL Capabilities 

Resource Man-

agement  

Resource state usage is projected against 

models and checked against the constraints.  

AADL properties enable the characterization 

of resource capacities and resource budgets. 

AADL multi-layer modeling allows explicit 

modeling of resource management capabili-

ty. 

Separate State 

Determination from 

State Control  

For consistency, simplicity and clarity, sepa-

rate state determination logic from control 

logic. 

AADL packages and components allow us-

ers to organize and compartmentalize the 

model (i.e., separate state determination 

from state control). 

Integral Fault  

Protection  

Fault protection must be an integral part of 

the design, not an add-on. 

AADL specifies fault handling behavior of 

threads, supports fault management pat-

terns, and the Error Model Annex models 

fault behavior to support dependability and 

safety criticality analysis. 

Acknowledge State  

Uncertainty  

State determination must be honest about 

the evidence that state values are rarely 

known with certainty. 

Data component types and AADL properties 

can be used to characterize the data 

represented in state variables including un-

certainty characteristics.  

Separate Data 

Management from 

Data Transport  

Data management duties and structures 

should be separated from those of data 

transport. 

AADL supports modeling in abstractions that 

separate data management from data trans-

port and data history logging. 

Join Navigation 

with Attitude  

Control  

Navigation and attitude control must build 

from a common mathematical base. 

AADL components are abstractions of sys-

tem components with characteristics mapped 

into properties. 

Instrument the 

Software  

Instrument the software to gain visibility into 

its operation, not just during testing but also 

during operation. 

AADL provides properties and patterns to 

model instrumentation of software.  

Upward  

Compatibility  

Design interfaces to accommodate foresee-

able advances in technology. 

AADL semantics allows the partial descrip-

tion of component interfaces that can be 

specialized within implementations or exten-

sions. In addition, properties of these inter-

faces can be used to explicitly capture com-

patibility requirements. 

Several aspects of the MDS architecture can be characterized as different forms of state-based 

systems, each with its own semantics.  

 State & Models are Central: States and models allow engineers to focus on the goals of a 

mission instead of the individual actions to be taken to achieve a goal. In control systems, 

observed state and desired state drive the system under control. The stability of control algo-

rithms is affected by variation of the latency and age of data being processed.  

 Closed Loop Control: MDS has a closed-loop control layer. It operates on sensor measure-

ments and observations to drive a controlled system towards desired goals through actuator 

output. This flow of state information in a control system can be directly modeled in AADL 

as flow through data ports and connections instead being implicit in the access patterns to 

state variables. This flow-oriented view allows us to investigate how the runtime system of 

software impacts the latency assumed by a control engineer. 

 Goal-Directed Operation: MDS uses a goal-oriented approach to operate missions by spe-

cifying desired state. Interpretation of a goal network by a plan execution engine together 

with a monitoring component results in issuing service requests to the components in the 
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closed-loop control layer. In this context, we will illustrate analysis of the workload on the 

processor generated by the execution of the goal network against available resource capaci-

ties. 

 Resource Management: Resource management takes on these forms in MDS: 

 During mission planning, analysis of the goal network takes into consideration con-

straints for maximizing utilization of limited consumable resources such as power.  

 Execution of the goal network results in different workloads generated by the control 

layer, as different sets of control activities are requested at different points in time.  

 Observed failure to reach a goal results in replanning and plan merging, activities that 

add to the workload at any given point in time.  

AADL processors, memory, bus, and device concepts represent computer platform and phys-

ical resources. The use of properties allows users of AADL to characterize available resource 

capacities by hardware and required resource budgets by software. At any given time, the 

processor speed may be adjusted to reduce power consumption while still meeting timing re-

quirements when processing a given workload. 

 Integral Fault Protection: MDS integrates fault protection into the goal network planning 

process. Exceptional conditions in the environment and faults in the system under control are 

addressed by alternate goals and by replanning when goals become unreachable. Faults in 

the computer hardware and application software may require a secondary layer of fault man-

agement in the form of reconfiguration of the application software deployment and computer 

hardware. AADL includes fault handling mechanisms as part of its execution semantics in-

cluding recovery entry points for threads to take recovery action, error event ports to com-

municate faults to a health monitor, and modes to represent various fault tolerant and fault 

recovery configurations to protect against and respond to faults (i.e., it allows users to model 

fault monitoring and management as supported by the system). AADL also has an Error 

Model Annex extension that permits users to abstractly characterize fault behavior and fault 

propagation in support of fault impact and isolation analysis as well as reliability and fault 

tree analysis. 

 Separate Data Management from Data Transport: AADL separates data management 

from data transport by  

 representing the intended interaction of components through information exchange via 

ports and connections as well as shared access to persistent data components 

 binding the components and their interactions to processors, memory, and buses  

Buses represent the physical communication medium as well as the protocols used for trans-

port. Connections can have properties that express the transport requirements, such as guar-

anteed delivery or ordered delivery. 

2.2 State-Based Control 

State-based control for the MDS is a goal-driven control approach where the control system and 

underlying software implementations are planned by a user through goals, rather than actions, and 

then translated into commands. Goals are constraints on the value of a state variable over a time 
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interval. State variables represent quantified observations that describe the condition of the system 

under control (e.g., temperature, velocity, or position).  

The themes shown in Table 1 coupled with the state-based goal-driven approach define the MDS 

control system architecture that is shown in Figure 1. The software and hardware implementation 

of this architecture is driven by the State Analysis systems engineering methodology. State Anal-

ysis is a process for capturing system and software requirements in the form of explicit models 

[Ingham 2004]. 

 

Figure 1:  MDS Control System Architecture [Bennett 2006] 

2.3 Separation of Concerns 

The separation of concerns and isolation of interfaces in the MDS architecture is shown in Figure 

2. In this partitioning, the control system is distinct from the system that is under control and the 

control system’s elaboration, projection, and scheduling are separated from the execution of con-

trol. The execution of the control is separated into goal execution and monitoring, estimation, and 

active control. 

2.4 MDS Layered Architecture 

Figure 3 presents the layered structure of the MDS architecture extending from the system under 

control up through four layers: scheduling, goal elaboration & re-elaboration, controllers, and es-

timators. In addition to showing the separation of the goal elaboration & re-elaboration compo-

nents of the planning layer, the goal executive & monitor components are explicitly identified 

within the execution layer.  



 

7 | CMU/SEI-2010-TR-003 

Control SystemControl System
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System

Under Control
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Figure 2: MDS Architectural Separation of Concerns [Bennett 2006] 

 

 

Figure 3: MDS Layered Architecture [Bennett 2008]  
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3 AADL Model of the MDS Reference Architecture 

In this section, we present the core elements of the MDS architecture as an AADL model in a way 

that allows the model to be refined into a specific instance of an MDS. This refinement is dis-

cussed in Section 4. 

3.1 Top-Level MDS Representation 

The top-level architecture is shown in Figure 4 and reflects Figure 2 from page 7. The system un-

der control is represented by the AADL system component MDSSystemUnderControl and the 

control system is shown as an AADL process called MDSControlSystem. For the top-level model 

we have followed the view of the MDS architecture presented in Figure 2, with the system under 

control consisting of the physical system as well as the hardware adapters that convert the sensor 

readings into normalized measurements and the control commands into commands in actuator-

specific formats. The hardware adapters maintain the value history of the measurements and 

commands.  

 

Figure 4: Top-Level MDS Architecture 

These two components interact by passing measurements and control commands. Those interac-

tions are shown as connections between port groups to indicate that there may be a collection of 

connections between the two components. When the MDS architecture is instantiated, the mea-

surements port group is refined into a collection of data ports, one for each measurement. In the 

same way, the control commands port group is refined into a collection of data ports to represent 

commands sent to the actuator adapters. Similarly, the value histories of measurements and com-

mands are made available to the MDS control system through port groups that get refined for a 

specific MDS instance. 

Unlike the representation in Figure 2, in Figure 4 we show the computing platform for MDS ex-

plicitly as a third component. It may include the flight system computer platform and the ground 

system computer platform and their connectivity. The computing platform is connected to the sys-

tem under control through a device bus that provides physical access to the sensors and actuators 
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in the system under control. The MDS software components of the MDS control system and of 

the system under control are mapped to the computer platform in a deployment configuration 

through the use of AADL binding properties.  

3.2 System Under Control 

The MDS system under control consists of the physical system being controlled (i.e., its sensors, 

actuators, and hardware adapters). As shown in Figure 5, the sensor readings are passed from the 

physical system to the hardware adapters for conversion into measurements. Similarly, the control 

commands are converted by the hardware adapters and passed to the actuators in the physical sys-

tem. The hardware adapters maintain measurement and command histories and make them avail-

able. 

For a specific MDS instance, the port groups shown in the reference architecture will be refined to 

represent specific sensor output and actuator input, measurements and commands, and histories.  

 

Figure 5: System Under Control in MDS Reference Architecture 

When the MDS architecture is instantiated for a specific system, the physical system under con-

trol is refined. In this refinement, details of AADL devices that represent the plant being con-

trolled are defined. The plant can be modeled at different levels of detail as appropriate. A single 

device may represent the complete plant. In that case, out data ports represent sensors whose data 

content are measurements, and in data ports represent actuators whose data content represent ac-

tuator commands. One can also choose to represent each sensor and each actuator as a separate 

device. Each device would include one or more ports for measurements or commands. In this 
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model, properties can be associated with each sensor, actuator, and plant to indicate power con-

sumption, failure rate, and other physical characteristics.  

 

Figure 6: Sensor and Actuator Adapters and Value History 

Figure 6 shows the details of the hardware adapters in the MDS reference architecture. We have 

transformed the actual adapters into sensor adapters, which are responsible for converting sensor 

readings into measurements, and actuator adapters, which are responsible for converting control 

commands into actuator commands. In addition, we have included value history stores for mea-

surement and command histories. All these components will get refined with specific adapters for 

a MDS instance. 

3.3 The Control System 

The AADL model of the MDS control system, which is shown in Figure 7, reflects the layered 

architecture of Figure 3 from page 7. In the MDS architecture, state variables are used as the 

communication channel (container) through which information such as state estimates (know-

ledge), goals (intent), measurements, and commands is communicated between components of the 

MDS architecture, as shown in Figure 2. AADL allows us to abstract such communication chan-

nels into the underlying platform through the AADL virtual bus concept and express the informa-

tion flow as port connections between the components. Port connections reflect the source and the 

recipient of information. The fact that information such as state estimates is communicated 

through a connection is represented by the fact that the connection is bound to a particular virtual 

bus. 

In this model, we decided to show the measurement stream and the measurement history through 

separate port groups to more precisely reflect who is using the sensor data stream and who needs 
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to operate on the history. For more on our modeling of data streams, value histories, and data state 

variables in AADL see the Section 3.4. 

 
Figure 7: The MDS Control System 

The bottom layer represents the state estimators and the controllers of the control layer in Figure 

3. The estimators are represented by the StateEstimation thread group and the controllers are 

represented by the StateControl thread group. Bundling these as thread groups allows the refine-

ment of each with a set of threads that represent individual estimators and controllers when the 

MDS architecture is instantiated for a specific system. The port group StateEstimatesOut 

represents the results of the estimators (i.e., the observed state of the system under control). This 

port group is refined with data ports, each acting as the current value of an estimation state varia-

ble. The state estimates are made available to the controllers (StateControl). The StateEstimation 
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thread group is also responsible for maintaining a history of the estimated states. This history is 

made available through a separate port group EstimateHistoryOut.  

The second layer represents the goal executive and the goal monitor of the execution layer in Fig-

ure 3. The goal executive interprets a goal network (i.e., a mission plan) and passes Xgoals to the 

controllers. The goal monitor compares the state estimate history against the Xgoals to determine 

whether the controllers are unable to reach their goals and replanning should be initiated. The 

Xgoals are represented by a port group that is refined when the MDS architecture is instantiated 

for a specific system.  

The top of Figure 7 represents the goal planner (i.e., the planning layer and the operator con-

sole the presentation layer of Figure 3). The goal planner is responsible for producing a goal 

network and for replanning (i.e., re-elaborating the goal network, if the controllers are unable to 

meet their goals within the goal network constraints). The operator console provides status and 

allows for goal planning input. 

3.4 Data State Variables, Value History, Data Control, and Telemetry 

A data state variable is a key concept of MDS for representing information about the data being 

processed by MDS (i.e., about estimated, intended, and projected physical state). It allows for 

characterizing 

 data truths about value histories of measurements, commands, and estimated states  

 intended and projected states reflected in the goal network 

A common way of modeling such meta-information in AADL is to associate AADL properties 

with the item in question and record information about the item. For example, the measurement 

unit and confidence of data may be recorded in properties. Since AADL is extensible and allows 

us to introduce new properties, we can define a set of properties specific to the data state variable. 

In some cases, this Meta information is communicated explicitly with the data and is checked by 

the application at runtime. In this case, the Meta information is declared to be part of the data re-

presentation, either just reflected in the increased size of the data type, or explicitly as a data sub-

component in a data component implementation declaration.  

In the MDS, hardware adapters maintain a value history of measurements and control commands. 

Similarly, value histories of estimated state are maintained. In the package ValueHistories we 

have introduced a set of components that represent value histories and functionality of updating it 

and making it accessible. The value history stores for measurements and commands are kept with 

the hardware adapters, while those of estimated state are kept with the estimators. We use history 

port groups as an abstraction of how value history is made accessible. This allows us to capture 

that the history may be made available in the form of state functions.  

The MDS has a data control component whose responsibility is to manage the value history as a 

data resource according to constraints provided by an engineer. Similarly, there is a data transfer 

component whose responsibility is to move data between deployments. The data control and data 

transfer components can be modeled in AADL at different levels of fidelity. When modeled ab-

stractly, we can simply define, through AADL properties, attributes of the data ports that identify 

value history requirements. When the ports are bound to memory, their memory requirements are 

determined, not only by the data type of the state value but also by value history requirements. 
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Desired compression strategies can be specified via properties on a data port or on its data com-

ponent type. In this case, it is assumed that the underlying runtime system represented by the 

computer platform supports this logging capability. 

The MDS State Variables hold observations (knowledge) determined by estimators and plan goals 

(intent). These state variables are communicated between Ground and Flight systems via teleme-

try. The data transport mechanism uses State Variables and State Variable Proxies. A State Varia-

ble represents the location in the deployment where the state is being locally estimated, and a 

Proxy State Variable represents a remote location that intends to utilize state variable content re-

motely. This deployment is shown in Figure 8.  

Control SystemControl System

State variablesState variables

Elaboration, projection, & scheduling 

State variables

Intent

Knowledge

Control SystemControl System

State variablesState variables

System

Under Control

System

Under Control

commands

measurements
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Intent

Knowledge

Execution
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Uplink

Ground Flight

Actual Estimated 

State Variables

Estimated State

Proxy Variables

Actual Desired 

State Variables
Desired State

Proxy Variables

 

Figure 8: Deployment of State Variables [Bennett 2006] 

The deployment of these data is such that 

Estimators in a deployment update their corresponding State Variables (SV). The data 

transport mechanism occasionally collects the value histories stored in these SVs and trans-

ports these histories to appropriate Proxy SVs in other deployments. The same data trans-

port mechanism is used to transport measurement histories and command histories between 

deployments (from Basis Hardware Adapters to Proxy Hardware Adapters). Systems engi-

neers specify what information needs to be transported between deployments, and the regu-

larity of proxy updates [Bennett 2006]. 

The telemetry transport mechanism is used, then, to update the proxies with actual values with a 

specified periodicity or on demand.  

At a high level of abstraction of the AADL model, the state variable proxy notion can be encapsu-

lated in the protocol used by the telemetry (SpaceLink) bus component. It is the responsibility of 

the protocol to distribute the state to the out data ports of components to other components. For 

data port connections across the SpaceLink bus, a different protocol is used to provide the desired 
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caching strategy of the state variable proxy. The application model is agnostic to this 

proxy/caching scheme.  

If it is desirable to explicitly model the proxy scheme, we can do so in two ways. We can model 

an implementation of the proxy/caching protocol of the telemetry bus component as a separate 

AADL model that is associated with the SpaceLink bus by property. This property is interpreted 

by the instance model generator to refine the bus abstraction by its implementation. Alternatively, 

we can model the proxies explicitly as application components (i.e., as threads that receive the 

original data port content by executing at a specified rate and make it available locally). In this 

case, users need to modify the model by inserting or removing the proxies as components that are 

migrated between flight system and ground.  

3.5 Model Organization 

AADL packages are used to organize the model space. We place all packages making up the 

MDS reference architecture in one project in the OSATE tool environment. We define the MDS 

reference architecture as a collection of packages as illustrated in Figure 9.  

 

Figure 9: Packages of the MDS Reference Architecture 

The package MDSData contains all declarations of port group types and data component types 

used in the AADL model of MDS. The data component types are used in data port declarations to 

specify the data type of the data communicated through these ports. The ValueHistories package 

provides declarations for value history modeling. It is used by the hardware adapters and the esti-

mators. The SystemUnderControl package contains the system declaration for the system under 

control. The HardwareAdapters package contains the systems representing the sensor adapters 

and the actuator adapters. The MDSControlSystem package contains the MDS control system, 

while the components of the MDS control system (i.e., the estimators, controllers, goal executive, 

goal monitor, and goal elaborator, are declared in the ControlSoftware package).  

The MDS reference architecture will be instantiated to represent a specific MDS system (e.g., a 

CameraSystem) in a second set of packages in a separate OSATE project (see Figure 10). This 

allows multiple MDS instances to be developed independently. 
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Figure 10: Packages of an MDS instance 

An excerpt from the ControlSoftware package is shown in Figure 11. The elements of the com-

puter platform are declared in the ExecutionHardware package. Finally, the top-level system is 

declared in the CompleteMDSSystem package. 

package ControlSoftware 

public 

  -- this type is refined for a MDS instance by refining the 

  -- classifiers of the features to be instance specific 

  thread group controller 

    features 

      StateEstimatesIn: port group MDSData::StateEstimatesIn; 

      EstimateHistoryIn: port group ValueHisto-

ries::EstimateHistoryInv; 

      ControlGoalsIn: port group MDSData::XgoalsIn; 

      CommandsOut: port group MDSData::CommandsOut; 

  end controller; 

   

  thread group implementation controller.basic 

  end controller.basic; 

Figure 11: Example Package of MDS Reference Architecture 

In addition to the packages, we have defined a property set in the MDS reference architecture 

project. This property set defines properties for modeling rate groups. Other property sets can be 

added to introduce additional properties that are specific to the MDS architecture. 

The MDS reference architecture is refined in a set of nested packages, as shown in Figure 12. In-

dividual components of the MDS reference architecture are refined by making use of the extends 

and refines concepts of AADL. The extended port group types, component types, or component 

implementations refine previously declared features and subcomponents, and they can add sub-

components or features. We will declare port group type extensions that fill in the details of the 

port groups defined in the reference architecture (e.g., the specific set of estimated states). We will 

declare component type extensions that refine the classifiers of their features to the instance-

specific port group and component classifiers. We will declare component implementation exten-

sions that introduce specific instances of estimators, controllers, and so on through subcomponent 

declarations. 
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package ControlSoftware::Camera 

public 

  thread group controller 

    extends ControlSoftware::controller 

    features 

      StateEstimatesIn: refined to port group  

               MDSData::Camera::StateEstimatesIn; 

      EstimateHistoryIn: refined to port group  

             ValueHsitories::Camera:: EstimateHistoryIn; 

      CommandsOut: refined to port group     

             MDSData::Camera::CommandsOut; 

      ControlGoalsIn: port group  

             MDSData::Camera::ControlGoalsIn; 

    flows 

      ControlFlow: flow path StateEstimatesIn -> CommandsOut; 

  end controller; 

   

  thread group implementation controller.camera 

    subcomponents 

      HeaterController: thread HeaterController; 

      HeaterSwitchEstimator: thread HeaterSwitchEstimator; 

Figure 12: Example Package of an MDS Instance 

3.6 Operating System Thread Model 

Hardware adapter, estimator, controller, planner, goal executive, and goal monitor are represented 

by logical threads, each with an execution rate, a deadline, and a worst-case execution time. Some 

of this functionality may be distributed between flight system and ground or may be distributed 

within the flight system or ground system. The latter distribution may occur due to a multi-

processor configuration or in anticipation of using multi-core chip architectures in a spacecraft. 

Distribution decisions regarding ground or flight system are localized to changes in processor 

binding property values in the AADL model, unless state variable proxies are modeled explicitly 

as part of the application system. The collection of logical threads bound to the ground processor 

or the flight processor is then grouped into rate groups. Each member of a rate group is executed 

by an operating system thread at the period of the rate group. Note that such rate group optimiza-

tion must take into account execution order requirements between threads of the same rate or of 

different rates that require data to be communicated mid-frame (i.e., within the same execution 

cycle). 

property set RateGroups is 

  RateGroups : type enumeration ( EstimatorRategroup,  

      ControllerRateGroup, PlanExecutionRateGroup,  

      PlanningRateGroup, HWARateGroup); 

  AssignedRateGroup : inherit RateGroups::RateGroups  

                    applies to (thread, thread group, process, sys-

tem); 

end RateGroups; 

Figure 13: Rate Group Modeling by Properties 
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Rate group optimizations can be represented within the current version of AADL using the prop-

erty mechanism. We can introduce a property type RateGroups that is an enumeration of rate 

groups in a particular application and a property to specify the rate group that a thread is assigned 

to, as illustrated in Figure 13. The enumeration literals are an ordered set.  

AADL V2
2
 introduces the concept of virtual processor to model hierarchical schedulers. The op-

erating system threads, which execute the tasks of a rate group, act as schedulers that dispatch 

these tasks as a cyclic executive. Therefore, we represent each of them as a virtual processor to 

which the application AADL threads are bound. Each of these virtual processors is defined as a 

subcomponent of a given processor or is defined separately and bound to a processor. 

3.7 Binding to Hardware 

AADL supports modeling the computer platform of the embedded system. In Figure 14, we illu-

strate how flight system and ground system computer platforms can be modeled. The flight sys-

tem consists of a processor, memory, and a flight system bus. In addition, the flight processor has 

access to a device bus that is also accessible by devices representing the sensors and actuators 

outside the MDS computer hardware system component. The ground system consists of a proces-

sor, memory, and a ground system bus. The two computer platforms are interconnected via a 

SpaceLink bus that represents the downlink between the spacecraft and the ground station. 

Without having to model the internal details of the hardware, we can use properties to specify 

characteristics relevant to the analysis of embedded systems. For example, a processor has speci-

fied context switch and cycle times that may have been determined through measurements of the 

actual hardware or through simulation runs of a VHSIC hardware description language (VHDL) 

model of the processor.
3
 Similarly, the bus components may include not only properties that cha-

racterize transmission timing, but also properties that characterize the quality of service of the 

protocols used by the bus, such as secure and guaranteed delivery. 

 
2
  Version 2 of the AADL standard (AADL V2) was published in January 2009 by SAE International [SAE AADL 

2004/2009]. 

3
  VHSIC stands for very-high-speed integrated circuit. 
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Figure 14: Flight and Ground Processing Systems 

The binding of embedded software applications to the computer platform is also accomplished 

through properties. The Allowed_Processor_Binding property places constraints on the binding to 

processors. The binding may be constrained to a processor type or to a set of processors. Binding 

constraints are taken into consideration when a resource allocation tool makes its allocation deci-

sions; the Actual_Processor_Binding property records the actual binding decisions.  

Figure 15 shows the use of Allowed_Processor_Binding for the MDS architecture. This property 

is declared with the top-level system implementation, allowing the property declaration to refer to 

the processor as the reference value and to the application component to which the property ap-

plies. 

package CompleteMDSSystem::Camera 

public 

  system CompleteMDSSystem 

    extends CompleteMDSSystem::CompleteMDSSystem 

  end CompleteMDSSystem; 

   

  system implementation CompleteMDSSystem.Camera 

    extends CompleteMDSSystem::CompleteMDSSystem.basic 

    subcomponents 

      MDSControlSystem: refined to process  

          MDSControlSystem::Camera::MDSControlSystem.camera; 

      ControlledMDSSystem: refined to system  

          SystemUnderControl::Camera::system_under_control.camera; 
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      MDSPlatform: refined to system  

          ExecutionHardware::Camera::MDSHardware.camera; 

    flows 

      TemperatureResponse: end to end flow  

          MDSSystemUnderControl.Tempflow -> SystemtoControllerConn -

>  

          MDSControlSystem.ControlFlow -> ControllertoSystemConn ->  

          MDSSystemUnderControl.HeaterCmdFlow 

            { Latency => 50 ms;}; 

    properties 

      Allowed_Processor_Binding =>   

                reference mdsplatform.ground_processor applies to 

MDSControlSystem.OperatorConsole; 

      Allowed_Processor_Binding =>   

                reference mdsplatform.ground_processor applies to 

MDSControlSystem.GoalElaborator; 

      Allowed_Processor_Binding =>   

                reference mdsplatform.flight_processor applies to 

MDSControlSystem.GoalExecutive; 

      Allowed_Processor_Binding =>   

                reference mdsplatform.flight_processor applies to 

MDSControlSystem.StateEstimation; 

      Allowed_Processor_Binding =>   

                reference mdsplatform.flight_processor applies to 

MDSControlSystem.DeviceControl; 

      Allowed_Processor_Binding =>   

                reference mdsplatform.flight_processor applies to 

MDSSystemUnderControl.HardwareAdapters; 

 

Figure 15: Modeling of Processor Bindings 
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4 An MDS Instance 

In this section, we show how AADL is used to refine the reference architecture model of MDS 

(defined in the previous section) into an instance of MDS for a specific system, the platform-

mounted camera temperature and pointing control system. Sections 5 and 6 report subsequent 

analysis supported by AADL conducted as part of this case study.  

4.1 The Heated Camera System 

This example, shown in Figure 16, is taken from the MDS tutorial “State Analysis for Software 

Engineers: Model-Based Systems and Software Engineering” [Bennett 2006].  

 

Figure 16: Platform-Mounted Camera [Bennett 2006] 

In the example, the main control loop is a flow of the temperature signal from the temperature 

sensor (modeled as an AADL device), through the control system, and terminating in the actuator 

for the power switch of the camera heater (also modeled as an AADL device). The control sensing 

and actuation and relevant interfaces are shown in Figure 17. 
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Figure 17: Fault-Tolerant Camera Heater Control System 
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4.2 The AADL Model of the Heated Camera System Hardware 

 
Figure 18: AADL Representation of the Camera Hardware System under Control 

The AADL graphical representation of the camera hardware that is the system under control is 
shown in Figure 18. We define the camera hardware by refining the SystemUnderControl compo-
nent defined in the MDS reference architecture. We add the temperature sensor and the heater 
switches as separate devices. These devices are defined in a separate package called InterfaceDe-
vices_Camera as shown in Figure 10 on page 16. These devices are physically connected to the 
device bus and provide a logical connection to the MDS application through the refined Sen-
sorReadings and ActuatorCommands port groups. These port groups have been refined to define 
the individual data ports used for communicating measurements and commands. The refinement 
of the SensorReadings port group type is illustrated in Figure 19. 

 
Figure 19: Refinement of the Sensor Readings Port Group 

4.3 The Heated Camera Control System 

We refine each of the control system components of the MDS reference architecture. The sensor 
and actuator hardware adapter components are refined by defining an adapter thread for each of 
the adapters for the heated camera system. Similarly, we refine the estimator, controller, goal ex-
ecutive, and goal monitor components with threads. The estimator and controller components and 
their interactions are defined in the MDS documentation in a collaboration diagram shown in 
Figure 20. 

package MDSData::Camera 
public 
  port group SensorReadingsOutput 
    extends MDSData::SensorReadingsOutput 
    features 
      TemperatureReading: out data port TemperatureReading; 
  end SensorReadingsOutput; 
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Figure 20: Collaboration Diagram of Camera Heater Control 

The equivalent AADL model is shown in Figure 21 and Figure 22. We will take advantage of the 

information in the collaboration diagram as to whether a component accesses the current value, 

the previous value, or the value history, and we will represent them through different port connec-

tions. 

The estimators make use of temperature measurements, temperature sensor health state, and hea-

ter switch state. The estimated state is represented by out data ports and is available to other esti-

mators, shown as a connection to the respective in data port and to controllers via the StateEsti-

mates port group. This port group has been refined for the camera heater system to define all the 

state variables updated by estimators as out data ports. 
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Figure 21: Camera Heater Estimators 

The getState actions on the state variables are mapped into data port connections from the out da-

ta port of the provider of values to a state variable. Access to the current value is represented by 

an immediate data port connection, while access to the previous value is represented by a delayed 

data port connection. The fact that a connection is immediate or delayed is a property of the con-

nection and visible in the properties viewer. In the textual representation of the model, it is ex-

pressed through the symbols -> and ->> respectively.  

The heater switch controller takes heater goals as input and produces heater switch commands. It 

takes the estimated state of the heater switches into account to determine whether the heater 

switches are functional.  
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Figure 22: Camera Heater Controller 

4.4 The Refined Top-Level System 

For some of the system components of the MDS reference architecture, the refinement into the 

heated camera instance simply involves refining the classifiers from the generic classifiers of the 

reference architecture model to the heated camera system specific classifiers. This refining is illu-

strated in Figure 23 for the top-level system description by specifying the camera implementation 

of the MDS control system, the controlled MDS system, and the MDS platform. 

package CompleteMDSSystem::Camera 

public 

  system CompleteMDSSystem 

    extends CompleteMDSSystem::CompleteMDSSystem 

  end CompleteMDSSystem; 

   

  system implementation CompleteMDSSystem.Camera 

    extends CompleteMDSSystem::CompleteMDSSystem.basic 

    subcomponents 

      MDSControlSystem: refined to  

    process MDSControlSystem::Camera::MDSControlSystem.camera; 

      ControlledMDSSystem: refined to  

    system SystemUnderControl::Camera::system_under_control.camera; 

      MDSPlatform: refined to  

    system ExecutionHardware::Camera::MDSHardware.camera; 

 

Figure 23: Refinement of the Top-level System 

4.5 System Analysis 

Although the main focus of AADL is the embedded software system architecture, AADL also 

supports modeling the physical system under control. In Section 4.2 we used the AADL device 

concept to capture physical entities such as sensors and actuators (switches). Devices can also 

represent physical components such as an engine with ports representing sensor output and actua-

tor input. These physical components have mass and the system may have constraints regarding 

its maximum mass. 
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A system under control may also contain components that represent physical resources, such as 

electrical power and hydraulic power. We use the AADL bus components to represent a physical 

resource such as electrical power or hydraulic pressure. These resources are supplied to physical 

subsystems, such as the heater, through bus access connections. In other words, these bus access 

connections represent fuel lines and hydraulic hoses.  

In the next two sections, we illustrate how AADL can be used to perform a coarse-grained analy-

sis, which can be refined with the AADL model, of physical resources or resource consumption 

issues that are addressed as part of the goal network representation. 

4.5.1 Mass and Weight Analysis 

We have introduced three mass related properties in order to perform mass analysis. 

1. SEI::MassLimit: the maximum acceptable mass for a system. This property can be used for 

the system under control and for the computer hardware system. The mass is expressed in 

units of kg and takes a real value.  

2. SEI::NetMass: the net mass of a system. This is the net mass of an empty cabinet or a board 

without its mounted components. The mass is expressed in units of kg and takes a real value. 

3. SEI::GrossMass: the gross mass of a system. This is the net mass of a system (component) 

plus the sum of the gross mass of its subcomponents. For example, this is the mass of a cabi-

net plus the mass of the boards including their mounted parts. The mass is expressed in units 

of kg and takes a real value. 

It is expected that if both the net mass and the gross mass are specified for a component, their val-

ues would be consistent (i.e., the net mass of the component plus the gross mass or its equivalent 

in the form of net mass plus its subcomponents’ gross mass must be the same). For leaves (nodes) 

in the component hierarchy, the net mass and gross mass are expected to be identical. It is ex-

pected that a component’s gross mass does not exceed its mass limit. 

The mass analysis ( ) can be invoked on an instance model of the MDS. For example, we can 

instantiate the reference model and associate a mass with the physical system under control as a 

whole as well as the computer platform. As the reference architecture model is refined into a 

model of a specific system and the physical system under control is populated with parts, we can 

revisit this mass analysis for the complete system. We can also limit the mass analysis to an in-

stance of the computer platform by creating an instance model of the system implementation that 

represents the computer hardware. 

We support mass analysis in two forms: 

 Mass analysis through an OSATE analysis plug-in that totals the net mass property value of 

components (systems and buses) in the instance model, relates them to the gross mass val-

ues, and compares them against mass limit values. 

 Mass analysis by exporting the mass information into an Excel-compatible CSV file with the 

analysis performed in Excel. 

In order to be able to perform the mass analysis we must assign mass property values to the sys-

tem type or system implementation declaration of the MDS and its subsystems (i.e., the system 
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type or system implementation declarations of the system under control and the computer hard-

ware). In addition we can assign mass properties to the bus types representing physical resource 

containers and the bus access connections that represent physical connectors to such a physical 

resource. 

In the context of a spacecraft system, it may be necessary to distinguish between mass and weight. 

Weight is proportional to mass in a uniform gravitational field. Some control applications such as 

that of a rover may utilize weight in its stability calculations. Such characteristics can be captured 

through additional properties; AADL supports the introduction of user-defined properties to ad-

dress this need. 

4.5.2 Power Draw Analysis 

In this section we illustrate modeling of consumable and renewable resources in AADL for a 

coarse-grained resource analysis. We use electrical power as the example. The power is expressed 

in units of milliwatts (mW), watts (W), and kilowatts (KW). We have three power related proper-

ties: 

1. SEI::PowerCapacity the power capacity provided by a physical system component such as 

a battery. This property is used on bus or system components to indicate the amount of power 

available to power consumers. If power suppliers are connected to this component, then their 

power supply total should correspond to the power capacity. Currently the capacity is speci-

fied in terms of watts reflecting a power system with renewable power. For non-renewable re-

sources such as a non-chargeable battery, we may also want to specify the energy capacity in 

terms of power and time (e.g., kilowatt-hour [KWH]). 

2. SEI::PowerSupply the amount of power supplied to a power carrier. This property is used 

on requires bus access features of power producer components, such as a solar panel.  

3. SEI::PowerBudget the amount of power consumed by a component. This property is used 

on requires bus access features of power consumer components, such as the heater or a mo-

tor. 

It is expected that the power capacity of a component corresponds to the sum of the supplied 

power (i.e., supplier components connected by bus access with a PowerSupply property value). It 

is expected that the sum of the power budgets of connected components does not exceed the ca-

pacity or supplied power.  

Figure 24 illustrates the use of an AADL bus of type PowerSupply to represent an electrical pow-

er resource. The power supply has a power capacity property indicating its available power. The 

figure also shows three power consumers that are connected to the power supply through bus 

access connections. Their requires bus access features have property values indicating their power 

budgets. 

A bus instance that represents a power resource may have a requires bus access feature itself. 

This indicates that this bus can be connected via bus access to another bus to draw on that buses 

power capacity. The PowerBudget property value indicates the amount of power drawn. In other 

words, the capacity of a bus is the sum of PowerSupply values of connected components plus the 

sum of the PowerBudget values of its own bus access connections. 
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Figure 24: Power Supply as a Physical Resource 

The power analysis ( ) can be invoked on an instance of the MDS. It can be performed on an 

initial architecture model and then revisited as the model is refined to a greater level of detail. 

We support power analysis in these forms: 

 through an OSATE analysis plug-in that totals the power budgets of connected components 

and compares the total against the power capacity of the power resource (bus). It takes into 

account PowerSupply connections as well as requires bus access by the power source. 

 by exporting the power information into an Excel-compatible CSV file with the analysis per-

formed in Excel 

 by exporting the power information into a format that is understood by the goal network 

analysis tool of MDS. This allows us to ensure that power-related numbers are used consis-

tently. 

Such a power analysis may reveal that the capacity of the bus supplying the power is not suffi-

cient. We can now explore alternatives, such as a power bus with higher capacity, or components 

with lower power consumption. As we do so, we can immediately analyze the impact on other 

quality dimensions. For example, a higher capacity battery may increase the mass, and a lower 

powered processor may provide fewer execution cycles and, thus, be able to handle fewer tasks. 
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5 Closed Loop Control System 

In this section we examine how to best represent the closed loop control system of MDS in 

AADL. Our starting point, the state-based design of MDS, leads intuitively to an AADL model 

that represents the state variables as data components accessed by different functions. However, 

because we are dealing with time-sensitive data with a continuous value range, variation in time is 

observed as increased noise in the data, which can negatively affect the stability of controllers.  

Cervin performed a case study of different scheduling algorithms on the stability of controllers 

[Cervin 2006]. Figure 25 shows the effect of those schedulers. The flattest curve shows a schedu-

ler where first input for all tasks is performed, then tasks compute according to their priority, and 

finally output is made available. This corresponds to the AADL execution model of freezing input 

at task dispatch time. 

 

Figure 25: Impact of Latency Jitter on Controller Stability 

Latency is also sensitive to the order in which the sender and receiver communicate their data, 

(i.e., the order in which state variables are written and read or in which send and receive opera-

tions are performed). In other words, the execution order of the tasks drives the information flow 

and its latency. Preemptive scheduling and concurrent execution of tasks on different processor 

cores or different processors contribute to frame-level jitter. 

In this section we first discuss a flow-oriented representation of the closed loop control system in 

AADL that still reflects the state-based design approach of MDS. Then we illustrate how this 

model can be used in performing end-to-end latency analysis. 
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5.1 MDS State Variables and Data Flow 

Figure 2 on page 7 illustrates the separation of what information is communicated between com-

ponents and how it is communicated through state variables in the MDS architecture. The Unified 

Modeling Language (UML) class diagram shown in Figure 26 provides greater detail about the 

content of MDS data objects; their relationships among MDS estimator, controller, and hardware 

adapter software elements; and their realization through state variables. State variables are con-

tainers that  

 store and make available data values of data streams 

 maintain a value history and make that history available through state functions 

Furthermore, MDS provides functionality for state-variable value history management, such as 

data compression, and its transfer between flight system and ground system (shown in Figure 8). 

 

Figure 26: MDS Software [Bennett 2006] 

Given the state-based design approach of MDS, it is logical to represent the state variables as data 

components. These data components are then accessed through data access connections, as illu-

strated in the left box of Figure 27. However, they are part of the data stream of the control loop 

from the sensors, their adapters, and the state estimators to the controllers, actuator adapters, and 

the actuators themselves. The flow of information has to be inferred from the access rights to the 

data components. MDS requires that only one functional unit write to the state variable (i.e., only 

one component has write access). There can be multiple readers of state variables (i.e., multiple 

access connections with read access). A visualization of this intended flow is shown in the top 

right box of Figure 27.  
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This flow-oriented view can be mapped into a port and connection model. The functional unit 

producing the values for a state variable has an output data port that makes the most recent value 

accessible. This value is then routed to the consumers by port connections as shown at the bottom 

right of Figure 27. This allows us to explicitly indicate whether data is intended to be communi-

cated across frames or within the same frame. In the shared variable representation this informa-

tion is implicit in the order in which the write and read operations occur in every frame. Changes 

in schedulers or use of multiple processors can result in non-deterministic write/read order, which 

in turn results in frame-level latency jitter of the sampled data. This introduces software-induced 

noise into the data, which may affect the stability to the control system. 

 

Figure 27: From State Variable to Port-Based Flow 

5.2 Representing the Control Loop Data Stream  

States allow for goal-oriented task modeling and for separation of state estimation and control 

concerns. Measurements from sensors represent observations of characteristics of the physical 

plant state, which are used by estimators to determine an accurate estimate of the physical state. 

This state is used together with desired system states (i.e., goals) to change the state of the physi-

cal system.  

In order to explicitly model the timing assumptions of the information flow, we utilize data ports 

and immediate, delayed, and sampling connections for data ports to indicate whether mid-frame 

and phase-delayed data flow is assumed to occur or non-deterministic sampling is acceptable. We 

take advantage of the fact that an estimated state is updated by a single estimator (i.e., its out port 

effectively represents the stream of estimated values for an estimated state). This estimated state 

may be determined from measurements or derived from other states (i.e., a derived state estimator 

uses the output of other estimators as input). Connections from the estimator out data ports to in 

data ports of individual controllers or to estimators responsible for determining derived states 

reflect the information flow embedded in the state effects diagrams. By declaring data port con-

nections to be immediate connections, we specify that the users of the state expect to see the new 

data value. When an estimator or controller utilizes a previous state value, we will indicate this by 

declaring a delayed data port connection.  

Immediate and delayed data port connection declarations are used in the refinement of estimators 

and controller components as part of an MDS architecture instantiation. For example, a sensor 
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device may have an out port that provides raw temperature readings. This value is fed to a sensor 

adapter that normalizes the temperature reading into a temperature measurement. The measure-

ment is then passed to a temperature estimator, which uses the measurement as evidence to de-

termine the current temperature. The estimator may take into account other measurements and 

state information (e.g., temperature sensor failure).  

Similarly, the commands for an actuator are the responsibility of a single controller (i.e., its out 

port effectively represents the stream of control commands). This fact allows us to use the out 

data ports of the estimators to represent the estimated state as a data stream and the out data ports 

of the controllers to represent the stream of control commands.  

5.3 Flow Latency Analysis 

In this section, we demonstrate the capability of AADL to model end-to-end flows and utilize 

these specifications to perform end-to-end latency analysis. From a control engineer’s perspective, 

end-to-end latency consists of  

 processing latency to perform the control computation 

 sampling latency due to over- and under-sampling 

 transmission latency of the signal from the sensor and the signal to the actuator over physical 

connections   

When the control system is implemented as software, we have a number of additional contributors 

to end-to-end latency including the sharing of processor and network resources, preemptive sche-

duling, blocking due to mutually exclusive access to shared logical resources such as shared data 

areas, use of partitioned architectures, and rate group optimization. 

The SEI has developed a latency analysis framework around AADL models that utilizes end-to-

end flow specifications as well as knowledge about the execution of the control application as a 

collection of application threads executing at a given rate and communicating their results via dif-

ferent communication mechanisms [Feiler 2007, Feiler 2008]. We will utilize an implementation 

of the flow latency analysis capability in OSATE in this section. 

As part of our initial case study, the flow latency analysis explores the end-to-end latency for the 

Heated Camera System MDS instance described in Section 4. 

5.3.1 End-To-End Flow Specification 

TemperatureResponse, an end-to-end flow specification, is defined to account for a signal from 

the temperature sensor through the control system to the switch actuator device. This measure 

records the time from a switching threshold temperature being sensed to the switch actuator re-

ceiving a command to turn the heater on or off. Its path is defined as an end-to-end flow originat-

ing at the TemperatureSensor device within the camera hardware (SystemUnderControl), moving 

through a path in the MDSControlSystem for the camera, and ending in the HeaterSwitch device 

within the camera hardware (SystemUnderControl). 

AADL supports flow specifications for individual components, which allows a user to specify the 

flow characteristics through a component without having to expose the internal details of the 

component. Within a component implementation, flow specifications are detailed into flow im-
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plementations that indicate how the flows are realized through the subcomponents making up the 

component. These flow specifications may represent flow sources (the flow starts within the com-

ponent), flow paths (the flow goes from an in port to an out port), and flow sinks (the flow ends 

within the component).  

5.3.2 Flow Specifications for Sensors and Actuators 

Given flow specifications for a set of components, we can specify an end-to-end flow through 

those components. In our example, we will specify the end-to-end flow TemperatureResponse by 

declaring it to start with the flow source TempFlow of the controlled MDS system, via connection 

SystemtoControllerConn through the flow path ControlFlow of the MDS control system, and via 

connection ControllertoSystemConn terminate in the flow sink HeaterCmdFlow of the controlled 

MDS system. This end-to-end flow specification is shown in Figure 28. This specification in-

cludes a latency property to indicate that the expected latency for the end-to-end flow is to be 50 

ms. This value is an arbitrary value selected for illustrative purposes in the analysis example 

shown in Section 5.4. 

package CompleteMDSSystem::Camera 

public 

  system CompleteMDSSystem 

    extends CompleteMDSSystem::CompleteMDSSystem 

  end CompleteMDSSystem; 

   

  system implementation CompleteMDSSystem.Camera 

    extends CompleteMDSSystem::CompleteMDSSystem.basic 

    subcomponents 

      MDSControlSystem: refined to  

        process MDSControlSystem::Camera::MDSControlSystem.camera; 

      MDSSystemUnderControl: refined to  

        system SystemUnderCon-

trol::Camera::systemundercontrol.camera; 

      MDSPlatform: refined to  

        system ExecutionHardware::Camera::MDSHardware.camera; 

    flows 

      TemperatureResponse: end to end flow  

        MDSSystemUnderControl.Tempflow -> SystemtoControllerConn ->  

        MDSControlSystem.ControlFlow -> ControllertoSystemConn ->  

        MDSSystemUnderControl.HeaterCmdFlow { Latency => 50 ms;}; 

 

Figure 28: End-to-End Flow Specification 

The camera system under control has two flow specifications: a flow source TempFlow from the 

temperature sensor and a flow sink HeaterCmdFlow to the heater switch, as shown in Figure 29. 

Each flow specification is refined in the camera control system implementation into a flow im-

plementation. The flow implementation for the flow source indicates that the flow source starts 

within the TemperatureSensor device and goes through the temperature sensor adapter. The flow 

implementation for the flow sink indicates that the flow sink goes through the heater switch adap-

ter ending in the HeaterSwitch device. 
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package SystemUnderControl::Camera 

public 

  system SystemUnderControl 

    extends SystemUnderControl::system_under_control 

    features 

      MeasurementsOut: refined to  

           port group MDSData::Camera::MeasurementsOutput; 

      CommandsIn: refined to  

           port group MDSData::Camera::CommandIn; 

    flows 

      Tempflow: flow source MeasurementsOut; 

      HeaterCmdFlow: flow sink CommandsIn; 

  end SystemUnderControl; 

Figure 29: Flow Specifications in MDS System Under Control 

5.3.3 Flow through the Control System 

The MDS control system for the heated camera system has a flow path specification, which 

represents the flow through the various processing steps through the control system. This flow 

specification, called ControlFlow (see Figure 30), goes through the sensor adapters, the state es-

timation, the device control, and the actuator adapters. Within the StateEstimation component, the 

flow is further refined to go through the TemperatureEstimator. Similarly, within the DeviceCon-

trol component, the flow is further refined to go through the HeaterController. 

package MDSControlSystem::Camera 

public 

  process MDSControlSystem 

   extends MDSControlSystem::MDSControlSystem 

   features 

    MeasurementsIn: refined to port group  

       MDSData::Camera::MeasurementsIn; 

    CommandsOut: refined to port group MDSData::Camera::CommandsOut; 

   flows 

    ControlFlow: flow path MeasurementsIn -> CommandsOut; 

  end MDSControlSystem; 

  process implementation MDSControlSystem.camera 

   extends MDSControlSystem::MDSControlSystem.basic 

   subcomponents 

    GoalPlanner: refined to thread group  

            ControlSoftware::Camera::GoalPlanner.basic; 

    GoalExecutive: refined to thread group  

            ControlSoftware::Camera::GoalExecutive.camera; 

    GoalMonitor: refined to thread group  

            ControlSoftware::Camera::XGoalMonitor.camera; 

    StateEstimation: refined to thread group  

            ControlSoftware::Camera::estimator.camera; 

    StateControl: refined to thread group  

            ControlSoftware::Camera::controller.camera; 

   flows 

    ControlFlow: flow path MeasurementsIn ->  

             Connection1 -> StateEstimation.StateFlow -> Connection5  

             -> StateControl.ControlFlow -> Connection2 ->  

             CommandsOut; 
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  end MDSControlSystem.camera; 

end MDSControlSystem::Camera; 
 

Figure 30: Control Flow Path Through the Control System 

5.3.4 Worst-Case Latency Analysis of a Flow 

End-to-end latency of a data flow is determined by several factors:  

 processing latency  the amount of time it takes to perform a function. For example, the 

processing latency of a sensor is the time from the detection of a signal to the corresponding 

event or message being available at its output. In case of a function realized in software, 

processing time is the amount of time it takes to compute the function. This time may be 

bounded by its worst-case execution time, a value used in scheduling analysis to determine 

schedulability.  

 preemption latency  occurs when tasks share a resource. For example, multiple tasks may 

execute on the same processor, or tasks may require exclusive access to a shared data area. 

Typically a deadline is specified for a task to indicate the latest time it is expected to com-

plete its execution, since its dispatch. In essence, the deadline represents the worst-case sum 

of processing time and preemption time. 

 communication latency  the amount of time it takes for a signal to travel between applica-

tion components. This latency may be the time for a signal to physically travel between de-

vices or for data and events to be transmitted via shared memory, a bus, or network. It in-

cludes overhead imposed by protocols used to perform the transfer and delay due to resource 

contention. 

 sampling latency  the time delay due to a task reading its input and performing its compu-

tation at a specified rate. The maximum latency contribution due to sampling is the period of 

the recipient.  

The end-to-end flow defined in Section 5.3.1 is illustrated as a flattened model in Figure 31. Each 

element of the end-to-end flow can contribute latency. The OSATE latency analysis tool calcu-

lates the worst-case end-to-end latency by first taking into account the latency within the sensor 

device, which is specified as part of the flow source specification of the sensor. It then accounts 

for the sensor adapter periodically sampling the sensor output (sampling latency). Then the tool 

considers the sequence of immediate connections to determine the cumulative latency to be add-

ed. Next, the sampling activity of the actuator adapter is considered, and, finally, the latency of 

the heater switch actuator is added in. If this worst-case end-to-end latency exceeds the expected 

latency, the analysis tool provides an error message as illustrated in Figure 32. Note that illustra-

tive values were used for this model and the results are not indicative of the results for any exist-

ing MDS implementation. 
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Figure 31: Flattened End-to-end Flow Model 

 

Figure 32:  Representative Flow Analysis Output with a Specification Violation 

The flow latency analysis capability of the OSATE toolset can be used to investigate the impact 

on the end-to-end latency of ground-to-flight system migration and vice versa. It can be extended 

to investigate whether critical flows that are sensitive to latency variation can handle the latency 

jitter inherent in the particular implementation of the embedded system (see Section 5.3.5).  

5.3.5 Analysis of Latency Jitter 

Control systems are modeled as continuous time systems and then transformed into discrete time 

systems. In discrete time systems, the tasks of a control system are performed at known discrete 

time intervals (frames). In that context, there are the following types of interaction between tasks:  

 mid-frame communication (i.e., the output of one task is made available to another task in 

the same frame) 

 phase-delayed (i.e., the output of a task is available to a task, possibly the same task, at the 

next frame) 
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 sampled (i.e., a task reads its input at a specified rate independent of the rate of the task 

whose output is used as input)  

In a control system where tasks execute periodically, a periodic task samples its input stream de-

terministically if it performs mid-frame or phase-delayed communication. If tasks execute at dif-

ferent rates, however, over- or under-sampling occurs. Mid-frame and phase-delayed communica-

tion guarantees that a task consistently over- or under-samples deterministically. For example, if 

the rates of two communicating tasks are harmonic (i.e., one is twice of the other), then the reci-

pient processes every second element in the data stream.  

 

Figure 33: Frame-Level Latency Jitter 

However, if deterministic communication between these tasks is not guaranteed, frame-level jitter 

in latency occurs. For example, if the communication occurs through shared variables and tasks 

are scheduled preemptively, then the write and read order to those variables is not guaranteed. In 

this example, the effect is that sampling of the data stream may vary by as much as two frames 

(see Figure 33). 

Deterministic data streaming is important to control systems, as any non-determinism in sam-

pling adds variation to latency and age of data. This variation is in units of frames (the period 

of the sampling task) and can impact the performance and stability of the control algorithm. 
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39 | CMU/SEI-2010-TR-003 

6 Plan Execution and Service Levels 

As discussed in Section 2.4, the MDS architecture has a planning layer. This layer has a  

 Goal Planner component that is responsible for producing a goal network representation of a 

mission plan 

 Goal Executive that is responsible for achieving the executable goals (xgoals) expressed in 

the goal network by requesting services of different levels from each of the components in 

the control layer 

 Goal Monitor component that is responsible for determining when goals are reached and 

when it is not feasible to reach a goal and replanning may be necessary   

In this section, we focus on how to represent the different levels of service at the control layer and 

how the xgoals are communicated by the planning layer to the control layer. Effectively, the plan-

ning layer determines the workload generated by the control layer on the computer platform. In 

Section 7, we will discuss how goal failure management is mapped into an AADL model repre-

sentation. 

6.1 Modeling of XGoal Execution 

Components in the control layer execute periodically to provide feedback control, in order for the 

system under control to reach a desired goal state. The control system may have algorithms that 

can handle different operational conditions. One form is a hybrid control system that applies dif-

ferent continuous control algorithms in different physical state regions. Variants of control algo-

rithms may provide different levels of precision in managing the controlled system at the cost of 

various demands on the computing resources.  

In the case of the MDS, the planning layer may ask a control system to be in one of two opera-

tional modes: (1) standby, which requires minimal computer resources, or (2) actively driving the 

system under control to a desired goal state. In our example, the heater controller may be asked to 

get the camera to be at a certain temperature before it can be used for recording images. Figure 34 

illustrates such a goal network for the camera system. 

In this scenario, the threads are executing periodically and are informed of new desired state. We 

can make use of the AADL mode concept to represent the fact that at different times threads 

should run different variants of algorithms or be in standby, consuming different amounts of ex-

ecution time in each mode.  

Mode-specific property values for Compute_Entry_Point can be used to indicate what source 

code function is to be called in each mode. Specification of computational behavior for each mode 

can be added through annex subclauses using the AADL Behavior Annex, designed specifically 

for control system specifications, or a submodel expressed in an existing modeling notation such 

as Simulink and associated with the AADL model through the Source_Text property. 

Mode-specific property values for Compute_Execution_Time are used to record different resource 

requirements on the processor. In the next section, we will discuss how this information can be 
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used to perform workload and scheduling analysis specific to a goal network. Such mode-specific 

analysis will produce higher fidelity processor resource and scheduling results.  

Mode transition conditions can be specified in terms of trigger events such as the arrival on an 

event port or event data port. By default, the arrival event results in initiating the mode transition 

at the next hyper period of threads involved in the mode transition. 

 

Figure 34:  Scheduled Goal Network Drives Control Layer Execution 

In our scenario, the supervisor informs the task about the desired level of service, independent of 

the current level of service. In other words, it sends requests of the form “goto mode x with xgoal 

parameter y” through separate event data ports. In order to support such behavior, the mode state 

machine must have a transition from every mode to every mode. In this implementation, we as-

sume that requests for mode transitions do not occur at a higher rate than the rate of execution of 

the threads. Otherwise, mode transition requests may get lost.  

A more intuitive interpretation of modes at the thread level is that they represent different execu-

tion sequences based on different input from ports. If desired, we can use the Behavior Annex of 

AADL to specify the conditions under which alternative execution sequences are taken, based on 

the value of the incoming goal. Use of the annex leads to the view that the supervisor provides the 

desired goal to the thread as a data value, and only the most recent value is relevant. The supervi-

sor thus communicates the desired goal through a data port. If goal delivery occurs over a network 

whose protocol does not guarantee delivery, it may be desirable to resend such goals periodically 

to ensure that the control layer responds to the request even under transient delivery fault condi-

tions. 
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6.2 Goal Network-Based Workload Analysis 

During the goal network planning process, the goal network is elaborated into subgoals, and goal 

subnets are merged. Goals in a goal network have constraints on time and on both desired state 

values and observed state values (state estimates). Constraints help identify whether goals are 

reachable and which of multiple alternative tactics to use to reach a goal. As the goal network is 

elaborated into a scheduled goal network, it is checked for inconsistency. A verification procedure 

for such goal networks is discussed in Braman [Braman 2007]. 

The workload of the set of tasks at the control layer is determined by the set of threads that are 

active and the mode that each thread operates in. In our model, we do not disable and enable indi-

vidual control layer threads through modes at the enclosing process. Therefore, all control layer 

threads are active, but may operate at different modes at different times, resulting in different ex-

ecution time demands.  

As part of an instance model, AADL records the set of System Operation Modes (SOM) that are 

feasible in the given system. An SOM is the set of current modes of all modal components in the 

instance model. In our case, an SOM is the set of current modes of all control layer threads at any 

given point in time, plus any other threads with modes in the system. Examples of other threads 

are the threads at the planning layer performing goal planning, goal execution, and goal monitor-

ing (see Section 7.1 for details). In this section, we focus on determining the feasible current mode 

combinations of the control layer threads based on a scheduled goal network. 

Given a set of SOMs in an instance model, the OSATE tool set supports the traversal of the in-

stance model for each of the SOMs to drive an analysis in such a way that the analysis tool can be 

ignorant of the SOMs. In other words, the instance model is traversed visiting only those compo-

nent and connection instances that are active according to the selected SOM, and property values 

that apply to the currently selected SOM are passed to the analysis tool. This action is the case for 

the resource budget analysis and the scheduling analysis plug-ins available as part of the default 

configuration of OSATE.  

We can determine the service levels (i.e., the modes) of the control layer threads from the goal 

network in a manner that is similar to the algorithm used in building and verifying a scheduled 

goal network [Braman 2007, Bennett 2006]. By default, the control layer threads are operating in 

standby mode. By “walking” the goal network in a simulated execution, we determine all threads 

that receive a non-standby xgoal (i.e., a non-standby mode). First, we determine the initial set of 

xgoals (SOM) that are to be executed concurrently by identifying those goal states in the goal 

network that do not have any ancestors. Given this starting set, we traverse the goal network. For 

each successor goal state that is independent of other goal states, we get a new SOM by updating 

the current mode in the SOM for the thread(s) whose xgoals change. As we encounter time-

coordinated goal states, we update the current modes of all threads, whose xgoals change across 

the coordinated goal states. As we encounter alternative tactics in the form of alternative branches 

out of a goal state, we elaborate each alternative separately in determining the next SOM. The list 

of feasible SOMs is maintained as a unique list (i.e., we need to consider each different SOM only 

once in our workload analysis). 

The result of a workload analysis across all feasible SOMs allows us to determine the maximum 

workload while the system is still schedulable. We can apply this analysis before and during a 



 

42 | CMU/SEI-2010-TR-003 

mission. Before a mission, we can use this analysis on a set of planned mission scenarios to de-

termine an appropriately dimensioned computer platform with sufficient margin. We can perform 

this analysis before committing the goal network to the goal executive. If the goal network is not 

schedulable in terms of processor utilization we would have to consider replanning. Finally, we 

can use the result of the analysis to determine the lowest processor speed to meet the timing re-

quirement while reducing power consumption by the computer hardware. Different processor 

speeds are modeled as different modes of the processor, either as a preconfigured speed deter-

mined by the hardware or as a variable set of speeds determined by the analysis. As it is transi-

tioning through the goal network, the goal executive can initiate the appropriate processor mode 

in the same way it initiates different thread modes by sending appropriate xgoals. We plan to 

develop a prototype implementation of this algorithm based on the goal network representation 

and algorithms used in the MDS and have received access to the code from the JPL. 

 

. 
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7 Goal Failure Management 

In this section, we present analyses of an implementation of the MDS architecture for an example 

rover wheel control system taken from session four of the MDS tutorials developed at JPL [Ben-

nett 2006]. This example rover contains six independently powered wheels as shown in Figure 35.  

For these analyses, we model an MDS software implementation that is executing on a single-

processor, single-core computer platform. The analyses include AADL models of the scheduling 

impacts of goal failures on the goal elaboration and controller functions. Note that values used in 

the example are illustrative and should not be taken as representative of any existing MDS im-

plementation. 

 

 

Figure 35:  Rover Wheel Example 

7.1 Integral Fault Protection with AADL Modes 

In this section, we present an analysis of the scheduling and load impact of the MDS integral fault 

protection. The MDS control system functions are shown in Figure 3 on page 7. Faults are de-

tected within the Goal Execute and Monitor software when a goal or goals are not achieved or 

when a still-satisfiable goal condition is violated. The response of the system to these situations is 

the re-elaboration of the system’s goal network.  
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7.1.1 Re-elaboration 

In our model, we represent the Goal Executive & Monitor and the Goal Elaboration & Re-

elaboration functions as two threads. This is represented in the model as modes of the MDS con-

trol system. In the nominal mode, the goal executive and goal monitor are performing their plan 

execution function by comparing the observations from the state estimation against the conditions 

in the goal network and by providing setpoints to the  state control with given execution times, 

while the goal planner (shown as Goal Elaboration in the figures below) is relatively idle. We 

have introduced a goal failure mode and a macro goal failure mode. In each of them, the goal 

planner has to perform replanning—expending a different amount of effort in each. Similarly, the 

goal monitor and goal executive expend a little more effort in order to deal with the situation until 

a revised plan is available. 

Table 2 presents the execution times of the monitoring and elaboration threads impacted by goal 

failure. In this table, we include longer execution times for a macro-goal failure. Note that these 

values are illustrative and should not be taken as representative of any existing rover implementa-

tion. 

Table 2: Illustrative Thread Execution Times for Re-Elaboration 

Thread / Thread Group Mode Lower Bound (ms) Upper Bound (ms) 

Goal Elaboration nominal 1 1 

Goal Elaboration goal_failure 3 5 

Goal Elaboration macro_goal_failure 7 9 

Goal Executive Monitor nominal 2 3 

Goal Executive Monitor goal_failure 2 4 

Goal Executive Monitor macro_goal_failure 2 7 

Figure 36 presents the AADL text that declares the three modes {nominal, goal_fail, and ma-

cro_goal_fail} for the control system and the alternative execution times for the Goal Elaboration 

& Re-elaboration and Goal Executive & Monitor threads. These are contained property associa-

tions declarations within the MDSControlSystem process. The MDSControlSystem includes all of 

the threads as distinct thread groups for the MDS control. For example, the elaborator thread 

group contains the Goal_Elaboration_Thread whose execution time changes with a mode change 

(i.e., 3 Ms .. 5 Ms in the goal_fail mode). 

modes 

      nominal: initial mode ; 

      goal_fail: mode ; 

      macro_goal_fail: mode ; 

    properties 

      AADL_Properties::Compute_Execution_Time => 1 Ms .. 1 Ms ap-

plies to elaborator.Goal_Elaboration_Thread in modes (nominal); 

 

      AADL_Properties::Compute_Execution_Time => 3 Ms .. 5 Ms ap-

plies to elaborator.Goal_Elaboration_Thread in modes (goal_fail); 

 

      AADL_Properties::Compute_Execution_Time => 7 Ms .. 9 Ms ap-

plies to elaborator.Goal_Elaboration_Thread in modes (ma-

cro_goal_fail); 
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      AADL_Properties::Compute_Execution_Time => 2 Ms .. 3 Ms ap-

plies to Goal_Executive_Monitor.Goal_Executive_Monitor_Thread in 

modes (nominal); 

 

      AADL_Properties::Compute_Execution_Time => 2 Ms .. 4 Ms ap-

plies to Goal_Executive_Monitor.Goal_Executive_Monitor_Thread  

in modes (goal_fail); 

 

      AADL_Properties::Compute_Execution_Time => 2 Ms .. 7 Ms ap-

plies to Goal_Executive_Monitor.Goal_Executive_Monitor_Thread  

in modes (macro_goal_fail); 

Figure 36: AADL Text of Mode Configurations 

Our analysis assesses the computational burden using the capabilities provided by an OSATE 

plug-in that can bind threads to processors and determine the schedulability of a configuration. 

The results of the analysis for each of the modes involved in re-elaboration are presented in Fig-

ure 37. The total load includes all of the threads involved in the control system. For this illustra-

tive example, the load increase for a macro goal failure almost consumes the available single pro-

cessor computational resource.  

 

Nominal Mode Results 

 

Goal Failure Mode Results 

 

Macro Goal Failure Results 

Figure 37: Scheduling Analysis Results 
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Table 3 presents an analysis view report example that might be generated for this analysis effort. 

This report is an artifact produced using the model-based analysis process described in A Practice 

Framework for Model-Based Analysis Using the Architecture Analysis and Design Language 

(AADL) [NASA IV&V 2009]. 
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Table 3: Complete Analysis View Report 

View Identifier: Rover Schedulability-1 Analyses: Using execution properties, assess 

the schedulability of the MDS system with the 

experiments and in the three modes {nomin-

al:1, goal failure:2, macro goal failure:3}. 

Process Identifier (optional): 

Scope: The complete rover system 

Perspective: Use system process, thread group, and thread com-

ponents. Include all relevant scheduling properties. 

Constraints: Include only rover processes.  

Specific Guidelines: Extract useful items from existing models. 

Use MDS reference architecture for the MDS system components. 

Model File Name (*.aadl or *.aaxl): Rover_Goal_Failure_Model.aadl 

Results 

Analysis ID Expected Results Actual Results Assessment and Action(s) 

1 Load <= 100% Load = 83% Consistent with required design margin of 10% 

2 Load <= 100% Load = 90% 
Just meets required design margin of 10%; a re-

evaluation of the system should be considered. 

3 Load <= 100% Load = 99% 
Exceeds required design margin of 10%; a re-

evaluation of the system should be conducted. 

7.1.2 Controller Reconfiguration 

In this section, we investigate the impact of a new goal network on the controller functions for the 

rover example shown in Figure 35. The controller functions affected by the goal network restruc-

turing are those for the wheels. These are modeled as threads: a heading-steering thread, two 

steering threads, and six drive threads within a controller thread group. For this example, we as-

sume good, fair, and poor health states exist and that the new goal network is elaborated upon a 

change in the health state. The three health states definitions are those found in Braman [Braman 

2007].  

In the model, once a new goal network has been elaborated, the elaboration and monitoring func-

tions return to their nominal mode. The controller computational changes in response to the newly 

elaborated goal network are represented by increases in execution frequency and execution times 

of the controller threads as health degrades (e.g., representing an assumption that threads must run 

additional models to compensate for less information or resources). These values are summarized 

in Table 4.  

Table 4: Execution Properties for System Health Modes 

System Health (controller mode) Units: milliseconds 

Good Fair Poor 

Heading Steering Period 100 95 90 

Heading Steering Computation Time 2 .. 3 5 .. 8 8 .. 10 

Wheel  Period 100 95 90 

Wheel {One, Two} Steer Computation Time 2 .. 5 2 .. 6 5 .. 7 

Wheel {One, Two} Drive Period 1 .. 2 2 .. 3 3 .. 6 

Wheel {Three, Four, Five, Six} Drive Computation Time 1 .. 2 2 .. 3 3 .. 5 

System Load 68% 84% 106% 

To model and analyze the impact of a new goal network, we use AADL modes and mode-

dependent property associations for the rover wheel controller thread group. Figure 38 presents an 

excerpted AADL model of the controller thread group. The excerpted model shows only the sub-

components, health modes, and a few of the mode-dependent property associations for the con-

troller thread group.  
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The results of the analysis of this illustrative example are shown in the last row of Table 4. Again, 

these values should not be taken as representative of any existing rover implementation. They are 

used to illustrate that mode-dependent modeling and early analysis of fault response behavior can 

identify potential problems with a proposed implementation. 

  thread group implementation controller.basic 

    extends MDS_Software::control.basic 

    subcomponents 

      Heading_Steering_Thread: thread head_steer_controller.rover; 

      Wheel_One_Steer_Thread: thread steer.wheel; 

      Wheel_Two_Steer_Thread: thread steer.wheel; 

      Wheel_One_Drive_Thread: thread drive.wheel; 

      Wheel_Two_Drive_Thread: thread drive.wheel; 

      Wheel_Three_Drive_Thread: thread drive.wheel; 

      Wheel_Four_Drive_Thread: thread drive.wheel; 

      Wheel_Five_Drive_Thread: thread drive.wheel; 

      Wheel_Six_Drive_Thread: thread drive.wheel; 

      Heading_Sem: data Semaphore.Steering; 

      Driving_Sem: data Semaphore.Driving;     

....  

    modes 

      good: initial mode ; 

      fair: mode ; 

      poor: mode ; 

    properties 

      AADL_Properties::Compute_Execution_Time => 2 Ms .. 3 Ms ap-

plies to Heading_Steering_Thread in modes (good); 

      AADL_Properties::Compute_Execution_Time => 5 Ms .. 8 Ms ap-

plies to Heading_Steering_Thread in modes (fair); 

      AADL_Properties::Compute_Execution_Time => 8 Ms .. 10 Ms ap-

plies to Heading_Steering_Thread in modes (poor); 

      AADL_Properties::Compute_Execution_Time => 2 Ms .. 5 Ms ap-

plies to Wheel_One_Steer_Thread in modes (good); 

      AADL_Properties::Compute_Execution_Time => 2 Ms .. 6 Ms ap-

plies to Wheel_One_Steer_Thread in modes (fair); 

      AADL_Properties::Compute_Execution_Time => 5 Ms .. 7 Ms ap-

plies to Wheel_One_Steer_Thread in modes (poor); 

      AADL_Properties::Compute_Execution_Time => 2 Ms .. 5 Ms ap-

plies to Wheel_Two_Steer_Thread in modes (good); 

      AADL_Properties::Compute_Execution_Time => 2 Ms .. 6 Ms ap-

plies to Wheel_Two_Steer_Thread in modes (fair); 

      AADL_Properties::Compute_Execution_Time => 5 Ms .. 7 Ms ap-

plies to Wheel_Two_Steer_Thread in modes (poor); 

Figure 38: Rover Wheel Controller Thread Group 

7.1.3 Fault Management and the AADL 

Through this example, we demonstrate the use of AADL modes to represent goal network re-

elaboration and controller reconfigurations resulting from a re-elaborated network. This approach 

can be used early in the development effort to assess the load of fault management on computa-

tion resources. The results of these analyses can provide a foundation for tradeoff assessments in 

modifying existing designs and defining alternative implementations. As part of a software assur-
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ance practice, these analyses can identify potential problems in an existing design or implementa-

tion. 
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8 Summary 

In this case study investigation, we have demonstrated that the AADL can  

 effectively model MDS top-level constructs (e.g., hardware adapters, separation of estima-

tion and control, the layering of planning and control) 

 effectively represent the MDS reference architecture and support an instantiation of this ar-

chitecture for an example system 

 address key MDS architectural themes (e.g., state-based closed loop control, separation of 

estimation from control and data management from data transport, ground-to-flight migra-

tion) 

 provide a foundation for the analysis of critical MDS performance elements and system as-

surance concerns (e.g., latency, task scheduling, integral fault protection) 

In addition, we identified critical areas of the MDS architecture for which AADL models and ana-

lyses may provide an effective basis for predicting critical architecture properties and defining 

adaptation guidelines. Most of these issues have been detailed in other sections of this report. In 

the remainder of this section, we highlight the application of AADL modeling and analysis to ad-

dress the issues of handling state variables in the application model, investigating flow latency 

and latency variation, determining the workload generated by a goal network on the processor 

resource in the computer platform, and modeling integral fault protection.  

8.1 State Variables in the Application Model 

The MDS treats state variable and goals data as separate entities in the architecture, as shown in 

Figure 2 on page 7. This may suggest that the state variable and goals data can be represented as a 

data component(s) accessed by other components and software tasks.  

Within AADL, a flow-oriented model can be developed. In this representation, data flow is 

represented by data connections and flow specifications. We have included an explicit representa-

tion of value histories, reflecting the ownership of measurement and command histories by the 

hardware adapters of the system under control.  

This flow-oriented model separates concerns of information flow from the concerns of data trans-

fer and data control. Furthermore, MDS utilizes data state variables as a key concept to represent 

meta-data about estimated, intended, and projected state.  

8.2 Flow Latency Analysis and Latency Variation 

We have demonstrated the AADL capability for modeling end-to-end flows and utilizing this ca-

pability to perform flow latency analysis. The MDS architecture includes state effects models that 

reflect the expected data flow from measurements to estimated states, to derived states, and to 

controllers determining commands. Sensors and actuators may operate at various rates, resulting 

in a control system whose control components have different rate requirements.  
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It has been shown in avionics systems that the use of preemptive fixed priority scheduling, when 

combined with state communication through shared variables, can result in unexpected latency 

jitter due to variation in workload that induces instability in the control behavior. This may be the 

case for Rate Monotonic Analysis (RMA) or other scheduling schemes that do not operate on a 

static time line and can be particularly problematic when state information is kept in a shared data 

area. 

The AADL flow specification capability and the flow latency analysis framework developed by 

the SEI provide the opportunity to analytically compare latency improvements. This comparison 

can be especially valuable when  

 migrating planning and control capabilities from the ground to the flight system 

 investigating the potential risks due to the impact of rate group optimization of threads 

 assessing the impact of distributing the execution of threads across multiple cores of multi-

core processor chips 

8.3 Goal Networks and Workload Analysis 

We have illustrated how AADL can be used to develop task-level architecture models of MDS. 

AADL modes can be used to capture the dynamics of MDS systems, such as the executive of the 

mission plan (goal network) driving the workload by setting goals for the control layer of MDS. 

These goals cause the different estimators and controllers to operate in different modes, generat-

ing a different resource demand under each mode. We have shown how to map the execution of 

MDS goal networks into modal AADL representations and then calculate mode-specific work-

loads. 

8.4 Integral Fault Protection 

We have illustrated the potential value of the AADL in representing and analyzing integral fault 

protection. Specifically, we demonstrated how the goal-oriented task planning and execution ap-

proach, used as realization of integral fault protection, can be mapped into AADL capabilities for 

capturing runtime architecture dynamics. Specifically, we modeled goal planning and monitoring 

functions in the presence of failures using AADL modal modeling and analysis—assessing per-

formance issues in restructuring and executing goal networks in response to a goal failure. 
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Appendix  AADL Textual Representations 

MDS REFERENCE ARCHITECTURE 

Figure 39 (below and on the next 9 pages) is a listing of an AADL textual model of the MDS. 

property set RateGroups is 

  RateGroups : type enumeration ( EstimatorRategroup,  

        ControllerRateGroup, PlanExecutionRateGroup,  

        PlanningRateGroup, HWARateGroup); 

  AssignedRateGroup : inherit RateGroups::RateGroups  

                    applies to (thread, thread group, process, sys-

tem); 

end RateGroups; 

  

package MDSData 

public 

  -- the port groups will get refined for a MDS instance 

  -- they will contain specific data ports 

  port group SensorReadingsOut 

    features  

  end SensorReadingsOut; 

   

  port group SensorReadingsIn 

    inverse of SensorReadingsOut 

  end SensorReadingsIn; 

   

  port group MeasurementsOut 

    features  

  end MeasurementsOut; 

   

  port group MeasurementsIn 

    inverse of MeasurementsOut 

  end MeasurementsIn; 

   

  port group StateEstimatesOut 

    features  

  end StateEstimatesOut; 

   

  port group StateEstimatesIn 

    inverse of StateEstimatesOut 

  end StateEstimatesIn; 

   

  port group XgoalsOut 

    features  

  end XgoalsOut; 

   

  port group XgoalsIn 

    inverse of XgoalsOut 

  end XgoalsIn; 

   

  port group CommandsOut 

    features  

  end CommandsOut; 
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  port group CommandsIn 

    inverse of CommandsOut 

  end CommandsIn; 

   

  port group RawCommandsOut 

    features  

  end RawCommandsOut; 

   

  port group RawCommandsIn 

    inverse of RawCommandsOut 

  end RawCommandsIn; 

   

  data XGoalsTimeLine 

  end XGoalsTimeLine; 

   

  data MissionGoals 

  end MissionGoals; 

end MDSData; 

 

package ValueHistories 

 public 

 -- this thread group represents the subsystem managing mea-

surement histories 

 -- It contains the measurement history store objects and 

threads to log and retrieve  

 -- the measurements and their history. 

 thread group MeasurementHistories 

 features 

   MeasurementHistory: port group MeasurementHistory; 

   Measurements: port group MDSData::MeasurementsIn; 

 end MeasurementHistories; 

  

 thread group implementation MeasurementHistories.template 

 -- these are to be declared for each measurement 

 -- in subcomponents 

 -- tempHistory: thread group HistoryTemplate.basic; 

 -- connections 

 -- tempvalueconn: data port Measurements.tempval -> tempHis-

tory.datavalue; 

 -- temphistoryconn: data port tempHistory.ValueHistoryOut -> 

MeasurementHistory.temphistory; 

 end MeasurementHistories.template; 

  

 -- this template is used to create instances of history stores 

and the access methods 

 thread group HistoryTemplate 

 features 

   datavalue : in data port; 

   valuehistory: out data port; 

 end HistoryTemplate; 

  

 thread group implementation HistoryTemplate.basic 

 subcomponents 

  Logger: thread HistoryLogger; 

  Retriever: thread HistoryRetriever; 

  History: data ValueHistoryStore; 
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 connections 

  valueconn: data port datavalue -> logger.datavalue; 

  historystoreconn1: data access History -> log-

ger.ValueHistory; 

  historyconn: data port retriever.ValueHistoryOut ->  

                 valuehistory; 

  historystoreconn2: data access History ->  

                 retriever.ValueHistory; 

 end HistoryTemplate.basic; 

 

 

 thread group CommandHistories 

 features 

   CommandHistory: port group CommandHistory; 

   Commands: port group MDSData::CommandsIn; 

 end CommandHistories; 

  

 thread group implementation CommandHistories.template 

 -- see above 

 end CommandHistories.template; 

 

 

 thread group EstimationHistories 

 features 

   EstimateHistory: port group EstimateHistory; 

   Estimates: port group MDSData::StateEstimatesIn; 

 end EstimationHistories; 

  

 thread group implementation EstimationHistories.template 

 -- see above 

 end EstimationHistories.template; 

  

 thread HistoryLogger 

 features 

   ValueHistory: requires data access  

             ValueHistories::ValueHistoryStore; 

   datavalue: in data port; 

    end HistoryLogger; 

 

  

 thread HistoryRetriever 

 features 

   ValueHistory: requires data access  

             ValueHistories::ValueHistoryStore; 

   ValueHistoryOut: out data port; 

    end HistoryRetriever; 

     

    data ValueHistoryStore 

    end ValueHistoryStore; 

 

  

   

  -- the next port groups represent the features that provide access 

to histories 

  -- through ports 

  port group MeasurementHistory 

    features  
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  end MeasurementHistory; 

   

  port group MeasurementHistoryInv 

    inverse of MeasurementHistory 

  end MeasurementHistoryInv; 

   

  port group CommandHistory 

    features  

  end CommandHistory; 

   

  port group CommandHistoryInv 

    inverse of CommandHistory 

  end CommandHistoryInv; 

   

  port group EstimateHistory 

    features  

  end EstimateHistory; 

   

  port group EstimateHistoryInv 

    inverse of EstimateHistory 

  end EstimateHistoryInv; 

  

end ValueHistories; 

 

package SystemUnderControl 

public 

  system SystemUnderControl 

    features 

      MeasurementsOut: port group MDSData::MeasurementsOut; 

      CommandsIn: port group MDSData::CommandsIn; 

      CommandHistoryOut: port group ValueHistories::CommandHistory; 

      DeviceBus: requires bus access ExecutionHardware::DeviceBus; 

      MeasurementHistoryout: port group  

          ValueHistories::MeasurementHistory; 

  end SystemUnderControl; 

   

  -- The implementation will be refined for a MDS instance 

  -- It will contain the actual sensor and actuator devices 

  system implementation SystemUnderControl.basic 

    subcomponents 

      HardwareAdapters: process  

          HardwareAdapters::HardwareAdapters.basic; 

      PhysicalSystem: system PhysicalPlant; 

    connections 

      BusAccessConnection1: bus access DeviceBus ->  

           PhysicalSystem.DeviceBus; 

      PortGroupConnection1: port group HardwareAdap-

ters.RawCommandsOut  

           -> PhysicalSystem.RawCommandsIn; 

      PortGroupConnection2: port group  

           PhysicalSystem.RawMeasurementsOut ->  

          HardwareAdapters.RawReadingsIn; 

      PortGroupConnection3: port group CommandsIn ->  

          HardwareAdapters.CommandsIn; 

      PortGroupConnection4: port group HardwareAdap-

ters.MeasurementsOut  

          -> MeasurementsOut; 



 

56 | CMU/SEI-2010-TR-003 

      PortGroupConnection5: port group  

          HardwareAdapters.CommandHistoryOut -> CommandHistoryOut; 

      PortGroupConnection6: port group  

          HardwareAdapters.MeasurementHistoryOut ->  

          MeasurementHistoryout; 

  end SystemUnderControl.basic; 

   

  system PhysicalPlant 

    features 

      RawCommandsIn: port group MDSData::RawCommandsIn; 

      RawMeasurementsOut: port group MDSData::SensorReadingsOut; 

      DeviceBus: requires bus access ExecutionHardware::DeviceBus; 

  end PhysicalPlant; 

end SystemUnderControl; 

  

package ExecutionHardware 

public 

  system MDSHardware 

    features 

      DeviceBus: provides bus access DeviceBus; 

  end MDSHardware; 

   

  -- The implementation will be refined for a MDS instance 

  -- It will contain the actual processor and network configuration 

  system implementation MDSHardware.basic 

  end MDSHardware.basic; 

   

  bus DeviceBus 

  end DeviceBus; 

end ExecutionHardware; 

  

package HardwareAdapters 

public 

  process HardwareAdapters 

    features 

      RawReadingsIn: port group MDSData::SensorReadingsIn; 

      MeasurementsOut: port group MDSData::MeasurementsOut; 

      MeasurementHistoryOut: port group  

         ValueHistories::MeasurementHistory; 

      CommandsIn: port group MDSData::CommandsIn; 

      CommandHistoryOut: port group ValueHistories::CommandHistory; 

      RawCommandsOut: port group MDSData::RawCommandsOut; 

  end HardwareAdapters; 

   

  process implementation HardwareAdapters.basic 

    subcomponents 

      MeasurementHistory: thread group  

         ValueHistories::MeasurementHistories; 

      SensorAdapters: thread group SensorAdapters; 

      CommandStateHistory: thread group  

         ValueHistories::CommandHistories; 

      ActuatorAdapters: thread group ActuatorAdapters; 

    connections 

      MeasurementHistoryConn1: port group  

        MeasurementHistory.MeasurementHistory -> MeasurementHisto-

ryOut; 

      MeasurementConn1: port group SensorAdapters.MeasurementsOut ->  
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        MeasurementHistory.Measurements; 

      MeasurementConn2: port group SensorAdapters.MeasurementsOut ->  

        MeasurementsOut; 

      MeasurementConn3: port group RawReadingsIn ->  

        SensorAdapters.RawReadingsIn; 

      CommandHistoryConn2: port group  

        CommandStateHistory.CommandHistory -> CommandHistoryOut; 

      CommandConn1: port group CommandsIn ->  

        CommandStateHistory.Commands; 

      CommandConn2: port group ActuatorAdapters.RawCommandsOut ->  

        RawCommandsOut; 

      CommandConn3: port group CommandsIn ->  

        ActuatorAdapters.CommandsIn; 

  end HardwareAdapters.basic; 

   

  thread group SensorAdapters 

    features 

      MeasurementsOut: port group MDSData::MeasurementsOut; 

      RawReadingsIn: port group MDSData::SensorReadingsIn; 

  end SensorAdapters; 

   

  thread group implementation SensorAdapters.basic 

  end SensorAdapters.basic; 

   

  thread group ActuatorAdapters 

    features 

      CommandsIn: port group MDSData::CommandsIn; 

      RawCommandsOut: port group MDSData::RawCommandsOut; 

  end ActuatorAdapters; 

   

  thread group implementation ActuatorAdapters.basic 

  end ActuatorAdapters.basic; 

end HardwareAdapters; 

  

package ControlSoftware 

public 

  -- this type is refined for a MDS instance by refining the 

  -- classifiers of the features to be instance specific 

  thread group controller 

    features 

      StateEstimatesIn: port group MDSData::StateEstimatesIn; 

      EstimateHistoryIn: port group ValueHisto-

ries::EstimateHistoryInv; 

      ControlGoalsIn: port group MDSData::XgoalsIn; 

      CommandsOut: port group MDSData::CommandsOut; 

  end controller; 

   

  thread group implementation controller.basic 

  end controller.basic; 

 

  -- see comments regarding the controller 

  thread group estimator 

    features 

      StateEstimatesOut: port group MDSData::StateEstimatesOut; 

      MeasurementsIn: port group MDSData::MeasurementsIn; 

      CommandsIn: port group MDSData::CommandsIn; 

      EstimateHistoryOut: port group ValueHisto-



 

58 | CMU/SEI-2010-TR-003 

ries::EstimateHistory; 

      CommandHistoryIn: port group ValueHisto-

ries::CommandHistoryInv; 

      XGoalsIn: port group MDSData::XgoalsIn; 

  end estimator; 

   

  -- This implementation is refined for a MDS instance by refining 

  -- the classifiers of the subcomponents to be instance specific 

  thread group implementation estimator.basic 

    subcomponents 

      EstimationStateHistory: thread group  

         ValueHistories::EstimationHistories; 

      ActualEstimator: thread group ActualEstimator; 

    connections 

      EstimateHistoryConn2: port group  

        EstimationStateHistory.EstimateHistory -> EstimateHisto-

ryOut; 

      EstimateConn1: port group ActualEstimator.EstimatesOut ->  

        EstimationStateHistory.Estimates; 

      EstimateConn2: port group ActualEstimator.EstimatesOut ->  

        StateEstimatesOut; 

      EstimateConn3: port group MeasurementsIn ->  

        ActualEstimator.MeasurementsIn; 

      EstimateConn4: port group CommandsIn ->  

        ActualEstimator.CommandsIn; 

      EstimateConn5: port group EstimationStateHisto-

ry.EstimateHistory  

        -> ActualEstimator.EstimateHistoryIn; 

      EstimateConn6: port group CommandHistoryIn ->  

        ActualEstimator.CommandHistoryIn; 

  end estimator.basic; 

   

  -- this type is refined for a MDS instance by refining the 

  -- classifiers of the features to be instance specific 

  thread group ActualEstimator 

    features 

      EstimatesOut: port group MDSData::StateEstimatesOut; 

      MeasurementsIn: port group MDSData::MeasurementsIn; 

      EstimateHistoryIn: port group ValueHisto-

ries::EstimateHistoryInv; 

      CommandHistoryIn: port group ValueHisto-

ries::CommandHistoryInv; 

      CommandsIn: port group MDSData::CommandsIn; 

  end ActualEstimator; 

   

  -- This process implementation is refined for a MDS instance by  

  -- defining the subcomponents representing the actual estimators 

incl.  

  -- derived state estimators 

  thread group implementation ActualEstimator.basic 

  end ActualEstimator.basic; 

   

  thread group GoalPlanner 

    features 

      GoalNetwork: out data port MDSData::XGoalsTimeLine; 

      ReplanRequest: in event data port; 

      MissionGoals: in data port MDSData::MissionGoals; 
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  end GoalPlanner; 

   

  thread group implementation GoalPlanner.basic 

  end GoalPlanner.basic; 

   

  thread group GoalExecutive 

    features 

      GoalNetwork: in data port MDSData::XGoalsTimeLine; 

      XGoalsOut: port group MDSData::XgoalsOut; 

  end GoalExecutive; 

   

  thread group implementation GoalExecutive.basic 

  end GoalExecutive.basic; 

   

  thread group XGoalMonitor 

    features 

      XgoalsIn: port group MDSData::XgoalsIn; 

      StateEstimateHistoryIn: port group ValueHisto-

ries::EstimateHistoryInv; 

      replanrequest: out event data port; 

  end XGoalMonitor; 

   

  thread group OperatorConsole 

    features 

      replanrequest: in event data port; 

      EstimateHistoryIn: port group ValueHisto-

ries::EstimateHistoryInv; 

      MeasurementHistoryIn: port group  

        ValueHistories::MeasurementHistoryInv; 

      commandhistoryIn: port group ValueHisto-

ries::CommandHistoryInv; 

      missiongoals: out data port MDSData::MissionGoals; 

  end OperatorConsole; 

end ControlSoftware; 

  

package MDSControlSystem 

public 

  -- This process type is refined for a MDS instance by refining 

  -- the classifiers of the features to be instance specific 

  process MDSControlSystem 

    features 

      MeasurementsIn: port group MDSData::MeasurementsIn; 

      CommandsOut: port group MDSData::CommandsOut; 

      CommandHistoryIn: port group ValueHisto-

ries::CommandHistoryInv; 

      MeasurementHistoryIn: port group  

        ValueHistories::MeasurementHistoryInv; 

  end MDSControlSystem; 

   

  -- This process implementation is refined for a MDS instance by 

refining 

  -- the classifiers of the subcomponents to be instance specific 

  process implementation MDSControlSystem.basic 

    subcomponents 

      GoalPlanner: thread group ControlSoftware::GoalPlanner; 

      GoalExecutive: thread group ControlSoftware::GoalExecutive; 

      GoalMonitor: thread group ControlSoftware::XGoalMonitor; 
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      StateEstimation: thread group ControlSoftware::estimator; 

      StateControl: thread group ControlSoftware::controller; 

      OperatorConsole: thread group ControlSoft-

ware::OperatorConsole; 

    connections 

      Connection1: port group CommandHistoryIn ->  

          StateEstimation.CommandHistoryIn; 

      Connection2: port group StateEstimation.EstimateHistoryOut ->  

          StateControl.EstimateHistoryIn; 

      Connection3: port group MeasurementsIn ->  

          StateEstimation.MeasurementsIn; 

      Connection4: port group StateEstimation.StateEstimatesOut ->  

          StateControl.StateEstimatesIn; 

      Connection5: port group GoalExecutive.XGoalsOut ->  

          StateEstimation.XGoalsIn; 

      Connection6: port group GoalExecutive.XGoalsOut ->  

          StateControl.ControlGoalsIn; 

      Connection7: port group StateControl.CommandsOut ->  

          CommandsOut; 

      Connection8: port group StateControl.CommandsOut ->  

          StateEstimation.CommandsIn; 

      Connection9: data port GoalPlanner.GoalNetwork ->  

          GoalExecutive.GoalNetwork; 

      Connection10: port group StateEstimation.EstimateHistoryOut ->  

          GoalMonitor.StateEstimateHistoryIn; 

      Connection11: port group GoalExecutive.XGoalsOut ->  

          GoalMonitor.XgoalsIn; 

      Connection12: event data port GoalMonitor.replanrequest ->  

          GoalPlanner.ReplanRequest; 

      Connection13: event data port GoalMonitor.replanrequest ->  

          OperatorConsole.replanrequest; 

      Connection14: data port OperatorConsole.missiongoals ->  

          GoalPlanner.MissionGoals; 

      Connection15: port group StateEstimation.EstimateHistoryOut ->  

          OperatorConsole.EstimateHistoryIn; 

      Connection16: port group CommandHistoryIn ->  

          OperatorConsole.commandhistoryIn; 

      Connection17: port group MeasurementHistoryIn ->  

          OperatorConsole.MeasurementHistoryIn; 

  end MDSControlSystem.basic; 

end MDSControlSystem; 

  

package CompleteMDSSystem 

public 

  system CompleteMDSSystem 

  end CompleteMDSSystem; 

   

  -- This implementation is refined for a MDS instance by refining 

  -- the classifiers of the subcomponents to be instance specific. 

  -- In this refinement we can select alternative computer platforms 

or bindings 

  -- for the same MDS instance 

  system implementation CompleteMDSSystem.basic 

    subcomponents 

      MDSControlSystem: process  

          MDSControlSystem::MDSControlSystem.basic; 

      MDSSystemUnderControl: system  
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          SystemUnderControl::SystemUnderControl.basic; 

      MDSComputePlatform: system ExecutionHard-

ware::MDSHardware.basic; 

    connections 

      SystemtoControllerConn1: port group  

          MDSSystemUnderControl.MeasurementsOut ->  

          MDSControlSystem.MeasurementsIn; 

      SystemtoControllerConn2: port group  

          MDSSystemUnderControl.CommandHistoryOut ->  

          MDSControlSystem.CommandHistoryIn; 

      ControllertoSystemConn: port group  

          MDSControlSystem.CommandsOut ->  

          MDSSystemUnderControl.CommandsIn; 

      BusAccessConnection1: bus access MDSComputePlatform.DeviceBus 

->  

          MDSSystemUnderControl.DeviceBus; 

      PortGroupConnection1: port group  

          MDSSystemUnderControl.MeasurementHistoryout ->  

          MDSControlSystem.MeasurementHistoryIn; 

  end CompleteMDSSystem.basic; 

end CompleteMDSSystem; 

 

Figure 39: An AADL Textual Representation of the MDS Reference Architecture 
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EXAMPLE ROVER CONTROLLER THREAD GROUP 

  thread group implementation controller.basic 

    extends MDS_Software::control.basic 

    subcomponents 

      Heading_Steering_Thread: thread head_steer_controller.rover; 

      Wheel_One_Steer_Thread: thread steer.wheel; 

      Wheel_Two_Steer_Thread: thread steer.wheel; 

      Wheel_One_Drive_Thread: thread drive.wheel; 

      Wheel_Two_Drive_Thread: thread drive.wheel; 

      Wheel_Three_Drive_Thread: thread drive.wheel; 

      Wheel_Four_Drive_Thread: thread drive.wheel; 

      Wheel_Five_Drive_Thread: thread drive.wheel; 

      Wheel_Six_Drive_Thread: thread drive.wheel; 

      Heading_Sem: data Semaphore.Steering; 

      Driving_Sem: data Semaphore.Driving; 

    connections 

      -- all the input connections-- 

      D01: data port Knowledge_In -> Head-

ing_Steering_Thread.goals_input; 

      D02: data port Heading_Steering_Thread.goals_output -> 

Wheel_One_Steer_Thread.goals_input; 

      D03: data port Heading_Steering_Thread.goals_output -> 

Wheel_Two_Steer_Thread.goals_input; 

      D04: data port Heading_Steering_Thread.goals_output -> 

Wheel_Three_Drive_Thread.goals_input; 

      D05: data port Heading_Steering_Thread.goals_output -> 

Wheel_Four_Drive_Thread.goals_input; 

      D06: data port Heading_Steering_Thread.goals_output -> 

Wheel_Five_Drive_Thread.goals_input; 

      D07: data port Heading_Steering_Thread.goals_output -> 

Wheel_Six_Drive_Thread.goals_input; 

      D08: data port Heading_Steering_Thread.goals_output -> 

Wheel_One_Drive_Thread.goals_input; 

      D09: data port Heading_Steering_Thread.goals_output -> 

Wheel_Two_Drive_Thread.goals_input; 

      D11: data port Intent_In -> Heading_Steering_Thread.intent_in; 

      -- all the output connections-- 

      D10: data port Heading_Steering_Thread.commands_out -> Com-

mands_Out; 

      PG01: port group Wheel_One_Steer_Thread.commands_out -> Head-

ing_Steering_Thread.commands_in; 

      PG02: port group Wheel_Two_Steer_Thread.commands_out -> Head-

ing_Steering_Thread.commands_in; 

      PG03: port group Wheel_One_Drive_Thread.commands_out -> Head-

ing_Steering_Thread.commands_in; 

      PG04: port group Wheel_Two_Drive_Thread.commands_out -> Head-

ing_Steering_Thread.commands_in; 

      PG05: port group Wheel_Three_Drive_Thread.commands_out -> 

Heading_Steering_Thread.commands_in; 

      PG06: port group Wheel_Four_Drive_Thread.commands_out -> Head-

ing_Steering_Thread.commands_in; 

      PG07: port group Wheel_Five_Drive_Thread.commands_out -> Head-

ing_Steering_Thread.commands_in; 

      PG08: port group Wheel_Six_Drive_Thread.commands_out -> Head-

ing_Steering_Thread.commands_in; 

      DA1: data access Heading_Sem.Data_Access -> Head-
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ing_Steering_Thread.Steer_Data_Access; 

      DA2: data access Heading_Sem.Data_Access -> 

Wheel_One_Steer_Thread.Steer_Data_Access; 

      DA3: data access Heading_Sem.Data_Access -> 

Wheel_Two_Steer_Thread.Steer_Data_Access; 

      DA4: data access Driving_Sem.Data_Access -> Head-

ing_Steering_Thread.Drive_Data_Access; 

      DA5: data access Driving_Sem.Data_Access -> 

Wheel_One_Drive_Thread.Drive_Data_Access; 

      DA6: data access Driving_Sem.Data_Access -> 

Wheel_Two_Drive_Thread.Drive_Data_Access; 

      DA7: data access Driving_Sem.Data_Access -> 

Wheel_Three_Drive_Thread.Drive_Data_Access; 

      DA8: data access Driving_Sem.Data_Access -> 

Wheel_Four_Drive_Thread.Drive_Data_Access; 

      DA9: data access Driving_Sem.Data_Access -> 

Wheel_Five_Drive_Thread.Drive_Data_Access; 

      DA10: data access Driving_Sem.Data_Access -> 

Wheel_Six_Drive_Thread.Drive_Data_Access; 

    modes 

      good: initial mode ; 

      fair: mode ; 

      poor: mode ; 

    properties 

      AADL_Properties::Compute_Execution_Time => 2 Ms .. 3 Ms  

applies to Heading_Steering_Thread in modes (good); 

      AADL_Properties::Compute_Execution_Time => 5 Ms .. 8 Ms  

applies to Heading_Steering_Thread in modes (fair); 

      AADL_Properties::Compute_Execution_Time => 8 Ms .. 10 Ms  

applies to Heading_Steering_Thread in modes (poor); 

      AADL_Properties::Compute_Execution_Time => 2 Ms .. 5 Ms  

applies to Wheel_One_Steer_Thread in modes (good); 

      AADL_Properties::Compute_Execution_Time => 2 Ms .. 6 Ms  

applies to Wheel_One_Steer_Thread in modes (fair); 

      AADL_Properties::Compute_Execution_Time => 5 Ms .. 7 Ms  

applies to Wheel_One_Steer_Thread in modes (poor); 

      AADL_Properties::Compute_Execution_Time => 2 Ms .. 5 Ms  

applies to Wheel_Two_Steer_Thread in modes (good); 

      AADL_Properties::Compute_Execution_Time => 2 Ms .. 6 Ms  

applies to Wheel_Two_Steer_Thread in modes (fair); 

      AADL_Properties::Compute_Execution_Time => 5 Ms .. 7 Ms  

applies to Wheel_Two_Steer_Thread in modes (poor); 

      AADL_Properties::Compute_Execution_Time => 1 Ms .. 2 Ms  

applies to Wheel_One_Drive_Thread in modes (good); 

      AADL_Properties::Compute_Execution_Time => 2 Ms .. 3 Ms  

applies to Wheel_One_Drive_Thread in modes (fair); 

      AADL_Properties::Compute_Execution_Time => 3 Ms .. 6 Ms  

applies to Wheel_One_Drive_Thread in modes (poor); 

      AADL_Properties::Compute_Execution_Time => 1 Ms .. 2 Ms  

applies to Wheel_Two_Drive_Thread in modes (good); 

      AADL_Properties::Compute_Execution_Time => 2 Ms .. 3 Ms  

applies to Wheel_Two_Drive_Thread in modes (fair); 

      AADL_Properties::Compute_Execution_Time => 3 Ms .. 6 Ms  

applies to Wheel_Two_Drive_Thread in modes (poor); 

      AADL_Properties::Compute_Execution_Time => 1 Ms .. 2 Ms  

applies to Wheel_Three_Drive_Thread in modes (good); 

      AADL_Properties::Compute_Execution_Time => 2 Ms .. 3 Ms   
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applies to Wheel_Three_Drive_Thread in modes (fair); 

      AADL_Properties::Compute_Execution_Time => 3 Ms .. 5 Ms  

applies to Wheel_Three_Drive_Thread in modes (poor); 

      AADL_Properties::Compute_Execution_Time => 1 Ms .. 2 Ms  

applies to Wheel_Four_Drive_Thread in modes (good); 

      AADL_Properties::Compute_Execution_Time => 2 Ms .. 3 Ms  

applies to Wheel_Four_Drive_Thread in modes (fair); 

      AADL_Properties::Compute_Execution_Time => 3 Ms .. 5 Ms  

applies to Wheel_Four_Drive_Thread in modes (poor); 

      AADL_Properties::Compute_Execution_Time => 1 Ms .. 2 Ms  

applies to Wheel_Five_Drive_Thread in modes (good); 

      AADL_Properties::Compute_Execution_Time => 2 Ms .. 3 Ms  

applies to Wheel_Five_Drive_Thread in modes (fair); 

      AADL_Properties::Compute_Execution_Time => 3 Ms .. 5 Ms  

applies to Wheel_Five_Drive_Thread in modes (poor); 

      AADL_Properties::Compute_Execution_Time => 1 Ms .. 2 Ms  

applies to Wheel_Six_Drive_Thread in modes (good); 

      AADL_Properties::Compute_Execution_Time => 2 Ms .. 3 Ms  

applies to Wheel_Six_Drive_Thread in modes (fair); 

      AADL_Properties::Compute_Execution_Time => 3 Ms .. 5 Ms  

applies to Wheel_Six_Drive_Thread in modes (poor); 

      AADL_Properties::Period => 75 Ms applies to Head-

ing_Steering_Thread in modes (good); 

      AADL_Properties::Period => 75 Ms applies to Head-

ing_Steering_Thread in modes (fair); 

      AADL_Properties::Period => 75 Ms applies to Head-

ing_Steering_Thread in modes (poor); 

      AADL_Properties::Period => 100 Ms applies to 

Wheel_One_Steer_Thread in modes (good); 

      AADL_Properties::Period => 95 Ms applies to 

Wheel_One_Steer_Thread in modes (fair); 

      AADL_Properties::Period => 90 Ms applies to 

Wheel_One_Steer_Thread in modes (poor); 

      AADL_Properties::Period => 100 Ms applies to 

Wheel_Two_Steer_Thread in modes (good); 

      AADL_Properties::Period => 95 Ms applies to 

Wheel_Two_Steer_Thread in modes (fair); 

      AADL_Properties::Period => 90 Ms applies to 

Wheel_Two_Steer_Thread in modes (poor); 

      AADL_Properties::Period => 100 Ms applies to 

Wheel_One_Drive_Thread in modes (good); 

      AADL_Properties::Period => 95 Ms applies to 

Wheel_One_Drive_Thread in modes (fair); 

      AADL_Properties::Period => 90 Ms applies to 

Wheel_One_Drive_Thread in modes (poor); 

      AADL_Properties::Period => 100 Ms applies to 

Wheel_Two_Drive_Thread in modes (good); 

      AADL_Properties::Period => 95 Ms applies to 

Wheel_Two_Drive_Thread in modes (fair); 

      AADL_Properties::Period => 90 Ms applies to 

Wheel_Two_Drive_Thread in modes (poor); 

      AADL_Properties::Period => 100 Ms applies to 

Wheel_Three_Drive_Thread in modes (good); 

      AADL_Properties::Period => 95 Ms applies to 

Wheel_Three_Drive_Thread in modes (fair); 

      AADL_Properties::Period => 90 Ms applies to 

Wheel_Three_Drive_Thread in modes (poor); 
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      AADL_Properties::Period => 100 Ms applies to 

Wheel_Four_Drive_Thread in modes (good); 

      AADL_Properties::Period => 95 Ms applies to 

Wheel_Four_Drive_Thread in modes (fair); 

      AADL_Properties::Period => 90 Ms applies to 

Wheel_Four_Drive_Thread in modes (poor); 

      AADL_Properties::Period => 100 Ms applies to 

Wheel_Five_Drive_Thread in modes (good); 

      AADL_Properties::Period => 95 Ms applies to 

Wheel_Five_Drive_Thread in modes (fair); 

      AADL_Properties::Period => 90 Ms applies to 

Wheel_Five_Drive_Thread in modes (poor); 

      AADL_Properties::Period => 100 Ms applies to 

Wheel_Six_Drive_Thread in modes (good); 

      AADL_Properties::Period => 95 Ms applies to 

Wheel_Six_Drive_Thread in modes (fair); 

      AADL_Properties::Period => 90 Ms applies to 

Wheel_Six_Drive_Thread in modes (poor); 

  end controller.basic; 

Figure 40: An AADL Textual Representation of a Rover Controller Thread Group  
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Glossary of Acronyms 

Table 5 summarizes relevant acronyms for the case study and this report. 

Table 5: A Summary of Acronyms 

Acronym  Definition 

AADL Architecture Analysis and Design Language 

CPU Central Processing Unit 

CSV Comma-Separated Values 

IV&V Independent Verification and Validation 

JPL Jet Propulsion Laboratory 

KW Kilowatts 

KWH Kiliwatt Hour 

MBE Model-Based Engineering 

MDS Mission Data System 

mW Milliwatts 

NASA National Aeronautics and Space Administration 

OSATE Open Source AADL Tool Environment 

RMA Rate Monotonic Analysis 

SAE Society of Automotive Engineers 

SARP Software Assurance Research Program 

SEI Software Engineering Institute 

SLOC Source Lines of Code 

SOM System Operation Mode 

SV State Variable  

UML Unified Modeling Language 

V&V Verification and Validation 

VHDL VHSIC Hardware Description Language 

VHSIC Very-High-Speed Integrated Circuit 

W Watts 

XML Extensible Markup Language 
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