

Case Study: Model-Based Analysis of the

Mission Data System Reference

Architecture

Peter H. Feiler (Software Engineering Institute)

David Gluch (Software Engineering Institute)

Kurt Woodham (L-3 Communications-Titan Group)

May 2010

TECHNICAL REPORT

CMU/SEI-2010-TR-003
ESC-TR-2010-003

Research, Technology, and System Solutions Program

Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

http://www.sei.cmu.edu

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2010 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions
and derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

i | CMU/SEI-2010-TR-003

Table of Contents

Acknowledgments vii

Executive Summary ix

Abstract xi

1 Introduction 1

2 Mission Data System Overview 3
2.1 State-Based Behavior in MDS 3
2.2 State-Based Control 5
2.3 Separation of Concerns 6
2.4 MDS Layered Architecture 6

3 AADL Model of the MDS Reference Architecture 9
3.1 Top-Level MDS Representation 9
3.2 System Under Control 10
3.3 The Control System 11
3.4 Data State Variables, Value History, Data Control, and Telemetry 13
3.5 Model Organization 15
3.6 Operating System Thread Model 17
3.7 Binding to Hardware 18

4 An MDS Instance 21
4.1 The Heated Camera System 21
4.2 The AADL Model of the Heated Camera System Hardware 22
4.3 The Heated Camera Control System 22
4.4 The Refined Top-Level System 25
4.5 System Analysis 25

4.5.1 Mass and Weight Analysis 26
4.5.2 Power Draw Analysis 27

5 Closed Loop Control System 29
5.1 MDS State Variables and Data Flow 30
5.2 Representing the Control Loop Data Stream 31
5.3 Flow Latency Analysis 32

5.3.1 End-To-End Flow Specification 32
5.3.2 Flow Specifications for Sensors and Actuators 33
5.3.3 Flow through the Control System 34
5.3.4 Worst-Case Latency Analysis of a Flow 35
5.3.5 Analysis of Latency Jitter 36

6 Plan Execution and Service Levels 39
6.1 Modeling of XGoal Execution 39
6.2 Goal Network-Based Workload Analysis 41

7 Goal Failure Management 43
7.1 Integral Fault Protection with AADL Modes 43

7.1.1 Re-elaboration 44
7.1.2 Controller Reconfiguration 46

ii | CMU/SEI-2010-TR-003

7.1.3 Fault Management and the AADL 47

8 Summary 49
8.1 State Variables in the Application Model 49
8.2 Flow Latency Analysis and Latency Variation 49
8.3 Goal Networks and Workload Analysis 50
8.4 Integral Fault Protection 50

Appendix AADL Textual Representations 51

Glossary of Acronyms 65

References 67

iii | CMU/SEI-2010-TR-003

List of Figures

Figure 1: MDS Control System Architecture [Bennett 2006] 6

Figure 2: MDS Architectural Separation of Concerns [Bennett 2006] 7

Figure 3: MDS Layered Architecture [Bennett 2008] 7

Figure 4: Top-Level MDS Architecture 9

Figure 5: System Under Control in MDS Reference Architecture 10

Figure 6: Sensor and Actuator Adapters and Value History 11

Figure 7: The MDS Control System 12

Figure 8: Deployment of State Variables [Bennett 2006] 14

Figure 9: Packages of the MDS Reference Architecture 15

Figure 10: Packages of an MDS instance 16

Figure 11: Example Package of MDS Reference Architecture 16

Figure 12: Example Package of an MDS Instance 17

Figure 13: Rate Group Modeling by Properties 17

Figure 14: Flight and Ground Processing Systems 19

Figure 15: Modeling of Processor Bindings 20

Figure 16: Platform-Mounted Camera [Bennett 2006] 21

Figure 17: Fault-Tolerant Camera Heater Control System 21

Figure 18: AADL Representation of the Camera Hardware System under Control 22

Figure 19: Refinement of the Sensor Readings Port Group 22

Figure 20: Collaboration Diagram of Camera Heater Control 23

Figure 21: Camera Heater Estimators 24

Figure 22: Camera Heater Controller 25

Figure 23: Refinement of the Top-level System 25

Figure 24: Power Supply as a Physical Resource 28

Figure 25: Impact of Latency Jitter on Controller Stability 29

Figure 26: MDS Software [Bennett 2006] 30

Figure 27: From State Variable to Port-Based Flow 31

Figure 28: End-to-End Flow Specification 33

Figure 29: Flow Specifications in MDS System Under Control 34

Figure 30: Control Flow Path Through the Control System 35

Figure 31: Flattened End-to-end Flow Model 36

Figure 32: Representative Flow Analysis Output with a Specification Violation 36

Figure 33: Frame-Level Latency Jitter 37

iv | CMU/SEI-2010-TR-003

Figure 34: Scheduled Goal Network Drives Control Layer Execution 40

Figure 35: Rover Wheel Example 43

Figure 36: AADL Text of Mode Configurations 45

Figure 37: Scheduling Analysis Results 45

Figure 38: Rover Wheel Controller Thread Group 47

Figure 39: An AADL Textual Representation of the MDS Reference Architecture 60

Figure 40: An AADL Textual Representation of a Rover Controller Thread Group 64

v | CMU/SEI-2010-TR-003

List of Tables

Table 1: MDS Architectural Themes and Associated AADL Capabilities 3

Table 2: Illustrative Thread Execution Times for Re-Elaboration 44

Table 3: Complete Analysis View Report 46

Table 4: Execution Properties for System Health Modes 46

Table 5: A Summary of Acronyms 65

vi | CMU/SEI-2010-TR-003

vii | CMU/SEI-2010-TR-003

Acknowledgments

The work described in this report was funded by the National Aeronautics and Space Administra-

tion IV&V Facility Software Assurance Research Program (SARP) task titled “Model-Based

Software Assurance with the SAE Architecture Analysis and Design Language (AADL).” Por-

tions of this work were performed at the Jet Propulsion Laboratory (JPL), California Institute of

Technology, under a contract with the National Aeronautics and Space Administration. Special

thanks go to the Mission Data System team at JPL, especially Matthew Bennett, Mitch Ingham,

David Wagner, Kenny Meyer, Kathryn Weiss, and Bob Rasmussen. In addition, we would like to

thank Cory Carson and Kenneth Evensen for their contributions to this effort while they were

graduate students in the Master of Software Engineering program at Embry-Riddle Aeronautical

University.

viii | CMU/SEI-2010-TR-003

ix | CMU/SEI-2010-TR-003

Executive Summary

The aerospace industry is experiencing exponential growth in the size and complexity of onboard

software. It is also seeing a significant increase in errors and rework of that software. All of those

factors contribute to greater cost; the current development process is reaching the limit of afforda-

bility for building safe and reliable aircraft and spacecraft. The size of software in aircraft with

respect to source lines of code (SLOC) has doubled every four years since the mid-1990s; the 27

million SLOC projected for 2010-2020 is estimated to cost more than $10 billion. Studies into the

role of software in spacecraft accidents and the increasing complexity of flight software indicate

the need for improvement in requirements elicitation and architecture, in particular for validation

early and throughout the life cycle through modeling and analysis that complement testing.

In order to improve predictability, the system and software engineering communities are practic-

ing model-based engineering, where models of different aspects of a system are developed and

analyzed. However, industrial experience has shown that such models, developed independently

over the life cycle, result in multiple versions of the “truth” (i.e., they are not consistent with each

other and the evolving architecture). The SAE Architecture Analysis and Design Language

(AADL) standard addresses this issue of multiple truths due to inconsistency between analytical

models by providing an architecture modeling notation with well-defined semantics that can ac-

commodate multiple analysis dimensions through annotations and allow for auto-generation of

these analytical models from a single source.

The Carnegie Mellon Software Engineering Institute, L-3 Communications - EITS, and the Jet

Propulsion Laboratory (JPL) have collaborated in a use of model-based engineering for the Na-

tional Aeronautics and Space Administration (NASA) Software Assurance Research Program

(SARP) project named “Model-Based Software Assurance with the SAE Architecture Analysis

and Design Language (AADL).” The work involved applying the AADL to the Mission Data Sys-

tem (MDS) architecture. The SAE AADL industry standard for modeling and analysis of embed-

ded software system architectures was chosen because of its ability to support analysis of non-

functional properties, such as robustness, safety, performance, and security. The MDS was chosen

because it takes an architecture-centric view by defining a multi-layered reference architecture for

autonomous systems, whose dynamics are managed by feedback loops, and promotes state analy-

sis through goal-oriented modeling to address uncertainty and faults. By combining the two tech-

nologies, we can take into account the impact of the embedded software’s runtime architecture on

these non-functional properties in the validation of systems.

The result of that project shows that the AADL can

 effectively model MDS top-level constructs (e.g., hardware adapters, separation of estima-

tion and control, the layering of planning and control)

 effectively represent the MDS reference architecture and support an instantiation of this ar-

chitecture for a sample system

 Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

x | CMU/SEI-2010-TR-003

 address key MDS architectural themes (e.g., state-based closed loop control, separation of

estimation from control and data management from data transport, ground-to-flight migra-

tion)

 provide a foundation for the analysis of critical MDS performance elements and system as-

surance concerns (e.g., latency, task scheduling, integral fault protection)

xi | CMU/SEI-2010-TR-003

Abstract

This report documents the results of applying the Architecture Analysis and Design Language

(AADL) to the Mission Data System (MDS) architecture. The work described in this case study is

part of the National Aeronautics and Space Administration (NASA) Software Assurance Research

Program (SARP) research project “Model-Based Software Assurance with the SAE Architecture

Analysis and Design Language (AADL).” The report includes discussion of modeling and analyz-

ing the MDS reference architecture and its instantiation for specific platforms. In particular, it

focuses on modeling aspects of state-based system behavior in MDS for quantitative analysis.

Three different types of state-based system models are considered: closed loop control, goal-

oriented mission plan execution, and fault tolerance through mission replanning. This report de-

monstrates modeling and analysis of the MDS reference architecture as well as instantiations of

the reference architecture for a specific mission system.

xii | CMU/SEI-2010-TR-003

1 | CMU/SEI-2010-TR-003

1 Introduction

This document presents the results of a case study of the application of the Architecture Analysis

and Design Language (AADL) to the Jet Propulsion Laboratory (JPL) Mission Data System

(MDS). The work under this project is a collaboration of the Carnegie Mellon Software Engi-

neering Institute, L-3 Communications - EITS, and the Jet Propulsion Laboratory (JPL). This ef-

fort is part of the National Aeronautics and Space Administration (NASA) Software Assurance

Research Program (SARP) project “Model-Based Software Assurance with the SAE Architecture

Analysis and Design Language (AADL).” The project is an expansion and continuation of the

work completed under the NASA IV&V Facility Funded project “The Application of SAE Archi-

tecture Analysis and Design Language (AADL) to IV&V of NASA Flight Projects.”
1

The work described in this case study is motivated by the effects of exponential growth in the size

and complexity of onboard software. Studies have revealed the increased role of software in

spacecraft accidents [Leveson 2004] and an increase in complexity in flight software [NASA

2009]. Furthermore, industry statistics indicate that the size of software in aircraft measured in

source lines of code [SLOC] has doubled every four years since the mid-1990s and is expected to

grow to 27 million SLOC for the decade of 2010-2019 at a cost of more than $10 billion. Those

statistics also show significant increases in errors and rework of embedded software: 70% of the

errors are introduced early, during requirements specification; however; 80% of the errors are de-

tected and repaired later and at higher cost, during system integration, acceptance test, and opera-

tion [SAVI 2009].

Model-based software assurance is the application of model-based engineering techniques (i.e.,

the use of models and abstractions to perform typical engineering tasks) to the verification and

validation of software. Model-based software assurance relies on analytical practices using analy-

sis and modeling languages and supporting tools. Validation through analysis and simulation of

models in the application domain is common practice (e.g., the use of Simulink for controls sys-

tems, and state analysis in MDS [Ingham 2004]). The AADL [SAE AADL 2004/2009] and its

supporting tools such as the Open Source AADL Tool Environment (OSATE) [SEI 2010] have

been designed to capture the architecture of embedded software systems in terms of the applica-

tion software as a runtime architecture deployed on a particular computer system. This model al-

lows V&V personnel to develop a thorough understanding of and insight into (1) critical characte-

ristics vital to a system’s correct operation and (2) the impact the runtime architecture and

computer system deployment on the non-functional system properties. These characteristics in-

clude considerations such as sensor/command data latency and update rates; CPU throughput;

synchronous/asynchronous task management; and data-bus packet definitions and update rates.

 Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

1
 IV&V is independent verification and validation.

2 | CMU/SEI-2010-TR-003

The models and analyses presented in this report are results of a case study effort that is applying

the AADL to represent and analyze the MDS, with a focus on state-based system behavior. The

report is organized as follows:

 Section 2 provides an overview of the MDS architecture and observations on MDS architec-

tural themes as they relate to AADL technology and state-based system modeling.

 Section 3 presents AADL models of the MDS reference architecture and discusses specific

approaches for organizing the AADL model and for modeling the multi-layered architecture

in AADL in terms of a control system, a system under control, and a computer platform.

 Section 4 presents an instance of the MDS architecture namely the heated camera system

example extracted from the Jet Propulsion Laboratory tutorial “Software Architecture

Themes in JPL’s Mission Data System” [Bennett 2006] and illustrates two examples of

system engineering analysis (mass analysis and coarse-grained power analysis).

 Section 5 discusses how (1) the closed loop control layer of the MDS architecture can be

modeled as a flow-oriented architecture while preserving the notion of control states and (2)

this model can be utilized in performing end-to-end latency analysis on the control loop.

 Section 6 discusses an approach to model how the planning layer can be used to

 drive the execution of the control layer based on a goal network

 perform analysis of the workload the control layer tasks impose on the computer plat-

form

 Section 7 discusses how management of mission goal failures, replanning, and reconfigura-

tion of controllers can be represented in the AADL model and included in a processor re-

source analysis.

 Section 8 provides a summary of the key insight of this case study.

In addition, the appendix includes detailed listings of AADL textual models, and a glossary of

acronyms and list of references are included at the end of this document.

3 | CMU/SEI-2010-TR-003

2 Mission Data System Overview

The JPL initiated the MDS project in April 1998 with these principal objectives:

1. “to define and develop an advanced multi-mission architecture for an end-to-end information

system for deep-space missions”

2. to address “several institutional objectives: earlier collaboration of mission, system and

software design; simpler, lower cost design, test, and operation; customer-controlled com-

plexity; and evolvability to in situ exploration and other autonomous applications” [Dvorak

2000]

This section provides an overview of the key MDS architecture themes, the state-based control

approach, the separation of concerns within the MDS architecture, and their relation to AADL and

model-based engineering.

2.1 State-Based Behavior in MDS

The MDS approach is characterized by a set of architecture themes [Dvorak 2000]. In this section,

we associate AADL-specific capabilities with some of the MDS architecture themes. These ob-

servations provide guidance in developing analysis strategies and approaches, identifying critical

issues, and defining specific views and models for the MDS case study. The MDS themes and

AADL-specific capabilities are summarized in Table 1.

Table 1: MDS Architectural Themes and Associated AADL Capabilities

Theme Description AADL Capabilities

Take an Architec-

tural Approach

Construct subsystems from architectural

elements, not the other way around

AADL is an architecture description language

for real-time systems.

Ground-to-Flight

Migration

Migrate capability from ground to flight, when

appropriate, to simplify operations

AADL clearly separates the application archi-

tecture from its deployment on physical and

computer platforms.

State & Models are

Central

System state and models form the founda-

tion for information processing.

AADL supports modeling of systems using

shared variables as well as flow-oriented

modeling through ports and connections.

This report maps the MDS state variable

view into a flow-oriented view.

Explicit Use of

Models

Express domain knowledge explicitly in

models rather than implicitly in program logic

AADL is a formal language that supports

rigorous modeling of systems as software

and hardware components and their interac-

tions.

Goal-Directed

Operation

Operate missions via specifications of de-

sired state rather than sequences of actions

(Goals are constraints on state variables

over a time interval.)

The goal network representation of a mission

plan acts as a task plan that is interpreted by

the goal executive. The result is a set of

action requests to the control layer of the

system.

Closed Loop

Control

Design for real-time reaction to changes in

state rather than for open-loop commands or

earth-in-the-loop control

AADL supports modeling of closed loop flow-

oriented architectures through data ports for

deterministically communicating state, in-

cluding mid-frame and phase-delayed state

transfer.

4 | CMU/SEI-2010-TR-003

Theme Description AADL Capabilities

Resource Man-

agement

Resource state usage is projected against

models and checked against the constraints.

AADL properties enable the characterization

of resource capacities and resource budgets.

AADL multi-layer modeling allows explicit

modeling of resource management capabili-

ty.

Separate State

Determination from

State Control

For consistency, simplicity and clarity, sepa-

rate state determination logic from control

logic.

AADL packages and components allow us-

ers to organize and compartmentalize the

model (i.e., separate state determination

from state control).

Integral Fault

Protection

Fault protection must be an integral part of

the design, not an add-on.

AADL specifies fault handling behavior of

threads, supports fault management pat-

terns, and the Error Model Annex models

fault behavior to support dependability and

safety criticality analysis.

Acknowledge State

Uncertainty

State determination must be honest about

the evidence that state values are rarely

known with certainty.

Data component types and AADL properties

can be used to characterize the data

represented in state variables including un-

certainty characteristics.

Separate Data

Management from

Data Transport

Data management duties and structures

should be separated from those of data

transport.

AADL supports modeling in abstractions that

separate data management from data trans-

port and data history logging.

Join Navigation

with Attitude

Control

Navigation and attitude control must build

from a common mathematical base.

AADL components are abstractions of sys-

tem components with characteristics mapped

into properties.

Instrument the

Software

Instrument the software to gain visibility into

its operation, not just during testing but also

during operation.

AADL provides properties and patterns to

model instrumentation of software.

Upward

Compatibility

Design interfaces to accommodate foresee-

able advances in technology.

AADL semantics allows the partial descrip-

tion of component interfaces that can be

specialized within implementations or exten-

sions. In addition, properties of these inter-

faces can be used to explicitly capture com-

patibility requirements.

Several aspects of the MDS architecture can be characterized as different forms of state-based

systems, each with its own semantics.

 State & Models are Central: States and models allow engineers to focus on the goals of a

mission instead of the individual actions to be taken to achieve a goal. In control systems,

observed state and desired state drive the system under control. The stability of control algo-

rithms is affected by variation of the latency and age of data being processed.

 Closed Loop Control: MDS has a closed-loop control layer. It operates on sensor measure-

ments and observations to drive a controlled system towards desired goals through actuator

output. This flow of state information in a control system can be directly modeled in AADL

as flow through data ports and connections instead being implicit in the access patterns to

state variables. This flow-oriented view allows us to investigate how the runtime system of

software impacts the latency assumed by a control engineer.

 Goal-Directed Operation: MDS uses a goal-oriented approach to operate missions by spe-

cifying desired state. Interpretation of a goal network by a plan execution engine together

with a monitoring component results in issuing service requests to the components in the

5 | CMU/SEI-2010-TR-003

closed-loop control layer. In this context, we will illustrate analysis of the workload on the

processor generated by the execution of the goal network against available resource capaci-

ties.

 Resource Management: Resource management takes on these forms in MDS:

 During mission planning, analysis of the goal network takes into consideration con-

straints for maximizing utilization of limited consumable resources such as power.

 Execution of the goal network results in different workloads generated by the control

layer, as different sets of control activities are requested at different points in time.

 Observed failure to reach a goal results in replanning and plan merging, activities that

add to the workload at any given point in time.

AADL processors, memory, bus, and device concepts represent computer platform and phys-

ical resources. The use of properties allows users of AADL to characterize available resource

capacities by hardware and required resource budgets by software. At any given time, the

processor speed may be adjusted to reduce power consumption while still meeting timing re-

quirements when processing a given workload.

 Integral Fault Protection: MDS integrates fault protection into the goal network planning

process. Exceptional conditions in the environment and faults in the system under control are

addressed by alternate goals and by replanning when goals become unreachable. Faults in

the computer hardware and application software may require a secondary layer of fault man-

agement in the form of reconfiguration of the application software deployment and computer

hardware. AADL includes fault handling mechanisms as part of its execution semantics in-

cluding recovery entry points for threads to take recovery action, error event ports to com-

municate faults to a health monitor, and modes to represent various fault tolerant and fault

recovery configurations to protect against and respond to faults (i.e., it allows users to model

fault monitoring and management as supported by the system). AADL also has an Error

Model Annex extension that permits users to abstractly characterize fault behavior and fault

propagation in support of fault impact and isolation analysis as well as reliability and fault

tree analysis.

 Separate Data Management from Data Transport: AADL separates data management

from data transport by

 representing the intended interaction of components through information exchange via

ports and connections as well as shared access to persistent data components

 binding the components and their interactions to processors, memory, and buses

Buses represent the physical communication medium as well as the protocols used for trans-

port. Connections can have properties that express the transport requirements, such as guar-

anteed delivery or ordered delivery.

2.2 State-Based Control

State-based control for the MDS is a goal-driven control approach where the control system and

underlying software implementations are planned by a user through goals, rather than actions, and

then translated into commands. Goals are constraints on the value of a state variable over a time

6 | CMU/SEI-2010-TR-003

interval. State variables represent quantified observations that describe the condition of the system

under control (e.g., temperature, velocity, or position).

The themes shown in Table 1 coupled with the state-based goal-driven approach define the MDS

control system architecture that is shown in Figure 1. The software and hardware implementation

of this architecture is driven by the State Analysis systems engineering methodology. State Anal-

ysis is a process for capturing system and software requirements in the form of explicit models

[Ingham 2004].

Figure 1: MDS Control System Architecture [Bennett 2006]

2.3 Separation of Concerns

The separation of concerns and isolation of interfaces in the MDS architecture is shown in Figure

2. In this partitioning, the control system is distinct from the system that is under control and the

control system’s elaboration, projection, and scheduling are separated from the execution of con-

trol. The execution of the control is separated into goal execution and monitoring, estimation, and

active control.

2.4 MDS Layered Architecture

Figure 3 presents the layered structure of the MDS architecture extending from the system under

control up through four layers: scheduling, goal elaboration & re-elaboration, controllers, and es-

timators. In addition to showing the separation of the goal elaboration & re-elaboration compo-

nents of the planning layer, the goal executive & monitor components are explicitly identified

within the execution layer.

7 | CMU/SEI-2010-TR-003

Control SystemControl System

State variablesState variables

System

Under Control

System

Under Control

commands

measurements

Elaboration, projection, &

scheduling

State variables

Intent

Knowledge

Execution

Estimation

Control

OK?

Hardware Adapters

Figure 2: MDS Architectural Separation of Concerns [Bennett 2006]

Figure 3: MDS Layered Architecture [Bennett 2008]

8 | CMU/SEI-2010-TR-003

9 | CMU/SEI-2010-TR-003

3 AADL Model of the MDS Reference Architecture

In this section, we present the core elements of the MDS architecture as an AADL model in a way

that allows the model to be refined into a specific instance of an MDS. This refinement is dis-

cussed in Section 4.

3.1 Top-Level MDS Representation

The top-level architecture is shown in Figure 4 and reflects Figure 2 from page 7. The system un-

der control is represented by the AADL system component MDSSystemUnderControl and the

control system is shown as an AADL process called MDSControlSystem. For the top-level model

we have followed the view of the MDS architecture presented in Figure 2, with the system under

control consisting of the physical system as well as the hardware adapters that convert the sensor

readings into normalized measurements and the control commands into commands in actuator-

specific formats. The hardware adapters maintain the value history of the measurements and

commands.

Figure 4: Top-Level MDS Architecture

These two components interact by passing measurements and control commands. Those interac-

tions are shown as connections between port groups to indicate that there may be a collection of

connections between the two components. When the MDS architecture is instantiated, the mea-

surements port group is refined into a collection of data ports, one for each measurement. In the

same way, the control commands port group is refined into a collection of data ports to represent

commands sent to the actuator adapters. Similarly, the value histories of measurements and com-

mands are made available to the MDS control system through port groups that get refined for a

specific MDS instance.

Unlike the representation in Figure 2, in Figure 4 we show the computing platform for MDS ex-

plicitly as a third component. It may include the flight system computer platform and the ground

system computer platform and their connectivity. The computing platform is connected to the sys-

tem under control through a device bus that provides physical access to the sensors and actuators

10 | CMU/SEI-2010-TR-003

in the system under control. The MDS software components of the MDS control system and of

the system under control are mapped to the computer platform in a deployment configuration

through the use of AADL binding properties.

3.2 System Under Control

The MDS system under control consists of the physical system being controlled (i.e., its sensors,

actuators, and hardware adapters). As shown in Figure 5, the sensor readings are passed from the

physical system to the hardware adapters for conversion into measurements. Similarly, the control

commands are converted by the hardware adapters and passed to the actuators in the physical sys-

tem. The hardware adapters maintain measurement and command histories and make them avail-

able.

For a specific MDS instance, the port groups shown in the reference architecture will be refined to

represent specific sensor output and actuator input, measurements and commands, and histories.

Figure 5: System Under Control in MDS Reference Architecture

When the MDS architecture is instantiated for a specific system, the physical system under con-

trol is refined. In this refinement, details of AADL devices that represent the plant being con-

trolled are defined. The plant can be modeled at different levels of detail as appropriate. A single

device may represent the complete plant. In that case, out data ports represent sensors whose data

content are measurements, and in data ports represent actuators whose data content represent ac-

tuator commands. One can also choose to represent each sensor and each actuator as a separate

device. Each device would include one or more ports for measurements or commands. In this

11 | CMU/SEI-2010-TR-003

model, properties can be associated with each sensor, actuator, and plant to indicate power con-

sumption, failure rate, and other physical characteristics.

Figure 6: Sensor and Actuator Adapters and Value History

Figure 6 shows the details of the hardware adapters in the MDS reference architecture. We have

transformed the actual adapters into sensor adapters, which are responsible for converting sensor

readings into measurements, and actuator adapters, which are responsible for converting control

commands into actuator commands. In addition, we have included value history stores for mea-

surement and command histories. All these components will get refined with specific adapters for

a MDS instance.

3.3 The Control System

The AADL model of the MDS control system, which is shown in Figure 7, reflects the layered

architecture of Figure 3 from page 7. In the MDS architecture, state variables are used as the

communication channel (container) through which information such as state estimates (know-

ledge), goals (intent), measurements, and commands is communicated between components of the

MDS architecture, as shown in Figure 2. AADL allows us to abstract such communication chan-

nels into the underlying platform through the AADL virtual bus concept and express the informa-

tion flow as port connections between the components. Port connections reflect the source and the

recipient of information. The fact that information such as state estimates is communicated

through a connection is represented by the fact that the connection is bound to a particular virtual

bus.

In this model, we decided to show the measurement stream and the measurement history through

separate port groups to more precisely reflect who is using the sensor data stream and who needs

12 | CMU/SEI-2010-TR-003

to operate on the history. For more on our modeling of data streams, value histories, and data state

variables in AADL see the Section 3.4.

Figure 7: The MDS Control System

The bottom layer represents the state estimators and the controllers of the control layer in Figure

3. The estimators are represented by the StateEstimation thread group and the controllers are

represented by the StateControl thread group. Bundling these as thread groups allows the refine-

ment of each with a set of threads that represent individual estimators and controllers when the

MDS architecture is instantiated for a specific system. The port group StateEstimatesOut

represents the results of the estimators (i.e., the observed state of the system under control). This

port group is refined with data ports, each acting as the current value of an estimation state varia-

ble. The state estimates are made available to the controllers (StateControl). The StateEstimation

13 | CMU/SEI-2010-TR-003

thread group is also responsible for maintaining a history of the estimated states. This history is

made available through a separate port group EstimateHistoryOut.

The second layer represents the goal executive and the goal monitor of the execution layer in Fig-

ure 3. The goal executive interprets a goal network (i.e., a mission plan) and passes Xgoals to the

controllers. The goal monitor compares the state estimate history against the Xgoals to determine

whether the controllers are unable to reach their goals and replanning should be initiated. The

Xgoals are represented by a port group that is refined when the MDS architecture is instantiated

for a specific system.

The top of Figure 7 represents the goal planner (i.e., the planning layer and the operator con-

sole the presentation layer of Figure 3). The goal planner is responsible for producing a goal

network and for replanning (i.e., re-elaborating the goal network, if the controllers are unable to

meet their goals within the goal network constraints). The operator console provides status and

allows for goal planning input.

3.4 Data State Variables, Value History, Data Control, and Telemetry

A data state variable is a key concept of MDS for representing information about the data being

processed by MDS (i.e., about estimated, intended, and projected physical state). It allows for

characterizing

 data truths about value histories of measurements, commands, and estimated states

 intended and projected states reflected in the goal network

A common way of modeling such meta-information in AADL is to associate AADL properties

with the item in question and record information about the item. For example, the measurement

unit and confidence of data may be recorded in properties. Since AADL is extensible and allows

us to introduce new properties, we can define a set of properties specific to the data state variable.

In some cases, this Meta information is communicated explicitly with the data and is checked by

the application at runtime. In this case, the Meta information is declared to be part of the data re-

presentation, either just reflected in the increased size of the data type, or explicitly as a data sub-

component in a data component implementation declaration.

In the MDS, hardware adapters maintain a value history of measurements and control commands.

Similarly, value histories of estimated state are maintained. In the package ValueHistories we

have introduced a set of components that represent value histories and functionality of updating it

and making it accessible. The value history stores for measurements and commands are kept with

the hardware adapters, while those of estimated state are kept with the estimators. We use history

port groups as an abstraction of how value history is made accessible. This allows us to capture

that the history may be made available in the form of state functions.

The MDS has a data control component whose responsibility is to manage the value history as a

data resource according to constraints provided by an engineer. Similarly, there is a data transfer

component whose responsibility is to move data between deployments. The data control and data

transfer components can be modeled in AADL at different levels of fidelity. When modeled ab-

stractly, we can simply define, through AADL properties, attributes of the data ports that identify

value history requirements. When the ports are bound to memory, their memory requirements are

determined, not only by the data type of the state value but also by value history requirements.

14 | CMU/SEI-2010-TR-003

Desired compression strategies can be specified via properties on a data port or on its data com-

ponent type. In this case, it is assumed that the underlying runtime system represented by the

computer platform supports this logging capability.

The MDS State Variables hold observations (knowledge) determined by estimators and plan goals

(intent). These state variables are communicated between Ground and Flight systems via teleme-

try. The data transport mechanism uses State Variables and State Variable Proxies. A State Varia-

ble represents the location in the deployment where the state is being locally estimated, and a

Proxy State Variable represents a remote location that intends to utilize state variable content re-

motely. This deployment is shown in Figure 8.

Control SystemControl System

State variablesState variables

Elaboration, projection, & scheduling

State variables

Intent

Knowledge

Control SystemControl System

State variablesState variables

System

Under Control

System

Under Control

commands

measurements

State variables

Intent

Knowledge

Execution

Downlink

Uplink

Ground Flight

Actual Estimated

State Variables

Estimated State

Proxy Variables

Actual Desired

State Variables
Desired State

Proxy Variables

Figure 8: Deployment of State Variables [Bennett 2006]

The deployment of these data is such that

Estimators in a deployment update their corresponding State Variables (SV). The data

transport mechanism occasionally collects the value histories stored in these SVs and trans-

ports these histories to appropriate Proxy SVs in other deployments. The same data trans-

port mechanism is used to transport measurement histories and command histories between

deployments (from Basis Hardware Adapters to Proxy Hardware Adapters). Systems engi-

neers specify what information needs to be transported between deployments, and the regu-

larity of proxy updates [Bennett 2006].

The telemetry transport mechanism is used, then, to update the proxies with actual values with a

specified periodicity or on demand.

At a high level of abstraction of the AADL model, the state variable proxy notion can be encapsu-

lated in the protocol used by the telemetry (SpaceLink) bus component. It is the responsibility of

the protocol to distribute the state to the out data ports of components to other components. For

data port connections across the SpaceLink bus, a different protocol is used to provide the desired

15 | CMU/SEI-2010-TR-003

caching strategy of the state variable proxy. The application model is agnostic to this

proxy/caching scheme.

If it is desirable to explicitly model the proxy scheme, we can do so in two ways. We can model

an implementation of the proxy/caching protocol of the telemetry bus component as a separate

AADL model that is associated with the SpaceLink bus by property. This property is interpreted

by the instance model generator to refine the bus abstraction by its implementation. Alternatively,

we can model the proxies explicitly as application components (i.e., as threads that receive the

original data port content by executing at a specified rate and make it available locally). In this

case, users need to modify the model by inserting or removing the proxies as components that are

migrated between flight system and ground.

3.5 Model Organization

AADL packages are used to organize the model space. We place all packages making up the

MDS reference architecture in one project in the OSATE tool environment. We define the MDS

reference architecture as a collection of packages as illustrated in Figure 9.

Figure 9: Packages of the MDS Reference Architecture

The package MDSData contains all declarations of port group types and data component types

used in the AADL model of MDS. The data component types are used in data port declarations to

specify the data type of the data communicated through these ports. The ValueHistories package

provides declarations for value history modeling. It is used by the hardware adapters and the esti-

mators. The SystemUnderControl package contains the system declaration for the system under

control. The HardwareAdapters package contains the systems representing the sensor adapters

and the actuator adapters. The MDSControlSystem package contains the MDS control system,

while the components of the MDS control system (i.e., the estimators, controllers, goal executive,

goal monitor, and goal elaborator, are declared in the ControlSoftware package).

The MDS reference architecture will be instantiated to represent a specific MDS system (e.g., a

CameraSystem) in a second set of packages in a separate OSATE project (see Figure 10). This

allows multiple MDS instances to be developed independently.

16 | CMU/SEI-2010-TR-003

Figure 10: Packages of an MDS instance

An excerpt from the ControlSoftware package is shown in Figure 11. The elements of the com-

puter platform are declared in the ExecutionHardware package. Finally, the top-level system is

declared in the CompleteMDSSystem package.

package ControlSoftware

public

 -- this type is refined for a MDS instance by refining the

 -- classifiers of the features to be instance specific

 thread group controller

 features

 StateEstimatesIn: port group MDSData::StateEstimatesIn;

 EstimateHistoryIn: port group ValueHisto-

ries::EstimateHistoryInv;

 ControlGoalsIn: port group MDSData::XgoalsIn;

 CommandsOut: port group MDSData::CommandsOut;

 end controller;

 thread group implementation controller.basic

 end controller.basic;

Figure 11: Example Package of MDS Reference Architecture

In addition to the packages, we have defined a property set in the MDS reference architecture

project. This property set defines properties for modeling rate groups. Other property sets can be

added to introduce additional properties that are specific to the MDS architecture.

The MDS reference architecture is refined in a set of nested packages, as shown in Figure 12. In-

dividual components of the MDS reference architecture are refined by making use of the extends

and refines concepts of AADL. The extended port group types, component types, or component

implementations refine previously declared features and subcomponents, and they can add sub-

components or features. We will declare port group type extensions that fill in the details of the

port groups defined in the reference architecture (e.g., the specific set of estimated states). We will

declare component type extensions that refine the classifiers of their features to the instance-

specific port group and component classifiers. We will declare component implementation exten-

sions that introduce specific instances of estimators, controllers, and so on through subcomponent

declarations.

17 | CMU/SEI-2010-TR-003

package ControlSoftware::Camera

public

 thread group controller

 extends ControlSoftware::controller

 features

 StateEstimatesIn: refined to port group

 MDSData::Camera::StateEstimatesIn;

 EstimateHistoryIn: refined to port group

 ValueHsitories::Camera:: EstimateHistoryIn;

 CommandsOut: refined to port group

 MDSData::Camera::CommandsOut;

 ControlGoalsIn: port group

 MDSData::Camera::ControlGoalsIn;

 flows

 ControlFlow: flow path StateEstimatesIn -> CommandsOut;

 end controller;

 thread group implementation controller.camera

 subcomponents

 HeaterController: thread HeaterController;

 HeaterSwitchEstimator: thread HeaterSwitchEstimator;

Figure 12: Example Package of an MDS Instance

3.6 Operating System Thread Model

Hardware adapter, estimator, controller, planner, goal executive, and goal monitor are represented

by logical threads, each with an execution rate, a deadline, and a worst-case execution time. Some

of this functionality may be distributed between flight system and ground or may be distributed

within the flight system or ground system. The latter distribution may occur due to a multi-

processor configuration or in anticipation of using multi-core chip architectures in a spacecraft.

Distribution decisions regarding ground or flight system are localized to changes in processor

binding property values in the AADL model, unless state variable proxies are modeled explicitly

as part of the application system. The collection of logical threads bound to the ground processor

or the flight processor is then grouped into rate groups. Each member of a rate group is executed

by an operating system thread at the period of the rate group. Note that such rate group optimiza-

tion must take into account execution order requirements between threads of the same rate or of

different rates that require data to be communicated mid-frame (i.e., within the same execution

cycle).

property set RateGroups is

 RateGroups : type enumeration (EstimatorRategroup,

 ControllerRateGroup, PlanExecutionRateGroup,

 PlanningRateGroup, HWARateGroup);

 AssignedRateGroup : inherit RateGroups::RateGroups

 applies to (thread, thread group, process, sys-

tem);

end RateGroups;

Figure 13: Rate Group Modeling by Properties

18 | CMU/SEI-2010-TR-003

Rate group optimizations can be represented within the current version of AADL using the prop-

erty mechanism. We can introduce a property type RateGroups that is an enumeration of rate

groups in a particular application and a property to specify the rate group that a thread is assigned

to, as illustrated in Figure 13. The enumeration literals are an ordered set.

AADL V2
2
 introduces the concept of virtual processor to model hierarchical schedulers. The op-

erating system threads, which execute the tasks of a rate group, act as schedulers that dispatch

these tasks as a cyclic executive. Therefore, we represent each of them as a virtual processor to

which the application AADL threads are bound. Each of these virtual processors is defined as a

subcomponent of a given processor or is defined separately and bound to a processor.

3.7 Binding to Hardware

AADL supports modeling the computer platform of the embedded system. In Figure 14, we illu-

strate how flight system and ground system computer platforms can be modeled. The flight sys-

tem consists of a processor, memory, and a flight system bus. In addition, the flight processor has

access to a device bus that is also accessible by devices representing the sensors and actuators

outside the MDS computer hardware system component. The ground system consists of a proces-

sor, memory, and a ground system bus. The two computer platforms are interconnected via a

SpaceLink bus that represents the downlink between the spacecraft and the ground station.

Without having to model the internal details of the hardware, we can use properties to specify

characteristics relevant to the analysis of embedded systems. For example, a processor has speci-

fied context switch and cycle times that may have been determined through measurements of the

actual hardware or through simulation runs of a VHSIC hardware description language (VHDL)

model of the processor.
3
 Similarly, the bus components may include not only properties that cha-

racterize transmission timing, but also properties that characterize the quality of service of the

protocols used by the bus, such as secure and guaranteed delivery.

2
 Version 2 of the AADL standard (AADL V2) was published in January 2009 by SAE International [SAE AADL

2004/2009].

3
 VHSIC stands for very-high-speed integrated circuit.

19 | CMU/SEI-2010-TR-003

Figure 14: Flight and Ground Processing Systems

The binding of embedded software applications to the computer platform is also accomplished

through properties. The Allowed_Processor_Binding property places constraints on the binding to

processors. The binding may be constrained to a processor type or to a set of processors. Binding

constraints are taken into consideration when a resource allocation tool makes its allocation deci-

sions; the Actual_Processor_Binding property records the actual binding decisions.

Figure 15 shows the use of Allowed_Processor_Binding for the MDS architecture. This property

is declared with the top-level system implementation, allowing the property declaration to refer to

the processor as the reference value and to the application component to which the property ap-

plies.

package CompleteMDSSystem::Camera

public

 system CompleteMDSSystem

 extends CompleteMDSSystem::CompleteMDSSystem

 end CompleteMDSSystem;

 system implementation CompleteMDSSystem.Camera

 extends CompleteMDSSystem::CompleteMDSSystem.basic

 subcomponents

 MDSControlSystem: refined to process

 MDSControlSystem::Camera::MDSControlSystem.camera;

 ControlledMDSSystem: refined to system

 SystemUnderControl::Camera::system_under_control.camera;

20 | CMU/SEI-2010-TR-003

 MDSPlatform: refined to system

 ExecutionHardware::Camera::MDSHardware.camera;

 flows

 TemperatureResponse: end to end flow

 MDSSystemUnderControl.Tempflow -> SystemtoControllerConn -

>

 MDSControlSystem.ControlFlow -> ControllertoSystemConn ->

 MDSSystemUnderControl.HeaterCmdFlow

 { Latency => 50 ms;};

 properties

 Allowed_Processor_Binding =>

 reference mdsplatform.ground_processor applies to

MDSControlSystem.OperatorConsole;

 Allowed_Processor_Binding =>

 reference mdsplatform.ground_processor applies to

MDSControlSystem.GoalElaborator;

 Allowed_Processor_Binding =>

 reference mdsplatform.flight_processor applies to

MDSControlSystem.GoalExecutive;

 Allowed_Processor_Binding =>

 reference mdsplatform.flight_processor applies to

MDSControlSystem.StateEstimation;

 Allowed_Processor_Binding =>

 reference mdsplatform.flight_processor applies to

MDSControlSystem.DeviceControl;

 Allowed_Processor_Binding =>

 reference mdsplatform.flight_processor applies to

MDSSystemUnderControl.HardwareAdapters;

Figure 15: Modeling of Processor Bindings

21 | CMU/SEI-2010-TR-003

4 An MDS Instance

In this section, we show how AADL is used to refine the reference architecture model of MDS

(defined in the previous section) into an instance of MDS for a specific system, the platform-

mounted camera temperature and pointing control system. Sections 5 and 6 report subsequent

analysis supported by AADL conducted as part of this case study.

4.1 The Heated Camera System

This example, shown in Figure 16, is taken from the MDS tutorial “State Analysis for Software

Engineers: Model-Based Systems and Software Engineering” [Bennett 2006].

Figure 16: Platform-Mounted Camera [Bennett 2006]

In the example, the main control loop is a flow of the temperature signal from the temperature

sensor (modeled as an AADL device), through the control system, and terminating in the actuator

for the power switch of the camera heater (also modeled as an AADL device). The control sensing

and actuation and relevant interfaces are shown in Figure 17.

System
Under
Control

System
Under
Control

Heater 1

Switch 1
Actuator

Switch 1

command

Temperature

measurement

Temperature
Sensor

Switch 2
Actuator

Heater 2

Switch 2

command

PS2

PS1

+

-

Camera

Figure 17: Fault-Tolerant Camera Heater Control System

Platform

Data

Camera

Heater

22 | CMU/SEI-2010-TR-003

4.2 The AADL Model of the Heated Camera System Hardware

Figure 18: AADL Representation of the Camera Hardware System under Control

The AADL graphical representation of the camera hardware that is the system under control is
shown in Figure 18. We define the camera hardware by refining the SystemUnderControl compo-
nent defined in the MDS reference architecture. We add the temperature sensor and the heater
switches as separate devices. These devices are defined in a separate package called InterfaceDe-
vices_Camera as shown in Figure 10 on page 16. These devices are physically connected to the
device bus and provide a logical connection to the MDS application through the refined Sen-
sorReadings and ActuatorCommands port groups. These port groups have been refined to define
the individual data ports used for communicating measurements and commands. The refinement
of the SensorReadings port group type is illustrated in Figure 19.

Figure 19: Refinement of the Sensor Readings Port Group

4.3 The Heated Camera Control System

We refine each of the control system components of the MDS reference architecture. The sensor
and actuator hardware adapter components are refined by defining an adapter thread for each of
the adapters for the heated camera system. Similarly, we refine the estimator, controller, goal ex-
ecutive, and goal monitor components with threads. The estimator and controller components and
their interactions are defined in the MDS documentation in a collaboration diagram shown in
Figure 20.

package MDSData::Camera
public
 port group SensorReadingsOutput
 extends MDSData::SensorReadingsOutput
 features
 TemperatureReading: out data port TemperatureReading;
 end SensorReadingsOutput;

23 | CMU/SEI-2010-TR-003

Figure 20: Collaboration Diagram of Camera Heater Control

The equivalent AADL model is shown in Figure 21 and Figure 22. We will take advantage of the

information in the collaboration diagram as to whether a component accesses the current value,

the previous value, or the value history, and we will represent them through different port connec-

tions.

The estimators make use of temperature measurements, temperature sensor health state, and hea-

ter switch state. The estimated state is represented by out data ports and is available to other esti-

mators, shown as a connection to the respective in data port and to controllers via the StateEsti-

mates port group. This port group has been refined for the camera heater system to define all the

state variables updated by estimators as out data ports.

24 | CMU/SEI-2010-TR-003

Figure 21: Camera Heater Estimators

The getState actions on the state variables are mapped into data port connections from the out da-

ta port of the provider of values to a state variable. Access to the current value is represented by

an immediate data port connection, while access to the previous value is represented by a delayed

data port connection. The fact that a connection is immediate or delayed is a property of the con-

nection and visible in the properties viewer. In the textual representation of the model, it is ex-

pressed through the symbols -> and ->> respectively.

The heater switch controller takes heater goals as input and produces heater switch commands. It

takes the estimated state of the heater switches into account to determine whether the heater

switches are functional.

25 | CMU/SEI-2010-TR-003

Figure 22: Camera Heater Controller

4.4 The Refined Top-Level System

For some of the system components of the MDS reference architecture, the refinement into the

heated camera instance simply involves refining the classifiers from the generic classifiers of the

reference architecture model to the heated camera system specific classifiers. This refining is illu-

strated in Figure 23 for the top-level system description by specifying the camera implementation

of the MDS control system, the controlled MDS system, and the MDS platform.

package CompleteMDSSystem::Camera

public

 system CompleteMDSSystem

 extends CompleteMDSSystem::CompleteMDSSystem

 end CompleteMDSSystem;

 system implementation CompleteMDSSystem.Camera

 extends CompleteMDSSystem::CompleteMDSSystem.basic

 subcomponents

 MDSControlSystem: refined to

 process MDSControlSystem::Camera::MDSControlSystem.camera;

 ControlledMDSSystem: refined to

 system SystemUnderControl::Camera::system_under_control.camera;

 MDSPlatform: refined to

 system ExecutionHardware::Camera::MDSHardware.camera;

Figure 23: Refinement of the Top-level System

4.5 System Analysis

Although the main focus of AADL is the embedded software system architecture, AADL also

supports modeling the physical system under control. In Section 4.2 we used the AADL device

concept to capture physical entities such as sensors and actuators (switches). Devices can also

represent physical components such as an engine with ports representing sensor output and actua-

tor input. These physical components have mass and the system may have constraints regarding

its maximum mass.

26 | CMU/SEI-2010-TR-003

A system under control may also contain components that represent physical resources, such as

electrical power and hydraulic power. We use the AADL bus components to represent a physical

resource such as electrical power or hydraulic pressure. These resources are supplied to physical

subsystems, such as the heater, through bus access connections. In other words, these bus access

connections represent fuel lines and hydraulic hoses.

In the next two sections, we illustrate how AADL can be used to perform a coarse-grained analy-

sis, which can be refined with the AADL model, of physical resources or resource consumption

issues that are addressed as part of the goal network representation.

4.5.1 Mass and Weight Analysis

We have introduced three mass related properties in order to perform mass analysis.

1. SEI::MassLimit: the maximum acceptable mass for a system. This property can be used for

the system under control and for the computer hardware system. The mass is expressed in

units of kg and takes a real value.

2. SEI::NetMass: the net mass of a system. This is the net mass of an empty cabinet or a board

without its mounted components. The mass is expressed in units of kg and takes a real value.

3. SEI::GrossMass: the gross mass of a system. This is the net mass of a system (component)

plus the sum of the gross mass of its subcomponents. For example, this is the mass of a cabi-

net plus the mass of the boards including their mounted parts. The mass is expressed in units

of kg and takes a real value.

It is expected that if both the net mass and the gross mass are specified for a component, their val-

ues would be consistent (i.e., the net mass of the component plus the gross mass or its equivalent

in the form of net mass plus its subcomponents’ gross mass must be the same). For leaves (nodes)

in the component hierarchy, the net mass and gross mass are expected to be identical. It is ex-

pected that a component’s gross mass does not exceed its mass limit.

The mass analysis () can be invoked on an instance model of the MDS. For example, we can

instantiate the reference model and associate a mass with the physical system under control as a

whole as well as the computer platform. As the reference architecture model is refined into a

model of a specific system and the physical system under control is populated with parts, we can

revisit this mass analysis for the complete system. We can also limit the mass analysis to an in-

stance of the computer platform by creating an instance model of the system implementation that

represents the computer hardware.

We support mass analysis in two forms:

 Mass analysis through an OSATE analysis plug-in that totals the net mass property value of

components (systems and buses) in the instance model, relates them to the gross mass val-

ues, and compares them against mass limit values.

 Mass analysis by exporting the mass information into an Excel-compatible CSV file with the

analysis performed in Excel.

In order to be able to perform the mass analysis we must assign mass property values to the sys-

tem type or system implementation declaration of the MDS and its subsystems (i.e., the system

27 | CMU/SEI-2010-TR-003

type or system implementation declarations of the system under control and the computer hard-

ware). In addition we can assign mass properties to the bus types representing physical resource

containers and the bus access connections that represent physical connectors to such a physical

resource.

In the context of a spacecraft system, it may be necessary to distinguish between mass and weight.

Weight is proportional to mass in a uniform gravitational field. Some control applications such as

that of a rover may utilize weight in its stability calculations. Such characteristics can be captured

through additional properties; AADL supports the introduction of user-defined properties to ad-

dress this need.

4.5.2 Power Draw Analysis

In this section we illustrate modeling of consumable and renewable resources in AADL for a

coarse-grained resource analysis. We use electrical power as the example. The power is expressed

in units of milliwatts (mW), watts (W), and kilowatts (KW). We have three power related proper-

ties:

1. SEI::PowerCapacity the power capacity provided by a physical system component such as

a battery. This property is used on bus or system components to indicate the amount of power

available to power consumers. If power suppliers are connected to this component, then their

power supply total should correspond to the power capacity. Currently the capacity is speci-

fied in terms of watts reflecting a power system with renewable power. For non-renewable re-

sources such as a non-chargeable battery, we may also want to specify the energy capacity in

terms of power and time (e.g., kilowatt-hour [KWH]).

2. SEI::PowerSupply the amount of power supplied to a power carrier. This property is used

on requires bus access features of power producer components, such as a solar panel.

3. SEI::PowerBudget the amount of power consumed by a component. This property is used

on requires bus access features of power consumer components, such as the heater or a mo-

tor.

It is expected that the power capacity of a component corresponds to the sum of the supplied

power (i.e., supplier components connected by bus access with a PowerSupply property value). It

is expected that the sum of the power budgets of connected components does not exceed the ca-

pacity or supplied power.

Figure 24 illustrates the use of an AADL bus of type PowerSupply to represent an electrical pow-

er resource. The power supply has a power capacity property indicating its available power. The

figure also shows three power consumers that are connected to the power supply through bus

access connections. Their requires bus access features have property values indicating their power

budgets.

A bus instance that represents a power resource may have a requires bus access feature itself.

This indicates that this bus can be connected via bus access to another bus to draw on that buses

power capacity. The PowerBudget property value indicates the amount of power drawn. In other

words, the capacity of a bus is the sum of PowerSupply values of connected components plus the

sum of the PowerBudget values of its own bus access connections.

28 | CMU/SEI-2010-TR-003

Figure 24: Power Supply as a Physical Resource

The power analysis () can be invoked on an instance of the MDS. It can be performed on an

initial architecture model and then revisited as the model is refined to a greater level of detail.

We support power analysis in these forms:

 through an OSATE analysis plug-in that totals the power budgets of connected components

and compares the total against the power capacity of the power resource (bus). It takes into

account PowerSupply connections as well as requires bus access by the power source.

 by exporting the power information into an Excel-compatible CSV file with the analysis per-

formed in Excel

 by exporting the power information into a format that is understood by the goal network

analysis tool of MDS. This allows us to ensure that power-related numbers are used consis-

tently.

Such a power analysis may reveal that the capacity of the bus supplying the power is not suffi-

cient. We can now explore alternatives, such as a power bus with higher capacity, or components

with lower power consumption. As we do so, we can immediately analyze the impact on other

quality dimensions. For example, a higher capacity battery may increase the mass, and a lower

powered processor may provide fewer execution cycles and, thus, be able to handle fewer tasks.

29 | CMU/SEI-2010-TR-003

5 Closed Loop Control System

In this section we examine how to best represent the closed loop control system of MDS in

AADL. Our starting point, the state-based design of MDS, leads intuitively to an AADL model

that represents the state variables as data components accessed by different functions. However,

because we are dealing with time-sensitive data with a continuous value range, variation in time is

observed as increased noise in the data, which can negatively affect the stability of controllers.

Cervin performed a case study of different scheduling algorithms on the stability of controllers

[Cervin 2006]. Figure 25 shows the effect of those schedulers. The flattest curve shows a schedu-

ler where first input for all tasks is performed, then tasks compute according to their priority, and

finally output is made available. This corresponds to the AADL execution model of freezing input

at task dispatch time.

Figure 25: Impact of Latency Jitter on Controller Stability

Latency is also sensitive to the order in which the sender and receiver communicate their data,

(i.e., the order in which state variables are written and read or in which send and receive opera-

tions are performed). In other words, the execution order of the tasks drives the information flow

and its latency. Preemptive scheduling and concurrent execution of tasks on different processor

cores or different processors contribute to frame-level jitter.

In this section we first discuss a flow-oriented representation of the closed loop control system in

AADL that still reflects the state-based design approach of MDS. Then we illustrate how this

model can be used in performing end-to-end latency analysis.

30 | CMU/SEI-2010-TR-003

5.1 MDS State Variables and Data Flow

Figure 2 on page 7 illustrates the separation of what information is communicated between com-

ponents and how it is communicated through state variables in the MDS architecture. The Unified

Modeling Language (UML) class diagram shown in Figure 26 provides greater detail about the

content of MDS data objects; their relationships among MDS estimator, controller, and hardware

adapter software elements; and their realization through state variables. State variables are con-

tainers that

 store and make available data values of data streams

 maintain a value history and make that history available through state functions

Furthermore, MDS provides functionality for state-variable value history management, such as

data compression, and its transfer between flight system and ground system (shown in Figure 8).

Figure 26: MDS Software [Bennett 2006]

Given the state-based design approach of MDS, it is logical to represent the state variables as data

components. These data components are then accessed through data access connections, as illu-

strated in the left box of Figure 27. However, they are part of the data stream of the control loop

from the sensors, their adapters, and the state estimators to the controllers, actuator adapters, and

the actuators themselves. The flow of information has to be inferred from the access rights to the

data components. MDS requires that only one functional unit write to the state variable (i.e., only

one component has write access). There can be multiple readers of state variables (i.e., multiple

access connections with read access). A visualization of this intended flow is shown in the top

right box of Figure 27.

31 | CMU/SEI-2010-TR-003

This flow-oriented view can be mapped into a port and connection model. The functional unit

producing the values for a state variable has an output data port that makes the most recent value

accessible. This value is then routed to the consumers by port connections as shown at the bottom

right of Figure 27. This allows us to explicitly indicate whether data is intended to be communi-

cated across frames or within the same frame. In the shared variable representation this informa-

tion is implicit in the order in which the write and read operations occur in every frame. Changes

in schedulers or use of multiple processors can result in non-deterministic write/read order, which

in turn results in frame-level latency jitter of the sampled data. This introduces software-induced

noise into the data, which may affect the stability to the control system.

Figure 27: From State Variable to Port-Based Flow

5.2 Representing the Control Loop Data Stream

States allow for goal-oriented task modeling and for separation of state estimation and control

concerns. Measurements from sensors represent observations of characteristics of the physical

plant state, which are used by estimators to determine an accurate estimate of the physical state.

This state is used together with desired system states (i.e., goals) to change the state of the physi-

cal system.

In order to explicitly model the timing assumptions of the information flow, we utilize data ports

and immediate, delayed, and sampling connections for data ports to indicate whether mid-frame

and phase-delayed data flow is assumed to occur or non-deterministic sampling is acceptable. We

take advantage of the fact that an estimated state is updated by a single estimator (i.e., its out port

effectively represents the stream of estimated values for an estimated state). This estimated state

may be determined from measurements or derived from other states (i.e., a derived state estimator

uses the output of other estimators as input). Connections from the estimator out data ports to in

data ports of individual controllers or to estimators responsible for determining derived states

reflect the information flow embedded in the state effects diagrams. By declaring data port con-

nections to be immediate connections, we specify that the users of the state expect to see the new

data value. When an estimator or controller utilizes a previous state value, we will indicate this by

declaring a delayed data port connection.

Immediate and delayed data port connection declarations are used in the refinement of estimators

and controller components as part of an MDS architecture instantiation. For example, a sensor

32 | CMU/SEI-2010-TR-003

device may have an out port that provides raw temperature readings. This value is fed to a sensor

adapter that normalizes the temperature reading into a temperature measurement. The measure-

ment is then passed to a temperature estimator, which uses the measurement as evidence to de-

termine the current temperature. The estimator may take into account other measurements and

state information (e.g., temperature sensor failure).

Similarly, the commands for an actuator are the responsibility of a single controller (i.e., its out

port effectively represents the stream of control commands). This fact allows us to use the out

data ports of the estimators to represent the estimated state as a data stream and the out data ports

of the controllers to represent the stream of control commands.

5.3 Flow Latency Analysis

In this section, we demonstrate the capability of AADL to model end-to-end flows and utilize

these specifications to perform end-to-end latency analysis. From a control engineer’s perspective,

end-to-end latency consists of

 processing latency to perform the control computation

 sampling latency due to over- and under-sampling

 transmission latency of the signal from the sensor and the signal to the actuator over physical

connections

When the control system is implemented as software, we have a number of additional contributors

to end-to-end latency including the sharing of processor and network resources, preemptive sche-

duling, blocking due to mutually exclusive access to shared logical resources such as shared data

areas, use of partitioned architectures, and rate group optimization.

The SEI has developed a latency analysis framework around AADL models that utilizes end-to-

end flow specifications as well as knowledge about the execution of the control application as a

collection of application threads executing at a given rate and communicating their results via dif-

ferent communication mechanisms [Feiler 2007, Feiler 2008]. We will utilize an implementation

of the flow latency analysis capability in OSATE in this section.

As part of our initial case study, the flow latency analysis explores the end-to-end latency for the

Heated Camera System MDS instance described in Section 4.

5.3.1 End-To-End Flow Specification

TemperatureResponse, an end-to-end flow specification, is defined to account for a signal from

the temperature sensor through the control system to the switch actuator device. This measure

records the time from a switching threshold temperature being sensed to the switch actuator re-

ceiving a command to turn the heater on or off. Its path is defined as an end-to-end flow originat-

ing at the TemperatureSensor device within the camera hardware (SystemUnderControl), moving

through a path in the MDSControlSystem for the camera, and ending in the HeaterSwitch device

within the camera hardware (SystemUnderControl).

AADL supports flow specifications for individual components, which allows a user to specify the

flow characteristics through a component without having to expose the internal details of the

component. Within a component implementation, flow specifications are detailed into flow im-

33 | CMU/SEI-2010-TR-003

plementations that indicate how the flows are realized through the subcomponents making up the

component. These flow specifications may represent flow sources (the flow starts within the com-

ponent), flow paths (the flow goes from an in port to an out port), and flow sinks (the flow ends

within the component).

5.3.2 Flow Specifications for Sensors and Actuators

Given flow specifications for a set of components, we can specify an end-to-end flow through

those components. In our example, we will specify the end-to-end flow TemperatureResponse by

declaring it to start with the flow source TempFlow of the controlled MDS system, via connection

SystemtoControllerConn through the flow path ControlFlow of the MDS control system, and via

connection ControllertoSystemConn terminate in the flow sink HeaterCmdFlow of the controlled

MDS system. This end-to-end flow specification is shown in Figure 28. This specification in-

cludes a latency property to indicate that the expected latency for the end-to-end flow is to be 50

ms. This value is an arbitrary value selected for illustrative purposes in the analysis example

shown in Section 5.4.

package CompleteMDSSystem::Camera

public

 system CompleteMDSSystem

 extends CompleteMDSSystem::CompleteMDSSystem

 end CompleteMDSSystem;

 system implementation CompleteMDSSystem.Camera

 extends CompleteMDSSystem::CompleteMDSSystem.basic

 subcomponents

 MDSControlSystem: refined to

 process MDSControlSystem::Camera::MDSControlSystem.camera;

 MDSSystemUnderControl: refined to

 system SystemUnderCon-

trol::Camera::systemundercontrol.camera;

 MDSPlatform: refined to

 system ExecutionHardware::Camera::MDSHardware.camera;

 flows

 TemperatureResponse: end to end flow

 MDSSystemUnderControl.Tempflow -> SystemtoControllerConn ->

 MDSControlSystem.ControlFlow -> ControllertoSystemConn ->

 MDSSystemUnderControl.HeaterCmdFlow { Latency => 50 ms;};

Figure 28: End-to-End Flow Specification

The camera system under control has two flow specifications: a flow source TempFlow from the

temperature sensor and a flow sink HeaterCmdFlow to the heater switch, as shown in Figure 29.

Each flow specification is refined in the camera control system implementation into a flow im-

plementation. The flow implementation for the flow source indicates that the flow source starts

within the TemperatureSensor device and goes through the temperature sensor adapter. The flow

implementation for the flow sink indicates that the flow sink goes through the heater switch adap-

ter ending in the HeaterSwitch device.

34 | CMU/SEI-2010-TR-003

package SystemUnderControl::Camera

public

 system SystemUnderControl

 extends SystemUnderControl::system_under_control

 features

 MeasurementsOut: refined to

 port group MDSData::Camera::MeasurementsOutput;

 CommandsIn: refined to

 port group MDSData::Camera::CommandIn;

 flows

 Tempflow: flow source MeasurementsOut;

 HeaterCmdFlow: flow sink CommandsIn;

 end SystemUnderControl;

Figure 29: Flow Specifications in MDS System Under Control

5.3.3 Flow through the Control System

The MDS control system for the heated camera system has a flow path specification, which

represents the flow through the various processing steps through the control system. This flow

specification, called ControlFlow (see Figure 30), goes through the sensor adapters, the state es-

timation, the device control, and the actuator adapters. Within the StateEstimation component, the

flow is further refined to go through the TemperatureEstimator. Similarly, within the DeviceCon-

trol component, the flow is further refined to go through the HeaterController.

package MDSControlSystem::Camera

public

 process MDSControlSystem

 extends MDSControlSystem::MDSControlSystem

 features

 MeasurementsIn: refined to port group

 MDSData::Camera::MeasurementsIn;

 CommandsOut: refined to port group MDSData::Camera::CommandsOut;

 flows

 ControlFlow: flow path MeasurementsIn -> CommandsOut;

 end MDSControlSystem;

 process implementation MDSControlSystem.camera

 extends MDSControlSystem::MDSControlSystem.basic

 subcomponents

 GoalPlanner: refined to thread group

 ControlSoftware::Camera::GoalPlanner.basic;

 GoalExecutive: refined to thread group

 ControlSoftware::Camera::GoalExecutive.camera;

 GoalMonitor: refined to thread group

 ControlSoftware::Camera::XGoalMonitor.camera;

 StateEstimation: refined to thread group

 ControlSoftware::Camera::estimator.camera;

 StateControl: refined to thread group

 ControlSoftware::Camera::controller.camera;

 flows

 ControlFlow: flow path MeasurementsIn ->

 Connection1 -> StateEstimation.StateFlow -> Connection5

 -> StateControl.ControlFlow -> Connection2 ->

 CommandsOut;

35 | CMU/SEI-2010-TR-003

 end MDSControlSystem.camera;

end MDSControlSystem::Camera;

Figure 30: Control Flow Path Through the Control System

5.3.4 Worst-Case Latency Analysis of a Flow

End-to-end latency of a data flow is determined by several factors:

 processing latency the amount of time it takes to perform a function. For example, the

processing latency of a sensor is the time from the detection of a signal to the corresponding

event or message being available at its output. In case of a function realized in software,

processing time is the amount of time it takes to compute the function. This time may be

bounded by its worst-case execution time, a value used in scheduling analysis to determine

schedulability.

 preemption latency occurs when tasks share a resource. For example, multiple tasks may

execute on the same processor, or tasks may require exclusive access to a shared data area.

Typically a deadline is specified for a task to indicate the latest time it is expected to com-

plete its execution, since its dispatch. In essence, the deadline represents the worst-case sum

of processing time and preemption time.

 communication latency the amount of time it takes for a signal to travel between applica-

tion components. This latency may be the time for a signal to physically travel between de-

vices or for data and events to be transmitted via shared memory, a bus, or network. It in-

cludes overhead imposed by protocols used to perform the transfer and delay due to resource

contention.

 sampling latency the time delay due to a task reading its input and performing its compu-

tation at a specified rate. The maximum latency contribution due to sampling is the period of

the recipient.

The end-to-end flow defined in Section 5.3.1 is illustrated as a flattened model in Figure 31. Each

element of the end-to-end flow can contribute latency. The OSATE latency analysis tool calcu-

lates the worst-case end-to-end latency by first taking into account the latency within the sensor

device, which is specified as part of the flow source specification of the sensor. It then accounts

for the sensor adapter periodically sampling the sensor output (sampling latency). Then the tool

considers the sequence of immediate connections to determine the cumulative latency to be add-

ed. Next, the sampling activity of the actuator adapter is considered, and, finally, the latency of

the heater switch actuator is added in. If this worst-case end-to-end latency exceeds the expected

latency, the analysis tool provides an error message as illustrated in Figure 32. Note that illustra-

tive values were used for this model and the results are not indicative of the results for any exist-

ing MDS implementation.

36 | CMU/SEI-2010-TR-003

Figure 31: Flattened End-to-end Flow Model

Figure 32: Representative Flow Analysis Output with a Specification Violation

The flow latency analysis capability of the OSATE toolset can be used to investigate the impact

on the end-to-end latency of ground-to-flight system migration and vice versa. It can be extended

to investigate whether critical flows that are sensitive to latency variation can handle the latency

jitter inherent in the particular implementation of the embedded system (see Section 5.3.5).

5.3.5 Analysis of Latency Jitter

Control systems are modeled as continuous time systems and then transformed into discrete time

systems. In discrete time systems, the tasks of a control system are performed at known discrete

time intervals (frames). In that context, there are the following types of interaction between tasks:

 mid-frame communication (i.e., the output of one task is made available to another task in

the same frame)

 phase-delayed (i.e., the output of a task is available to a task, possibly the same task, at the

next frame)

37 | CMU/SEI-2010-TR-003

 sampled (i.e., a task reads its input at a specified rate independent of the rate of the task

whose output is used as input)

In a control system where tasks execute periodically, a periodic task samples its input stream de-

terministically if it performs mid-frame or phase-delayed communication. If tasks execute at dif-

ferent rates, however, over- or under-sampling occurs. Mid-frame and phase-delayed communica-

tion guarantees that a task consistently over- or under-samples deterministically. For example, if

the rates of two communicating tasks are harmonic (i.e., one is twice of the other), then the reci-

pient processes every second element in the data stream.

Figure 33: Frame-Level Latency Jitter

However, if deterministic communication between these tasks is not guaranteed, frame-level jitter

in latency occurs. For example, if the communication occurs through shared variables and tasks

are scheduled preemptively, then the write and read order to those variables is not guaranteed. In

this example, the effect is that sampling of the data stream may vary by as much as two frames

(see Figure 33).

Deterministic data streaming is important to control systems, as any non-determinism in sam-

pling adds variation to latency and age of data. This variation is in units of frames (the period

of the sampling task) and can impact the performance and stability of the control algorithm.

38 | CMU/SEI-2010-TR-003

39 | CMU/SEI-2010-TR-003

6 Plan Execution and Service Levels

As discussed in Section 2.4, the MDS architecture has a planning layer. This layer has a

 Goal Planner component that is responsible for producing a goal network representation of a

mission plan

 Goal Executive that is responsible for achieving the executable goals (xgoals) expressed in

the goal network by requesting services of different levels from each of the components in

the control layer

 Goal Monitor component that is responsible for determining when goals are reached and

when it is not feasible to reach a goal and replanning may be necessary

In this section, we focus on how to represent the different levels of service at the control layer and

how the xgoals are communicated by the planning layer to the control layer. Effectively, the plan-

ning layer determines the workload generated by the control layer on the computer platform. In

Section 7, we will discuss how goal failure management is mapped into an AADL model repre-

sentation.

6.1 Modeling of XGoal Execution

Components in the control layer execute periodically to provide feedback control, in order for the

system under control to reach a desired goal state. The control system may have algorithms that

can handle different operational conditions. One form is a hybrid control system that applies dif-

ferent continuous control algorithms in different physical state regions. Variants of control algo-

rithms may provide different levels of precision in managing the controlled system at the cost of

various demands on the computing resources.

In the case of the MDS, the planning layer may ask a control system to be in one of two opera-

tional modes: (1) standby, which requires minimal computer resources, or (2) actively driving the

system under control to a desired goal state. In our example, the heater controller may be asked to

get the camera to be at a certain temperature before it can be used for recording images. Figure 34

illustrates such a goal network for the camera system.

In this scenario, the threads are executing periodically and are informed of new desired state. We

can make use of the AADL mode concept to represent the fact that at different times threads

should run different variants of algorithms or be in standby, consuming different amounts of ex-

ecution time in each mode.

Mode-specific property values for Compute_Entry_Point can be used to indicate what source

code function is to be called in each mode. Specification of computational behavior for each mode

can be added through annex subclauses using the AADL Behavior Annex, designed specifically

for control system specifications, or a submodel expressed in an existing modeling notation such

as Simulink and associated with the AADL model through the Source_Text property.

Mode-specific property values for Compute_Execution_Time are used to record different resource

requirements on the processor. In the next section, we will discuss how this information can be

40 | CMU/SEI-2010-TR-003

used to perform workload and scheduling analysis specific to a goal network. Such mode-specific

analysis will produce higher fidelity processor resource and scheduling results.

Mode transition conditions can be specified in terms of trigger events such as the arrival on an

event port or event data port. By default, the arrival event results in initiating the mode transition

at the next hyper period of threads involved in the mode transition.

Figure 34: Scheduled Goal Network Drives Control Layer Execution

In our scenario, the supervisor informs the task about the desired level of service, independent of

the current level of service. In other words, it sends requests of the form “goto mode x with xgoal

parameter y” through separate event data ports. In order to support such behavior, the mode state

machine must have a transition from every mode to every mode. In this implementation, we as-

sume that requests for mode transitions do not occur at a higher rate than the rate of execution of

the threads. Otherwise, mode transition requests may get lost.

A more intuitive interpretation of modes at the thread level is that they represent different execu-

tion sequences based on different input from ports. If desired, we can use the Behavior Annex of

AADL to specify the conditions under which alternative execution sequences are taken, based on

the value of the incoming goal. Use of the annex leads to the view that the supervisor provides the

desired goal to the thread as a data value, and only the most recent value is relevant. The supervi-

sor thus communicates the desired goal through a data port. If goal delivery occurs over a network

whose protocol does not guarantee delivery, it may be desirable to resend such goals periodically

to ensure that the control layer responds to the request even under transient delivery fault condi-

tions.

41 | CMU/SEI-2010-TR-003

6.2 Goal Network-Based Workload Analysis

During the goal network planning process, the goal network is elaborated into subgoals, and goal

subnets are merged. Goals in a goal network have constraints on time and on both desired state

values and observed state values (state estimates). Constraints help identify whether goals are

reachable and which of multiple alternative tactics to use to reach a goal. As the goal network is

elaborated into a scheduled goal network, it is checked for inconsistency. A verification procedure

for such goal networks is discussed in Braman [Braman 2007].

The workload of the set of tasks at the control layer is determined by the set of threads that are

active and the mode that each thread operates in. In our model, we do not disable and enable indi-

vidual control layer threads through modes at the enclosing process. Therefore, all control layer

threads are active, but may operate at different modes at different times, resulting in different ex-

ecution time demands.

As part of an instance model, AADL records the set of System Operation Modes (SOM) that are

feasible in the given system. An SOM is the set of current modes of all modal components in the

instance model. In our case, an SOM is the set of current modes of all control layer threads at any

given point in time, plus any other threads with modes in the system. Examples of other threads

are the threads at the planning layer performing goal planning, goal execution, and goal monitor-

ing (see Section 7.1 for details). In this section, we focus on determining the feasible current mode

combinations of the control layer threads based on a scheduled goal network.

Given a set of SOMs in an instance model, the OSATE tool set supports the traversal of the in-

stance model for each of the SOMs to drive an analysis in such a way that the analysis tool can be

ignorant of the SOMs. In other words, the instance model is traversed visiting only those compo-

nent and connection instances that are active according to the selected SOM, and property values

that apply to the currently selected SOM are passed to the analysis tool. This action is the case for

the resource budget analysis and the scheduling analysis plug-ins available as part of the default

configuration of OSATE.

We can determine the service levels (i.e., the modes) of the control layer threads from the goal

network in a manner that is similar to the algorithm used in building and verifying a scheduled

goal network [Braman 2007, Bennett 2006]. By default, the control layer threads are operating in

standby mode. By “walking” the goal network in a simulated execution, we determine all threads

that receive a non-standby xgoal (i.e., a non-standby mode). First, we determine the initial set of

xgoals (SOM) that are to be executed concurrently by identifying those goal states in the goal

network that do not have any ancestors. Given this starting set, we traverse the goal network. For

each successor goal state that is independent of other goal states, we get a new SOM by updating

the current mode in the SOM for the thread(s) whose xgoals change. As we encounter time-

coordinated goal states, we update the current modes of all threads, whose xgoals change across

the coordinated goal states. As we encounter alternative tactics in the form of alternative branches

out of a goal state, we elaborate each alternative separately in determining the next SOM. The list

of feasible SOMs is maintained as a unique list (i.e., we need to consider each different SOM only

once in our workload analysis).

The result of a workload analysis across all feasible SOMs allows us to determine the maximum

workload while the system is still schedulable. We can apply this analysis before and during a

42 | CMU/SEI-2010-TR-003

mission. Before a mission, we can use this analysis on a set of planned mission scenarios to de-

termine an appropriately dimensioned computer platform with sufficient margin. We can perform

this analysis before committing the goal network to the goal executive. If the goal network is not

schedulable in terms of processor utilization we would have to consider replanning. Finally, we

can use the result of the analysis to determine the lowest processor speed to meet the timing re-

quirement while reducing power consumption by the computer hardware. Different processor

speeds are modeled as different modes of the processor, either as a preconfigured speed deter-

mined by the hardware or as a variable set of speeds determined by the analysis. As it is transi-

tioning through the goal network, the goal executive can initiate the appropriate processor mode

in the same way it initiates different thread modes by sending appropriate xgoals. We plan to

develop a prototype implementation of this algorithm based on the goal network representation

and algorithms used in the MDS and have received access to the code from the JPL.

.

43 | CMU/SEI-2010-TR-003

7 Goal Failure Management

In this section, we present analyses of an implementation of the MDS architecture for an example

rover wheel control system taken from session four of the MDS tutorials developed at JPL [Ben-

nett 2006]. This example rover contains six independently powered wheels as shown in Figure 35.

For these analyses, we model an MDS software implementation that is executing on a single-

processor, single-core computer platform. The analyses include AADL models of the scheduling

impacts of goal failures on the goal elaboration and controller functions. Note that values used in

the example are illustrative and should not be taken as representative of any existing MDS im-

plementation.

Figure 35: Rover Wheel Example

7.1 Integral Fault Protection with AADL Modes

In this section, we present an analysis of the scheduling and load impact of the MDS integral fault

protection. The MDS control system functions are shown in Figure 3 on page 7. Faults are de-

tected within the Goal Execute and Monitor software when a goal or goals are not achieved or

when a still-satisfiable goal condition is violated. The response of the system to these situations is

the re-elaboration of the system’s goal network.

Wheel 5

Wheel 2Wheel 4Wheel 6

Wheel 3 Wheel 1

Drive

Thread

Steer

Thread
Drive

Thread
Drive

Thread

Drive

Thread

Drive

Thread

Drive

Thread

Steer

Thread

Pilot Thread
Rover Position

& Heading

State Variables

MDS Rover Example

goals
goals

goals
goals goals

goals goals

goals

44 | CMU/SEI-2010-TR-003

7.1.1 Re-elaboration

In our model, we represent the Goal Executive & Monitor and the Goal Elaboration & Re-

elaboration functions as two threads. This is represented in the model as modes of the MDS con-

trol system. In the nominal mode, the goal executive and goal monitor are performing their plan

execution function by comparing the observations from the state estimation against the conditions

in the goal network and by providing setpoints to the state control with given execution times,

while the goal planner (shown as Goal Elaboration in the figures below) is relatively idle. We

have introduced a goal failure mode and a macro goal failure mode. In each of them, the goal

planner has to perform replanning—expending a different amount of effort in each. Similarly, the

goal monitor and goal executive expend a little more effort in order to deal with the situation until

a revised plan is available.

Table 2 presents the execution times of the monitoring and elaboration threads impacted by goal

failure. In this table, we include longer execution times for a macro-goal failure. Note that these

values are illustrative and should not be taken as representative of any existing rover implementa-

tion.

Table 2: Illustrative Thread Execution Times for Re-Elaboration

Thread / Thread Group Mode Lower Bound (ms) Upper Bound (ms)

Goal Elaboration nominal 1 1

Goal Elaboration goal_failure 3 5

Goal Elaboration macro_goal_failure 7 9

Goal Executive Monitor nominal 2 3

Goal Executive Monitor goal_failure 2 4

Goal Executive Monitor macro_goal_failure 2 7

Figure 36 presents the AADL text that declares the three modes {nominal, goal_fail, and ma-

cro_goal_fail} for the control system and the alternative execution times for the Goal Elaboration

& Re-elaboration and Goal Executive & Monitor threads. These are contained property associa-

tions declarations within the MDSControlSystem process. The MDSControlSystem includes all of

the threads as distinct thread groups for the MDS control. For example, the elaborator thread

group contains the Goal_Elaboration_Thread whose execution time changes with a mode change

(i.e., 3 Ms .. 5 Ms in the goal_fail mode).

modes

 nominal: initial mode ;

 goal_fail: mode ;

 macro_goal_fail: mode ;

 properties

 AADL_Properties::Compute_Execution_Time => 1 Ms .. 1 Ms ap-

plies to elaborator.Goal_Elaboration_Thread in modes (nominal);

 AADL_Properties::Compute_Execution_Time => 3 Ms .. 5 Ms ap-

plies to elaborator.Goal_Elaboration_Thread in modes (goal_fail);

 AADL_Properties::Compute_Execution_Time => 7 Ms .. 9 Ms ap-

plies to elaborator.Goal_Elaboration_Thread in modes (ma-

cro_goal_fail);

45 | CMU/SEI-2010-TR-003

 AADL_Properties::Compute_Execution_Time => 2 Ms .. 3 Ms ap-

plies to Goal_Executive_Monitor.Goal_Executive_Monitor_Thread in

modes (nominal);

 AADL_Properties::Compute_Execution_Time => 2 Ms .. 4 Ms ap-

plies to Goal_Executive_Monitor.Goal_Executive_Monitor_Thread

in modes (goal_fail);

 AADL_Properties::Compute_Execution_Time => 2 Ms .. 7 Ms ap-

plies to Goal_Executive_Monitor.Goal_Executive_Monitor_Thread

in modes (macro_goal_fail);

Figure 36: AADL Text of Mode Configurations

Our analysis assesses the computational burden using the capabilities provided by an OSATE

plug-in that can bind threads to processors and determine the schedulability of a configuration.

The results of the analysis for each of the modes involved in re-elaboration are presented in Fig-

ure 37. The total load includes all of the threads involved in the control system. For this illustra-

tive example, the load increase for a macro goal failure almost consumes the available single pro-

cessor computational resource.

Nominal Mode Results

Goal Failure Mode Results

Macro Goal Failure Results

Figure 37: Scheduling Analysis Results

46 | CMU/SEI-2010-TR-003

Table 3 presents an analysis view report example that might be generated for this analysis effort.

This report is an artifact produced using the model-based analysis process described in A Practice

Framework for Model-Based Analysis Using the Architecture Analysis and Design Language

(AADL) [NASA IV&V 2009].

47 | CMU/SEI-2010-TR-003

Table 3: Complete Analysis View Report

View Identifier: Rover Schedulability-1 Analyses: Using execution properties, assess

the schedulability of the MDS system with the

experiments and in the three modes {nomin-

al:1, goal failure:2, macro goal failure:3}.

Process Identifier (optional):

Scope: The complete rover system

Perspective: Use system process, thread group, and thread com-

ponents. Include all relevant scheduling properties.

Constraints: Include only rover processes.

Specific Guidelines: Extract useful items from existing models.

Use MDS reference architecture for the MDS system components.

Model File Name (*.aadl or *.aaxl): Rover_Goal_Failure_Model.aadl

Results

Analysis ID Expected Results Actual Results Assessment and Action(s)

1 Load <= 100% Load = 83% Consistent with required design margin of 10%

2 Load <= 100% Load = 90%
Just meets required design margin of 10%; a re-

evaluation of the system should be considered.

3 Load <= 100% Load = 99%
Exceeds required design margin of 10%; a re-

evaluation of the system should be conducted.

7.1.2 Controller Reconfiguration

In this section, we investigate the impact of a new goal network on the controller functions for the

rover example shown in Figure 35. The controller functions affected by the goal network restruc-

turing are those for the wheels. These are modeled as threads: a heading-steering thread, two

steering threads, and six drive threads within a controller thread group. For this example, we as-

sume good, fair, and poor health states exist and that the new goal network is elaborated upon a

change in the health state. The three health states definitions are those found in Braman [Braman

2007].

In the model, once a new goal network has been elaborated, the elaboration and monitoring func-

tions return to their nominal mode. The controller computational changes in response to the newly

elaborated goal network are represented by increases in execution frequency and execution times

of the controller threads as health degrades (e.g., representing an assumption that threads must run

additional models to compensate for less information or resources). These values are summarized

in Table 4.

Table 4: Execution Properties for System Health Modes

System Health (controller mode) Units: milliseconds

Good Fair Poor

Heading Steering Period 100 95 90

Heading Steering Computation Time 2 .. 3 5 .. 8 8 .. 10

Wheel Period 100 95 90

Wheel {One, Two} Steer Computation Time 2 .. 5 2 .. 6 5 .. 7

Wheel {One, Two} Drive Period 1 .. 2 2 .. 3 3 .. 6

Wheel {Three, Four, Five, Six} Drive Computation Time 1 .. 2 2 .. 3 3 .. 5

System Load 68% 84% 106%

To model and analyze the impact of a new goal network, we use AADL modes and mode-

dependent property associations for the rover wheel controller thread group. Figure 38 presents an

excerpted AADL model of the controller thread group. The excerpted model shows only the sub-

components, health modes, and a few of the mode-dependent property associations for the con-

troller thread group.

48 | CMU/SEI-2010-TR-003

The results of the analysis of this illustrative example are shown in the last row of Table 4. Again,

these values should not be taken as representative of any existing rover implementation. They are

used to illustrate that mode-dependent modeling and early analysis of fault response behavior can

identify potential problems with a proposed implementation.

 thread group implementation controller.basic

 extends MDS_Software::control.basic

 subcomponents

 Heading_Steering_Thread: thread head_steer_controller.rover;

 Wheel_One_Steer_Thread: thread steer.wheel;

 Wheel_Two_Steer_Thread: thread steer.wheel;

 Wheel_One_Drive_Thread: thread drive.wheel;

 Wheel_Two_Drive_Thread: thread drive.wheel;

 Wheel_Three_Drive_Thread: thread drive.wheel;

 Wheel_Four_Drive_Thread: thread drive.wheel;

 Wheel_Five_Drive_Thread: thread drive.wheel;

 Wheel_Six_Drive_Thread: thread drive.wheel;

 Heading_Sem: data Semaphore.Steering;

 Driving_Sem: data Semaphore.Driving;

....

 modes

 good: initial mode ;

 fair: mode ;

 poor: mode ;

 properties

 AADL_Properties::Compute_Execution_Time => 2 Ms .. 3 Ms ap-

plies to Heading_Steering_Thread in modes (good);

 AADL_Properties::Compute_Execution_Time => 5 Ms .. 8 Ms ap-

plies to Heading_Steering_Thread in modes (fair);

 AADL_Properties::Compute_Execution_Time => 8 Ms .. 10 Ms ap-

plies to Heading_Steering_Thread in modes (poor);

 AADL_Properties::Compute_Execution_Time => 2 Ms .. 5 Ms ap-

plies to Wheel_One_Steer_Thread in modes (good);

 AADL_Properties::Compute_Execution_Time => 2 Ms .. 6 Ms ap-

plies to Wheel_One_Steer_Thread in modes (fair);

 AADL_Properties::Compute_Execution_Time => 5 Ms .. 7 Ms ap-

plies to Wheel_One_Steer_Thread in modes (poor);

 AADL_Properties::Compute_Execution_Time => 2 Ms .. 5 Ms ap-

plies to Wheel_Two_Steer_Thread in modes (good);

 AADL_Properties::Compute_Execution_Time => 2 Ms .. 6 Ms ap-

plies to Wheel_Two_Steer_Thread in modes (fair);

 AADL_Properties::Compute_Execution_Time => 5 Ms .. 7 Ms ap-

plies to Wheel_Two_Steer_Thread in modes (poor);

Figure 38: Rover Wheel Controller Thread Group

7.1.3 Fault Management and the AADL

Through this example, we demonstrate the use of AADL modes to represent goal network re-

elaboration and controller reconfigurations resulting from a re-elaborated network. This approach

can be used early in the development effort to assess the load of fault management on computa-

tion resources. The results of these analyses can provide a foundation for tradeoff assessments in

modifying existing designs and defining alternative implementations. As part of a software assur-

49 | CMU/SEI-2010-TR-003

ance practice, these analyses can identify potential problems in an existing design or implementa-

tion.

50 | CMU/SEI-2010-TR-003

8 Summary

In this case study investigation, we have demonstrated that the AADL can

 effectively model MDS top-level constructs (e.g., hardware adapters, separation of estima-

tion and control, the layering of planning and control)

 effectively represent the MDS reference architecture and support an instantiation of this ar-

chitecture for an example system

 address key MDS architectural themes (e.g., state-based closed loop control, separation of

estimation from control and data management from data transport, ground-to-flight migra-

tion)

 provide a foundation for the analysis of critical MDS performance elements and system as-

surance concerns (e.g., latency, task scheduling, integral fault protection)

In addition, we identified critical areas of the MDS architecture for which AADL models and ana-

lyses may provide an effective basis for predicting critical architecture properties and defining

adaptation guidelines. Most of these issues have been detailed in other sections of this report. In

the remainder of this section, we highlight the application of AADL modeling and analysis to ad-

dress the issues of handling state variables in the application model, investigating flow latency

and latency variation, determining the workload generated by a goal network on the processor

resource in the computer platform, and modeling integral fault protection.

8.1 State Variables in the Application Model

The MDS treats state variable and goals data as separate entities in the architecture, as shown in

Figure 2 on page 7. This may suggest that the state variable and goals data can be represented as a

data component(s) accessed by other components and software tasks.

Within AADL, a flow-oriented model can be developed. In this representation, data flow is

represented by data connections and flow specifications. We have included an explicit representa-

tion of value histories, reflecting the ownership of measurement and command histories by the

hardware adapters of the system under control.

This flow-oriented model separates concerns of information flow from the concerns of data trans-

fer and data control. Furthermore, MDS utilizes data state variables as a key concept to represent

meta-data about estimated, intended, and projected state.

8.2 Flow Latency Analysis and Latency Variation

We have demonstrated the AADL capability for modeling end-to-end flows and utilizing this ca-

pability to perform flow latency analysis. The MDS architecture includes state effects models that

reflect the expected data flow from measurements to estimated states, to derived states, and to

controllers determining commands. Sensors and actuators may operate at various rates, resulting

in a control system whose control components have different rate requirements.

51 | CMU/SEI-2010-TR-003

It has been shown in avionics systems that the use of preemptive fixed priority scheduling, when

combined with state communication through shared variables, can result in unexpected latency

jitter due to variation in workload that induces instability in the control behavior. This may be the

case for Rate Monotonic Analysis (RMA) or other scheduling schemes that do not operate on a

static time line and can be particularly problematic when state information is kept in a shared data

area.

The AADL flow specification capability and the flow latency analysis framework developed by

the SEI provide the opportunity to analytically compare latency improvements. This comparison

can be especially valuable when

 migrating planning and control capabilities from the ground to the flight system

 investigating the potential risks due to the impact of rate group optimization of threads

 assessing the impact of distributing the execution of threads across multiple cores of multi-

core processor chips

8.3 Goal Networks and Workload Analysis

We have illustrated how AADL can be used to develop task-level architecture models of MDS.

AADL modes can be used to capture the dynamics of MDS systems, such as the executive of the

mission plan (goal network) driving the workload by setting goals for the control layer of MDS.

These goals cause the different estimators and controllers to operate in different modes, generat-

ing a different resource demand under each mode. We have shown how to map the execution of

MDS goal networks into modal AADL representations and then calculate mode-specific work-

loads.

8.4 Integral Fault Protection

We have illustrated the potential value of the AADL in representing and analyzing integral fault

protection. Specifically, we demonstrated how the goal-oriented task planning and execution ap-

proach, used as realization of integral fault protection, can be mapped into AADL capabilities for

capturing runtime architecture dynamics. Specifically, we modeled goal planning and monitoring

functions in the presence of failures using AADL modal modeling and analysis—assessing per-

formance issues in restructuring and executing goal networks in response to a goal failure.

52 | CMU/SEI-2010-TR-003

Appendix AADL Textual Representations

MDS REFERENCE ARCHITECTURE

Figure 39 (below and on the next 9 pages) is a listing of an AADL textual model of the MDS.

property set RateGroups is

 RateGroups : type enumeration (EstimatorRategroup,

 ControllerRateGroup, PlanExecutionRateGroup,

 PlanningRateGroup, HWARateGroup);

 AssignedRateGroup : inherit RateGroups::RateGroups

 applies to (thread, thread group, process, sys-

tem);

end RateGroups;

package MDSData

public

 -- the port groups will get refined for a MDS instance

 -- they will contain specific data ports

 port group SensorReadingsOut

 features

 end SensorReadingsOut;

 port group SensorReadingsIn

 inverse of SensorReadingsOut

 end SensorReadingsIn;

 port group MeasurementsOut

 features

 end MeasurementsOut;

 port group MeasurementsIn

 inverse of MeasurementsOut

 end MeasurementsIn;

 port group StateEstimatesOut

 features

 end StateEstimatesOut;

 port group StateEstimatesIn

 inverse of StateEstimatesOut

 end StateEstimatesIn;

 port group XgoalsOut

 features

 end XgoalsOut;

 port group XgoalsIn

 inverse of XgoalsOut

 end XgoalsIn;

 port group CommandsOut

 features

 end CommandsOut;

53 | CMU/SEI-2010-TR-003

 port group CommandsIn

 inverse of CommandsOut

 end CommandsIn;

 port group RawCommandsOut

 features

 end RawCommandsOut;

 port group RawCommandsIn

 inverse of RawCommandsOut

 end RawCommandsIn;

 data XGoalsTimeLine

 end XGoalsTimeLine;

 data MissionGoals

 end MissionGoals;

end MDSData;

package ValueHistories

 public

 -- this thread group represents the subsystem managing mea-

surement histories

 -- It contains the measurement history store objects and

threads to log and retrieve

 -- the measurements and their history.

 thread group MeasurementHistories

 features

 MeasurementHistory: port group MeasurementHistory;

 Measurements: port group MDSData::MeasurementsIn;

 end MeasurementHistories;

 thread group implementation MeasurementHistories.template

 -- these are to be declared for each measurement

 -- in subcomponents

 -- tempHistory: thread group HistoryTemplate.basic;

 -- connections

 -- tempvalueconn: data port Measurements.tempval -> tempHis-

tory.datavalue;

 -- temphistoryconn: data port tempHistory.ValueHistoryOut ->

MeasurementHistory.temphistory;

 end MeasurementHistories.template;

 -- this template is used to create instances of history stores

and the access methods

 thread group HistoryTemplate

 features

 datavalue : in data port;

 valuehistory: out data port;

 end HistoryTemplate;

 thread group implementation HistoryTemplate.basic

 subcomponents

 Logger: thread HistoryLogger;

 Retriever: thread HistoryRetriever;

 History: data ValueHistoryStore;

54 | CMU/SEI-2010-TR-003

 connections

 valueconn: data port datavalue -> logger.datavalue;

 historystoreconn1: data access History -> log-

ger.ValueHistory;

 historyconn: data port retriever.ValueHistoryOut ->

 valuehistory;

 historystoreconn2: data access History ->

 retriever.ValueHistory;

 end HistoryTemplate.basic;

 thread group CommandHistories

 features

 CommandHistory: port group CommandHistory;

 Commands: port group MDSData::CommandsIn;

 end CommandHistories;

 thread group implementation CommandHistories.template

 -- see above

 end CommandHistories.template;

 thread group EstimationHistories

 features

 EstimateHistory: port group EstimateHistory;

 Estimates: port group MDSData::StateEstimatesIn;

 end EstimationHistories;

 thread group implementation EstimationHistories.template

 -- see above

 end EstimationHistories.template;

 thread HistoryLogger

 features

 ValueHistory: requires data access

 ValueHistories::ValueHistoryStore;

 datavalue: in data port;

 end HistoryLogger;

 thread HistoryRetriever

 features

 ValueHistory: requires data access

 ValueHistories::ValueHistoryStore;

 ValueHistoryOut: out data port;

 end HistoryRetriever;

 data ValueHistoryStore

 end ValueHistoryStore;

 -- the next port groups represent the features that provide access

to histories

 -- through ports

 port group MeasurementHistory

 features

55 | CMU/SEI-2010-TR-003

 end MeasurementHistory;

 port group MeasurementHistoryInv

 inverse of MeasurementHistory

 end MeasurementHistoryInv;

 port group CommandHistory

 features

 end CommandHistory;

 port group CommandHistoryInv

 inverse of CommandHistory

 end CommandHistoryInv;

 port group EstimateHistory

 features

 end EstimateHistory;

 port group EstimateHistoryInv

 inverse of EstimateHistory

 end EstimateHistoryInv;

end ValueHistories;

package SystemUnderControl

public

 system SystemUnderControl

 features

 MeasurementsOut: port group MDSData::MeasurementsOut;

 CommandsIn: port group MDSData::CommandsIn;

 CommandHistoryOut: port group ValueHistories::CommandHistory;

 DeviceBus: requires bus access ExecutionHardware::DeviceBus;

 MeasurementHistoryout: port group

 ValueHistories::MeasurementHistory;

 end SystemUnderControl;

 -- The implementation will be refined for a MDS instance

 -- It will contain the actual sensor and actuator devices

 system implementation SystemUnderControl.basic

 subcomponents

 HardwareAdapters: process

 HardwareAdapters::HardwareAdapters.basic;

 PhysicalSystem: system PhysicalPlant;

 connections

 BusAccessConnection1: bus access DeviceBus ->

 PhysicalSystem.DeviceBus;

 PortGroupConnection1: port group HardwareAdap-

ters.RawCommandsOut

 -> PhysicalSystem.RawCommandsIn;

 PortGroupConnection2: port group

 PhysicalSystem.RawMeasurementsOut ->

 HardwareAdapters.RawReadingsIn;

 PortGroupConnection3: port group CommandsIn ->

 HardwareAdapters.CommandsIn;

 PortGroupConnection4: port group HardwareAdap-

ters.MeasurementsOut

 -> MeasurementsOut;

56 | CMU/SEI-2010-TR-003

 PortGroupConnection5: port group

 HardwareAdapters.CommandHistoryOut -> CommandHistoryOut;

 PortGroupConnection6: port group

 HardwareAdapters.MeasurementHistoryOut ->

 MeasurementHistoryout;

 end SystemUnderControl.basic;

 system PhysicalPlant

 features

 RawCommandsIn: port group MDSData::RawCommandsIn;

 RawMeasurementsOut: port group MDSData::SensorReadingsOut;

 DeviceBus: requires bus access ExecutionHardware::DeviceBus;

 end PhysicalPlant;

end SystemUnderControl;

package ExecutionHardware

public

 system MDSHardware

 features

 DeviceBus: provides bus access DeviceBus;

 end MDSHardware;

 -- The implementation will be refined for a MDS instance

 -- It will contain the actual processor and network configuration

 system implementation MDSHardware.basic

 end MDSHardware.basic;

 bus DeviceBus

 end DeviceBus;

end ExecutionHardware;

package HardwareAdapters

public

 process HardwareAdapters

 features

 RawReadingsIn: port group MDSData::SensorReadingsIn;

 MeasurementsOut: port group MDSData::MeasurementsOut;

 MeasurementHistoryOut: port group

 ValueHistories::MeasurementHistory;

 CommandsIn: port group MDSData::CommandsIn;

 CommandHistoryOut: port group ValueHistories::CommandHistory;

 RawCommandsOut: port group MDSData::RawCommandsOut;

 end HardwareAdapters;

 process implementation HardwareAdapters.basic

 subcomponents

 MeasurementHistory: thread group

 ValueHistories::MeasurementHistories;

 SensorAdapters: thread group SensorAdapters;

 CommandStateHistory: thread group

 ValueHistories::CommandHistories;

 ActuatorAdapters: thread group ActuatorAdapters;

 connections

 MeasurementHistoryConn1: port group

 MeasurementHistory.MeasurementHistory -> MeasurementHisto-

ryOut;

 MeasurementConn1: port group SensorAdapters.MeasurementsOut ->

57 | CMU/SEI-2010-TR-003

 MeasurementHistory.Measurements;

 MeasurementConn2: port group SensorAdapters.MeasurementsOut ->

 MeasurementsOut;

 MeasurementConn3: port group RawReadingsIn ->

 SensorAdapters.RawReadingsIn;

 CommandHistoryConn2: port group

 CommandStateHistory.CommandHistory -> CommandHistoryOut;

 CommandConn1: port group CommandsIn ->

 CommandStateHistory.Commands;

 CommandConn2: port group ActuatorAdapters.RawCommandsOut ->

 RawCommandsOut;

 CommandConn3: port group CommandsIn ->

 ActuatorAdapters.CommandsIn;

 end HardwareAdapters.basic;

 thread group SensorAdapters

 features

 MeasurementsOut: port group MDSData::MeasurementsOut;

 RawReadingsIn: port group MDSData::SensorReadingsIn;

 end SensorAdapters;

 thread group implementation SensorAdapters.basic

 end SensorAdapters.basic;

 thread group ActuatorAdapters

 features

 CommandsIn: port group MDSData::CommandsIn;

 RawCommandsOut: port group MDSData::RawCommandsOut;

 end ActuatorAdapters;

 thread group implementation ActuatorAdapters.basic

 end ActuatorAdapters.basic;

end HardwareAdapters;

package ControlSoftware

public

 -- this type is refined for a MDS instance by refining the

 -- classifiers of the features to be instance specific

 thread group controller

 features

 StateEstimatesIn: port group MDSData::StateEstimatesIn;

 EstimateHistoryIn: port group ValueHisto-

ries::EstimateHistoryInv;

 ControlGoalsIn: port group MDSData::XgoalsIn;

 CommandsOut: port group MDSData::CommandsOut;

 end controller;

 thread group implementation controller.basic

 end controller.basic;

 -- see comments regarding the controller

 thread group estimator

 features

 StateEstimatesOut: port group MDSData::StateEstimatesOut;

 MeasurementsIn: port group MDSData::MeasurementsIn;

 CommandsIn: port group MDSData::CommandsIn;

 EstimateHistoryOut: port group ValueHisto-

58 | CMU/SEI-2010-TR-003

ries::EstimateHistory;

 CommandHistoryIn: port group ValueHisto-

ries::CommandHistoryInv;

 XGoalsIn: port group MDSData::XgoalsIn;

 end estimator;

 -- This implementation is refined for a MDS instance by refining

 -- the classifiers of the subcomponents to be instance specific

 thread group implementation estimator.basic

 subcomponents

 EstimationStateHistory: thread group

 ValueHistories::EstimationHistories;

 ActualEstimator: thread group ActualEstimator;

 connections

 EstimateHistoryConn2: port group

 EstimationStateHistory.EstimateHistory -> EstimateHisto-

ryOut;

 EstimateConn1: port group ActualEstimator.EstimatesOut ->

 EstimationStateHistory.Estimates;

 EstimateConn2: port group ActualEstimator.EstimatesOut ->

 StateEstimatesOut;

 EstimateConn3: port group MeasurementsIn ->

 ActualEstimator.MeasurementsIn;

 EstimateConn4: port group CommandsIn ->

 ActualEstimator.CommandsIn;

 EstimateConn5: port group EstimationStateHisto-

ry.EstimateHistory

 -> ActualEstimator.EstimateHistoryIn;

 EstimateConn6: port group CommandHistoryIn ->

 ActualEstimator.CommandHistoryIn;

 end estimator.basic;

 -- this type is refined for a MDS instance by refining the

 -- classifiers of the features to be instance specific

 thread group ActualEstimator

 features

 EstimatesOut: port group MDSData::StateEstimatesOut;

 MeasurementsIn: port group MDSData::MeasurementsIn;

 EstimateHistoryIn: port group ValueHisto-

ries::EstimateHistoryInv;

 CommandHistoryIn: port group ValueHisto-

ries::CommandHistoryInv;

 CommandsIn: port group MDSData::CommandsIn;

 end ActualEstimator;

 -- This process implementation is refined for a MDS instance by

 -- defining the subcomponents representing the actual estimators

incl.

 -- derived state estimators

 thread group implementation ActualEstimator.basic

 end ActualEstimator.basic;

 thread group GoalPlanner

 features

 GoalNetwork: out data port MDSData::XGoalsTimeLine;

 ReplanRequest: in event data port;

 MissionGoals: in data port MDSData::MissionGoals;

59 | CMU/SEI-2010-TR-003

 end GoalPlanner;

 thread group implementation GoalPlanner.basic

 end GoalPlanner.basic;

 thread group GoalExecutive

 features

 GoalNetwork: in data port MDSData::XGoalsTimeLine;

 XGoalsOut: port group MDSData::XgoalsOut;

 end GoalExecutive;

 thread group implementation GoalExecutive.basic

 end GoalExecutive.basic;

 thread group XGoalMonitor

 features

 XgoalsIn: port group MDSData::XgoalsIn;

 StateEstimateHistoryIn: port group ValueHisto-

ries::EstimateHistoryInv;

 replanrequest: out event data port;

 end XGoalMonitor;

 thread group OperatorConsole

 features

 replanrequest: in event data port;

 EstimateHistoryIn: port group ValueHisto-

ries::EstimateHistoryInv;

 MeasurementHistoryIn: port group

 ValueHistories::MeasurementHistoryInv;

 commandhistoryIn: port group ValueHisto-

ries::CommandHistoryInv;

 missiongoals: out data port MDSData::MissionGoals;

 end OperatorConsole;

end ControlSoftware;

package MDSControlSystem

public

 -- This process type is refined for a MDS instance by refining

 -- the classifiers of the features to be instance specific

 process MDSControlSystem

 features

 MeasurementsIn: port group MDSData::MeasurementsIn;

 CommandsOut: port group MDSData::CommandsOut;

 CommandHistoryIn: port group ValueHisto-

ries::CommandHistoryInv;

 MeasurementHistoryIn: port group

 ValueHistories::MeasurementHistoryInv;

 end MDSControlSystem;

 -- This process implementation is refined for a MDS instance by

refining

 -- the classifiers of the subcomponents to be instance specific

 process implementation MDSControlSystem.basic

 subcomponents

 GoalPlanner: thread group ControlSoftware::GoalPlanner;

 GoalExecutive: thread group ControlSoftware::GoalExecutive;

 GoalMonitor: thread group ControlSoftware::XGoalMonitor;

60 | CMU/SEI-2010-TR-003

 StateEstimation: thread group ControlSoftware::estimator;

 StateControl: thread group ControlSoftware::controller;

 OperatorConsole: thread group ControlSoft-

ware::OperatorConsole;

 connections

 Connection1: port group CommandHistoryIn ->

 StateEstimation.CommandHistoryIn;

 Connection2: port group StateEstimation.EstimateHistoryOut ->

 StateControl.EstimateHistoryIn;

 Connection3: port group MeasurementsIn ->

 StateEstimation.MeasurementsIn;

 Connection4: port group StateEstimation.StateEstimatesOut ->

 StateControl.StateEstimatesIn;

 Connection5: port group GoalExecutive.XGoalsOut ->

 StateEstimation.XGoalsIn;

 Connection6: port group GoalExecutive.XGoalsOut ->

 StateControl.ControlGoalsIn;

 Connection7: port group StateControl.CommandsOut ->

 CommandsOut;

 Connection8: port group StateControl.CommandsOut ->

 StateEstimation.CommandsIn;

 Connection9: data port GoalPlanner.GoalNetwork ->

 GoalExecutive.GoalNetwork;

 Connection10: port group StateEstimation.EstimateHistoryOut ->

 GoalMonitor.StateEstimateHistoryIn;

 Connection11: port group GoalExecutive.XGoalsOut ->

 GoalMonitor.XgoalsIn;

 Connection12: event data port GoalMonitor.replanrequest ->

 GoalPlanner.ReplanRequest;

 Connection13: event data port GoalMonitor.replanrequest ->

 OperatorConsole.replanrequest;

 Connection14: data port OperatorConsole.missiongoals ->

 GoalPlanner.MissionGoals;

 Connection15: port group StateEstimation.EstimateHistoryOut ->

 OperatorConsole.EstimateHistoryIn;

 Connection16: port group CommandHistoryIn ->

 OperatorConsole.commandhistoryIn;

 Connection17: port group MeasurementHistoryIn ->

 OperatorConsole.MeasurementHistoryIn;

 end MDSControlSystem.basic;

end MDSControlSystem;

package CompleteMDSSystem

public

 system CompleteMDSSystem

 end CompleteMDSSystem;

 -- This implementation is refined for a MDS instance by refining

 -- the classifiers of the subcomponents to be instance specific.

 -- In this refinement we can select alternative computer platforms

or bindings

 -- for the same MDS instance

 system implementation CompleteMDSSystem.basic

 subcomponents

 MDSControlSystem: process

 MDSControlSystem::MDSControlSystem.basic;

 MDSSystemUnderControl: system

61 | CMU/SEI-2010-TR-003

 SystemUnderControl::SystemUnderControl.basic;

 MDSComputePlatform: system ExecutionHard-

ware::MDSHardware.basic;

 connections

 SystemtoControllerConn1: port group

 MDSSystemUnderControl.MeasurementsOut ->

 MDSControlSystem.MeasurementsIn;

 SystemtoControllerConn2: port group

 MDSSystemUnderControl.CommandHistoryOut ->

 MDSControlSystem.CommandHistoryIn;

 ControllertoSystemConn: port group

 MDSControlSystem.CommandsOut ->

 MDSSystemUnderControl.CommandsIn;

 BusAccessConnection1: bus access MDSComputePlatform.DeviceBus

->

 MDSSystemUnderControl.DeviceBus;

 PortGroupConnection1: port group

 MDSSystemUnderControl.MeasurementHistoryout ->

 MDSControlSystem.MeasurementHistoryIn;

 end CompleteMDSSystem.basic;

end CompleteMDSSystem;

Figure 39: An AADL Textual Representation of the MDS Reference Architecture

62 | CMU/SEI-2010-TR-003

EXAMPLE ROVER CONTROLLER THREAD GROUP

 thread group implementation controller.basic

 extends MDS_Software::control.basic

 subcomponents

 Heading_Steering_Thread: thread head_steer_controller.rover;

 Wheel_One_Steer_Thread: thread steer.wheel;

 Wheel_Two_Steer_Thread: thread steer.wheel;

 Wheel_One_Drive_Thread: thread drive.wheel;

 Wheel_Two_Drive_Thread: thread drive.wheel;

 Wheel_Three_Drive_Thread: thread drive.wheel;

 Wheel_Four_Drive_Thread: thread drive.wheel;

 Wheel_Five_Drive_Thread: thread drive.wheel;

 Wheel_Six_Drive_Thread: thread drive.wheel;

 Heading_Sem: data Semaphore.Steering;

 Driving_Sem: data Semaphore.Driving;

 connections

 -- all the input connections--

 D01: data port Knowledge_In -> Head-

ing_Steering_Thread.goals_input;

 D02: data port Heading_Steering_Thread.goals_output ->

Wheel_One_Steer_Thread.goals_input;

 D03: data port Heading_Steering_Thread.goals_output ->

Wheel_Two_Steer_Thread.goals_input;

 D04: data port Heading_Steering_Thread.goals_output ->

Wheel_Three_Drive_Thread.goals_input;

 D05: data port Heading_Steering_Thread.goals_output ->

Wheel_Four_Drive_Thread.goals_input;

 D06: data port Heading_Steering_Thread.goals_output ->

Wheel_Five_Drive_Thread.goals_input;

 D07: data port Heading_Steering_Thread.goals_output ->

Wheel_Six_Drive_Thread.goals_input;

 D08: data port Heading_Steering_Thread.goals_output ->

Wheel_One_Drive_Thread.goals_input;

 D09: data port Heading_Steering_Thread.goals_output ->

Wheel_Two_Drive_Thread.goals_input;

 D11: data port Intent_In -> Heading_Steering_Thread.intent_in;

 -- all the output connections--

 D10: data port Heading_Steering_Thread.commands_out -> Com-

mands_Out;

 PG01: port group Wheel_One_Steer_Thread.commands_out -> Head-

ing_Steering_Thread.commands_in;

 PG02: port group Wheel_Two_Steer_Thread.commands_out -> Head-

ing_Steering_Thread.commands_in;

 PG03: port group Wheel_One_Drive_Thread.commands_out -> Head-

ing_Steering_Thread.commands_in;

 PG04: port group Wheel_Two_Drive_Thread.commands_out -> Head-

ing_Steering_Thread.commands_in;

 PG05: port group Wheel_Three_Drive_Thread.commands_out ->

Heading_Steering_Thread.commands_in;

 PG06: port group Wheel_Four_Drive_Thread.commands_out -> Head-

ing_Steering_Thread.commands_in;

 PG07: port group Wheel_Five_Drive_Thread.commands_out -> Head-

ing_Steering_Thread.commands_in;

 PG08: port group Wheel_Six_Drive_Thread.commands_out -> Head-

ing_Steering_Thread.commands_in;

 DA1: data access Heading_Sem.Data_Access -> Head-

63 | CMU/SEI-2010-TR-003

ing_Steering_Thread.Steer_Data_Access;

 DA2: data access Heading_Sem.Data_Access ->

Wheel_One_Steer_Thread.Steer_Data_Access;

 DA3: data access Heading_Sem.Data_Access ->

Wheel_Two_Steer_Thread.Steer_Data_Access;

 DA4: data access Driving_Sem.Data_Access -> Head-

ing_Steering_Thread.Drive_Data_Access;

 DA5: data access Driving_Sem.Data_Access ->

Wheel_One_Drive_Thread.Drive_Data_Access;

 DA6: data access Driving_Sem.Data_Access ->

Wheel_Two_Drive_Thread.Drive_Data_Access;

 DA7: data access Driving_Sem.Data_Access ->

Wheel_Three_Drive_Thread.Drive_Data_Access;

 DA8: data access Driving_Sem.Data_Access ->

Wheel_Four_Drive_Thread.Drive_Data_Access;

 DA9: data access Driving_Sem.Data_Access ->

Wheel_Five_Drive_Thread.Drive_Data_Access;

 DA10: data access Driving_Sem.Data_Access ->

Wheel_Six_Drive_Thread.Drive_Data_Access;

 modes

 good: initial mode ;

 fair: mode ;

 poor: mode ;

 properties

 AADL_Properties::Compute_Execution_Time => 2 Ms .. 3 Ms

applies to Heading_Steering_Thread in modes (good);

 AADL_Properties::Compute_Execution_Time => 5 Ms .. 8 Ms

applies to Heading_Steering_Thread in modes (fair);

 AADL_Properties::Compute_Execution_Time => 8 Ms .. 10 Ms

applies to Heading_Steering_Thread in modes (poor);

 AADL_Properties::Compute_Execution_Time => 2 Ms .. 5 Ms

applies to Wheel_One_Steer_Thread in modes (good);

 AADL_Properties::Compute_Execution_Time => 2 Ms .. 6 Ms

applies to Wheel_One_Steer_Thread in modes (fair);

 AADL_Properties::Compute_Execution_Time => 5 Ms .. 7 Ms

applies to Wheel_One_Steer_Thread in modes (poor);

 AADL_Properties::Compute_Execution_Time => 2 Ms .. 5 Ms

applies to Wheel_Two_Steer_Thread in modes (good);

 AADL_Properties::Compute_Execution_Time => 2 Ms .. 6 Ms

applies to Wheel_Two_Steer_Thread in modes (fair);

 AADL_Properties::Compute_Execution_Time => 5 Ms .. 7 Ms

applies to Wheel_Two_Steer_Thread in modes (poor);

 AADL_Properties::Compute_Execution_Time => 1 Ms .. 2 Ms

applies to Wheel_One_Drive_Thread in modes (good);

 AADL_Properties::Compute_Execution_Time => 2 Ms .. 3 Ms

applies to Wheel_One_Drive_Thread in modes (fair);

 AADL_Properties::Compute_Execution_Time => 3 Ms .. 6 Ms

applies to Wheel_One_Drive_Thread in modes (poor);

 AADL_Properties::Compute_Execution_Time => 1 Ms .. 2 Ms

applies to Wheel_Two_Drive_Thread in modes (good);

 AADL_Properties::Compute_Execution_Time => 2 Ms .. 3 Ms

applies to Wheel_Two_Drive_Thread in modes (fair);

 AADL_Properties::Compute_Execution_Time => 3 Ms .. 6 Ms

applies to Wheel_Two_Drive_Thread in modes (poor);

 AADL_Properties::Compute_Execution_Time => 1 Ms .. 2 Ms

applies to Wheel_Three_Drive_Thread in modes (good);

 AADL_Properties::Compute_Execution_Time => 2 Ms .. 3 Ms

64 | CMU/SEI-2010-TR-003

applies to Wheel_Three_Drive_Thread in modes (fair);

 AADL_Properties::Compute_Execution_Time => 3 Ms .. 5 Ms

applies to Wheel_Three_Drive_Thread in modes (poor);

 AADL_Properties::Compute_Execution_Time => 1 Ms .. 2 Ms

applies to Wheel_Four_Drive_Thread in modes (good);

 AADL_Properties::Compute_Execution_Time => 2 Ms .. 3 Ms

applies to Wheel_Four_Drive_Thread in modes (fair);

 AADL_Properties::Compute_Execution_Time => 3 Ms .. 5 Ms

applies to Wheel_Four_Drive_Thread in modes (poor);

 AADL_Properties::Compute_Execution_Time => 1 Ms .. 2 Ms

applies to Wheel_Five_Drive_Thread in modes (good);

 AADL_Properties::Compute_Execution_Time => 2 Ms .. 3 Ms

applies to Wheel_Five_Drive_Thread in modes (fair);

 AADL_Properties::Compute_Execution_Time => 3 Ms .. 5 Ms

applies to Wheel_Five_Drive_Thread in modes (poor);

 AADL_Properties::Compute_Execution_Time => 1 Ms .. 2 Ms

applies to Wheel_Six_Drive_Thread in modes (good);

 AADL_Properties::Compute_Execution_Time => 2 Ms .. 3 Ms

applies to Wheel_Six_Drive_Thread in modes (fair);

 AADL_Properties::Compute_Execution_Time => 3 Ms .. 5 Ms

applies to Wheel_Six_Drive_Thread in modes (poor);

 AADL_Properties::Period => 75 Ms applies to Head-

ing_Steering_Thread in modes (good);

 AADL_Properties::Period => 75 Ms applies to Head-

ing_Steering_Thread in modes (fair);

 AADL_Properties::Period => 75 Ms applies to Head-

ing_Steering_Thread in modes (poor);

 AADL_Properties::Period => 100 Ms applies to

Wheel_One_Steer_Thread in modes (good);

 AADL_Properties::Period => 95 Ms applies to

Wheel_One_Steer_Thread in modes (fair);

 AADL_Properties::Period => 90 Ms applies to

Wheel_One_Steer_Thread in modes (poor);

 AADL_Properties::Period => 100 Ms applies to

Wheel_Two_Steer_Thread in modes (good);

 AADL_Properties::Period => 95 Ms applies to

Wheel_Two_Steer_Thread in modes (fair);

 AADL_Properties::Period => 90 Ms applies to

Wheel_Two_Steer_Thread in modes (poor);

 AADL_Properties::Period => 100 Ms applies to

Wheel_One_Drive_Thread in modes (good);

 AADL_Properties::Period => 95 Ms applies to

Wheel_One_Drive_Thread in modes (fair);

 AADL_Properties::Period => 90 Ms applies to

Wheel_One_Drive_Thread in modes (poor);

 AADL_Properties::Period => 100 Ms applies to

Wheel_Two_Drive_Thread in modes (good);

 AADL_Properties::Period => 95 Ms applies to

Wheel_Two_Drive_Thread in modes (fair);

 AADL_Properties::Period => 90 Ms applies to

Wheel_Two_Drive_Thread in modes (poor);

 AADL_Properties::Period => 100 Ms applies to

Wheel_Three_Drive_Thread in modes (good);

 AADL_Properties::Period => 95 Ms applies to

Wheel_Three_Drive_Thread in modes (fair);

 AADL_Properties::Period => 90 Ms applies to

Wheel_Three_Drive_Thread in modes (poor);

65 | CMU/SEI-2010-TR-003

 AADL_Properties::Period => 100 Ms applies to

Wheel_Four_Drive_Thread in modes (good);

 AADL_Properties::Period => 95 Ms applies to

Wheel_Four_Drive_Thread in modes (fair);

 AADL_Properties::Period => 90 Ms applies to

Wheel_Four_Drive_Thread in modes (poor);

 AADL_Properties::Period => 100 Ms applies to

Wheel_Five_Drive_Thread in modes (good);

 AADL_Properties::Period => 95 Ms applies to

Wheel_Five_Drive_Thread in modes (fair);

 AADL_Properties::Period => 90 Ms applies to

Wheel_Five_Drive_Thread in modes (poor);

 AADL_Properties::Period => 100 Ms applies to

Wheel_Six_Drive_Thread in modes (good);

 AADL_Properties::Period => 95 Ms applies to

Wheel_Six_Drive_Thread in modes (fair);

 AADL_Properties::Period => 90 Ms applies to

Wheel_Six_Drive_Thread in modes (poor);

 end controller.basic;

Figure 40: An AADL Textual Representation of a Rover Controller Thread Group

66 | CMU/SEI-2010-TR-003

Glossary of Acronyms

Table 5 summarizes relevant acronyms for the case study and this report.

Table 5: A Summary of Acronyms

Acronym Definition

AADL Architecture Analysis and Design Language

CPU Central Processing Unit

CSV Comma-Separated Values

IV&V Independent Verification and Validation

JPL Jet Propulsion Laboratory

KW Kilowatts

KWH Kiliwatt Hour

MBE Model-Based Engineering

MDS Mission Data System

mW Milliwatts

NASA National Aeronautics and Space Administration

OSATE Open Source AADL Tool Environment

RMA Rate Monotonic Analysis

SAE Society of Automotive Engineers

SARP Software Assurance Research Program

SEI Software Engineering Institute

SLOC Source Lines of Code

SOM System Operation Mode

SV State Variable

UML Unified Modeling Language

V&V Verification and Validation

VHDL VHSIC Hardware Description Language

VHSIC Very-High-Speed Integrated Circuit

W Watts

XML Extensible Markup Language

67 | CMU/SEI-2010-TR-003

68 | CMU/SEI-2010-TR-003

References

URLs are valid as of the publication date of this document.

[Bennett 2006]

Bennett, Matthew, Dvorak, Daniel, Horvath, Greg, Ingham, Michel, Morris, Richard, Rasmussen,

Robert, & Wagner, David. State Analysis for Software Engineers Model-Based Systems and Soft-

ware Engineering. Tutorial, May 10−11, 2006, California Institute of Technology. https://pub-

lib.jpl.nasa.gov/docushare/dsweb/View/Collection-64 (2008).

[Bennett 2008]
Bennett, Matthew, Dvorak, Daniel, Hutcherson, Joseph, Ingham, Michel, Rasmussen, Robert, &

Wagner, David. An Architectural Pattern for Goal-Based Control. California Institute of Tech-

nology, March 2008. https://pub-lib.jpl.nasa.gov/docushare/dsweb/View/Collection-63

[Braman 2007]
Braman, Julia M. B., Murray, Richard M., & Ingham, Michel D. “Verification Procedure for Ge-

neralized Goal-based Control Programs. ” AIAA, Infotech Aerospace 2007 Conference and Exhi-
bit. Rohnert Park, CA (USA), May 7−10, 2007.

http://pdf.aiaa.org/preview/CDReadyMIA07_1486/PV2007_3010.pdf

[Cervin 2006]

Cervin, A., Årzén, K.-E., & Henriksson, D. “Control Loop Timing Analysis Using TrueTime and

Jitterbug,” 1194−1199. Proceedings of the 2006 IEEE Conference on Computer Aided Control

Systems Design (CACSD). Munich, Germany, October 4−6, 2006.

[Dvorak 2000]

Dvorak, Daniel, Rasmussen, Robert, Reeves, & Sacks, Allan. “Software Architecture Themes in

JPL’s Mission Data System,” 259−268, vol. 7. Proceedings of 2000 IEEE Aerospace Conference,

Big Sky, MT (USA), March 2000.

[Feiler 2007]

Feiler, P. H.& Hansson, J. Flow Latency Analysis with the Architecture Analysis and Design Lan-

guage (AADL) (CMU/SEI-2007-TN-010). Pittsburgh, PA: Software Engineering Institute, Carne-

gie Mellon University, 2007. http://www.sei.cmu.edu/library/abstracts/reports/07tn010.cfm.

[Feiler 2008]

Feiler, Peter H. & Hansson, Jörgen. “Impact of Runtime Architectures on Control System Stabili-

ty.” Proceedings of 4
th

 International Congress on Embedded Real-Time Systems (ERTS 2008).

Toulouse, France, January 2008.

[Ingham 2004]

Ingham, Michel D., Rasmussen, Robert D., Bennett, Matthew B., & Moncada, Alex C. “Engineer-

ing Complex Embedded Systems with State Analysis and the Mission Data System,” AIAA

2004−6518. AIAA 1st Intelligent Systems Technical Conference. Chicago, IL (USA), September

20-22, 2004.

https://pub-lib.jpl.nasa.gov/docushare/dsweb/View/Collection-64
https://pub-lib.jpl.nasa.gov/docushare/dsweb/View/Collection-64
https://pub-lib.jpl.nasa.gov/docushare/dsweb/View/Collection-63
http://pdf.aiaa.org/preview/CDReadyMIA07_1486/PV2007_3010.pdf
http://www.sei.cmu.edu/library/abstracts/reports/07tn010.cfm

69 | CMU/SEI-2010-TR-003

[Leveson 2004]

Leveson, Nancy. The Role of Software in Spacecraft Accidents AIAA Journal of Spacecraft and

Rockets, Vol. 41, No. 4, July 2004. http://sunnyday.mit.edu/papers/jsr.pdf

[NASA 2009]

Dvorak, Daniel L., et al. NASA Study on Flight Software Complexity. NASA Office of Chief En-

gineer Technical Excellence Program, February 2009.

http://www.nasa.gov/pdf/418878main_FSWC_Final_Report.pdf

[NASA IV&V 2009]

NASA. “Model-Based Software Assurance with the SAE Architecture Analysis and Design Lan-

guage (AADL).” NASA IV&V Facility Research Program Results and SARP Results.

http://sarpresults.ivv.nasa.gov/ViewResearch/21/156.jsp (2009).

[SAE AADL 2004/2009]

Society of Automotive Engineers (SAE). “The Architecture Analysis and Design Language

(AADL).” Society of Automotive Engineers (SAE) Standard AS-5506 (November 2004) Revised

in January 2009 as AS-5506A. http://www.sae.org/technical/standards/AS5506A.

[SAE AADL 2006]

Society of Automotive Engineers (SAE). “SAE Architecture Analysis and Design Language

(AADL) Annex Volume 1: Annex A: Graphical AADL Notation, Annex C: AADL Meta-Model

and Interchange Formats, Annex D: Language Compliance and Application Program Interface

Annex E: Error Model Annex.” Society of Automotive Engineers (SAE) Standard AS- 5506/1

(June 2006). http://www.sae.org/technical/standards/AS5506/1

[SAVI 2009]

Feiler P.H., Hansson J., de Niz D., Wrage L. “System Architecture Virtual Integration: An Indus-

trial Case Study”, Software Engineering Institute Technical Report, CMU/SEI-2009-TR-017, Nov

2009. http://www.sei.cmu.edu/library/abstracts/reports/09tr017.cfm

[SEI 2010]

Software Engineering Institute. Open Source Tools: Open Source AADL Tool Environment

(OSATE). Software Engineering Institute, Carnegie Mellon University.

http://www.sei.cmu.edu/dependability/tools/osate/ (2010). Download is available at

http://www.aadl.info/aadl/currentsite/tool/osate-down.html

http://www.nasa.gov/pdf/418878main_FSWC_Final_Report.pdf
http://sarpresults.ivv.nasa.gov/ViewResearch/21/156.jsp
http://www.sae.org/technical/standards/AS5506A
http://www.sae.org/technical/standards/AS5506/1
http://www.sei.cmu.edu/dependability/tools/osate/
http://sunnyday.mit.edu/papers/jsr.pdf
http://www.sei.cmu.edu/library/abstracts/reports/09tr017.cfm
http://www.aadl.info/aadl/currentsite/tool/osate-down.html

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

May 2010

3. REPORT TYPE AND DATES

COVERED

Final

4. TITLE AND SUBTITLE

Case Study: Model-Based Analysis of the Mission Data System Reference Architecture

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Peter H. Feiler, David Gluch, Kurt Woodham

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2010-TR-003

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

ESC-TR-2010-003

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report documents the results of applying the Architecture Analysis and Design Language (AADL) to the Mission Data System

(MDS) architecture. The work described in this case study is part of the National Aeronautics and Space Administration (NASA) Soft-

ware Assurance Research Program (SARP) research project “Model-Based Software Assurance with the SAE Architecture Analysis and

Design Language (AADL).” The report includes discussion of modeling and analyzing the MDS reference architecture and its instantia-

tion for specific platforms. In particular, it focuses on modeling aspects of state-based system behavior in MDS for quantitative analysis.

Three different types of state-based system models are considered: closed loop control, goal-oriented mission plan execution, and fault

tolerance through mission replanning. This report demonstrates modeling and analysis of the MDS reference architecture as well as in-

stantiations of the reference architecture for a specific mission system.

14. SUBJECT TERMS

Mission data system, AADL, model-based software assurance

15. NUMBER OF PAGES

82

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	Case Study: Model-Based Analysis of the Mission Data System Reference Architecture
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Executive Summary
	Abstract
	1 Introduction
	2 Mission Data System Overview
	3 AADL Model of the MDS Reference Architecture
	4 An MDS Instance
	5 Closed Loop Control System
	6 Plan Execution and Service Levels
	7 Goal Failure Management
	8 Summary
	Appendix AADL Textual Representations
	Glossary of Acronyms
	References

