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Abstract— We consider the problem of detecting events of
interest in a stochastic chemical kinetic system from the
perspective of discrete-event systems theory. We define a class of
discrete-event systems, timed stochastic automata, that is well-
suited for modeling stochastic chemical kinetics and define tA−

and tAA−diagnosability, two appropriate notions of diagnos-
ability for this class of system. We develop the construction
of a timed stochastic diagnoser that is used to provide online
updates of the probability that an event of interest has occurred
and a means for offline testing of diagnosability conditions. The
results of the paper are illustrated using a model of stochastic
gene expression.

I. INTRODUCTION

In the mass action formulation of chemical kinetics, the
evolution of the state in a reaction chamber is a deterministic
process governed by a set of non-linear differential equations.
This classical formulation breaks down when the number of
molecules of any of the reactants in the chamber is low,
as is often the case with intracellular processes [1], [2]; in
this situation, fluctuations from the mean cellular behavior
play an important role. The effects of noise and variability
inside the cell have been observed experimentally [3] and
quantitatively analyzed [4], [5].

In the standard stochastic formulation of chemical kinetics
[6], [7], the system evolves dynamically as a discrete event
process. The state of the system is defined as a vector where
each element is the number of molecules of each species in
the chamber, and events that transition the system between
states are the firings of reaction channels that correspond to
random intermolecular collisions.

To analyze stochastic chemical kinetic systems, we model
the process as a stochastic discrete-event system in the
Ramadge-Wonham framework [8]. This class of model has
been used extensively in the study of applications such as
communication systems, software verification, and industrial
processes. Recently, these models have been considered in
biological applications such as the consistency in metabolic
network representations [9].

In this paper, we consider a problem caused by the fact
that we are technologically limited in our observation of
intracellular processes. The dynamic behavior of a single cell
can be observed experimentally at multiple time points by
taking time-lapse movies [10]. In these experiments, only
a few species of interest can be measured as there are not
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enough non-interfering reporters to measure more than two
or three species at a time. There may be many events of
interest in the behavior of the system that cannot be directly
observed, such as the population of a chemical species going
above or below a certain threshold, a genetic switch (e.g.
[11]) turning on or off, a cell differentiating itself into one
of multiple phenotypes [12], and so forth. In order to draw
conclusions about the dynamic behavior of unobservable
species and the occurrence of unobservable events of interest,
we develop in this paper the concept of diagnosability for
stochastic chemical kinetic systems based on discrete-event
system theory.

In developing these concepts, we exploit the fact that
under the standard assumptions of stochastic chemical ki-
netics, the interarrival times between events are distributed
exponentially because the reaction chamber is modeled as a
continuous-time Markov process [13]. The knowledge of the
distribution of interarrival times allows for the extension of
the results on diagnosability of untimed stochastic discrete-
event systems of [14]. While prior studies of diagnosis in
discrete-event systems exploit timing information in order to
facilitate diagnoses [15], [16], [17], the models considered in
these studies are not probabilistic and thus cannot assume,
as we do in this paper, that the interarrival times between
events are distributed exponentially. Furthermore, the cited
papers do not propose conditions for diagnosability of a
timed discrete event-system. On the other hand, methods of
discrete-event diagnostics that do incorporate probabilistic
information, such as [18], [19], do not incorporate continuous
timing information into the discrete-event model.

In this paper we build upon the results of [14] to make
the following contributions. We propose a model of a timed
stochastic automaton appropriate for describing stochastic
chemical kinetic systems. We define two notions of diag-
nosability, tA- and tAA-diagnosability for this class of timed
stochastic automata. Expanding upon the approach developed
in [14], we develop a timed stochastic diagnoser to calculate
the a posteriori probability distribution given a series of
observations and we derive conditions for tA- and tAA-
diagnosability based on the structure of the timed stochastic
diagnoser. The results are illustrated with a basic model of
stochastic gene expression.

II. SYSTEM MODEL AND PRELIMINARIES

A. Timed Stochastic Automata

A timed stochastic automaton is a quadruple G =
(X ,Σ, r,π0), where X is a finite set of states, Σ is a finite
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set of events, r : X × Σ × X → R≥0 is the rate function,
and π0 is the initial probability distribution over X .

For a pair of states x, x′ and an event σ, r(x′,σ | x)
denotes the rate at which the system transitions to x′ through
the occurrence of the event σ, given that the current state is
x. For each state and event, we define the event transition
rate to be rσ,x :=

∑

x′∈X r(x′,σ | x) and we define the exit
rate of state x to be rx :=

∑

σ∈Σ rσ,x. We make the liveness
assumption that rx > 0 for all x ∈ X .

Let ε denote the empty string. The partial transition
function δ associated with G is defined recursively to be

δ(x, ε) = x

δ(x,σ) = {x′ ∈ X : r(x′,σ | x) > 0}

δ(x, sσ) = ∪x′∈δ(x,s)δ(x
′,σ),

where the last definition applies for any s ∈ Σ∗. Using δ,
we define the language generated by the state x to be

L(G, x) := {s ∈ Σ∗ : δ(x, s) %= ∅} ,

where Σ∗ denotes the Kleene-closure of Σ. The language
generated by G is

L(G) :=
⋃

x:π0(x)>0

L(G, x).

A finite sample path ω = {s, T , τ} consists of a string s =
σ1σ2 . . .σn ∈ L(G), an ascending sequence of arrival times
T = (t1, t2, . . . , tn), and a duration τ ≥ tn. We denote the
set of all finite sample paths by Ω and the finite sample path
of duration zero by 0 = {ε, ∅, 0}. We denote by {s, τ} the
set of all finite sample paths of length τ that contain the
string s, regardless of the sequence of arrival times.

The concatenation of two finite sample paths ω1 =
{s1, T1, τ1} and ω2 = {s2, T2, τ2} is defined to be ω1ω2 :=
{s1s2, (T1, τ1 + T2), τ1 + τ2}, where the notation τ1 + T2
indicates that τ1 is to be added to each element in the
sequence T2.

B. Observable events and events of interest
In this paper, we consider deterministic mask functions,

generalized versions of the projection function used in [14].
We define a set of output symbols ∆ and define an event
mask function M : Σ → (∆ ∪ {ε}). The symbol ε denotes
the null output and corresponds to no signal being observed
when an event takes place; ε is not an element of ∆. If
M(σ) = ε, then σ is unobservable and we define Σuo :=
{σ ∈ Σ : M(σ) = ε}. All other events are observable and
we define Σo := Σ \ Σuo. It is possible for two distinct
observable events σ1, σ2 to have the same observed output,
i.e. it may be that M(σ1) = M(σ2).

We extend the mask function to finite sample paths recur-
sively by defining

Mω(ε) := ε,

Mω({σ, t, τ}) :=

{

{M(σ), t, τ} if σ ∈ Σo

ε if σ ∈ Σuo

,

Mω(ω{σ, t, τ}) = Mω(ω)Mω({σ, t, τ}),

where concatenation of output samples is defined analo-
gously to concatenation of finite sample paths.

The inverse mask function M−1
ω is defined to be

M−1
ω (y) = {ω ∈ Ω : Mω(ω) = y} . (1)

We define a set of events of interest Σf ⊆ Σ. The objective
of the diagnosis problem is to determine the probability
that an event in Σf has occurred given an output sample.
The objective of the diagnosability problem is to determine
conditions under which we can ensure that any occurrence
of an event of interested will be detected. For simplicity,
we will only consider the case where we are attempting to
diagnose events of interest of only one type; the results of
this paper can be extended to the situation where events of
interest are divided into multiple types of interest (following
the approach described in [20]).

Denote by Ψ(Σf ) := {ω = {s, T , τ} : s = s′f, f ∈
Σf , τ = tn}. If an event f ∈ Σf is an element of a string
s, we write that Σf ∈ s. If s is the string associated with a
finite sample path ω, we write Σf ∈ ω.

C. Defining the Probability Distribution

The interpretation of the quantity r(x′,σ | x) is: given
that the current state of G is x, the probability that the
event σ will occur and transition the system to x′ in the
next dt seconds is r(x′,σ | x)dt. It follows from this
interpretation that the process is Markovian and that the
interarrival times between the occurrences of events are
distributed exponentially [21, Ch. 8].

Using this interpretation of the rates we can specify the
probability distribution over the sets of upward closures
finite sample paths following a procedure similar to [13,
Ch. 2]. First, we define, for all ω ∈ Ω, πω, the probability
distribution over X after the occurrence of the finite sample
path ω. These distributions are defined recursively to be

π0(x) := π0(x),

πωσ(x
′) :=

∑

x∈X πω(x)r(x′,σ | x)e−r(x′,σ|x)t

∑

x∈X πω(x)rσ,xe−rσ,xt
.

We define the probability of finite sample path of duration
τ in which no event occurs to be

Pr({ε, τ} | πω) =
∑

x∈X

πω(x)e
−rxτ . (2)

This probability is this probability that the arrival time of
the first event is greater than τ . For finite sample paths with
strings of greater length the probability distribution can be
specified recursively. First we define the probability of a
string consisting of one event occurring somewhere in the
interval (0, τ) to be

Pr({σ, τ} | πω) =
∑

x∈X

∑

x′∈X

∫ τ

0
πω(x)r(x

′,σ | x)

e−r(x′,σ|x)te−rσ,x(τ−t)dt. (3)
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Fig. 1. A timed stochastic automaton with state space X =
{x0, x1, x2, x3} and event set Σ = {u, f, a, b}.

Because the sets (0, τ) are a generating class, this expression
is sufficient to define the probability of an event occurring
at a time in set in the Borel σ-field on the nonnegative reals.

For sample paths with strings containing more than one
event, we can define the probabilities of such strings recur-
sively to be

Pr(ω2ω3 | πω1
) = Pr(ω3 | πω1ω2

)Pr(ω2 | πω1
), (4)

as the Markovian property of the system implies that the
distribution of sample paths after the duration of ω1ω2 is
independent of the distribution of sample paths before that
duration, given the distribution πω1ω2

.
Example. Fig. 1 shows a small timed stochastic automaton

that we use as a running example. The state space of this
automaton is X = {x0, x1, x2, x3} and the event set is Σ =
{u, f, a, b}. The transition rates between states are as shown
in the figure and we set π0(x0) = 1. The set of unobservable
events is Σuo = {u, f} and the set of events of interest
is Σf = {f}. The probability of any Borel measurable set
of finite sample paths can be calculated from the transition
structure. For example, the probability of the occurrence of
the string ua along a finite sample path of duration τ is

Pr ({ua, τ}) =

∫ τ

0

∫ τ

t1

.3e−.3t12e−2(t2−t1)

× e−2.1(τ−t2)dt2dt1.

III. DEFINITIONS OF DIAGNOSABILITY

Two definitions of stochastic diagnosability were proposed
in [14] for stochastic discrete-event systems without timing
information. In this paper, we modify those definitions so
as to apply to the case when the event arrival times are
distributed probabilistically. The first of these definitions, tA-
diagnosability, is defined as follows.

Definition 3.1: A timed stochastic automaton is tA-
diagnosable if

(∀ε > 0) (∃T > 0) (∀ω1 ∈ Ψ(Σf )) (∀t ≥ T )

Pr (ω2 : D(ω1ω2) = 0 | πω1
∧ τ2 = t) < ε (5)

where the diagnosability condition function D : Ω → {0, 1}
is

D(ω1ω2) =

{

1 if ω ∈ M−1
ω (Mω(ω1ω2)) ⇒ Σf ∈ ω

0 otherwise.
(6)

This definition makes two assertions. The first of these is
that for any occurrence of an event of interest, almost every
finite sample path of sufficient length after the event will
allow us to detect the occurrence of the event. The second
of these it that, in order to detect the occurrence of an event
of interest, we must be completely sure that there has been
at least one occurrence of the event. In any finite amount of
time, a tA-diagnosable system will allow the possibility of
a false negative; however, in the long run, the probability of
a false negative must approach zero.

The second definition of stochastic diagnosability we pro-
pose, tAA-diagnosability, is weaker than tA-diagnosability
as the second of the assertions weakened.

Definition 3.2: A timed stochastic automaton is tAA-
diagnosable if

(∀ε > 0) (∀α < 1) (∃T > 0) (∀ω1 ∈ Ψ(Σf )) (∀t ≥ T )

Pr (ω2 : Dα(ω1ω2) = 0 | πω1
∧ τ2 = t) < ε (7)

where the diagnosability condition function Dα : Ω → {0, 1}
is

Dα(ω1ω2)

=

{

1 if Pr(Σf ∈ ω | ω ∈ M−1
ω (Mω(ω1ω2))) > α

0 otherwise.
(8)

In tAA-diagnosability, the diagnosability condition function
D used in tA-diagnosability is replaced by Dα; using Dα,
we no longer need to be exactly sure that a fault has occurred
in order to consider it diagnosed - it is sufficient that the
probability of failure be above the threshold α. Thus an
tAA-diagnosable system will allow false positives with a
probability 1−α. The definition of tAA-diagnosability states
that for almost all finite sample paths of sufficient length, we
can almost surely reduce the probability of false positives
until it is eventually reaches zero.

IV. TIMED STOCHASTIC DIAGNOSER

The timed stochastic diagnoser serves two main purposes.
The first is to calculate the a posteriori probability distribu-
tion given the observation of a finite sample path. The second
is to allows us to find necessary and sufficient conditions for
ta- and tAA- diagnosability.

We first define the set of labels to be L = {N, Y }; the
label “N” indicates that no failure event in Σf has occurred
and the label “Y” indicates that there has been at least one
occurrence of an event in Σf . As events occur along a sample
path, the label associated with the system evolves according
to the label propagation function LP : L× Σ∗ → L

LP (), s) =

{

N if ) = N and Σf %∈ s

Y otherwise.

David Thorsley
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The timed stochastic diagnoser is a septuple SD =
(Q,ΣSD, δSD, q0,ΦQ,Φ∆,φ0). Q ⊆ 2X×L is the set of
supports. Each support q ∈ Q is a list of components,
where each component is a pair (x, )) ∈ X × L. A set
of components {(x1, )1), (x2, )2), . . . , (xn, )n)} is certain if
)1 = )2 = · · · = )n. The components in each support need
to be placed into a particular order; this order can be chosen
arbitrarily. The event set of the timed stochastic diagnoser,
ΣSD, is equal to ∆, the output set of G.

To specify the deterministic partial transition function
δSD, we need to first define the unobservable reach of a
state x ∈ X ; the unobservable reach is determined by the
function UR : X × L → 2X×L

UR(x, )) = {(x′, )′) ∈ X × L : ∃s ∈ Σ∗
uo ∩ L(G, x)

such that (δ(x, s), LP (), s)) = (x′, )′)} , (9)

where 2X×L is the power set of X × L. The unobservable
reach of a component (x, )) is the set of all components that
are reachable from (x, )) through the occurrence of unob-
servable events. The deterministic partial transition function
δSD is defined to be

δSD(q,σ) := UR





⋃

(x,')∈q

(δ(x,σ), LP (),σ))



 .

The initial support is

q0 =
⋃

x∈X :π0(x)>0

UR(x,N).

The above four elements define the “logical” structure of
the timed stochastic diagnoser and are equivalent to the
diagnoser described in [20], [22].

We append three elements to this logical diagnoser struc-
ture. To each transition between support in the timed stochas-
tic diagnoser, we append a discrete-update matrix Φ∆(q,σ).
We define each element in this matrix to be

Φ∆
ij(q,σ) =

{

r(xj ,σ | xi) if LP ()i,σ) = )j , xi %= xj

0 otherwise.

Each element in Φ∆(q,σ) is the rate at which the observable
event σ fires from a given component in q transitions to
a given component in ‖Φ∆(q,σ)‖. The size of the matrix
‖Φ∆(q,σ)‖ is the number of components in δSD(q,σ) by
the number of components in q; each element of a matrix in
Φ∆ is nonnegative.

Similarly, for each support in the timed stochastic diag-
noser, we append a continuous-update matrix ΦQ(q) which
is defined element-wise to be

ΦQ
ij(q) =

{

∑

σ∈Σuo:LP ('i,σ)='j
r(xj ,σ | xi) i %= j

−rx i = j
.

Each non-diagonal element in ΦQ(q) is the rate at which
unobservable events fire from a given component in q and
transition the system to another given component in q. Each
diagonal element is the exit rate at which all events fire from
a given component. The matrix ΦQ(q) is a square matrix with

size equal to the number of components in q; all off-diagonal
elements of ‖ΦQ(q)‖ are nonnegative and, as a result of the
liveness assumption, all diagonal elements are negative. The
sum of any column of any matrix in ΦQ is nonpositive.

The initial probability distribution vector φ0 has a length
equal to the number of components in q0. If we enumerate
the components of q0 as c1, c2, . . . , cn and express each
component as ci = (xi, )i), then we define φ0 element by
element as φ0,i = π0(xi) if )i = N and zero if )i = Y .

As stated as the beginning of this section, the timed
stochastic diagnoser can be used to calculate the a posteriori
probability distribution on X × L. Given ωo, a finite output
sample path of duration t, we denote by φt(· | ωo) the prob-
ability distribution vector generated by the timed stochastic
diagnoser after observing ωo. This vector is updated in
accordance with the following theorem.

Theorem 4.1: The a posteriori probability distribution
φt(· | ωo) updates recursively according to the following
equations

φT+t(· | ωo{ε, ∅, t}) =
1

Kc
eΦ

Q(q′)tφT (· | ωo) (10)

φT+t(· | ωo{σ, t, t}) =
1

Kd
Φ∆(q′,σ)eΦ

Q(q′)tφT (· | ωo),

(11)

where q′ is the support reached by the timed stochastic
diagnoser following the occurrence of the observation path
ωo and Kc and Kd are normalization constants that ensure
that the probability distribution vector sums to 1.

Proof: We prove the correctness of the continuous-
update equation Eq. 10. The proof of correctness for the
discrete-update equation Eq. 11 is analogous to Theorem 1
of [14] and is omitted for space.

Suppose the timed stochastic diagnoser is in support q′ at
time T , and let c(T +t) denote the component that describes
the true state of the timed stochastic automaton at time T+t.
Then

Pr (c(T + t) = (x, )) | ωo{ε, ∅, t})

=
∑

(x′,'′)∈q′

Pr (c(T + t) = (x, ))

∧c(T ) = (x′, )′) | ωo{ε, ∅, t})

Let Kc = Pr ({ε, ∅, t} | ωo). It follows that

Pr (c(T + t) = (x, )) | ωo{ε, ∅, t})

=
1

Kc

∑

(x′,'′)∈q′

Pr (c(T + t) = (x, ))∧

c(T ) = (x′, )′) ∧ {ε, ∅, t} | ωo) .

Conditioning on c(T ) yields

Pr (c(T + t) = (x, )) | ωo{ε, ∅, t})

=
1

Kc

∑

(x′,'′)∈q′

Pr (c(T + t) = (x, )) ∧ {ε, ∅, t}

| c(T ) = (x′, )′) ∧ ωo) Pr (c(T ) = (x′, )′) | ωo) .
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Fig. 2. The timed stochastic diagnoser of the timed stochastic automaton shown in Figure 1. The recurrent components in this Markov chain are (x1, Y )
in support q1 and (x3, N) in support q2. For clarity of presentation, we write the component (xi, !) as i !.

Order the components in q′ as c1, . . . , cn arbitrarily. Then
we can re-write the above in vector form, yielding

φT+t(· | ωo{ε, ∅, t}) = A(t)







Pr (c(T ) = c1 | ωo)
...

Pr (c(T ) = cn | ωo)






,

where Aij(t) = Pr (c(t+ T ) = ci ∧ {ε, ∅, t} | c(T ) = cj).
A(t) is a constituent part of the transition semigroup of
a continuous-time Markov process constructed from the
components c1, . . . , cn and a dump state whose infinitesimal
generator is

[

ΦQ(q′) 0
−1TΦQ(q′) 0

]

.

Taking the matrix exponential of this infinitesimal generator
yields

exp

([

ΦQ(q′) 0
−1TΦQ(q′) 0

]

t

)

=

[

A(t) 0
1−A(t) 1

]

, (12)

which follows from the fact that the only paths from ci
to cj in this process are those along which no observable
event occurs, and thus the (i, j)th element of the transition
semigroup is Pr (c(t+ T ) = ci ∧ {ε, ∅, t} | c(T ) = cj). It
immediately follows that A(t) = eΦ

Q(q′)t and thus that

φT+t(· | ωo{ε, ∅, t}) =
1

Kc
eΦ

Q(q′)tφT (· | ωo). (13)

If no event is observed along an interval of duration
t, then the evolution of the probability distribution vector
is governed by the exponential of the continuous-update
matrix ΦQ(q′0), as the support of the distribution does not
change if no events are observed. If an event is observed
after a duration t, a discrete update described by the matrix
Φ∆(q′0,σ) occurs as the probability distribution vector is
transitioned to a new support. The elements of Φ∆(q′0,σ)
re-weight the components of the new support in accordance
with the event that was observed.

Example. The timed stochastic diagnoser SD associated
with the timed stochastic automaton shown in Figure 1 is
shown in Figure 2. The initial support q0 contains the initial
state x0 appended with the label N and its unobservable
reach, the components (x1, Y ) (reached by an occurrence of
f ) and (x2, N) (reached by an occurrence of u). The initial
probability vector is φ0 =

[

1 0 0
]

as the first component

corresponds to the known initial component (x0, N). The
components of the matrix ΦQ(q0), shown inside support q0,
correspond to transition rates in Figure 1; for example, the
ΦQ

2,1(q0) = .3, the transition rate from x0 to x1 in the original
timed stochastic automaton. The other entries in ΦQ and Φ∆

are similarly derived.
Suppose that we observe the finite sample path ωo =

{aa, {1, 2}, 3}. Then the a posteriori probability distribution
φ3(· | ωo) is given by

φ3(· | ωo) =
1

K
exp

([

−1 0
0 −2.1

]

(3− 2)

)[

1 0
0 2

]

× exp

([

−1 0
0 −2.1

]

(2− 1)

)[

0 1 0
0 0 2

]

× exp









−.6 0 0
.3 −1 0
.3 0 −2.1



 1









1
0
0



 .

Solving this expression and choosing K so as to normalize
the vector yields φ3(· | ωo) =

[

.782 .218
]

. Thus the
probability of the system being in state x1 and the event
of interest having occurred is 78.2% and the probability of
the system being in state x2 and the event of interest not
having occurred in 21.8%.

V. CONDITIONS FOR DIAGNOSABILITY

In this section we derive conditions for tA- and tAA-
diagnosability from the structure of the timed stochastic
diagnoser.

For each pair of states qi, qj ∈ Q, let

Ω(qi, qj) =
∑

σ∈ΣSD :δSD(qi,σ)=qj

Φ∆(qi,σ) + 1i'=jΦ
Q(qi),

(14)
where 1 is an indicator function. We use these Ω-matrices
to construct the matrix

Q(SD) =







Ω(q1, q1) · · · Ω(q1, qn)
...

. . .
...

Ω(qn, q1) · · · Ω(qn, qn)






. (15)

The matrix Q(SD) can be used to construct a Markov chain
whose states are the components of each support in SD
according to the following lemma.

Lemma 5.1: Q(SD) is the infinitesimal generator for a
continuous-time Markov chain, i.e., its columns sum to zero
and only its diagonal elements are negative.
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Proof: Suppose the ith column of Q(SD) corresponds
to a component (x, )) is the timed stochastic diagnoser state
q. Then

Qii(SD) = −rx +
∑

σ∈Σ:LP (',σ)='

r(x,σ | x), (16)

which is nonpositive since all terms in the summation are
also terms in the summation that defines rx. All nondiagonal
elements of Q(SD) must be nonnegative because they are
defined as the sums of transition rates, which are always non-
negative. By construction, the sum of a column in Q(SD)
is

∑

j

Qji(SD) = −rx +
∑

x′∈X

∑

σ∈Σ

r(x′,σ | x),

which equals zero by the definition of rx.
Because the components in a timed stochastic diagnoser

are states of a finite state Markov chain, they can be classified
as either recurrent or transient from the structure of Q(SD).
We know that, in the long run, the probability that the
timed stochastic diagnoser will reach a recurrent component
approaches one. Thus by analyzing the properties of the
recurrent components, we can derive conditions for tA- and
tAA-diagnosability, as these conditions describe the long-
term behavior of the system.

Theorem 5.1: A stochastic automaton G is tA-
diagnosable if and only if every support of its timed
stochastic diagnoser containing a recurrent component
bearing the label Y is certain.

Theorem 5.2: A stochastic automaton G is tAA-
diagnosable if, in every support of its timed stochastic
diagnoser, the set of recurrent components within the
support is certain.
The proofs of these theorems are analogous to the proofs in
[14] and have been omitted for space.

Example. For the timed stochastic diagnoser shown in
Fig. 2, the associated continuous-time Markov chain has the
infinitesimal generator Q(SD) shown below:

(q0, x0, N)
(q0, x1, Y )
(q0, x2, N)
(q1, x1, Y )
(q1, x2, N)
(q2, x3, N)

















−.6 0 0 0 0 0
.3 −1 0 0 0 0
.3 0 −2.1 0 0 0
0 1 0 0 0 0
0 0 2 0 −.1 0
0 0 .1 0 .1 0

















.

By inspection, the recurrent components in this Markov
chain are (x1, Y ) in support q1 and (x3, N) in support q2.
It follows that the timed stochastic automaton is not tA-
diagnosable because the support q1 is not certain. However,
the timed stochastic automaton is tAA-diagnosable because
the set of recurrent components within each support is
certain.

VI. STOCHASTIC GENE EXPRESSION

A. Modeling Chemical Reaction Networks as Timed Stochas-
tic Automata

Consider a simple model of stochastic gene expression
[23] consisting of two species, messenger RNA (mR) and a

fluorescent protein (P). The model consists of four chemical
reactions:

R1 : ∅
k1−→ mR

R−1 : mR
k−1

−−→ ∅

R2 : mR
k2−→ mR+ P

R−2 : P
k−2

−−→ ∅.

In keeping with the standard formulation of stochastic chemi-
cal kinetics [6], we construct a timed stochastic automaton as
follows. We initially define the state space X as N0×N0, each
state being a vector [nmR, nP ] containing the populations of
both of the species in the reaction network. To ensure that
the state space of the timed stochastic automaton is finite,
we cap the population of mRNA at 15 molecules and the
population of protein at 2000 molecules.

Assume that P is fluorescent and thus that its population
of P is observable. Since the firing of reactions R2 and
R−2 changes the protein population, these events are also
observable. The population of mR is unobservable and thus
the firings of R1 and R−1, which only change the mRNA
population, must be unobservable events.

We wish to determine if the population of mR ever exceeds
9 molecules. In order to do thus, we separate the firings
of R1, the reaction the increases the mR population, into
two events: “special” R∗

1, which increases the mR population
from 8 to 9, and “normal” R1, which fires from all other mR
population levels. We thus define the event set of the timed
stochastic automaton to be Σ = {R1, R

∗
1, R−1, R2, R−2},

the observable events to be Σo = {R2, R−2}, and the events
of interest to be Σf = {R∗

1}.
We specify the transition rates between states as a result

of the firing of R1 to be

r([nmR + 1, nP ], R1, [nmR, nP ]) = k1 if nmR %= 8

r([9, nP ], R
∗
1, [8, nP ]) = k1,

where the reaction R∗
1 is the event of interest. For the other

reactions, we set

r([nmR + 1, nP ], R−1, [nmR, nP ]) = k−1nmR

r([nmR, nP + 1], R2, [nmR, nP ]) = k2nmR

r([nmR, nP − 1], R−2, [nmR, nP ]) = k−2nP .

We specify the initial distribution over X through the
marginal distributions over the species; we set π0(nP = 0) =
1 and we set the mR population to be a Poisson distribution
with parameter λ = 5.

B. Diagnosability Results
Constructing the full timed stochastic diagnoser for this

system results in 2001 separate supports, one for each
possible population of protein. A typical support of the timed
stochastic diagnoser, with the protein population set to n, and
the transitions out of that support, is shown in Fig. 3. The
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Fig. 3. A typical support of the timed stochastic diagnoser for gene expression. The reactions R2 and R−2 transition the diagnoser from the support
where the protein number is n to the supports where the protein number is n+1 and n−1, respectively. For simplicity we write r(m,n) = k1+mk−1+
mk2 + nk−2.
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Fig. 4. A simulated trajectory of the stochastic gene expression reaction
network. (a) The event R2 changes the observed output of the reaction
network, the fluorescent protein population. (b) The events R1, R∗

1 , and
R−1 change the unobserved state variable, the mRNA population.

recurrent components of the timed stochastic diagnoser are
all components with the “Y” label, because every state in the
original timed stochastic automaton is reachable from every
other state. As a result, the system is not tA-diagnosable
because there exist recurrent components that do not lie in
certain supports. However, the system is tAA-diagnosable
because the set of recurrent components in each support is
certain.

To illustrate the online operation of the timed stochastic
diagnoser, we generate a finite sample path of duration t =
[0, 1440] using Gillespie’s stochastic simulation algorithm
[7]. The parameter values are chosen as k1 = .0554 mRNA/s,
k−1 = .0113 (mRNA.s)−1, k2 = .17 protein/(mRNA.s),
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Continuous Diagnoser Dynamics

Fig. 5. The dynamics of the timed stochastic diagnoser. The trajectory from
Figure 4 is the input. The probability that the event of interest occurred is
plotted against time.

and k−2 = 0 [24]. The protein decay rate was chosen to
be zero for simplicity because the diagnoser performance is
independent of k−2. The generated trajectory is shown in
Figure 4.

By inspecting the evolution of the mRNA population, we
can conclude that an event of interest first occurred when
the mRNA number is first equal to 9, which occurs at
approximately t = 620 seconds.

The evolution of the diagnoser output over time is shown
in Figure 5. In between increases in the protein number,
the probability that the event of interest occurred decreases
because the states with the highest mRNA populations (i.e.
the states where protein production is most likely) are only
reachable after an event of interest. It is less likely that
the protein level remains constant in these states and thus
the a posteriori probability of the event of interest having
occurred decreases. Similarly, when an increase in the protein
population is observed, the probability of the event of interest
having occurred increases. Notice that the largest jumps in
the a posteriori probability of the event of interest having
occurred correspond to the fastest increases in the protein
population. The first large increase actually occurs before
the event of interest does; by inspecting the trajectory, we
can see that the rate at which protein is being produced when
this increase occurs is very high.
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VII. DISCUSSION

In this paper we investigate the problems of detecting
events of interest in stochastic chemical kinetic systems using
the formalism of discrete-event systems. We define a class of
state machines, timed stochastic automata, that is appropriate
for modeling stochastic chemical kinetics and define condi-
tions for diagnosability appropriate for this class of system.
We then develop the procedure for constructing a timed
stochastic diagnoser that can be used to give online updates
as to the probability that an event of interest has occurred
and offline conditions for timed stochastic diagnosability.

The performance of the timed stochastic diagnoser de-
pends on the accuracy of the parameters of the original
chemical kinetic model; as these parameters can never be
known exactly, in future work it is important to develop
notions of robust diagnosability for uncertain discrete-event
systems. For large models containing many distinct reactions
and species, there is an issue of scalability as the size of the
timed stochastic diagnoser grows to an intractable size (note
that, for the stochastic gene expression example, a system
with 4 reactions produced a timed stochastic diagnoser with
2001 supports). Investigation of more efficient algorithms for
online probability updates and offline testing of diagnosabil-
ity conditions is ongoing.
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