Cavitary Lung Disease in an HIV-positive Patient

Radiology Corner

Cavitary Lung Disease in an HIV-Positive Patient

Guarantor: Massimo Federico, CPT, MC, USA
Contributors: Massimo Federico, CPT, MC, USA; Bridget Cunningham, CPT, MC, USA; Angelo Paredes, CPT, MC, USA; Dara Lee, CPT, MC, USA; Les Folio, COL, USAF, SFS

Note: This is the full text version of the radiology corner question published in the March 2008 issue, with the abbreviated answer in the April 2008 issue.

We present the case of an HIV-positive patient who presents with radiographic and computed tomography findings of cavitary lung disease. There exists a broad differential diagnosis for pulmonary cavitary lesions in immunocompromised individuals. Key factors in narrowing down the differential include clinical setting, CD4 levels, and radiographic findings. Through awareness of the CT appearance of various entities, radiologists aid clinicians in distinguishing between benign and malignant lesions and in some cases obviate the need for transthoracic needle aspiration biopsy.

Introduction

Pulmonary cavitation begins with necrosis of the parenchyma. This necrosis is caused by either bacterial toxins and leukocyte enzymes that are present in infection, or as a result of reduced blood supply to the lung tissue secondary to neoplasms. When there is a communication between the parenchymal necrotic material and the bronchial tree, air replaces lung parenchyma, resulting in pulmonary cavitation [1].

There exists a broad differential diagnosis for pulmonary cavitary lesions in immuno-compromised individuals though mostly commonly attributed to an infectious etiology. Computed tomography is a useful tool in assessing the morphological features of cystic and cavitary lesions incompletely evaluated on chest radiographs and may help with the diagnosis.

History

A 55-year-old African American female who is HIV-positive presents with nausea, vomiting, and altered mental status. The patient denies fever, chills, night sweats, chest pain, shortness of breath, cough and hemoptyisis. Her physical exam is notable for decreased breath sounds in the right upper lung and a benign cardiovascular exam.

Figure 1(A). Frontal chest radiograph demonstrates a small hazy opacity in the apex of the right lung (arrow).

Summary of Imaging Findings

A frontal chest radiograph (Figure 1(A)) demonstrates a small hazy opacity in the apex of the right lung. A frontal chest radiograph of the patient taken two weeks later (Figure 1(B)) reveals a large cavitary lesion with a thick irregular wall measuring 3.8 cm x 4 cm in the apex of the right lung. This lesion corresponds to the small hazy opacity seen two weeks earlier. The remaining areas of the lungs are clear. The cardiome diastinal silhouette is within normal limits and the extrathoracic soft tissue and osseous structures are unremarkable.

An axial CT without contrast of the lungs (Figure 2) demonstrates a thick-walled irregular cavitary lesion in the right lung apex measuring 3.5 cm x 2.7 cm. Multiple primarily subcentimeter peripheral pulmonary nodules are seen on axial CT (Figure 3) scattered throughout the lungs with basilar predominance. There is no pleural effusion or pneumothorax visualized.

Diagnosis

Aspergillus nidulans
Cavitary Lung Disease in an HIV-Positive Patient
Cavitary Lung Disease in an HIV-positive Patient

CD4 count is inversely related to the susceptibility of infectious and non-infectious processes. Individuals with a CD4 count over 500 cells/mm³ are susceptible to infections akin to those of non-HIV/AIDS patients [3]. The risk of bacterial pneumonia increases with decreasing CD4 cell counts [4]. The bacterial cavity lesions in HIV-positive individuals are mostly polymicrobial; the two most common organisms are *Pseudomonas aeruginosa* and *Staphylococcus aureus* [1] [5]. *Mycobacterium avium complex*, *Candida albicans*, *Pneumocystis jiroveci* (carinii), and *Cytomegalovirus* rarely cause cavitation by themselves [3]. In HIV/AIDS patients, reactivation of *Mycobacterium tuberculosis* is classically seen as a cavitary lesion in the apex of the lung. However, in patients with advanced AIDS, the lesions are typically nonapical, or absent [6].

Patient Discussion

This patient presented with nausea, non-bloody vomiting, and lightheadedness. On admission her CD4 count was 557 cells/mm³. A head CT was negative. The above findings were discovered on frontal chest radiograph and chest CT. The patient was ruled out for *Mycobacterium tuberculosis* with three acid-fast bacillus (AFB) smears and cultures. Bronchoalveolar lavage and subsequent respiratory sputum cultures were positive for *Aspergillus niduicans*. Other assays performed ruled out *Pneumocystis jiroveci* (carinii), *Legionella*, coccidiomycosis, histoplasmosis, *Cryptococcus neoformans*, and c*ytomegalovirus*. She was treated with anidulafungin for aspergillosis.

Discussion

Pulmonary cavitary disease begins with necrosis of the parenchyma. This necrosis is caused by either bacterial toxins and leukocyte enzymes that are present in infection, or as a result of reduced blood supply to the lung tissue secondary to neoplasms [1]. When there is a communication between the parenchymal necrotic material and the bronchial tree, air replaces lung parenchyma, resulting in pulmonary cavitiation.

The cause of pulmonary cavitary disease carries a broad differential from infectious processes, malignancy and vasculitides (Table 1) [2]. In immunocompromised patients an infectious etiology with either bacterial, parasitic or invasive fungal infections are frequently found [1]. In HIV patients, the CD4 lymphocyte count is an important marker for assessing risk of opportunistic infections and neoplasms. The
do so [1]. Bronchogenic carcinoma frequently causes
cavitation in both the immunocompetent and
immunocompromised, with the cavitation occurring at the same
rate in both groups. Squamous cell carcinoma causes
80% of cavitating lung neoplasms, with the remaining 20%
caused by adeno- and large cell carcinomas. Bronchioalveolar
carcinoma only occasionally presents as multiple cavitary
nodules, while small cell carcinoma almost never cavitates [6].

With cavitary lesions, differentiating malignancy from
abscess or another infectious process is a challenge.
Computed tomography allows a more precise assessment and
is more accurate than plain films alone. Primary lung
abscesses are thought to be more common in
immunocompromised hosts. The radiographic findings for
lung abscess in both immuno-competent and
immunocompromised individuals predominantly involve the
upper lobe. Lower lobe or multi-lobular involvement may be
increased in the immunocompromised [8]. Malignant lesions
are frequently associated with a wall thickness of 4 mm at
the thinnest part, speculated or irregular margins (both inner
and outer), associated soft tissue mass with or without thoracic
wall infiltration, and enlarged lymph nodes. Cavitations seen
in NHL are most often multiple, with thickened walls and an
upper lobe distribution. Tuberculous cavitations may present in
variable manners, such as lesions with either thin or thick
walls, and with or without air-fluid levels. The presence of
fibronodular change, however, in the upper lobes and
calcification in a cavitary lesion is more suggestive of
pulmonary TB [6].

Fungal infections, such as this patient’s aspergillosis, often
manifest as single or multiple thick walled cavitary lesions in
the upper lobe. Fungal infections are also associated with
focal alveolar opacities and diffuse infiltration of lung
parenchyma [6]. Aspergillomas that form in a pre-existing
cavity may lead to an “air crescent sign.” The “air-crescent
sign” is recognized as a crescent-shaped or circumferential
area of radiolucency within a parenchymal consolidation or
nodular opacity [9]. *Staphylococcus, Klebsiella*, or anaerobic
bacteria often lead to thin or thick walled, air filled lesions.
These lesions are characteristically unstable with regard to
their size, location and appearance, and may expand or recede
spontaneously over weeks to months [6].

A simple mnemonic may be helpful in triggering a
differential in a pinch. Remembering the word CAVITY can
help recall the following list: Cancer/ Congenital (or acquired)
bullae, Abscess, Vasculitis, Infection (fungal), TB, and eYst
(post-traumatic).

A peripheral lung abscesses may also be difficult to
differentiate from an empyema. While abscesses tend to be
round in shape and form acute angles with the chest wall,
empyemas will likely be lenticular and form excessively
obtuse angles along the all. The abscess wall is typically
irregular in width and has irregular luminal margins, with the
wall of an empyema being most often smooth. This wall helps
create the “split pleura” sign. Found in the majority of
empyemas, this sign is visualized as thickened, separated

| Mycobacteria: Tuberculosis and nontuberculous pathogens
| Fungi: Including endemic mycoses (*Histoplasma, Coccioidoides, Blastomyces*) and opportunistic pathogens (*Aspergillus, Cryptococcus, Zygomycetes, Pneumocystis*)
| Parasites: *Paragonimus westermani, Entamoeba histolytica, Echinococcus*

| Non Infectious | Neoplasm: Primary lung cancer, metastatic carcinoma, lymphoma
| Pulmonary infarction due to embolus
| Vasculitis: Wegner’s granulomatosis, rheumatoid lung nodules
| Airway disease: bullae, blebs, cystic bronchiectasis
| Sarcoidosis

Table 1. The differential diagnosis of a cavitary lesion on chest radiograph [2].
visceral and parietal pleural surfaces on CT [10]. Another sign that may be helpful is a disparate fluid level between frontal and lateral. For example an abscess usually has an even fluid level on the frontal and lateral, whereas empyemas often have fluid levels of different sizes since not spherical in shape.

The authors present the case of an HIV-positive patient with a cavitory lung lesion found on radiograph. There exists a broad differential diagnosis for pulmonary cavitory lesions in immunocompromised individuals. Key factors in narrowing down the differential include clinical setting, CD4 levels, and radiographic findings. Computed tomography is a useful tool in assessing the morphological features of cystic and cavitory lesions unseen on chest radiographs. Through awareness of the CT appearance of various entities, radiologists aid clinicians in distinguishing between benign and malignant lesions and in some cases obviate the need for transthoracic needle aspiration biopsy.

Category 1 CME or CNE can be obtained on the MedPix™ digital teaching file on similar cases by opening the following link. Many Radiology Corner articles are also a MedPix™ Case of the Week where CME credits can be obtained.

http://rad.usuhs.mil/amsus.html

Cavitary Lung Disease in an HIV-positive Patient

References