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Abstract

The Odyssey IV autonomous underwater vehicle (AUV) is the next generation of un-
manned subsurface robots from the MIT Sea Grant AUV Laboratory. The Odyssey
IV AUV has a novel propulsion system, which includes a pair of azimuthing thrusters
for maneuvering in surge and heave. An analytical model was developed to describe
the complex nonlinear vehicle dynamics, and experiments were performed to refine
this model. The fluid dynamics of unsteady azimuthing marine propulsors are largely
unstudied, especially for small vehicles like the Odyssey IV AUV. Experiments sug-
gest that thrust developed by an azimuthing propulsor is dependent on the azimuth
angle rate of change, and can substantially affect vehicle dynamics. A simple model
capturing the effects of azimuthing on the thruster dynamics is developed, and is
shown to improve behavior of the model.

The use of azimuthing thrusters presents interesting problems and opportunities
in maneuvering and control. Nonlinear model predictive control (MPC) is a technique
that consists of the real-time optimization of a nonlinear dynamic system model, with
the ability to handle constraints and nonlinearities. In this work, several variations
of simulated and experimental MPC-based controllers are investigated. The primary
challenge in applying nonlinear MPC to the Odyssey IV is solving the time intensive
trajectory optimization problem online. Simulations suggest that MPC is able to
capitalize on its knowledge of the system, allowing more aggressive trajectories than
a traditional PID controller.
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Chapter 1

Introduction

1.1 Motivation

Underwater vehicles have become indispensable tools in deep water operations, oceanog-

raphy, port security, offshore oil and gas, archaelogy, and cable laying and surveying.

Underwater vehicles take many shapes, from manned submersibles that transport

human pilots and passengers, towed sleds that pull sensors behind a surface ves-

sel, remotely operated vehicles (ROVs) that are piloted by telepresence, autonomous

underwater vehicles (AUVs) that act independently and use electric motor driven

propulsion, and gliders which are also autonomous but are driven by buoyancy. The

application of these vehicles is dependent on a wide range of considerations, including

mission objectives, operating conditions, and budget. The Massachusetts Institute

of Technology Sea Grant College Program Autonomous Underwater Vehicle Labo-

ratory (MIT AUV Lab) has developed the Odyssey IV AUV (figure 1-1). Odyssey

IV represents a departure from existing underwater vehicles, with hybrid character-

istics combining the low-drag profile and surveying abilities of a traditional AUV,

and the low-speed maneuverability of ROVs. The Odyssey IV is equipped with a

novel propulsion system, featuring two cross-body thrusters and a pair of azimuthing

thrusters that allow for both cruising and hovering capabilities in four degrees of

freedom (4-DOF).

AUV design presents a range of technical challenges and tradeoffs. Sensors pro-
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Figure 1-1: The Odyssey IV AUV from the MIT AUV Laboratory is a stream-lined
vehicle with a pair of azimuthing thrusters and a pair of cross-body thrusters, for
4-DOF maneuvering even at zero-speed. The vehicle is rated for up to 6000m depth.

vide the tools to navigate and collect mission-specific data. Subsurface navigation

is achieved using acoustic beacons and/or an on-board navigation suite of sensors.

Power is generally provided by rechargeable batteries, and tradeoffs between cost and

endurance are considered.

The traditional propulsion system of many AUVs is designed for long-transect

survey missions. Forward thrust is provided by a single fixed propeller, and control

surfaces generate the maneuvering forces required to steer the vehicle. This solution

works well for a cruising vehicle, but the Odyssey IV AUV also has hovering mission

requirements, and the traditional propulsion system does not allow for maneuvers at

very low speeds [27].

Hovering is generally achieved using multiple thrusters distributed around the

body to produce a net force vector. The use of multiple thrusters reduces complexity

in the control problem and improves failure tolerance. However, the use of azimuthing

thrusters–rotating the propulsor to produce thrust in the desired direction–in lieu

of multiple thrusters proves an attractive alternative due to lower drag profile and

16



improved maneuverability. There are also alternatives to propeller-driven propulsion,

such as biomimetic thrusters and jet propulsion systems that can lead to increases in

efficiency and maneuverability.

1.2 Literature Review

1.2.1 Azimuthing Thrusters as Multi-Role Actuators

The increased maneuverability offered by azimuthing thrusters makes them important

in the dynamic positioning community [43, 73]. The use of thrust-vectoring in aircraft

Figure 1-2: The offshore support vessel Toisa Perseus (foreground)
and deepwater drillship Discoverer Enterprise are both equipped with
dynamic positioning (DP) systems. Image provided courtesey of
(http://www.nationmaster.com/encyclopedia/Drill-ship)

has enhanced maneuverability by improving vehicle pitch dynamics and enabling

flight at increased angle of attack. Most thrust-vectoring in aircraft is achieved by

deflecting the exhaust stream of a turbofan (figure 1-3). Several AUVs have been

equipped with a single stern-mounted vectored thruster (figure 1-4) [40, 1]. The most

similar vehicle to Odyssey IV is the Sentry AUV at the Woods Hole Oceanographic

Institute (WHOI) (figure 1-5). It uses two pairs of thrusters–one forward and another

aft–for actuation in five degrees (surge, heave, roll, pitch, and yaw). The thrusters

are mated to large control surfaces and rotate through 270 degrees of pitch.

17



Figure 1-3: The Lockheed Martin/Boeing F-22 Raptor aircraft has pitch-axis thrust-
vectoring turbofans, with a range of ±20deg, which make the aircraft highly ma-
neuverable [3]. Image provided courtesy of the Lockheed Martin Corporation
(http://www.lockheedmartin.com/products/f22/index.html)

Figure 1-4: The Bluefin-21 AUV is quipped with a single stern-mounted vectored
thruster to aid in maneuvers during cruising. Image provided courtesy of the Bluefin
Robotics Corporation (www.bluefinrobotics.com/index.htm)

18



Figure 1-5: The Woods Hole Oceanographic Institute’s Sentry AUV is equipped
with two pairs of thrusters mated to large control surfaces which can rotate
through 270 degrees of pitch. Image provided courtesy of the Ocean Observa-
tories Initiative Regional Scale Nodes Program at the University of Washington
(www.ooi.ocean.washington.edu/cruise)

1.2.2 Discussion of Control Techniques

Control in AUVs

The challenges associated with designing controllers for AUVs include a highly non-

linear dynamic model and complex hydrodynamic effects. The majority of AUVs

use classical controllers such as proportional-integral-derivative (PID). Yuh [85] and

Craven [13] cite a range of advanced controllers used in AUVs, including adaptive,

fuzzy, neural network, nonlinear, and sliding mode controllers.

Although linear control theory has advantages in its extensive theoretical back-

ground, AUVs may exhibit nonlinear behavior that produces degraded performance

outside of the linearized regime. Model predictive control continuously updates its

solution based upon current states. It can handle nonlinearities in the control prob-

lem, and directly enforces constraints. These properties make it an attractive solution

to the AUV control problem. Several simulations of model predictive controllers for

AUVs have been presented [37, 50, 70, 77]. Kwiesielewicz [37] demonstrated improved
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performance over more traditional controllers such as a PID controller and an adap-

tive controller. Truong [77] focuses on improving computational speed of MPC for

use on AUVs. Naeem et al [57] realized real-time MPC using a genetic algorithm

(GA) to solve the optimization problem online, and verified their findings through

experiments. They found that the GA would not be sufficient for systems with low

sampling periods.

Jakuba [36] developed a linear control system for the Sentry AUV (figure 1-5)

based upon a vehicle model linearized about nominally horizontal flight, assuming

small foil angles and small vertical velocity. PID control was used for a combined

pitch-depth model. The controller performed adequately for simulations and experi-

ments in which the vehicle was operating within the nominal operating regime. How-

ever, in simulations at high angle of attack or demanding steep desired ramp changes

in depth, the pitch performance is degraded due to the linearized mapping of the

nonlinear configuration of the actuators for the linear controller. Jakuba concluded

that a nonlinear approach would be beneficial, suggesting a method that includes

trigonometric modulation of the control with a dependence on foil angle.

Underactuated and Nonholonomic Systems

Odyssey IV is considered to be underactuated, meaning it has fewer control inputs

(thrust, azimuth angle) than degrees of freedom (surge, heave, pitch). Additionally,

from a study of the controllability, the azimuthing thruster unit is considered to be a

nonholonomic system [41, 72].

Azimuthing thrusters have been implemented in the dynamic positioning systems

of marine vessels, and as an underactuated system this presents a relevant control

problem. However, the majority of azimuthing thruster dynamic positioning methods

use periodic time-varying feedback control laws [55, 62] which require a quasi-static

approach. This requires the dynamic response of the vessel to be much slower than

that of the azimuthing thruster action. When a vehicle has relatively fast response, as

is the case for Odyssey IV, this approach performs poorly, as demonstrated by Hover

[33]. Leonard [41] successfully demonstrated path planning and open-loop control
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of an underactuated AUV using sinusoidal/periodic controls, however, it should be

noted that this was not for the AUV with azimuthing thruster case.

Thrust Vectoring in Flight Controllers

Although the dynamic time scales for thrust-vectoring in aircraft/spacecraft con-

trollers results in a different problem than that of marine vehicles, research in this

field is applicable to the nonlinear control inputs and high maneuverability require-

ments of the Odyssey IV AUV. Several flight controllers have been tested on a ducted

fan experimental setup developed by the California Institute of Technology (Caltech)

[52]. Model predictive control (MPC), or receding horizon control (RHC), are of

particular interest and have been applied to the control of high performance flight

vehicles [18, 25, 51, 84].

The methodology of the Caltech flight controllers involves the on-line solution of

an optimal control problem over a finite time horizon using a nonlinear programming

software package (NTG, for nonlinear trajectory generation [52]). The general ap-

proach of trajectory generation involves mapping the equations of motion to a lower

dimensional output space to decrease the complexity of the optimization problem,

using differential flatness [79] or the lowest space possible [51]. The output of the

optimization is then fit to a B-spline polynomial.

Controller performance is evaluated by simulation and experiments. Special at-

tention must be placed on timing schemes and the formulation of the optimization

problem. A warm start strategy, where the previous trajectory solution is applied as

an initial guess in the optimization problem, should be used. Milam [51] presents a

controller capable of achieving computational speeds faster than 10 Hz.
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1.3 Problem Statement

1.3.1 Vehicle Description

The Odyssey IV has a unique propulsion system that allows for maneuvering in multi-

ple degrees of freedom at near-zero speed. It also has a low drag profile which makes

it well suited for cruising. The vehicle is relatively transportable and inexpensive

compared to other AUVs of similar performance.

1.3.2 Mission Scenarios

The proposed mission scenario for the Odyssey IV AUV consists of short exploratory

missions with fast descent and ascent. Each mission begins with a descent phase,

aided by a streamline drop weight. The vehicle may be driving “blind” without

position estimates due to exceeded Doppler Velocity Log (DVL) sensor range/limited

bottom lock (see Table 2.1). The vehicle then performs surveys and/or cruises to a

desired target where it will hover to perform a task. After all behaviors are performed,

the ascent weight is dropped and the vehicle returns to the surface.

Deep-Water Corals

Odyssey IV is intended to be an exploratory vehicle. Its stream-lined shape enables

it to perform surveys, from which other vehicles such as Alvin (WHOI) would then

be able to perform more extensive tasks. Deep-water (or cold-water) corals are a

growing field of study that is increasingly of interest, as they are indicators of climate

change [2, 71]. At depths of up to 2000m, many of these reefs lay undiscovered. Using

a larger human-opearted vehicle such as Alvin (WHOI) to search is not cost-effective

due to the limited availability, high operational cost, and slow descent/ascent. A

partnership between the MIT AUV Lab and Jess Adkins at the California Institute

of Technology has been formed for Odyssey IV deep-water corals research.
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Figure 1-6: Deep-water corals can be found all over the globe at depths of up to
2000m, and are indicators of past climate change. Photo credit: Barbara Hecker.
Image provided courtesy of the NOAA Coral Reef Information System (CoRIS)
(http://www.coris.noaa.gov/about/deep/)

Autonomous Intervention

Sub-sea intervention on oil or gas wells is required in order to perform basic main-

tenance and repairs. In many instances, ROVs have replaced human divers in order

to perform tasks in deep or hazardous conditions. AUVs were intially used as survey

technologies, however, there is interest in developing AUVs with intervention abilities.

Some vehicles, such as the ALIVE AUV [20], use underwater navigation systems to

transit to a desired position, then switch to supervisory control via acoustic commu-

nication to perform tasks at the site. Many intervention vehicles are equipped with

robotic arms and/or tools to perform operations such as manipulating valves.

The MIT AUV Lab has joined with the Chevron Corporation to develop Odyssey

IV to perform inspection tasks for risers and pipelines on the sea floor. Future capa-

bilities include docking and intervention at subsea structures.
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Archaeology

The MIT Sea Grant AUV Lab has a history of archaelogical exploration [14], which in-

cludes survey and inspection of archaeological sites in areas such as Italy and Kythira,

Greece. AUVs can be used for mapping and photo/video survey. Previous missions

have demonstrated a need for the ability to closely follow non-smooth bottoms as well

as terrain-following and hovering capabilities [16]. The Odyssey IV AUV represents

a new technology for exploration of archaelogical sites.
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Chapter 2

Vehicle Model

2.1 The Odyssey IV AUV

Figure 2-1: Odyssey IV Internal Structure

The MIT Sea Grant AUV Lab has developed the Odyssey IV, an exploratory

autonomous underwater vehicle, designed for repeated rapid deployment, fast de-

scent/ascent, and relatively short missions. It features two azimuthing thrusters for
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motion in surge and heave, and two cross-body thrusters for maneuvering in yaw and

sway. As of this writing, the Odyssey IV has been taken to depth of 50m and is cur-

rently designed for operation in up to 2500m deep water. Replacing several sensors

increases the operational depth to 6000m.

The main vehicle computer consists of a PC-104 stack running a minimal in-

stallation of the Ubuntu operating system. Vehicle navigation and control is based

on MOOS, a “Mission Oriented Operating Suite” [59]. A modified version named

SGMOOS has been developed at the Sea Grant AUV Laboratory for use on their

vehicles including Odyssey IV [19]. Navigation is achieved using a suite of integrated

Table 2.1: On-Board Sensors
Instrument Measurement Application
Datasonics Sonar Altimeter altitude
Harowe (DynaPar) Resolver RTU position
Garmin GPS position at the surface
Microstrain 3DM-GX1 angular velocity, acceleration, magnetic
Paroscientific Depth Sensor depth
Teledyne Doppler Velocity Log (DVL) velocity over the sea floor

sensors (Table 2.1), including an Inertial Navigation System (INS) and a Doppler

Velocity Log (DVL), from which vehicle position during a mission is estimated using

an Extended Kalman Filter.

2.1.1 Vehicle Geometry

The vehicle body is a modification of the Odyssey II Class AUV design (Figure 2-2).

It is separated in the vertical direction for increased payload and improved roll/pitch

stability

The streamlined shape is a modified foil section. The sides of the vehicle are

faired, to make up an overall low drag profile for the hull. A pair of caged thrusters

are offset from the vehicle. See figures 2-3: 2-5 for the vehicle schematic layout and

Table 2.2 for the values of symbolic dimensions. Horizontal and vertical fins may be

used for passive pitch and roll control at speed, as seen in figure 2-1, however, the
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Figure 2-2: Comparison Between Odyssey II and IV Class AUVs

model and analysis presented in this thesis does not include them.

Figure 2-3: Odyssey IV Side View (dimensions in [m])

2.1.2 Vehicle Mass Properties

The vehicle and any entrained water within the flooded hull are modeled as a single

rigid mass. The mass properties of the vehicle are described in Table 2.3. Refer to

the vehicle mass table, Table A.1 in Appendix A, for the detailed positions of masses

within the vehicle.
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Figure 2-4: Odyssey IV Top View (dimensions in [m])

Figure 2-5: Odyssey IV Front View (dimensions in [m])
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Table 2.2: Odyssey IV Geometry

Parameter Value Units Description
L 2.17 m body length
W 0.58 m body width
H 1.19 m body height

Table 2.3: Odyssey IV Mass Properties (All vectors referenced from the geometric
origin of the body-fixed frame)

Parameter Value Units Description
B 3345 N body buoyancy force
m 339 kg wet body mass
ρ 1000 kg*m−3 density of water
xG 0.01 m x-vector to CG
yG 0 m y-vector to CG
zG 0.00 m z-vector to CG
xB 0.02 m x-vector to CB
yB 0 m y-vector to CB
zB -0.06 m z-vector to CB
Ixz 4.1 kg*m2 body product of inertia
Ix 55.5 kg*m2 body moment of inertia
Iy 316.9 kg*m2 body moment of inertia
Iz 290.7 kg*m2 body moment of inertia

2.1.3 Propulsion

Odyssey IV’s propulsion system provides 4 degree of freedom control. The vehicle uses

four Deep Sea Systems TH-2100 thrusters. The thrusters are 7 inches in diameter,

and produce 50 pounds of thrust at 1600 rpm. Two of the thrusters are tunneled,

and configured cross-body for motion in sway and yaw. Another two of the thrusters

are attached to a rotating unit, which can be rotated to provide the desired force

vector in surge and heave (Figure 2-6). The rotating thruster unit (RTU) is driven

by a servo drive for positioning control, has a resolver for positioning feedback, and

moves independently through 360 degrees.

29



Figure 2-6: Rotating thruster unit (RTU) consisting of two independently azimuthed
Deep Sea Systems TH-2100 thrusters

2.2 Equations of Motion

2.2.1 Coordinate Frames

Figure 2-7: Odyssey IV inertial and body-fixed coordinate frames

Figure 2-7 illustrates the placement of the inertial and body-fixed coordinate

frames. Vehicle motions are described relative to an inertial frame, which is fixed

at the ocean surface. The body-fixed coordinate frame is positioned at the vehicle

center of buoyancy, with x-axis forward, y-axis to starboard, and z-axis down. This

placement yields both port-starboard and top-bottom symmetry, reducing the body’s
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inertia tensor I0 to:

I0 =











Ix 0 Ixz

0 Iy 0

Ixz 0 Iz











(2.1)

2.2.2 Kinematics

The motion of the vehicle in the inertial frame is described by the following vectors:

η = [ηT
1 ,η

T
2 ]T ; where η1 = [x, y, z]T ; η2 = [φ, θ, ψ]T

ν = [νT
1 ,ν

T
2 ]T ; where ν1 = [u, v, w]T ; ν2 = [p, q, r]T

where η refers to the inertial position and orientation vector, and ν the body-fixed

linear and angular velocities.

In order to transform linear velocities from body-fixed to inertial coordinate

frames, we define the transformation matrix J1, such that

η̇1 = J1(η2)ν1 (2.2)

where

J1(η2) =











cφcψ − sφsθsψ −cθsψ sφcψ + cφsθsψ

cφsψ + sφsθcψ cθcψ sφsψ − cφsθcψ

−cθsφ sθ cφcθ











(2.3)

where c(·) represents cos(·) and s(·) represents sin(·).

The transformation matrix J1 is generated by first performing a rotation of angle

ψ about the z-axis, followed by a rotation of θ about the x-axis, and finally a rotation

φ about the y-axis.

In order to determine the rotational velocities in the inertial frame there is a

similar procedure which produces:

η̇2 = J2(η2)ν2 (2.4)
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where, using the same Euler angle sequence as above, J2 is defined as

J2(η2) =
1

cθ











sφsθ cθ −cφsθ

cφcθ 0 cθsφ

−sφ 0 cφ











(2.5)

This matrix produces a singularity in roll, as opposed to the more traditional

transformation matrices in Fossen [24] which produce a singularity in pitch. As

Odyssey IV has high roll stability as well as the possibility of pitching due to the

RTU or during fast descent, extreme angles in pitch are more likely to be of concern.

2.2.3 Rigid Body Dynamics

General Rigid Body Equations of Motion

The nonlinear equations of motion for a rigid body are developed by applying New-

ton’s laws in the body-fixed coordinate frame, using the notation below:

τRB = [τ T
1 , τ

T
2 ]T ; τ1 = [X, Y, Z]T ; τ2 = [K,M,N ]T

rG = [xG, yG, zG]T

where τRB denotes external forces and moments acting on the vehicle with respect

to the body-fixed frame, and rG the location of the vehicle center of gravity relative

to the body-fixed frame. Following the methodology in Fossen [24] for deriving the

inertial rigid body dynamics for a marine vehicle, the equations of motion are as
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follows:

m[u̇+ qw − rv + q̇zG − ṙyG + (qyG + rzG)p− (q2 + r2)xG] =
∑

Xext

m[v̇ + ru− pw + ṙxG − ṗzG + (rzG + pxG)q − (r2 + p2)yG] =
∑

Yext

m[ẇ + pv − qu+ ṗyG − q̇xG + (pxG + qyG)r − (p2 + q2)zG] =
∑

Zext

Ixp+ Ixyq + Ixzr + (Iz − Iy)rq + Iyz(q
2 − r2) + Ixzpq − Ixypr+

m[yG(ẇ + pv − qu) − zG(v̇ + ru− pw)] =
∑

Kext

Iyxp+ Iyq + Iyzr + (Ix − Iz)pr + Ixz(r
2 − p2) + Ixyqr − Iyzqp+

m[zG(u̇+ qw − rv) − xG(ẇ + pv − qu)] =
∑

Mext

Izxp+ Izyq + Izr + (Iy − Ix)pq + Ixy(p
2 − q2) + Iyzpr − Ixzqr+

m[xG(v̇ + ru− pw) − yG(u̇+ qw − rv)] =
∑

Next

Using mass symmetry across the x−z plane, the placement of the body-fixed frame at

the vehicle center of buoyancy, and the simplified vehicle inertia tensor I0 as described

in equation 2.1, the equations of motion are reduced to the following:

m[u̇+ qw − rv + (q̇ + rp)zG − (q2 + r2)xG] =
∑

Xext

m[v̇ + ru− pw + (pq + ṙ)xG + (rq − ṗ)zG] =
∑

Yext

m[ẇ + pv − qu+ (pr − q̇)xG − (p2 + q2)zG] =
∑

Zext

Ixṗ+ Ixzr + (Iz − Iy)rq + Ixzpq −m[zG(v̇ + ru− pw)] =
∑

Kext (2.6)

Iyq̇ + (Ix − Iz)pr +m[zG(u̇+ qw − rv) − xG(ẇ + pv − qu)]+ (2.7)

Ixz(r
2 − p2) =

∑

Mext

Izxp+ Iz ṙ + (Iy − Ix)pq − Ixzqr +m[xG(v̇ + ru− pw)] =
∑

Next

(2.8)
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Matrix Representation of Rigid-Body Equations of Motion

Following the representation of Fossen, the rigid-body equations of motion are ex-

pressed in matrix form as:

MRBν̇ + CRB(ν)ν = τRB (2.9)

with rigid-body inertia matrix MRB and Coriolis and centripetal matrix CRB defined

in (2.10) and (2.11) respectively.

MRB =
[

mI3x3 −mS(rG)
mS(rG) I0

]

=







m 0 0 0 0 mzG 0
0 m 0 −mzG 0 mxG

0 0 m 0 −mxG 0
0 −mxG 0 Ix 0 −Ixz

mzG 0 −mxG 0 Iy 0
0 mxg 0 −Izx 0 Iz







(2.10)

CRB =
[

03x3 −mS(ν1)−mS(ν2)S(rG)
−mS(ν1)+mS(rG)S(ν2) −S(I0nu2)

]

=









0 0 0 mz+Gr −m(xGq−w) −m(xGr+v)
0 0 0 −mw m(zGr+xGp) mu

0 0 0 −m(zGp−v) −m(zGq+u) mxGp

−mzGr mw m(zGp−v) 0 −Ixzp+Izr −Iyq

m(xGq−w) −m(zGr+xGp) m(zGq+u) Ixzp−Izr 0 −Ixzr+Ixp

m(xGr+v) −mu −mxGp Iyq Ixzr−Ixp 0









(2.11)

where I3×3 is the 3×3 identity matrix, I0 is the body’s inertia tensor, and S(λ) is

skew-symmetric matrix:

S(λ) =











0 −λ3 λ2

λ3 0 −λ1

−λ2 λ1 0











(2.12)

for unit vector λ = [λ1, λ2, λ3].

2.2.4 Governing Equations of Motion

The total external forces and moments acting on the vehicle τRB take into account

τprop, the propulsion forces and moments, as well as τH , the effects due to the hydro-
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dynamic forces and moments on the body:

τRB = τH + τprop (2.13)

where τH is defined as

τH = −MAν̇ − CA(ν)ν − D(ν)ν − g(η). (2.14)

MA is the contribution from added mass, CA(ν) the added mass component of the

Coriolis and centripetal component, D(ν) the hydrodynamic lift and drag, and g(η)

the hydrostatic restoring force. All hydrodynamic components are described more

explicitly in Chapter 3.

Combining equations 2.13 and 2.14 with equation 2.9, the complete equations of

motion as:

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τprop (2.15)

η̇ = J(η)ν (2.16)

where

M = MRB + MA; C(ν) = CRB(ν) + CA(ν);
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Chapter 3

Hydrodynamic Coefficient

Derivation

3.1 Added Mass

In fluid mechanics, an accelerating (or decelerating) body must move some volume of

the surrounding fluid. Citing Newman [58], this volume of fluid is called the added

mass, and for an ideal fluid, these forces and moments are defined as:

Fj = −u̇imj,i − εjkluiΩkml,i (3.1)

Mj = −u̇imj+3,i − εjkluiΩkml+3,i − εjklukΩkml,i (3.2)

where summation notion is implied and εjkl is the permutation symbol:

i = 1, 2, 3, 4, 5, 6

jkl = 1, 2, 3

εjkl =



























+1 if the indices are in cyclic order,

−1 if the indices are in acyclic order,

0 if any pair of the indices are equal.

(3.3)
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3.1.1 Body Added Mass

Due to the hull’s top-bottom and port-starboard geometric symmetry, the hull added

mass matrix simplifies to:

MAh
= −





























Xu̇h
0 0 0 0 0

0 Yv̇h
0 0 0 Nv̇h

0 0 Zẇh
0 Mẇh

0

0 0 0 Kṗh
0 0

0 0 Mẇh
0 Mq̇h

0

0 Nv̇h
0 0 0 Nṙh





























(3.4)

XA = Xu̇u̇+ Zẇwq + Zq̇q
2 − Yv̇vr − Yṙṙ

2

YA = Yv̇v̇ + Yṙṙ +Xu̇ur − Zẇwp− Zq̇pq

ZA = Zẇẇ + Zq̇ q̇ −Xu̇uq + Yv̇vp+ Yṙrp (3.5)

KA = Kṗṗ

MA = Mẇẇ +Mq̇ q̇ − (Zẇ −Xu̇)uw − Yṙvp+ (Kṗ −Nṙ)rp− Zq̇uq

NA = Nv̇v̇ +Nṙṙ − (Xu̇ − Yv̇)uv + Zq̇wp− (Kṗ −Mq̇)pq + Yṙur

Following Fossen [24], the axial added mass Xu̇h
of the hull can be estimated by

approximating as an ellipsoid with major semi-axis a equal to the vehicle’s maximum

height and minor semi-axis b equal to the maximum body width. Fossen gives the

lateral added mass of a prolate spheroid as:

Xu̇h
= −

4

3
ρab2

β0

2 − β0
(3.6)

where the constant β0 is defined as:

β0 =
1

e2
−

1 − e2

2e3
ln

1 + e

1 − e
(3.7)
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and eccentricity e defined as:

e = 1 − (b/a)2 (3.8)

The remaining added mass coefficients of the body are estimated using strip theory,

in which the three-dimensional added mass coefficients are found by integrating the

two-dimensional coefficients of the cross sections over the length of the appropriate

body axis. Approximating the body as a series of elliptical cross-sections, Newman

[58] gives the two-dimensional coefficients for an ellipse with major semi-axis a and

minor semi-axis b as:

A
(2D)
22 (y, z) = πρb2

A
(2D)
33 (y, z) = πρa2

A
(2D)
44 (y, z) =

1

8
πρ(a2 − b2)2

The hull is approximated using the profiles shown in Figure 3-1. From these 2D added

Figure 3-1: Odyssey IV Profile (XZ-plane and XY -plane)
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mass coefficients, the three-dimensional values are as follows:

Yv̇h
= πρ

∫ L+

0

L−

0

(

1

2
Hh(x)

)2

dx (3.9)

Zẇh
= πρ

∫ L+

0

L−

0

(

1

2
Wh(x)

)2

dx (3.10)

Kṗh
=

1

8
πρ

∫ L+

0

L−

0

x

(

(

1

2
Hh(x)

)2

−

(

1

2
Wh(x)

)2
)2

dx (3.11)

Mq̇h
= πρ

∫ L+

0

L−

0

x2

(

1

2
Wh(x)

)2

dx (3.12)

Nṙh
= πρ

∫ L+

0

L−

0

x2

(

1

2
Hh(x)

)2

dx (3.13)

Mẇh
= πρ

∫ L+

0

L−

0

x

(

1

2
Wh(x)

)2

dx (3.14)

Nv̇h
= πρ

∫ L+

0

L−

0

x

(

1

2
Hh(x)

)2

dx (3.15)

where the terms Hh(x) and Wh(x) represent the hull height and width as a function

of the hull length, and the limits of integration L+
0 and L−

0 represent the longitudional

extent from the body origin to the vehicle nose and the body origin to the vehicle tail

respectively.

Table 3.1: Body Added Mass Coefficients

Parameter Value Units
Xu̇h

-111.2 kg
Yv̇h

-1994.3 kg
Zẇh

-300.5 kg
Kṗh

-8.6 kg* m2

Mq̇h
-75.3 kg* m2

Nṙh
-646.2 kg* m2

Mẇh
-74.7 kg* m

Nv̇h
-229.1 kg* m
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3.1.2 Thruster Added Mass

The added mass due to the thrusters is quite complex. For simplicity, the outboard

thrusters are modeled as cylinders (diameter 0.23m, length 0.29m) on cylindrical arms

(diameter 0.04m, length 0.25m) offset from the vehicle. The added mass matrix due

to the thrusters is defined as follows:

MAt
= −





























Xu̇t
0 0 0 Mu̇t

Nu̇t

0 Yv̇t
0 Kv̇t

0 0

0 0 Zẇt
Kẇt

0 0

0 Kv̇t
Kẇt

Kṗt
0 0

Mu̇t
0 0 0 Mq̇t

Nq̇t

Nu̇t
0 0 0 Nq̇t

Nṙt





























(3.16)

Table 3.2: Thruster Added Mass Coefficients
Parameter Value Units

Xu̇t
-19.1 kg

Yv̇t
-18.5 kg

Zẇt
-19.7 kg

Kṗt
-8.2 kg* m2

Mq̇t
-0.2 kg* m2

Nṙt
-7.8 kg* m2

Kv̇t
0.5 kg* m

Kẇt
3.8 kg* m

Mu̇t
-0.5 kg* m

Nu̇t
-4.8 kg* m

Nq̇t
-0.38 kg* m2

3.2 Drag and Lift

Damping of underwater vehicle motions is coupled and nonlinear. A number of ap-

proximations are made in this work, in order to reduce complexity. For simplification

of modeling, only first-order and second-order terms are considered.
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The drag and lift forces are given by the following:

FD =
1

2
ρCD(α,Re)Au|u| (3.17)

FL =
1

2
ρCL(α,Re)Au|u| (3.18)

where A and u are characteristic area and velocities of the body, and drag coefficient

CD and lift coefficient CL are functions of the angle of attack α and Reynolds number

Re. Reynolds number is the ratio of inertial to viscous forces, given by

Re =
uL

ν
(3.19)

for characteristic length L and fluid kinematic viscosity ν, where ν is taken to be

1.19x10−6m2/s at 15◦C [58]. For the Odyssey IV, we are interested in both cruis-

ing and hovering operating ranges. In the interest of modeling, a range of operating

speeds, estimated from 0.5m/s to 1.5m/s, give Reynolds numbers for a smooth sur-

face from 0.9x106 to 2.7x106. At higher speeds, the vehicle will be operating in the

turbulent flow regime. At slower speeds, the vehicle is operating in the transitional

regime between laminar and turbulent flow. However, the Odyssey IV hull is not

entirely smooth, and turbulent flow is most likely to be tripped by the number of

appendages/etc. A fully-developed turbulent, non-Reynolds number dependent ap-

proach is taken due to roughness, particles suspended in sea water, and the ambient

turbulence of the ocean environment.

The objective is to find the nonlinear coefficients, for example, the axial drag

coefficient Xu|u|:

X =
1

2
ρCD(α,Re)Au|u| = Xu|u|u|u| (3.20)

Following the method developed by Jakuba [36], a strip-theory approach is used to

determine the differential drag and lift of 2D sections due to the in-plane flow speed

for that section, then integrating to find the total forces due to lift and drag. The

longitudional hull lift coefficients and drag forces due to the RTU are found using

more traditional methods.
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3.2.1 Strip-Theory

Coefficients

Leading coefficients are found using the simplified approaches used in [31, 32], using

a linear approximation:

CD ≈ KDα (3.21)

CL ≈ KLα (3.22)

where KD and KL are the drag and lift coefficient slopes.

To determine drag coefficient of the body along the x-axis, the hull is approximated

as a series of elliptical cross-sections, for which Hoerner [31] gives the equation for

the 2D lateral drag coefficient KDyz
(x) as:

KDyz
(x) = Cf

(

4 + 2
H(x)

W (x)
+ 120

(

W (x)

H(x)

)2
)

(3.23)

where H(x) andW (x) represent the height and width of the vehicle body as a function

of length, and Cf is the skin friction coefficient, taken to be Cf=0.035 for turbulent

conditions [58]. Along the vertical axis z, the cross-sections are treated as small-

aspect ratio wings, for which [31] gives the equation for the 2D longitudional drag

coefficient KDxy
(z) to be:

KDxy
(z) = 2Cf

(

1 + 2
W (z)

L(z)
+ 60

(

W (z)

L(z)

)4
)

(3.24)

The lift coefficient in the x-direction from [32] for a small aspect ratio wing is:

KLxy
=
π

2
ARx (3.25)

where ARx is the ratio of hull height to length.

43



Sectional Drag and Lift Forces

Using a strip theory approach, we find the find the sectional lift and drag forces

caused by the local planar velocities. These can then be integrated over the body to

find the forces and moments due to lift and drag. Considering the vehicle hull as a

series of 2D cross-sections, the sectional quadratic drag force dFD and lift force dFD

are given by the following:

dFD =
1

2
ρCDW (x2D)νT

2Dν2Ddx2D (3.26)

dFL =
1

2
ρCLW (x2D)νT

2Dν2Ddx2D (3.27)

where W (x2D) is the characteristic width and ν2D the local planar velocity vector.

For example, the secional drag and lift forces in the xy-plane are:

dFD,xy = −
1

2
ρKDxy

bxy(z)ν
T
z,2Dνz,2Ddz (3.28)

dFL,xy = −
1

2
ρKLxy

bxy(z)ν
T
z,2Dνz,2Ddz (3.29)

Total Drag and Lift Forces

The total sectional planar force dFtot is simply

dFtot = dFD + dFL. (3.30)

This force acts at the center of pressure CP , which is located at 1
4
chord from the

leading edge for a thin foil [42], for which the moment arm to the body origin is

defined as rCP . The differential moment is then defined as:

dMtot = rCP × dFtot (3.31)

the total forces can be found by integrating the sectional drag and lift forces onto the

entire vehicle. For example, in the x and k directions, we find the total forces and
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moments on the body due to drag and lift to be:

X =

∫ L+

0

L−

0

(dFD + dFL)dx2D

K =

∫ L+

0

L−

0

(dMtot)dx2D (3.32)

3.2.2 Additional Terms

Longitudinal Lift

Strip-theory is unsuitable for evaluating some terms, as one dimension should be large

compared to the other. Following [36, 32, 76], CZβ
is the lift coefficient dependent on

angle of attack β:

β = tan
(w

u

)

≈
w

u
(3.33)

CZ =
−Z

1
2
ρu2d2

(3.34)

CZβ
=
dCY

dβ
(3.35)

for which Hoerner [32] defines CZβ
=1.2rad−1.

Zw ≈ −
d

dw

(

1

2
ρu2W 2CZβ

β

)

= −
1

2
ρuW 2CZβ

(3.36)

Zuw =
Zw

u
= −

1

2
ρW 2CZβ

(3.37)

Muw = −
ZwxL

u
= −

1

2
ρW 2CZβ

(3.38)

where xL is the vector from the center of lift to the body-fixed origin.

45



Thruster Guards and RTU

The drag FDt
due to the thruster guards and RTU arms are modeled as follows:

Xu|u|t = −
1

2
ρCd(Aguardsx

+ ARTU) (3.39)

Zw|w|t = −
1

2
ρCd(Aguardsz

+ ARTU) (3.40)

where Cd=0.47 is the drag coefficient for a sphere [31], Aguardsx
and Aguardsz

are the

projected area of the thruster guard in the x- and z-directions, and ARTU is the

projected area of the RTU arms.

3.3 Hydrostatics

Following the methods in Fossen [24], the gravitational force fG acts at the center

of mass, located a distance from the origin rG = [xG, yG, zG]T , and buoyant force fh

acts at the center of buoyancy, located a distance from the origin rh = [xh, yh, zh]
T .

The vector of restoring forces and moments g(η) is

g(η) = −





fG(η) + fh(η)

rG × fG(η) + rh × fh(η)



 (3.41)

Expanding these equations results in the nonlinear equations for hydrostric forces and

moments:

XHS = (W − B) sin θ

YHS = −(W −B) cos θ sinφ

ZHS = −(W −B) cos θ cosφ (3.42)

KHS = −(WyG − Byh) cos θ cosφ+ (WzG − Bzh) cos θ sinφ

MHS = (WzG −Bzh) sin θ + (WxG − Bxh) cos θ cosφ

NHS = −(WxG − Bxh) cos θ sinφ− (WyG − Byh) sin θ
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3.4 Propulsion Model

In order to precisely control a marine vehicle, it is important to understand the dy-

namics of its propulsors. This is especially true for small vehicles moving at low

speeds, where the vehicle dynamics can be dominated by the thruster. The fluid

velocity incident on the propeller blade has two components: the axial velocity asso-

ciated with vehicle motion, and the tangential velocity associated with the spinning

of the propeller. The thrust developed is a function of the blade shape, the axial

velocity, and the rotational speed.

Several additional factors complicate thruster dynamics for a hovering vehicle. In

unsteady maneuvers, the flow into the thruster changes with time. This can lead to

nonlinear thrust response which is dependent on the magnitude of command [83] and

subject to deadband. Thrust may also exhibit forward/aft asymmetry due to blade

shape, duct shape, and wake effects of the motor pod. Cross-flow components in the

inflow can produce additional asymmetry, so that the net force produced does not

act along the thruster axis.

The dynamics of an azimuthing thruster are further complicated by an additional

controllable input: the azimuth angle, and its rate of change. A steady azimuth

angle produces a cross-flow component to the inflow. A changing azimuth angle

introduces another rotational component to the inflow, proportional to the azimuth

rate, α̇ (rad/s).

The thrusters for the Odyssey IV AUV are speed-controlled, using pulse-width

modulation (PWM) to control the propeller speed ω (rad/s), for which the equation

for steady-state thrust T is as follows:

T = KTω|ω| (3.43)

where KT is a thruster constant equal to 0.0108 kg*m for the Odyssey IV thrusters.

Since the focus of this thesis is hovering maneuvers without current disturbances,

the thruster model for the vehicle is considered at zero-vehicle speed and in-flow and

cross-flow velocities are considered negligible.
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Experiments show that unsteady dynamics of an azimuthing thruster are quite

complex. Preliminary analysis suggested that actual thrust produced has a time

dependence and is affected by the rate of change of azimuth angle. For commanded

thrust Tdes, a simple model for the reduced thrust due to azimuthing Tα̇ at current

azimuth rate α̇ was developed as follows:

Tα̇ =
Tdes

1 + kα̇
α̇

α̇max

(3.44)

where α̇max is the maximum azimuth rate and kα̇ is an emperically determined coeffi-

cent. In addition, a time-dependent thrust model was developed. The reduced thrust

Tα̇ is put through a first-order filter with gain λT , in order to simulate time-dependent

thrust development:

Ṫf = λT (Tα̇ − Tf) (3.45)

Figure 3-2 compares the thruster model with experimental results (the experiments

are described in further detail in Section 4.3). The full thruster model with time- and

azimuth rate-dependence improves performance of the full vehicle model. The vector

τprop represents the forces and moments on the vehicle from the propulsion system:

τprop = [Xprop, Yprop, Zprop, Kprop,Mprop, Nprop]
T (3.46)
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Figure 3-2: Unsteady Thrust Model: Comparison Between Measured and Predicted
Vehicle Response. Thruster models include Ṫf = λT (Tdes − Tf ) which models time-
dependence of thrust development, and Tα̇ = Tdes/(1 + kα̇α̇/α̇max) which models the
azimuth rate dependence. Experiments suggest that the unsteady thrust develop-
ment for an azimuthing propulsor is time dependent and reduced during azimuthing.
Simulation constants: λT = 7, kα̇ = 1.
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3.5 Complete Hydrodynamic Terms

Combining equations 3.6, 3.9 through 3.15, 3.32, 3.42, and 3.46, the sum of the forces

and moments on the vehicle are expressed as:

∑

Xext = Xu̇u̇+Xu|u|u|u| +Xwqwq +Xq|q|q|q| +Xvrvr +Xr|r|r|r|+

XHS +Xprop

∑

Yext = Yv̇v̇ + Yṙṙ + Yurur + Ywpwp+ Ypqpq + Yuvuv + Yv|v|v|v|+

Yr|r|r|r| + YHS + Yprop

∑

Zext = Zẇẇ + Zq̇ q̇ + Zuquq + Zvpvp+ Zrprp+ Zuwuw + Zw|w|w|w|+ (3.47)

Zq|q|q|q| + ZHS + Zprop

∑

Kext = Kṗṗ +Xp|p|p|p| +KHS +Kprop

∑

Mext = Mẇẇ +Mq̇ q̇ +Muquq +Mvpvp+Mrprp+Muwuw +Mw|w|w|w|+

Mq|q|q|q| +MHS +Mprop

∑

Next = Nv̇v̇ +Nṙṙ +Nurur +Nwpwp+Npqpq +Nuvuv +Nv|v|v|v|+

Nr|r|r|r|+NHS +Nprop

(3.48)
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Chapter 4

Complete Model and Testing

In this chapter, we develop the full nonlinear equations of motion, then build a sim-

plified model based upon linearization and decoupling for use in simulations and

controller design. Experimental response of the vehicle is used to to validate and

refine the performance of the analytical model.

4.1 Combined Nonlinear Equations of Motion

The full nonlinear equations of motion are formed by combining the rigid body equa-

tions of motion (Equation 2.6) and the equations of external forces and moments on
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the vehicle (Equation 3.47):

m[u̇+ qw − rv + (q̇ + rp)zG − (q2 + r2)xG] = XHS +Xprop +Xvrvr +Xr|r|r|r|+

Xu̇u̇+Xu|u|u|u| +Xwqwq +Xq|q|q|q|

m[v̇ + ru− pw + (pq + ṙ)xG + (rq − ṗ)zG] = YHS + Yprop + Yurur + Ywpwp+

Ypqpq + Yuvuv + Yv|v|v|v| + Yr|r|r|r| + Yv̇v̇ + Yṙṙ

m[ẇ + pv − qu+ (pr − q̇)xG − (p2 + q2)zG] = ZHS + Zprop + Zuquq + Zvpvp+

Zrprp+ Zuwuw + Zw|w|w|w|+ Zq|q|q|q| + Zẇẇ + Zq̇ q̇ (4.1)

Ixṗ+ Ixzr + (Iz − Iy)rq + +Ixzpq −m[zG(v̇ + ru− pw)] = KHS +Kprop+

Kṗṗ+Xp|p|p|p|

Iy q̇ + (Ix − Iz)pr + Ixz(r
2 − p2) +m[zG(u̇+ qw − rv) − xG(ẇ + pv − qu)] =

MHS +Mprop +Mẇẇ +Mq̇ q̇ +Muquq +Mvpvp+Mrprp+Muwuw+

Mw|w|w|w| +Mq|q|q|q|

Iz ṙ + Izxp+ (Iy − Ix)pq − Ixzqr +m[xG(v̇ + ru− pw)] = NHS +Nprop+

Nv̇v̇ +Nṙṙ +Nurur +Nwpwp+Npqpq +Nuvuv +Nv|v|v|v| +Nr|r|r|r|
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Gathering the accelerations, the equations can be rewritten:

(m−Xu̇)u̇+mzGq̇ = m[−qw + rv − rpzG + (q2 + r2)xG]+

Xu|u|u|u| +Xwqwq +Xq|q|q|q| +Xvrvr +Xr|r|r|r| +XHS +Xprop

(m− Yv̇)v̇ + (mxG − Yṙ)ṙ −mzGṗ = m[−ru+ pw − pqxG − rqzG]+

Yurur + Ywpwp+ Ypqpq + Yuvuv + Yv|v|v|v| + Yr|r|r|r| + YHS + Yprop

(m− Zẇ)ẇ − (Zq̇ +mxG)q̇ = m[−pv + qu− prxG + (p2 + q2)zG] + Zuquq+

Zvpvp+ Zrprp+ Zuwuw + Zw|w|w|w|+ Zq|q|q|q| + ZHS + Zprop

(Ix −Kṗ)ṗ−mzGv̇ = −Ixzr − (Iz − Iy)rq − Ixzpq +m[zG(ru− pw)] (4.2)

+Xp|p|p|p| +KHS +Kprop

(Iy −Mq̇)q̇ − (mxG +Mẇ)ẇ +mzGu̇ = (−Ix + Iz)pr − Ixz(r
2 − p2)−

m[zG(qw − rv) − xG(pv − qu)] +Muquq +Mvpvp+Mrprp+

Muwuw +Mw|w|w|w|+Mq|q|q|q| +MHS +Mprop

(Iz −Nṙ)ṙ + (mxG −Nv̇)v̇ = −Izxp− (Iy − Ix)pq + Ixzqr −m[xG(ru− pw)]

+Nurur +Nwpwp+Npqpq +Nuvuv +Nv|v|v|v| +Nr|r|r|r| +NHS +Nprop

These equations can then be written in the matrix form of Newton’s second law as

follows, such that Aν̇ =
∑

F :





























m−Xu̇ 0 0 0 mzg 0

0 m− Yv̇ 0 −mzG 0 mxG − Yṙ

0 0 m− Zẇ 0 −mxG − Zq̇ 0

0 −mzG 0 Ix −Kṗ 0 0

mzG 0 −mxG −Mẇ 0 Iy −Mq̇ 0

0 mxG −Nv̇ 0 0 0 Iz −Nṙ

























































u̇

v̇

ẇ

ṗ

q̇

ṙ





























=





























∑

X
∑

Y
∑

Z
∑

K
∑

M
∑

N





























(4.3)
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4.2 Simplified Model

4.2.1 Linearized Equations of Motion

The equations of motion are linearized to make the control problem more tractable,

such that the nonlinear state equation

ẋ = f (x,u) (4.4)

is transformed into the form

A0ẋ = B0x + τprop (4.5)

where A0 and B0 are the matrices associated with the linearized equations of motion,

while the vector τprop represents the forces and moments on the vehicle due to the

propulsion system.

The linearized equations of motion are formulated by linearizing about time-

varying reference trajectories ν0(t) and η0(t):

ν0 = [u0, v0, w0, p0, q0, r0]
T ; η0 = [x0, y0, z0, φ0, θ0, ψ0]

T (4.6)

where perturbations are described as the following differentials:

△ν = ν − ν0; △η = η − η0; (4.7)

Following Fossen [24], we use the vector notation:

fc(ν) = C(ν)ν; fd(ν) = D(ν)ν; (4.8)

Neglecting 2nd-order terms, 2.15 and 2.16 can be linearized as follows:

M∆ν̇ +
∂fc(ν)

∂ν
|ν0

∆ν +
∂fd(ν)

∂ν
|ν0

∆ν +
∂g(η)

∂η
|η0

∆η (4.9)
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η̇0 + ∆η̇ ≈ J(η0 + ∆η) +
∂J(η)ν

∂η
|ν0,η0

∆ν +
∂J(η)ν

∂ν
|ν0,η0

∆η. (4.10)

This reduces to

∆η̇ ≈ J(η0)∆ν +
∂J(η)

∂η
|η0

ν0∆η (4.11)

We define a new state vector x = (∆ν,∆η)T . A new formulation, with linearized

equations of motion and nonlinear control input vector is now

ẋ =





−M−1(C + D) −M−1G

J ∂J(η)/∂η



x +





−M−1

0



 τprop (4.12)

The coefficients for −M−1(C + D) can be found in Appendix B.

4.2.2 Decoupled Linear Model

The dynamic model of the Odyssey IV AUV is described in Chapter 2. Since the

focus of this thesis is maneuvering with the rotating thruster unit, meaning, motion

in the surge, heave and pitch directions, we are interested in reducing the number

of states for ease in computation. Healey [28] suggests that the AUV model can be

separated into subsystems due to negligible interactions between the states for certain

behaviors. From this work, it is suggested that the forward (u,x) and diving (w,q,θ,z)

directions can be decoupled from the remaining states (v,p,r,φ,ψ). We therefore are

interested in the following states of the vehicle model: [u, w, x, z, q, θ]. See Appendix

B for the model coefficient matrices.

4.3 Validation/Adjustment

4.3.1 Testing Description

Experimental results are required to determine the accuracy of the model. Tests were

performed in the engineering tank at the Jere A. Chase Ocean Engineering Laboratory

at the University of New Hampshire (UNH), which measures 60 x 40 x 20 feet. The

vehicle’s response was measured using the sensors described in Table 2.1. Vehicle
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position when submerged was estimated using integration of the raw DVL velocities

and/or an Extended Kalman Filter.

4.3.2 Figures and Analysis

All tests were performed at depth and at near-zero starting speed, such that surface

effects can be ignored. Figure 4-1 demonstrates the vehicle response to step changes

in thrust direction at constant thrust command. Figure 4-2 compares the actual

vehicle response to the prediction model. As can be seen, the original model was

slightly underdamped in heave and surge, so hydrodynamic coefficients for the model

are adjusted accordingly in figure 4-2.
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Figure 4-1: Experimental vehicle response to forcing in surge. The vehicle was brought
to depth such that surface effects could be ignored in analysis. Thrust commands were
alternated between forcing in positive surge and forcing in negative surge, with each
command held constant for 8 seconds.
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Figure 4-2: Comparison between measured and predicted vehicle response to forcing
in surge. The prediction model is given the control inputs from the experiment seen in
figure 4-1, and the original vehicle/propulsion model is shown to have similar behavior.
Hydrodynamic coefficients are adjusted to achieve better model performance
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Chapter 5

Controller Design

Control design for the Odyssey IV AUV requires using the azimuthing thruster to

control position in both the surge and heave directions. The goal of this work is

to develop a controller that allows the vehicle to perform manevuers in a minimum-

time manner that handles the physical constraints in the propulsion system. The

cross-body thrusters are not considered in this analysis. In this chapter, the cur-

rent controller for the Odyssey IV is considered, and a nonlinear control scheme is

introduced.

5.1 Algorithm Description

5.1.1 PID

Proportional-integral-derivative (PID) control is widely used in industry and is a well

understood technique [60, 61]. PID works on the principle of closed-loop feedback,

where the proportional term P is linear to error, integral term I goes with the ac-

cumulation of error over time, and the derivative term D goes with the derivative of

the error. Defining controller output u(t), the closed-loop control law is of the form:

u(t) = kpe(t) + ki

∫ t

0

e(τ)dτ + kd

de

dt
(5.1)
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where kp is the proportional gain, ki is the integral gain, and kd is the derivative gain.

Gains can be tuned according to the desired response with the tradeoffs inherent.

Proportional control can increase the system responsiveness, however, if kp is too

large it can drive the system to instability. Increasing derivative gain kd increases

damping and reduces overshoot, but can lead to steady-state error. Adding integral

control ki reduces steady-state error, however, it can cause overshoot. Careful tuning

is required to achieve fast response and stability. The existing closed-loop control for

Figure 5-1: Structure of MOOS PID (image source:[59])

the Odyssey IV consists of PID (see figure 5-1), in concert with internal thrust and

RTU controllers. Appropriate PID gains were empirically determined. The control

law for each axis (heave, surge) is solved using position errors to find the desired

control action for that axis, namely the desired forces in heave Fheave and surge Fsurge.

The control inputs to the rotating thruster unit are thrust uT and azimuth angle uα,

found from a mapping of the control actions from Cartesian to polar coordinates as

follows:

uT =
√

F 2
heave + F 2

surge (5.2)

uα = arctan

(

Fheave

Fsurge

)

(5.3)

PID has huge advantages in that it has been widely applied in industry and analysis

is detailed. Although PID is a linear controller, it has been successfully applied to

many nonlinear systems. Performance can certainly degrade if operating outside of
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the linearized regime. In addition, the PID controller has no knowledge of the system

itself.

Closed-Loop PID Experimental Performance

Figure 5-2 demonstrates the performance of the existing PID controller for the Odyssey

IV, maneuvering to waypoints in surge at depth. Figure 5-3 shows the data from Fig-
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Figure 5-2: Closed-loop PID response: Response to step change in desired surge
position (+6m) at depth, for slightly positively buoyant vehicle. The highlighted
time range [155s 184s] is used to illustrate the commanded thrust vectors at each
position, seen in figure 5-3
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ure 5-2 from the highlighted time range [155s 184s]. The desired thrust vector at each

position is shown, with desired waypoint approximately 1.4m forward in surge. Note

that because the vehicle buoyancy is slightly positive, some amount of desired forcing

in the negative heave direction is required in addition to the force required for the

surge maneuver. It is seen that in these experiments the PID controller commands

−5 −4 −3 −2 −1 0 1
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x (m)

z 
(m

)

 

 
Desired Waypoint

Figure 5-3: Closed-loop PID response: Commanded thrust vectors for response to
step change in desired surge position (+6m) at depth, for slightly positively buoyant
vehicle. The full vehicle response is shown in figure 5-2

fairly cautious control actions. The gains could be tuned for more aggressive maneu-

vers, but since there is no knowledge of the system, control could be compromised.

For operations requiring complex maneuvers, a more advanced controller becomes

necessary.

5.1.2 Model Predictive Controller

Model predictive control (MPC) is an attractive solution to the azimuthing thruster

problem, as it leverages knowledge of the system, allows the inclusion of constraints

within the formulation of the optimization problem, and solves an optimal control

law based upon the current state of the plant. MPC solves for a control action by

minimizing a performance objective function over a finite prediction time horizon

Tp. The controller predicts the system response based upon a projection forward

integration of a system model, solving for the required control action in order to

achieve the desired response over the time horizon. In an ideal world where there were
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no modeling errors, no disturbances, and computational time was not an issue, the

optimization problem could be solved over an infinite time horizon and the control

action could be played through eternity. Since the world is not ideal, feedback is

required to correct errors. MPC formulates the problem over a finite prediction time

horizon, and plays back the control action until the next sampling time. Then, the

objective function is reformulated using the current plant state as the initial state,

and the process is repeated. The focus of this work is formulating a quadratic cost

function based on vehicle states. Other cost function choices can be found in sources

such as [44].

Linear MPC

Linear MPC, in which a linear model of the system dynamics is used for prediction,

is a well-established method of control and has a range of applications in industry

[26, 66]. Linear MPC theory is extensive, with regards to design and performance

characteristics such as computational speed, stability, and robustness [46, 54]. The

linear discrete time model is of the form:

x(k + 1) = Ax(k) +Bu(k) (5.4)

y(k) = Cx(k) (5.5)

where xk and uk represent the state and control input at discrete time event k. By

using this state-space form, linear systems theory is applicable. The on-line solution

of the optimization problem is relatively simple, and closed-loop analysis is well-

understood.

Many systems have physical constraints on states and inputs. Therefore, it is de-

sirable to incorporate these constraints into the MPC problem. However, the addition
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of constraints to the linear model adds a level of complexity:

x(k + 1) = Ax(k) +Bu(k) (5.6)

y(k) = Cx(k) (5.7)

Du(k) ≤= d (5.8)

Hx(k) ≤= h (5.9)

where D and H represent the constraint matrices, and d and h are positive vectors.

The constrained optimal control problem is understood, however, the problem of

solving the constrained optimal control problem for a moving horizon becomes more

difficult [68].

Nonlinear MPC

The application of MPC to nonlinear systems has gained much interest in the past

20 years. Many systems are inherently nonlinear, and in some cases, a linear model is

not adequate because operations may be outside of the linear regime. In these cases,

there are advantages to prediction using a nonlinear model. There are a number of

good reviews regarding nonlinear MPC techniques, including [6, 22, 30, 46].

We formulate the discrete-time system

x(k + 1) = f(x(k), u(k)) (5.10)

y(k) = g(x(k)) (5.11)

where f is a nonlinear function of state x(k) and control input u(k) for discrete

time event k. Letting positive integer N denote the prediction horizon, we define

discrete state sequence x such that x = x(0), x(1), ..., x(N) and discrete control input

sequence u such that u = u(0), u(1), ..., u(N − 1). We now define the objective

function JN(x,u) for prediction horizon N to be

min
x,u

JN(x,u) subject to uL ≤ u ≤ uU (5.12)
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where uL and uU are the upper and lower bounds on the control input u.

Theory and Application The theory and application of nonlinear MPC is far less

developed compared to that of linear MPC. One large area of research involves im-

proving the reliability and reducing the computational cost of the on-line optimization

problem [7, 11, 21], which is much more complex than that of the convex quadratic

problem of linear MPC. System theory topics such as robust stabilization are also

highly of interest [11, 17, 67], however, the majority of the work is useful in theory

and understanding, and current solutions are not transferable to practice.

Nonlinear MPC has been used in a limited range of applications in industry [65].

These applications largely depend on slow dynamics relative to the time required to

perform the optimization [8]. Stability constraints are generally not considered from

a feasibility of practice standpoint.
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Chapter 6

Nonlinear Constrained Model

Predictive Controller

In this chapter we investigate the use of nonlinear model predictive control for the

Odyssey IV AUV. The performance optimization function is formulated from the pre-

diction model developed in previous chapters. Optimization routines are described

and their performance is evaluated. A nonlinear model predictive controller simu-

lation is developed. Several experimental controller variations are considered, and

compared to the simulation results.

6.1 Introduction

Nonlinear constrained model predictive control requires the on-line solution of an

open-loop optimal control problem. A nonlinear model is used for prediction and con-

straints are enforced within the formulation of the performance optimization function.

Feedback consists of applying the control action between sampling instances until the

optimization problem can be re-formulated and re-solved using the current measured

states.
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6.1.1 Problem Formulation

In order to include the propulsion model within the state equations (refer to Section

3.4 for the description of the propulsion model), we include thrust T and azimuth angle

α within new state vector x, and control input vector u comprised of commanded

control inputs defined as commanded thrust uT and commanded azimuth rate uα̇:

x = (u, w, x, z, q, θ, T, α)T (6.1)

u = [uT , uα̇]T (6.2)

with the equations of motion for the vehicle dynamic model linearized about time-

varying reference trajectories while still maintaining the nonlinearities in commanded

control inputs as discussed in Section 4.2.1:

ẋ = f(x,u), x(0) = x0. (6.3)

In order to distinguish between actual and prediction, predicted states and inputs

used in the optimization will be denoted as x̂ and û. Because we are concerned with

performing maneuvers in the surge and heave directions, the cost function will be

formulated of the following predicted state vector x̂(k) for discrete time instance k

x̂(k) = [û(k), ŵ(k), x̂(k), ẑ(k)]T (6.4)

The predicted states are found using a forward integration of the model using a

fourth-order runge-kutta method [63] for intial conditions obtained at the start of

optimization.

Referring to 5.12, the discrete cost function J specifying the desired control per-

formance is defined as follows, for the vector of control actions û used to simulate the
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system:

min
û
J =

N
∑

k=0

x̂(k)T Qx̂(k) (6.5)

subject to uT,min ≤ ûT ≤ uT,max (6.6)

uα̇,min ≤ ûα̇ ≤ uα̇,ma (6.7)

where Q is the weighting matrix. The solution of 6.5 is found to be

û∗
T = [û∗T (0), û∗T (1), ..., û∗T (N − 1)]T (6.8)

û∗
α̇ = [û∗α̇(0), û∗α̇(1), ..., û∗α̇(N − 1)]T (6.9)

In a closed-loop form, the first element [u∗T (0), u∗α̇(0)] would be applied, the optimiza-

tion problem would be reformed using the current states and solved again.

6.2 Optimization Methods

The implementation of nonlinear MPC on the Odyssey IV requires the real-time

solution of a nonlinear, bound-constrained, optimal control problem. Following [22],

the performance optimzation problem is formulated as follows. The state sequence

x̂ is described to lie in the connected, convex set of feasible states X, and control

sequence û in the compact, convex set of feasible inputs U. Cost function J is

assumed to be a convex function. For relation ẋ(t) = f (x(t),u(t)), the nonlinear

function f is continuous.

As the vehicle model was developed using MATLAB, the search for an opti-

mization routine began with pre-existing MATLAB functions. Several “off-the-shelf”

methods that could be used efficiently within the MOOS architecture (C++) were

also investigated. Performance characteristics of interest included: calculation time,

robustness to range of initial states, and handling of bound constraints. Descriptions

of the primary routines investigated follow, and performance comparisons for these

can be seen in Section 6.2.2.
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6.2.1 Methods

fminsearch

The MATLAB fminsearch function uses a Nelder-Mead or downhill simplex method

[38]. A simplex is defined as an n-dimensional polytope created from a set of n + 1

points–a 1-simplex results in a line, a 2-simplex results in a triangle, a 3-simplex

results in a tetrahedron, etc. This method involves creating a simplex from the

values of the objective function. At each iteration, the algorithm generates a new

point near the current simplex, and compares the function value with the current

vertices of the simplex. If this new point results in a better function value than the

current simplex, then we replace the vertex that results in the worst function value

with the current point, creating a new simplex. This continues until the size of the

simplex meets the specified tolerance.

Because fminsearch does not account for constraints within the problem formu-

lation, fminsearchbnd, a peer-reviewed function from the MATLAB C File Exchange

(see [15] for more details) has been developed to transform a simple bound-constrained

optimization problem into an unconstrained problem that can be used with fmin-

search.

lsqnonlin

The MATLAB nonlinear least-squares solver lsqnonlin uses a trust-region method [75,

12], which the documentation defines as finding a simpler quadratic approximation

(using the first two terms of a Taylor approximation) to the objective function in the

operating neighborhood, or “trust-region”. A two-dimensional subspace is formulated

and solved using a preconditioned conjugate gradient approach. The size of the trust-

region is adjusted until the desired convergence is achieved.

OptFDNIPS

Interior-point algorithms have shown promising results in nonlinear MPC [8, 81, 82].

OPT++ [48] is a C++ class library for nonlinear optimization. The library includes
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OptFDNIPS, an algorithm that uses a nonlinear interior-point method to solve bound-

constrained nonlinear optimization problems. It can use line search or trust-region

approaches. The merit function used in this work is a primal-dual path-following

method, meaning it approximates a central path by taking Newton steps.

6.2.2 Performance

Computation time and robustness are compared for each of the methods discussed in

Section 6.2.1. Different intial states of the optimization problem and initial control

action guesses are used. The solution and resulting prediction model performance for

one condition is shown in figure 6-1, and the computational time for each is listed

in Table 6.1. The OptFDNIPS is clearly the fastest solver. Although it was not

Table 6.1: Optimization performance comparison for solving MPC open-loop problem

Algorithm Calculation Time (s)
lsqnonlin 962

OptFDNIPS 0.2
fminsearchbnd 81

considered fast enough for the purposes of an on-line optimization solution, OptFD-

NIPS is still a promising result. For the purposes of performing off-line optimization

solutions, however, lsqnonlin was found to be more robust in terms of intial starting

conditions for the optimization routine.

6.3 Controller Simulation and Experimental Re-

sults

Vehicle controller tests were performed in the UNH engineering tank described in

Section 4.3.1. Because a method for on-line calculation of the MPC optimization

problem was not developed in time for this thesis, all experiments for the MPC

controller use a pre-computed optimization solution using the MATLAB lsqnonlin

function described above in Section 6.2.1. As was noted previously, all tests were
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Figure 6-1: Performance comparison between optimization methods: Solving MPC
open-loop problem for step change in desired surge position (+1m) and heave position
(+1m). The computational time for each algorithm is listed in Table 6.1. MPC char-
acteristics: N=20, △ t=0.2s. Bound conditions: uT =[0(N), 500(N)], uα̇=[-220(deg/s)
220(deg/s)]
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performed at depth and at near-zero starting speed, such that surface effects can be

ignored.

6.3.1 PID Closed-Loop Simulation vs PID Closed-Loop Ex-

periment

A PID simulation using the prediction model was developed for comparison to the

existing PID controller for the Odyssey IV. The responses of the simulated PID

controller and the actual are shown in figure 6-2. It is seen that the proportional gain

kP is equivalent. However, the model has less damping than the actual vehicle as kD

must be increased.

6.3.2 MPC Open-Loop Simulation vs PID Closed-Loop Ex-

periment

The advantage of MPC over a traditional controller, such as the existing PID closed-

loop controller, is that it builds upon a prediction model and directly enforces con-

straints. Figure 6-3 demonstrates the improvement in performance that an MPC

controller could have over a traditional PID. Because the MPC has future knowledge

of the system behavior, it is able to perform more aggressive maneuvers. In both the

surge and heave positions, the MPC controller settles approximately 20s faster than

the PID controller.

6.3.3 MPC Open-Loop Simulation vs MPC Open-Loop Ex-

periment

This section represents the first step towards the implementation of MPC on an ac-

tual vehicle. An open-loop MPC controller was developed for the Odyssey IV AUV.

The MPC optimization problem was calculated off-line using the MATLAB lsqnonlin

function, and the appropriate solution for each time step was sent to the MOOS con-

trol. Figure 6-4 demonstrates the performance of this experimental open-loop MPC
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controller compared to that of the simulation. Note that the bound conditions for the

thrusters uT defined on the figure represent the total thrust for both thrusters, the

lower bound is designed to accomodate for predicted deadband, and the upper bound

limits response due to operation for safety reasons as experiments were performed in

an enclosed testing area. The predicted response of the open-loop MPC controller

consists of operating at the upper bounds of the thrust input. The RTU spins accord-

ingly, to get the desired force vector in order to maneuver in 2-DOF simultaneously.

The thrust levels off at around 6s.

There was found to be some disconnect between commanded versus actual control

inputs (see figure 6-5). MOOS, as implemented on the Odyssey IV, was not designed

to accept actuator commands at the update frequency that was desired for these

MPC tests. This produces some difference in the performance of the experimental

controller. MOOS often receives the desired commands for the MPC controller and

records these as “Commanded”. However, the actual “Measured” output from the

RTU shows that the actual positions commanded do not match as closely as we would

like.

When the model is simulated using the control inputs of MOOS commanded

propeller speed and actual measured RTU position, the simulation agrees more closely

to measurements. This adds credibility to the model and suggests that errors are

primarily due to the disagreement between commanded and actual control inputs

within MOOS.

6.3.4 MPC-PID Hybrid

Because of issues from the software side in running experiments, an MPC-PID hy-

brid solution was developed (Figure 6-6). This solution was hoped to resolve small

errors due to mismatch between the MPC-MOOS communication, using the proven

PID controller. This MPC-PID hybrid is shown in figure 6-7. A feed-forward MPC

solution provides the majority of the controller input. The resulting error between

the predicted MPC state is compared with the actual, then the feedback PID con-

troller corrects for any error. The total command is then the vector sum of the PID
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command and the MPC command, essentially:

Fsurge,total = Fsurge,MPC + Fsurge,P ID (6.10)

Fheave,total = Fheave,MPC + Fheave,P ID (6.11)

Figure 6-7 demonstrates the experimental performance of this hybrid controller.

Figure 6-6: MPC-PID hybrid control diagram. For time t(k) ≤ t ≤ t(k + 1), the
predicted state xMPC(k) at discrete time instance k is compared with the actual
state x. This error e is used to generate the PID control uPID. The total control
applied is then the vector sum of the PID command and MPC command uMPC(k).

The MPC-PID controller improves performance over the open-loop controller, as the

vehicle returns to approximately zero surge velocity at the end of the experiment.

There is still some disconnect, however, as the vehicle does not arrive at the desired

final position even with the PID feedback control.
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Figure 6-7: MPC-PID hybrid controller performance: Response to step change in
desired surge position (+2m) and heave position (-1m). The PID feedback control
appears to improve performance, but not on the desired time scale. MPC character-
istics: prediction horizon N=20, time step △t=0.5s. Bound conditions: uT=[10(N),
240(N)], uα̇=[-150(deg/s), 150(deg/s)]
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Chapter 7

Conclusions

This thesis presents the development and analysis of a model of the Odyssey IV AUV.

The nonlinear model developed includes rigid body and hydrodynamic effects, using a

combination of theoretical and empirical approaches. The model was linearized about

time-varying reference trajectories to make the control problem tractable. Analysis of

the model suggests decoupling into three lightly-interacting sub-groups. Experiments

show good agreement between model prediction of vehicle motions and dynamics.

This lends credibility to its use as a good prediction model for model-based control.

Azimuthing propulsion provides improved maneuverability over traditional propul-

sion systems, even at zero-forward speed. The application of azimuthing propulsion

to the Odyssey IV AUV brings additional complexity, as the dynamic response of the

actuation is on the same time scale as the vehicle. Unsteady thrust development for

azimuthing actuators is not well understood. This thesis presents a simple model for

unsteady thrust development that takes into account time-dependence and effect of

azimuthing. This approach was shown to improve model performance.

The challenges associated with control of the Odyssey IV AUV involve a com-

plex dynamic model and a nonlinear control problem further complicated by the az-

imuthing thruster configuration. The current Odyssey IV controller uses PID control.

Experimental performance of this controller was analyzed. For complex maneuvers a

more advanced controller becomes necessary.

Model predictive control (MPC) was investigated as it has the ability to handle
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constraints and nonlinearities. A nonlinear MPC-based controller was developed, and

simulations suggest improved performance over the current PID controller. Because

it incorporates future knowledge of the system behavior and physical constraints, the

MPC-based solution is able to perform more aggressive maneuvers with better usage

of the thrusters.

Several algorithms for solving the performance optimization function are analyzed.

Computation of the on-line optimization problem is identified as the limiting factor in

a real-time MPC-based controller. An experimental open-loop controller was devel-

oped, such that the optimization problem was computed off-line and the appropriate

control solution for each time step was commanded. Some disconnect was observed

between commanded and actual control inputs due to communication issues with the

software. A hybrid MPC-PID controller was then proposed, such that a feed-forward

MPC solution provides the majority of the controller input, and a feed-back PID con-

troller corrects for any additional error. The same communication problem between

commanded versus actual control inputs was observed. Successful implementation of

a hybrid PID-MPC controller would require that these errors be resolved. By over-

coming these obstacles, results from simulation suggest that a nonlinear MPC-based

controller would provide substantial contributions to maneuvering and path-planning.
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Appendix A

Vehicle Mass Table

Table A.1: Odyssey IV Detailed Mass Table

Part Dry Displaced Wet xG zG xB zB

(kg) (kg) (kg) (m) (m) (m) (m)
RTU 32.66 14.81 17.85 0 0 0 0

thruster guards 7.03 1.24 5.8 0 0 0 0
thruster + arm 12.61 5.39 7.22 0 0 0 0

x thruster/mount 12.7 5.35 7.35 0 0 0 0
front sphere 26.31 45.24 -18.93 0.03 -0.02 0.05 -0.04
rear sphere 26.31 45.22 -18.91 -0.02 0.02 -0.04 0.04

battery 34.93 0 34.93 -0.03 0.03 0 0
lifting bale 4.22 0.92 3.3 0 -0.01 0 0
frame rails 15.1 15.88 -0.77 0 0 0 0

frame other pieces 17.24 17.98 -0.75 0 0 0 0
frame metal struts 8.85 0.98 7.86 0 0 0 0

guard bracket 2.54 0.29 2.25 0 0 0 0
electronics 9.53 0 9.53 0.01 -0.01 0 0

frame metal strips 3.27 0.36 2.9 0 0 0 0
bolts 4.08 0.45 3.63 0 0 0 0
cables 4.54 1.36 3.18 0 0 0 0
DVL 9.98 4.73 5.25 -0.01 0.01 0 0

sphere handles 0.91 0.14 0.77 0 0 0 0
rounded fairings 14.33 13.39 0.95 0 0 0 0

side fairings 7.37 6.7 0.67 0 0 0 0
altimeter 1.59 0.45 1.13 0 0 0 0

depth sensor 3.18 0.45 2.72 0 0 0 0
flotation 79.74 159.48 -79.74 0.04 -0.03 0.02 -0.06

Total 339 340.83 -1.84 0.01 0.00 0.02 -0.06
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Appendix B

Coefficient Matrix

The equations of motion are linearized about time-varying reference trajectory ν0(t),

as described in Section 4.2.1:

ν0 = [u0, v0, w0, p0, q0, r0]
T (B.1)

such that the equations of motion can be written as

ν̇ = Aν + Bu (B.2)

where

A = −M−1(C + D) (B.3)

The matrix A is velocity dependent due to the drag coefficient matrix D, therefore,

we are interested in finding numerical values for A, for different reference velocities.
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For ν0 = [1, 0, 0, 0, 0, 0]T :

A0 =
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
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For ν0 = [0, 1, 0, 0, 0, 0]T :

A =


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For ν0 = [1, 1, 0, 0, 0, 0]T :
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