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Abstract

We revisit the classical problem of the efficiency of inhomogeneous
thermoelectric generators. The effects of different physical parameters
on the efficiency of a generator are studied by solving the Domenicali’s
equation numerically. It is found that the efficiency of a thermoelectric
generator is insensitive to both the electrical resistivity and thermal
conductivity. However, the efficiency of a thermoelectric generator can
be improved by various designs of the Seebeck coefficient.
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1 Introduction

The thermoelectric effect refers to the direct conversion of temperature
differences to electrical power and vice versa [1, 3]. This effect can be used
to generate electricity, to measure temperature, to cool or heat objects. For
example, some spaceships are powered in this way, exploiting the temperature
difference between a radioactively-heated plate and the cold empty space sur-
rounding the ship. Future work in thermoelectrics includes converting waste
heat from power plants, trucks and even automobiles into electricity.

There are many advantages to thermoelectrics. For example, thermoelec-
tric material devices are extremely reliable and are capable of over 11 years of
steady state operation because the devices contain no moving parts. Unfortu-
nately, a major obstacle to wide application of thermoelectric energy conversion
is its low efficiency.

In [2] Mahan carried out theoretical calculations which showed that in-
homogeneous doping can increase the efficiency of thermoelectric generators.
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His study was based on a special set of equations which defined the transport
coefficients in terms of a normalized conductivity. In this paper we revisit the
efficiency of thermoelectric generators by isolating each parameter and study-
ing its effect on the efficiency directly. Our approach is different from [2] in
the way that each parameter is studied individually and therefore one can gain
more insights on how to improve the efficiency of thermoelectric generators.

This paper is organized in the following way. First, we briefly review the
governing equations for a one-dimensional thermoelectric transport. Then, we
solve the system numerically and present our numerical results. Finally, we
draw conclusions.

2 Governing equations for thermoelectric gen-

erators

For a one-dimensional thermoelectric transport where the current is as-
sumed to flow in one dimension, the governing equations consist of the Domeni-
cali’s equation for the steady state energy balance

d

dx
[K(x)

dT (x)

dx
] = −ρ(x)J2 + JT (x)

dS(x)

dx
, (1)

and the definition of the heat flow

Q(x) = JT (x)S(x) − K(x)
dT (x)

dx
. (2)

Here K denotes the thermal conductivity, T the temperature, ρ the electrical
resistivity, J the electrical current, S the Seebeck coefficient, and Q the heat
flow.

Note that equation (1) is a second order ODE. In order to get a first order
ODE system, we manipulate the equations (1) and (2) as follows. Differenti-
ating (2) with respect to x yields

dQ(x)

dx
= JT

′
(x)S(x) + JT (x)S

′
(x) − [K(x)

dT (x)

dx
]
′
. (3)

Substituting the expression d
dx

[K(x)dT
dx

] from (1) into (3), we obtain

dQ(x)

dx
= J(x)T

′
(x)S(x) + ρ(x)J2. (4)

Solving (2) for T
′
(x) gives

T
′
(x) =

JT (x)S(x) − Q(x)

K(x)
. (5)
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Plugging (5) into (4), we have

dQ(x)

dx
=

J2T (x)S2(x)

K(x)
− JS(x)Q(x)

K(x)
+ ρ(x)J2. (6)

Introducing Z = S2

ρK
, equation (6) becomes

dQ(x)

dx
= ρ(x)J2[1 + Z(x)T (x)] − JS(x)Q(x)

K(x)
. (7)

Putting equations (5) and (7) together, we finally arrive at a first order ODE
system: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dT (x)

dx
=

JT (x)S(x) − Q(x)

K(x)

dQ(x)

dx
= ρ(x)J2[1 + Z(x)T (x)] − JS(x)Q(x)

K(x)

(8)

The boundary conditions are imposed such that there is a cold temperature
at one end of the bar (which is set to be origin for convenience) and a hot
temperature at the other end of the bar. Mathematically, this implies that

T (0) = Tc, T (L) = Th where Tc < Th. (9)

In the special case where K, S and ρ are constants, the above BVP can be
solved exactly. First, (1) is reduced to

d2T (x)

dx2
= −ρJ2

K
. (10)

Upon integration twice, we find T (x) = −ρJ2

2K
x2 + C1x + C2. The boundary

conditions (9) require that C1 = Th−Tc

L
+ ρJ2L

2K
, C2 = Tc. Thus, the solution of

Domenicali’s equation (1) is

T (x) =
ρJ2

2K
x(L − x) +

Th − Tc

L
x + Tc. (11)

Consequently, the corresponding solution for Q(x) can be obtained directly
from (2):

Q(x) = JST (x) − K(Th − Tc)

L
− ρJ2

2
(L − 2x). (12)

In general, the parameters vary along the bar and one has to solve the sys-
tem (8) with two boundary conditions (9) numerically. A MATLAB build-in
function BVP4C can be used directly to solve this BVP. BVP4C is a finite dif-
ference code that implements the three-stage Lobatto IIIA formula and solves
the boundary value problems for ODEs by collocation. The basic idea of a
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collocation method is to first select a family of candidate solutions (usually
polynomials up to a certain degree) and a number of points (called collocation
points) in the computational domain [a, b] , and then to find the solution so
that the given equation is satisfied by this solution at the collocation points.
The collocation polynomial of BVP4C provides a solution that is continuous
on [a, b] and has a continuous first derivative there. The solution is fourth-
order accurate uniformly in [a, b]. More information on BVP4C can be found
in the book [4].

The efficiency of a thermoelectric generator is defined as the ratio of the
output power and the input heat flow:

η =
J

∫ L
0 S(x)dT (x)

dx
dx + J2

∫ L
0 ρ(x)dx

Qh
, (13)

where Qh is the heat flow at the hot end of the bar: Qh = Q(L). In the
simplest case where K, S and ρ are constants, (13) is reduced to

η =
JS(Th − Tc) + J2ρL

JSTh − K(Th−Tc)
L

+ J2ρL
2

, (14)

where equation (12) has been exploited to evaluate Qh.
To compute (13) numerically, we first apply the cubic spline to interpo-

late the solution values obtained from BVP4C and then use the Composite
Simpson’s Rule to evalute the integration.

3 Numerical results

For the numerical solutions of BVP (8) and (9), we consider several cases
below. In order to pinpoint the effect of each parameter on the efficiency, we
will vary one parameter at a time and compare the solutions with the constant
parameter case.

3.1 Effect of the Seebeck coefficient

In order to investigate the effect of the Seebeck coefficient on the efficiency
of a thermoelectric generator, we study various profiles of S(x).

Case 1: For comparison purpose, we consider first the simplest case where
K, S and ρ are constants. Similar to [2], we choose Tc = 400, Th = 750,
ρ = 0.04, K = 3.194, S = 211, J = −1.23, L = 1. Figure 1 shows both the
exact solutions (11) and (12) and the numerical solutions. The two solutions
agree with each other very well and this valdiates the numerical solutions. The
efficiency in this case can be found either from (14) or numerically to be 0.4640.
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Figure 1: Comparison of the numerical solution and the exact solution.The
efficiency is 0.4640.

Case 2: Now we allow the parameters to vary spatially along the bar,
which corresponds to inhomogeneous materials. Instead of assuming the pa-
rameters as functions of temperature T [2], we treat the parameters directly
as functions of x. First, we assume S(x) = s0(1 + x) where s0 = 211 and
keep all other parameters same as in Case 1. In Figure 2 we compare the
solutions of this inhomogeneous case and the homogeneous case in Case 1.
Unlike the homogeneous case where the temperature and the heat flow change
almost linearly with x, the inhomogeneous solutions behave more dramatically
as functions of x and the efficiency is decreased to 0.4055.
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Figure 2: Comparison of the inhomogeneous solution and the homogeneous
solution. The inhomogeneous case corresponds to S(x) = s0(1 + x). The
efficiency for the inhomogeneous case is 0.4055 whereas the efficiency for the
homogeneous case is 0.4640.

Case 3: In Case 3 we vary S as S(x) = s0(1 + x2) with s0 = 211 and
keep all the other parameters unchanged from Case 1. Figure 3 compares the
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inhomogeneous solution with the homogeneous solution. Again, large oscilla-
tions of the temperature and the heat flow are observed and the efficiency is
increased significantly to 0.6064.
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Figure 3: Comparison of the inhomogeneous solution and the homogeneous
solution. The inhomogeneous case corresponds to S(x) = s0(1 + x2). The
efficiency for the inhomogeneous case is 0.6064 whereas the efficiency for the
homogeneous case is 0.4640.

Case 4: Assume S(x) = s0(1+ sin x) where s0 = 211 and all other param-
eters retain the same values as in Case 1. The solutions are depicted in Figure
4. The efficiency is increased dramatically to the value 0.6218. This is about
34% increase from the homogeneous case.

Case 5: We consider S(x) = s0(1+cosx) where s0 = 211 and all the other
parameters have the same values as in Case 1. Figure 5 plots the solutions.
The efficiency is decreased to the value 0.3617.

Case 6: Let S(x) = s0(1+ex) where s0 = 211. Again, all other parameters
are kept at the same values as in Case 1. The solutions are shown in Figure
6. The efficiency is jumped to 0.8516, which is about 83% increase from the
homogeneous case.

From these case studies, it is clear that the efficiency of a thermoelectric
generator can be improved significantly by inhomogeneous doping with a smart
choice of the Seebeck coefficient. Whether or not it is feasible in practice
remains a challenge.

3.2 Effect of thermal conductivity

Now we keep the Seebeck coefficient S as a constant and vary the thermal
conductivity K. All the constant parameters are taken the same values as
in Case 1. Both Figure 7 and Figure 8 show the solutions corresponding to
various profiles of K(x). Figure 7 indicates that the larger values of K(x) tend
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Figure 4: Comparison of the inhomogeneous solution and the homogeneous
solution. The inhomogeneous case corresponds to S(x) = s0(1 + sin x). The
efficiency for the inhomogeneous case is 0.6218 whereas the efficiency for the
homogeneous case is 0.4640.

to reduce the efficiency while Figure 8 suggests that the smaller values of K(x)
increase the efficiency. However, from these two figures we can see that the
efficiency is rather insensitive to different profiles of K(x).

3.3 Effect of electrical resistivity

Finally, we fix all the other parameters and let ρ(x) vary. We find that
both the solution and the efficiency are very insensitive to variations in ρ(x)
even though it undergoes a large change of magnitudes. We omit the plots of
solutions here.

4 Conclusions

The efficiency of a thermoelectric generator is studied here by varying differ-
ent physical parameters separately. It is found that the efficiency of a thermo-
electric generator can be increased significantly by selecting an inhomogeneous
Seebeck coefficient. On the other hand, the efficiency is rather insensitive to
the variations of the electrical resistivity and thermal conductivity. These re-
sults serve as a first step towards improving the efficiency of a thermoelectric
generator. The design of an optimal Seebeck coefficient for the thermoelectric
generator will be pursued in the future.
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Figure 5: Comparison of the inhomogeneous solution and the homogeneous
solution. The inhomogeneous case is given by S(x) = s0(1 + cosx). The
efficiency for the inhomogeneous case is 0.3617 whereas the efficiency for the
homogeneous case is 0.4640.
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Figure 6: Comparison of the inhomogeneous solutions and the homogeneous
solutions. The inhomogeneous case corresponds to S(x) = s0(1 + ex). The
efficiency for the inhomogeneous case is 0.8516 whereas the efficiency for the
homogeneous case is 0.4640.
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Figure 7: Solutions of various inhomogeneous cases where the thermal conduc-
tivity K(x) varies.
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Figure 8: Solutions of various inhomogeneous cases by changing the profile of
the thermal conductivity.


