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Summary  

A new near-wall approximate analytical velocity profile is developed for wall-bounded 

turbulent boundary layers in an adverse pressure gradient.  The new velocity profile 

approximation is used to fit experimental profile data in order to extract near-wall 

information such as the skin friction coefficient and the viscous layer thickness.  Results 

with Direct Numerical Simulation computer generated data shows the method works well 

and is superior to the existing model from the literature.  Fits to experimental wind tunnel 

APG data sets indicate that the new analytical velocity profile works well.  
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1.  Introduction   

It has long been recognized that the wall-bounded turbulent boundary layer can be 

conveniently divided into two regions, an inner and outer region.   The proximity of the 

wall has made experimental measurements very difficult in the inner layer region.  This, 

in turn, has made it very difficult to extract information such as the skin friction 

coefficient and the thickness of the viscous layer.  The usual method for extracting the 

skin friction coefficient from velocity profile data is to use the Clauser chart method or its 

equivalent.  This method basically assumes the Logarithmic Law of the Wall.  Although 

there is an on-going controversy as to the universality of the Logarithm Law [1], the 

Clauser method is the only available option for most engineering purposes.  Recently, 

Kendall and Koochesfahani [2] described a related method for estimating the turbulent 

boundary layer skin friction coefficient of a zero pressure gradient (ZPG) flow.  The 

method is based on fitting the experimental inner region velocity profile.  While still 

assuming the Log Law, the method also makes use of data close to the wall.  Kendall and 

Koochesfahani found that fits using the approximate Musker velocity profile [3] gave 

skin friction coefficients that were very close to experimentally verified oil-film 

interferometry results.  The Musker profile equation is a simple analytical equation that 

tries to describe the velocity profile from the wall to the outer reaches of the Log Law 

region.     

The fitting method works very well for the ZPG turbulent boundary layer.  

Unfortunately, it is not applicable to flows with an adverse pressure gradient (APG).  The 

reason is that it is generally acknowledged that the Karmon constant κ , which is central 

to the Log Law, has an unknown pressure gradient dependence.  Recently, T. Nickels [4] 

presented a simple analytical model for the velocity profile for the inner region of the 

APG boundary layer that includes for the first time a simple pressure dependent κ  

parameter developed from fitting Direct Numerical Simulation (DNS) computer 

generated datasets.  With the Nickels model, it would be possible to fit APG velocity 

profiles and thereby extract skin friction coefficients and viscous thicknesses.  In what 

follows, we compare the Nickels analytical expression to more recent DNS results.  We 

find that the Nickels expression works well for the ZPG case and mild APG case.  

However, for the strong APG case, the Nickels expression does not reproduce the 

velocity profile nearly as well.  To address this problem, we looked for alternate 

approximate velocity profile expressions that would fit the data better.   

Rather than trying to find alternative approximate velocity profiles directly, we 

opted to look for approximate second derivative profiles.  The reason for this approach is 

two-fold.  First, the pressure gradient contribution to the velocity profile shows up 

directly as a wall boundary condition to the second derivative velocity profile.  From the 

streamwise momentum balance, we know that at the wall, the derivative of the pressure 

in the streamwise direction is directly balanced by the viscous second derivative (normal 

to the wall direction) term.   The derivative of the pressure in the streamwise direction is 

a value easily measured experimentally.  Thus, using the second derivative profile, it is 

much easier to see the effect of the pressure gradient on the boundary layer profile.  The 

second reason for using this approach is that by working with the second derivative 

profile, we can see exactly where the viscous contributions are important.  The viscous 

forces are one of the major forces controlling the inner region of the boundary layer.   
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It must be pointed out that although we are developing a second derivative 

velocity profile, the intent is to end up with an approximate velocity profile since the 

velocity profile is what is measured experimentally.  Therefore, an overriding 

requirement is that any second derivative analytical approximation must be twice 

integrable in order to obtain a workable velocity profile approximation. 

After testing various analytical expressions for the second derivative profiles 

against a number of DNS experimental results, we found that a simple delta-function-like 

analytical expression for the pressure contribution together with the differentiated Musker 

profile reproduced the second derivative experimental profiles very well.  In what 

follows, we begin by introducing the Musker profile for the ZPG case.  For comparison, 

we also present the Nickels expression.  Next we introduce the simple delta-function-like 

expression for the pressure contribution.  Comparisons to experimental DNS results show 

that the new expression is superior to the Nickels approximate expression for the 

turbulent boundary layer in an adverse pressure gradient.  Finally, the new modified 

Musker profile is used to fit existing APG data with good results.  

 

 

2.  Approximate Turbulent Velocity Profile 

The velocity profile for a turbulent fluid flow past a flat plate developed by 

Musker [3] is based on an eddy kinematic viscosity argument as to the form of the 

reduced velocity gradient.  In the paper, Musker showed that the reduced velocity 

gradient is given approximately as  

( )

( ) ( )

2

2 3

C ydu

dy C y C y

κ

κ κ

++

+
+ +

+
≅

+ +
 

where  /u u uτ
+ = , where /y y uτ ν+ =  , and where uτ  is the friction velocity.  In this 

equation the constant κ is the well-known Log Law von Karmon constant and C is 

proportionality constant for the eddy viscosity in the near-wall region.  Musker estimated 

the value of C by matching the integral of Eq. 1 and the Log Law velocity for large 

y
+

values.    

To calculate the velocity profile, we need to integrate Eq. 1.  Although a general 

closed form analytical integration of Eq. 1 is not possible, it is possible to analytically 

integrate Eq. 1 for specific numerical values of C and κ .  For example, Musker showed 

that for the values C=0.001093 and 0.41κ = , the analytical velocity profile derivative 

(Eq. 1) integrates to  

( ) ( )

( )

9.6

1
ker 10 2

2

2 8.15 10.6
5.424 tan log 3.52 .

16.7 8.15 86
Mus

y y
u

y y

+ +

+ −

+ +

  − +
  = + −
   − +    

 

This equation works very well for the zero pressure gradient (ZPG) turbulent boundary 

layer as shown by A. Kendall and M. Koochesfahani [2].  For the general C and κ case, 

we prefer the approximate integral expression given as FORTRAN source code in 

Appendix A.  The advantage of the expression given in Appendix A is that it is 

applicable for flows with a pressure gradient since the values of both C and κ  are 

expected to change with the strength of the pressure gradient.   

(1)

(2)
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3.  Flows with a Pressure Gradient 

If Eq. 1 is differentiated with respect y
+

 
then one has  

( ) ( )

( ) ( )

2 2

2
ker

2 2
2 3

3

.Mus

C y C y
d u

dy
C y C y

κ κ

κ κ

+ +
+

+
+ +

 − + 
 

=
 + + 
 

 

Notice that at the wall, this equation has a value of zero.  The momentum balance 

equation in the direction parallel to the wall simplifies at the wall to 
2

2

1
.

dp d u

dx dy
ν

ρ
≅  

Therefore for the zero pressure gradient (ZPG) case we must have the second derivative 

of the velocity be equal to zero in agreement with Eq. 3.  The question is what to do for 

the case with a non-zero pressure gradient.   

Recently, Nickels constructed an analytical model to handle the strong APG 

case [4].  The Nickels expression is a composite of three different expressions covering 

different regions of the boundary layer.  For the inner viscous region, Nickels found that 

the analytical expression given by  

( ) ( ) ( ) ( )
2 3

31 3
1 1 2 3

2 2

y yc
c c x c c x c c

viscous
u y y y p y y y p y y y e

+ +−+ + + + + + + + + + + +  
= − + + − −  

  
 

was a good fit to a number of DNS experimental results.  In this expression, the only 

adjustable parameter is cy+
whose value as a function of the pressure gradient was found 

by fitting DNS data.  For the Overlap region, Nickels choose a mixed scale function 

involving the inner region scale as well as the outer region scale.  The function was 

chosen to have the correct asymptotic behavior and is given by 

( )( )
( )

6

6

1 0.61
ln

6 1

c

overlap

y y
u

yκ δ

+ +

+

 
+ 

=  
+ 

 

 

where δ is a boundary layer thickness scale treated as an adjustable parameter.  The final 

expression of Nickels composite expression for the velocity profile covers the wake 

region.  It is given by 

( )4 8

3

5
1

1 5wake
u b EXP

η η

η

+
  +
  = −
  +

  

 

where b is a measure of the wake strength.  By fitting to DNS datasets, Nickels was able 

to find simply analytical expressions for cy+
and κ as a function of the pressure gradient.  

This means that the only unknown parameters are uτ , b, and δ which are obtained by 

fitting the composite profile (Eqs. 5-7) to the experimental profile.   

  The Nickels expressions work well for the ZPG case and mild pressure gradient 

cases.  Unfortunately, as we will show below, it does not work nearly as well for the 

medium and strong APG cases.  To remedy this problem, we looked for an improved 

analytical expression that followed the experimental data better.  We found that adding a 

(3)

(4)

(5)

(6)

(7)
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simple delta-function-like expression to the standard Musker analytical expression given 

in Appendix A works very well.  The delta-function-like expression was chosen so that 

the resulting composite velocity profile has the correct Taylor series expansion at the 

wall.  The delta-function-like expression is given by 

( ) ( )
2

+2 2-a y +

2
  e 1 - 2a y

delta

d u dP

dxdy

+

+

 
=  

 
 

where a  is a constant determined from comparison with DNS experimental results.  For 

the work described herein, a value of a 0.1=  was found to work well.  If Eq. 8 is twice 

integrated using the appropriate boundary conditions, then we obtain  

( )
2

+
-a y1

  1 - e
2delta

dP
u

a dx

+
 
 =
 
 

 

Therefore, the velocity profile that we found that works well is given by a combination of 

the Musker velocity profile (Appendix A) together with Eq. 9 and will be henceforth 

designated as the modified Musker profile.       

 

 

4. Experimental DNS Results 

In order to understand the nature of the problem, it is advantageous to look at 

examples of second derivative profiles for turbulent boundary layer flows.  Since it is not 

possible to calculate turbulent velocity profiles theoretically, our only recourse is to look 

at experimental data.  However, most of the available datasets for turbulent velocity 

profiles with pressure gradients, suffer from two problems.  The first problem is that 

near-wall measurements are very difficult to perform and the second is that in general, it 

is very difficult to numerically differentiate velocity profile data reliably in the presence 

of experimental noise.    

One way to overcome both of these problems is to use computer generated Direct 

Numerical Simulation (DNS) experimental results.  The numerical nature of this path 

makes it straightforward to calculate the second derivative profile.  We begin by looking 

at the ZPG case.  In Figs. 1-4 we show experimental DNS data from a number of sources.  

In Fig. 1, for example, we show the * 2000Re
δ

=  DNS dataset from Spalart [5] as crosses 

connected by black lines.  The red lines in all of the figures are the Nickels result using 

the values of cy+
  and κ  for 0xp+ =  advocated by Nickels [4] and then fitting for the 

parameters uτ , b, and δ .  The blue line in all of these figures are the Musker results 

obtained by fitting uτ , C, and κ .  It is readily apparent that both the Nickels and the 

modified Musker profile work well for the ZPG case.  

In all of these figures, the viscous layer thickness scaling variable is the moment 

based mean location of the boundary layer given by 1µ and defined as 

(8)

(9)
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Figure 1:  The crosses-black lines are 

from Spalart [5] at *R
δ

 = 2000. 

Figure 3:  The crosses-black lines are  

Hoyas and Jimenez [7] at Rτ  = 2000. 

Figure 2:  The crosses-black lines are 

Khujadze and Oberlack [6] at Rθ =280. 

Figure 4:  The crosses-black lines are  

Komminaho and Skote [8] at *R
δ

 = 450. 
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1 0

( )e

y

u du y

dyµ
=

=  

where eu is the free stream velocity.  This parameter is one of a number of new thickness 

and shape parameters developed by Weyburne [9,10].  The new parameters are based on 

a probability distribution function methodology, where the boundary layer is described in 

terms of central moments of various Gaussian-like kernels based on the velocity profile 

or its first two derivatives [10].  The mean location 1µ  is the first moment about the 

origin of the second derivative profile.  It is therefore appropriate to use 1µ  as the length 

scale for second derivative profiles.   

Now let us examine the APG case.  In Figs. 5-8 we show APG DNS data from a 

number of sources.  In Fig. 5, for example, we show a DNS result of Lee and Sung [11] 

as crosses connected by black lines.  Notice the behavior of the Nickels (red line) 

analytical profile in the region just to the right of the peak.  The Nickels analytical 

expression is at first higher than the experimental result and then, at about half way down 

from the peak, drops lower than the experimental result.  This same behavior occurred for 

the ZPG case but it becomes more exaggerated as the pressure gradient becomes larger.  

This is especially evident in the DNS results of Skote and Henningson [12] shown in 

Figs. 6-8.  At the largest pressure gradients (Figs. 7 and 8), the Nickels analytical 

expression (red lines) is not following the experimental DNS results very well.  The 

modified Musker profile (blue lines), in contrast, appears to fit the data for all cases very 

well.  

The major objective of the present study is to present a method for extracting the 

skin friction coefficient fc  and the related viscous scaling length for turbulent boundary 

layers with an adverse pressure gradient.  Of the ten APG DNS cases investigated, we 

found the average absolute deviation of the fitted fc  value from the reported value was 

1.0% (calculated from the fitted and the reported uτ  values using 2 22 /f ec u uτ= ).  We 

believe this small error supports the notion that the modified Musker method is a valid 

technique for extracting the skin friction coefficient and the related viscous scaling 

length.  

 

5.  Experimental Fitting Results 

 Having established that the modified Musker profile (Appendix A together with 

Eq. 9) fits the DNS data very well, we now turn to the task of using this composite profile 

to extract skin friction coefficients and the viscous layer thickness from regular wind 

tunnel experimental results.  As we have already pointed out, Kendall and 

Koochesfahani [2] have shown that the Musker profile fitting procedure works well for 

the ZPG case.  The DNS results of Figs. 1-4 confirm this result.  We therefore will 

emphasize the APG fitting results.  In contrast to the ZPG case, there are not any APG 

datasets for which high precision independent measurements of the skin friction 

coefficient (e.g., oil interferometry) have been made available to this author.  We 

therefore limit ourselves to showing plots of the fits to existing experimental data sets.  In 

Fig. 9 we show four profiles reported by Nagano, Tagawa and Tsuji [13].  In Fig. 10 we  

  

(10) 
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Figure 5:  The crosses-black lines are 

Lee and Sung [9] at β  = 1.68. 

Figure 6:  The crosses-black lines are 

Komminaho and Skote [8] at P
+  = 0.01791. 

Figure 7:  The crosses-black lines are 

Komminaho and Skote [8] at P
+  = 0.05435. 

Figure 8:  The crosses-black lines are 

Komminaho and Skote [8] at P
+  = 0.071. 
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show the fitting results for two of the seven profiles reported by Skåre and Krogstad [14].  

In both cases the modified Musker fitted lines are displayed as blue lines.  It is readily 

evident that the modified Musker equation is a good fit to the experimental data.  
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6. Discussion     

 The plotted results for Figs. 9 and 10 indicate that the modified Musker profile 

works well.  The extracted skin friction coefficients are at worst within ~22% of the 

reported values from the authors reported values.  Note that the reported methods used to 

measure the experimental skin friction coefficient are instructive.  Nagano, Tagawa and 

Tsuji [13], for example, developed their own method for measuring the skin friction 

coefficient.  It is based on the fact that the measured velocity profile values close to the 

wall have a noticeable systematic instrumental error.  Their skin friction coefficient 

extraction method actually incorporates this instrumental error.  Given the fact that the 

systematic instrumental error is probably not reproducible from wind tunnel to wind 

tunnel, this method has not been adopted by any other group to our knowledge. 

  In the other experimental APG case, Skåre and Krogstad [14] used a number of 

techniques to calculate the skin friction coefficient including a fitting method based on a 

composite profile that included the Musker [3] velocity profile.  They provide few details 

of the model function but it is evident that they did not apply a correction for the fact that 

Figure 9:  The crosses-black lines are 

Nagano, Tagawa and Tsuji [13] results. 
Figure 10:  The crosses-black lines are 

Skåre and Krogstad [14] APG results. 
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the profiles were measured in an adverse pressure gradient.   Skåre and Krogstad also 

used pilot tube measurements to estimate the skin friction coefficient.  However, the pilot 

tube method assumes the Log Law is applicable and does not correct for pressure 

gradients.  The two experimental results emphasize the fact that the presently available 

methods for extracting skin friction coefficient and viscous layer thickness for the APG 

case are not adequate.       

The above experimental fitting results indicate that a fitting procedure utilizing 

the modified Musker velocity profile should be useful for extracting skin friction 

coefficients and viscous layer thicknesses for both the ZPG and APG cases.  However, 

the parameter extraction is only useful in so far as the analytical function correctly 

approximates the behavior of the real turbulent boundary layer.  It is therefore imperative 

to show that at some level the approximate profile has some theoretical underpins that 

would give some confidence in the extracted data values.  As a first step we note that the 

boundary conditions at the wall for the modified Musker profile are correct for the 

velocity profile and its first two derivatives.   

The next step was to look at the near wall behavior.  The near wall behavior was 

investigated by looking at the Taylor Series expansion of the modified Musker profile.  It 

is readily verified that the Taylor Series expansion of the modified Musker profile at the 

wall is given by 

( ) ( )
2 41

. . . .
2 4 4

C ap
u y p y y h o t

+
+ + + + + 

≅ + − + + 
 

 

Note that for the ZPG case, this quartic dependence was obtained from theoretical 

considerations by Cenedese, Romano, and Antonia[15] as well as Park and Chung [16] 

and confirmed by the careful near-wall experimental  results of Poggi, Porporato, and 

Ridolfi [17].  Using the Musker value for C, the quartic numerical coefficient in Eq. 11 is 

-0.00027 compared to the value of -0.00025 advocated by Park and Chung [16] for the 

ZPG case.  The close agreement of the coefficients gives support to the modified Musker 

model. 

The importance of the quartic term in Eq. 11 should not be under stated.  In the 

region from 0< 1/y µ <1 (which corresponds to 0< y
+

<25), the second derivative profiles 

and therefore the viscous contributions are significant (see Figs. 1-8).  This is true even in 

the very near wall region (0< 1/y µ <0.2 which corresponds to 0< y
+

<5) where it is often 

assumed that the velocity profile is a linear function of the distance.  The second 

derivative of a linear function is zero, which would mean there would be no viscosity 

contribution to the flow in this region.  In fact the opposite is true, the viscosity 

contribution basically peaks at 1/y µ ~0.2.  Furthermore, it is evident from Figs. 1-8 that a 

linear profile does not exist in any of the DNS data sets that we have looked at.  It is 

therefore important that the fluid flow community should replace any references to a 

linear velocity profile for the turbulent boundary layer with something more appropriate 

such as “almost linear”.       

In the region where the Log Law is applicable, the modified Musker profile is 

expected to produce very similar fitting results compared to the traditional Log Law fits.  

For the ZPG case, as an example, the difference between the Log Law and the Musker 

profile was less than 0.1% for y
+

=100 and the difference decreased as y
+

 increased in 

(11)



11 

 

value.  Since the Log Law behavior has been demonstrated in countless ZPG 

experimental data sets, then we should expect the modified Musker profile to produce 

similarly good fitting results at comparable distances from the wall.  For the nonzero 

pressure gradient case, it is easily shown that the pressure gradient term given by Eq. 9 

results in a constant value in the Log Law region.  The net result is that in this region, the 

modified Musker profile follows the traditional Log Law behavior but with a different 

Karmon constant.  This Log Law behavior for flows with pressure gradients is confirmed 

by the recent experimental results of Nagib, Christophorou, and Monkewitz [18].   

We have just shown that the modified Musker profile has the correct wall 

boundary conditions, the correct near wall behavior, and similar behavior to the Log Law 

in the region where the Log Law is traditionally applicable.  Together with the 

demonstrated excellent results for the DNS and experimental fits, these results indicate 

that the new modified Musker method should fit the actual near wall behavior of the 

turbulent boundary layer very well.  The composite profile developed by Nickels also has 

many of these same properties.  How does one explain the difference in the modified 

Musker and the Nickels profiles?  We believe the major difference is in how the 

transition from the near-wall behavior to the logarithmic form is handled in the two 

methods.  In the Nickels case the transition is handled as a simple sum of two separate 

approximate forms (the sum of Eqs. 6 and 7).   

The Musker transition is handled differently.  The Musker development is based 

on an eddy viscosity approach and, in the near wall area, Musker makes an argument for 

the eddy viscosity, tν , behaving as 

( )
3

/ .t C yν ν +≅  

In the Log law region it is known that /t yν ν κ +≅ .  To make the transition between 

the two regions smoothly, Musker employed the simple interpolation form 

( )
3

1 1 1
.

/t yC yν ν κ +
+

≅ +
 

Using this value of the eddy viscosity, Musker then goes on to assume that the shear 

stress is constant so that we have 

( )
0

.t

y

u u

y y
ν ν ν

=

∂ ∂
≅ +

∂ ∂  

Substituting Eq. 12 into Eq. 13 and rearranging, it is easy to show that one obtains the 

Musker expression given by Eq. 1.  Thus the Musker expression covers the same region 

as Nickels two separate approximate forms.  The key difference is that the Musker 

transition is handled with an interpolation formula (Eq. 12) rather than as a simple sum as 

is the case for the Nickels method.  The requirements for a smooth transition between two 

terms are much more demanding using a sum compared to an interpolation using Eq. 12.  

Therefore, the two term transition for Nickels model works well at zero and low pressure 

gradient values, but fails at higher pressure gradient values. 

Having established the applicability of the modified Musker method for extracting 

the skin friction coefficient by fitting, we now turn to what information we can extract on 

the viscous layer region.  First we note that from the skin friction coefficient it is possible 

to calculate 1µ , the mean value of the scaled second derivative profile using Eq. 10.  The 

(11)

(12)

(13)
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1y µ=  location basically identifies the 

central location for the viscous forces.  

Notice in the turbulent flow DNS data 

(Figs. 1-8), the 1y µ=  location is 

shifted significantly to the right of the 

main peak.  Compare these turbulent 

flow results with the “laminar” flow 

second derivative curve depicted in 

Fig. 11.  Notice that for laminar flow 

the second derivative peaks near 

1η µ= .  It is evident that for turbulent 

flow, there are viscous contributions to 

the flow that do not originate from the 

flow-wall interaction.  What this 

indicates is that the viscous force 

curves for turbulent flow are noticeably 

skewed compared to laminar flow.  

This fact is emphasized by looking at 

the skewness parameter 1γ  defined as 

the third central moment of the scaled 

second derivative divided by the second central moment to the 3/2 power [9,10].  For the 

Blasius solution to laminar flow, the skewness 1 0.3γ =  whereas for the turbulent flow 

curve given in Fig. 1, for example, the value is 1 7.8γ =  (for comparison, the skewness of 

a Gaussian curve is 1 0γ = ).  We bring this up in order to emphasize what other 

researchers have pointed out; that for the turbulent boundary layer, the viscous forces 

have a significant presence in what is traditionally called the Buffer layer region. 

 One of the advantages of the modified Musker fitting method over the traditional 

Clauser method is that it is only necessary to choose one fitting limit for the Modified 

Musker method versus two fitting limits (lower and upper limit) for the Clauser method.  

For the modified Musker method the wall is one fitting limit.  This means that it is only 

necessary to choose the upper fitting limit.  In the fits used in this study, the upper fitting 

limit was chosen to be 1~ 2.5y µ .  For the Clauser method it is necessary to choose a 

lower and upper fitting limit for where the Log Law is applicable.  One of the major 

failings of those that advocate for the universality of the Log Law is that there is not a 

standard method for defining where the Log Law is applicable.  This means that each 

practitioner is free to pick the lower and upper limits.  The problem with this is that the 

velocity profile plotted in y-plus log units is an S-curve such that the linear Log line is in 

the middle.  Thus, by simultaneously shrinking the lower limit and lengthening the upper 

limit (or vice versa), one can change the fitted linear line to take on a range of fitted 

parameters.  With the modified Musker method, one can only change the upper limit.  By 

starting out with a large upper limit and steadily shrinking the upper limit by one data 

point at a time, one will see that the fitted parameters will tend to converge to a specific 

value.  Therefore, besides utilizing more data points, the Modified Musker method has 
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Figure 11:  The second derivative of the 

Blasius solution using the Schlichting [19] 

tabulated values. 
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the advantage that the fitting parameters tend to converge to a specific set of values 

compared to the traditional Clauser method.   

 

 

7. Conclusion 

An approximate velocity profile for the turbulent boundary layer in an adverse 

pressure gradient was developed.  The approximate profile was found to fit DNS as well 

as experimental wind tunnel datasets very well.  The new approximate velocity profile 

was used to extract the skin friction coefficient and the viscous layers mean value 

location.  
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Appendix A 

The following FORTRAN source code implements an approximate Musker velocity 

profile [3] for arbitrary values of  k ( κ= )  and C for a given value of  yp ( y
+= ): 

 

 

*  first define some often used constants 

      z1 = 1./3. 

      z2 = 2./3. 

      z3 = SQRT(3.) 

      z4 = SQRT(12.*C + 81.*k**3) 

      z5 = (2*C + 27*k**3 - 3*k**1.5*z4)**z1 

      z6 = (2*C + 27*k**3 + 3*k**1.5*z4)**z1 

      z7 = (2*C + 27*k**3 - 3*k**1.5*z4)**z2 

      z8 = (2*C + 27*k**3 + 3*k**1.5*z4)**z2 

      z9=1. + 3.*k*yp 

* 

      u_m = (-2*z3*(-(2**z2*C*(z5 + z6)) - 9*2**z2*k**3*(z5 + z6) - 

     $ C**z1*z5*z6*(z5 + z6) +  2*2**z1*C**z2*(z7 + z8))* 

     $ ATAN((-2*2**z1*C**z1 + z5 + z6)/(z3*SQRT((z5 -  z6)**2))) + 

     $ 2*z3*(-(2**z2*C*(z5 + z6)) - 9*2**z2*k**3*(z5 + z6) -  

     $ C**z1*z5*z6*(z5 + z6) + 2*2**z1*C**z2*(z7 +  z8))* 

     $ ATAN((z5 + z6 - 2*2**z1*C**z1*z9)/(z3*SQRT((z5 - z6)**2))) +  

     $ SQRT((z5 - z6)**2)*(-2*C**z1*(2**z1*C**z1 + z5 + z6)**2 * 

     $ LOG(2**z1*C**z1 + z5 + z6) + (2**z2*C + 9*2**z2*k**3 +  

     $ 2*2**z1*C**z2*(z5 + z6) - C**z1*(2*z7 + z5*z6 + 2*z8))* 

     $ LOG(2**z2*C**z2 + z7 - 2**z1*C**z1*z6 + z8 -  

     $ z5*(2**z1*C**z1 + z6)) + 2*2**z2*C*LOG(z5 + z6 +  

     $ 2**z1*C**z1*z9) + 4*C**z2*(4*C + 54*k**3 -  

     $ 6*k**1.5*z4)**z1*LOG(z5 + z6 + 2**z1*C**z1*z9) +  

     $ 2*C**z1*z7*LOG(z5 + z6 + 2**z1*C**z1*z9) +  

     $ 4*C**z1*z5*z6*LOG(z5 + z6 + 2**z1*C**z1*z9) +  

     $ 2*C**z1*z8*LOG(z5 + z6 + 2**z1*C**z1*z9) + 4*C**z2*(4*C +  

     $ 54*k**3 + 6*k**1.5*z4)**z1*LOG(z5 + z6 + 2**z1*C**z1*z9) -  

     $ 2**z2*C*LOG(z7 - z5*z6 + z8 - 2**z1*C**z1*(z5 + z6)*z9 +  

     $ 2**z2*C**z2*z9**2) - 2*C**z2*(4*C + 54*k**3 - 6*k**1.5*z4)**z1* 

     $ LOG(z7 - z5*z6 + z8 - 2**z1*C**z1*(z5 + z6)*z9 +  

     $ 2**z2*C**z2*z9**2) + 2*C**z1*z7*LOG(z7 - z5*z6 + z8 - 

     $ 2**z1*C**z1*(z5 + z6)*z9 + 2**z2*C**z2*z9**2) +  

     $ C**z1*z5*z6*LOG(z7 - z5*z6 + z8 - 2**z1*C**z1*(z5 + z6)*z9 + 

     $ 2**z2*C**z2*z9**2) + 2*C**z1*z8*LOG(z7 - z5*z6 + z8 - 

     $ 2**z1*C**z1*(z5 + z6)*z9 + 2**z2*C**z2*z9**2) -  

     $ 2*C**z2*(4*C + 54*k**3 + 6*k**1.5*z4)**z1*LOG(z7 - z5*z6 +  

     $ z8 - 2**z1*C**z1*(z5 + z6)*z9 + 2**z2*C**z2*z9**2) -  

     $ 9*2**z2*k**3*LOG(((2**z1*C**z1 + z5 + z6)**2*(z7 - z5*z6 + z8 -  

     $ 2**z1*C**z1*(z5 + z6)*z9 + 2**z2*C**z2*z9**2)) / (z5 + z6 +  
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     $ 2**z1*C**z1*z9)**2)))/(6.*C**z1*k*SQRT((z5 - z6)**2)*(z7 + 

     $ z5*z6 + z8)) 

*     

      write(*,*)u_m,' = Musker velocity in plus units at yp given k and C ' 

* 

 

The above approximate expression can be compared to the exact result obtained by the 

exact analytical integration (by Mathematica, software version 5.2) for specific values for 

k and C.  Over the parameter range that we checked, 0.3 ≤ k ≤ 0.41, 0.001 ≤ C ≤ 0.0025, 

and 0 ≤ yp ≤ 30000 , the maximum difference between the exact integral expression and 

the above approximate integral expression is ~7x10
-12

.  If the FORTAN compiler is 

forced to use double precision code, then for yp=300, k=0.41 and C=0.001093, the 

FORTRAN calculated velocity should be u_m=18.920564156786. 

 

 


