
PURPOSE: This technical note details how conservative normal fluxes through element edges 
and faces are computed in two- (2-D) and three-dimensional (3-D) spaces in a flux-calculation 
post-processor developed in the System-Wide Water Resources Program (SWWRP). 

BACKGROUND: Conserving local mass in the finite volume (FV) sense, where the sum of 
face fluxes equal to the rate of change of storage within each element/cell, is essential in comput-
ing water flow and contaminant transport. Although the continuous Galerkin finite element (FE) 
method does not yield locally conservative flux approximation directly, Berger and Howington 
showed that, by remaining consistent with the discrete approximation given by the FE statement, 
the resulting flux estimates will preserve mass balance [1]. Passing conservative water flux 
through each element edge/face from flow models to transport models is critical for accurate 
simulation and analysis. At the U.S. Army Engineer Research and Development Center (ERDC), 
most water flow models employ the FE method, while many contaminant transport models use 
the FV method. The computation of locally-conservative water flux through each elemental 
edge/face has thus become necessary for passing FE-based water flux to FV-based contaminant 
transport models. This technical note describes how, from multi-dimensional FE-based flow 
simulations, we computed locally-mass-conservative fluxes to hand-off to FV-based models and 
to eliminate apparent flux jumps on element boundaries for particle tracking. The computed con-
servative flux can also be used to set boundary conditions for inset models when desired. 

METHODOLOGY: We employed the two flux post-processing techniques focused in [2]. For 
convenience, we refer to the first technique as the local approach, and the second one the global 
approach in this technical note. Both were originally developed by Larson and Niklasson [3]. 
Larson and Niklasson’s global approach is mathematically equivalent to Sun and Wheeler’s 
global approach [4]. For both the local and the global approaches, the required input data include 

(1) the element residuals associated with the respective computed solution, meaning they are 
computed by constructing matrix equations at the element level with flux-type boundary 
conditions incorporated (note that each element has residuals matching its element nodes 
to satisfy local conservation); 

(2) boundary face information, including  
a. an indicator to show whether this boundary face is specified with a flux-type boun-

dary condition: 
 a no-flow boundary face is specified with a zero-flux boundary condition, 
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 a flow-through (open) boundary face specified with a flux-type boundary condi-
tion will have the normal flux match the specified value,  

 a flow-through (open) boundary face without a flux-type boundary condition 
applied will have the normal flux computed. 

b. the specified normal flux for this boundary face (set to zero if the normal flux through 
this boundary face is not to be computed) 

(3) the estimated fluxes associated with element faces; 

(4) the element connectivity information; 

(5) nodal coordinates. 

From the input data (3) – (5) above, we can derive the following information for conservative 
normal flux computation: 

(1) node-element connectivity,  

(2) edge-element (2-D) or face-element (3-D) connectivity, 

(3) edge-node (2-D) or face-node (3-D) connectivity, 

(4) edge length (2-D) or face area (3-D). 

It is noted that a no-flow boundary face, by definition, is associated with a zero-flux boundary 
condition, and thus the normal flux through this boundary face is zero. On the other hand, a 
boundary face is flow-through if it is not associated with a no-flow boundary condition. A flow-
through boundary face can be assigned a non-zero flux-type boundary condition, or its associated 
boundary flux is computed based on the solution of the continuity equation. This concept is 
applied when we compute conservative fluxes through element faces associated with boundary 
nodes. 

Figure 1 depicts the flow chart for computing conservative normal fluxes in the post-processor: 
reading input data in Step 1, followed by generating connectivity information, face length/area, 
and boundary flux indicator in Step 2, then the computation of an artificial, element-based quan-
tity used for normal flux correction in Step 3, and finally in Step 4 the computation of conserva-
tive normal fluxes through all element faces. In the following, we discuss the computation 
involved in Steps 3 and 4 with the local and the global approaches. 
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Figure 1. Flow chart for computing conservative normal flux. “Face” is used in the chart to represent 
2-D edge or 3-D face. 

The Local Approach. In the local approach, the conservative sub-edge (in 2-D) or sub-face 
(in 3-D)1 normal fluxes associated with element faces around each node are computed on a node-
by-node basis. The conservative normal flux of an element edge/face is computed then by com-
bining all of the associated sub-edge or sub-face normal fluxes. 

Scenario 1: For element edges associated with an internal node. As shown in Figure 2 below, 
there are 6 elements connected at Node 1, and there are six sub-edge flows satisfying the discre-
tized governing equation of continuity, e.g., Richards’ equation. In Figure 2(b), the three resi-
duals, each associated with a node, of each element are marked. These residuals represent the net 
flow entering or leaving the element, and they can be computed by substituting the numerical 
 

                                                 
1 A sub-edge or a sub-face of a node is an elemental edge/face containing the node. A sub-edge has a length equal to 
half of the element edge length, while a sub-face has an area equal to the element face area divided by the number of 
face nodes. It is called a sub-edge or a sub-face because the conservative normal flux computed for a sub-edge or 
sub-face is associated with only a portion of edge length or face area. For example, in Figure 2, there are six element 
edges around Node 1: I1-2, I1-3, I1-4, I1-5, I1-6, I1-7. While each of these six edges is a sub-edge of Node 1, each sub-
edge has a length only half of the corresponding element edge length. 
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Figure 2. The six triangular elements associated with an internal node (i.e., Node 1) and the six 
conservative sub-edge flows around Node 1: (a) elements are connected, (b) elements are 
separated. 

solution of the continuity equation back into the element matrix equation constructed in the FE 
integration. For example, if we solve the Richards’ equation for subsurface flow using the Galer-
kin FE method, the element residual at local node j can be defined as 
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where  
 e

jR  = the element residual at local node j 

 e  = the domain of element e 

 e
iN  = the i-th local base function of element e 

 F  = water capacity associated with element e 
 jh  = pressure head at local node j 

   = the del operator 
 K  = hydraulic conductivity tensor associated with element e 
 q  = source/sink in element e 

 h  = pressure head 
 z  = gravity head 
 e  = the boundary of element e 
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Here, Rj
e represents the net outgoing flow associated with local node j when element e is consi-

dered. Therefore in Figure 2(b), R1
A, R2

A, and R3
A are the three element residuals of Element (A); 

R1
B, R3

B, and R4
B are the three element residuals of Element (B), and so on. Because Node 1 is an 

internal node and there are no sources or sinks, the sum of all the six element residuals associated 
with Node 1 is zero, i.e., 

1 1 1 1 1 1 1 0A B C D E FR R R R R R R        (2) 

where 
 iR  = total element residual associated with Node i 

 E
iR  = element residual associated with Node i coming from element (E) 

and, AR1  can be expressed as 

1 1, 1, 1, 1,2 2
A mc mc mc mcAB FA

AB FA AB FA

l l
R f f V V       (3) 

where 
 mc

EEif 21,  = normal sub-edge flow from Element (E1) to Element (E2), which conserves mass 

locally around Node i 
 mc

EEiV
21,  = normal sub-edge flux from Element (E1) to Element (E2), which conserves mass 

locally around Node i 
 

21EEl  = edge length associated with the interface between Elements (E1) and (E2) 

If V1,AB represents a given estimated normal sub-edge flux, we can relate mc
ABV ,1  to V1,AB with a 

correction term as 

 1, 1, 1, 1, 1, 1,
mc
AB AB AB AB B AV V V V U U       (4) 

where U1,A and U1,B are artificial, element-based quantities introduced to help calculate the cor-
rection of normal sub-edge flux. 

Therefore, Equation 3 can be written as: 

   1 1, 1, 1, 1, 1, 1,2 2
A AB FA

AB B A FA A F

l l
R V U U V U U               (5) 

Likewise, BR1 , CR1 , DR1 , ER1 , FR1  can be expressed as 

   1 1, 1, 1, 1, 1, 1,2 2
B BC AB

BC C B AB B A

l l
R V U U V U U               (6) 
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   1 1, 1, 1, 1, 1, 1,2 2
C CD BC

CD D C BC C B

l l
R V U U V U U               (7) 

   1 1, 1, 1, 1, 1, 1,2 2
D CDDE

DE E D CD D C

ll
R V U U V U U               (8) 

   1 1, 1, 1, 1, 1, 1,2 2
E EF DE

EF F E DE E D

l l
R V U U V U U               (9) 

   1 1, 1, 1, 1, 1, 1,2 2
F FA EF

FA A F EF F E

l l
R V U U V U U               (10) 

It must be noted that every equation from Equation 5 through Equation 10 can be represented by 
the other five equations, i.e., there are only five independent equations. To solve the six 
unknowns, we enforce 0,1 AU  and use it to replace one of the six equations, say Equation 5. 

This will not affect the resulting flux correction mathematically because Equations 6 through 
Equation 10 correspond to a Neumann problem, as mentioned in Kees et al. [2]. It is because the 
flux correction is the jump of two adjacent U’s, rather than the U values. Setting U1,A to any 
value will still produce the same jump values as long as the element residual equations are solved 
accurately. 

After solving Equation 6 through Equation 10, the conservative normal sub-edge fluxes can be 
computed with 

 1, 1, 1, 0mc
AB AB BV V U    (11a) 

 1, 1, 1, 1,
mc
BC BC C BV V U U    (11b) 

 1, 1, 1, 1,
mc
CD CD D CV V U U    (11c) 

 1, 1, 1, 1,
mc
DE DE E DV V U U    (11d) 

 1, 1, 1, 1,
mc
EF EF F EV V U U    (11e) 

 1, 1, 1,0mc
FA FA FV V U    (11f) 

Scenario 2: For element edges associated with a boundary node. A boundary edge can be of 
either flow-through or no-flow. Each flow-through boundary edge may or may not be assigned a 
specified flux-type boundary condition in numerical simulation. When it is assigned with a speci-
fied flux-type boundary condition, its normal flux must be identical to the specified flux. If it is 
not specified with a flux-type boundary condition, its normal flux can be computed based on the 
solution of the continuity equation. A no-flow boundary edge, on the other hand, is associated 
with a zero normal flux by definition. In other words, it is specified with a zero-flux boundary 
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condition even though in most numerical models a boundary edge is usually defaulted to no-flow 
type when it is not specified with any type of boundary condition. 

As shown in Figure 3, there are three elements around Node 1, which is a boundary node, and 
Edges 1-2 and 1-5 are the two boundary edges adjacent to Node 1. In this case, there are four 
normal sub-edge fluxes to be computed to satisfy the discretized continuity equation. 

Figure 3. The three triangular elements associated with a boundary node (i.e., Node 1) and the four 
conservative sub-edge flows around Node 1: (a) elements are connected, (b) elements are 
separated; Among the four sub-edge flows, two are associated with boundary edges. 

Without the flux-type boundary conditions applied, the three element residual equations asso-
ciated with Node 1 are: 

   

1 1, 1, 1, 1,

1, 1, 1, 1, 1, 1,

2 2

      
2 2

A mc mc mc mcAB ZA
AB ZA AB ZA

AB ZA
AB B A ZA A Z

l l
R f f V V

l l
V U U V U U

     

             

 (12) 

   

1 1, 1, 1, 1,

1, 1, 1, 1, 1, 1,

2 2

      
2 2

B mc mc mc mcBC AB
BC AB BC AB

BC AB
BC C B AB B A

l l
R f f V V

l l
V U U V U U

     

             

 (13) 

   

1 1, 1, 1, 1,

1, 1, 1, 1, 1, 1,

2 2

      
2 2

C mc mc mc mcCX BC
CX BC CX BC

CX BC
CX X C BC C B

l l
R f f V V

l l
V U U V U U

     

             

 (14) 
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where mc
ZAf ,1  and mc

CXf ,1  are the sub-edge flow through Boundary Edges 1-2 and 1-5, respectively; 

ZAl  and CXl are the edge lengths associated with Boundary Edges 1-2 and 1-5, respectively; ZU ,1  

and XU ,1  are the U values associated imaginary elements outside of the computational domain. 

Without knowing the relationship between XU ,1  and ZU ,1 , we can simply assume and enforce 

CUU ZX  ,1,1  in Equation 12 and Equation 14 to help close the computational system, where C 

is a constant. The correction of normal sub-edge flux (i.e., the jump of U between connected 
elements) is uniquely determined as long as XU ,1  and ZU ,1  are set to the same value, which is 

reasonable because they represent outside quantities around Node 1. By setting C = 0, 
Equations 12 through 14 thus become 

   1 1, 1, 1, 1, 1, 1, 1, 0
2 2

A mc mc AB ZA
AB ZA AB B A ZA A

l l
R f f V U U V U                 (15) 

   1 1, 1, 1, 1, 1, 1, 1, 1,2 2
B mc mc BC AB

BC AB BC C B AB B A

l l
R f f V U U V U U                 (16) 

   1 1, 1, 1, 1, 1, 1, 1,0
2 2

C mc mc CX BC
CX BC CX C BC C B

l l
R f f V U V U U                 (17) 

In solving Equation 15 through Equation 17, we consider three possible situations concerning the 
specified flux-type boundary condition: (1) when all boundary edges are assigned; (2) when 
some, but not all, boundary edges are assigned; (3) when no boundary edge is assigned. 

Situation 1. All boundary edges are assigned flux-type boundary conditions: When flux-type 
boundary conditions have been taken into account in computing the element residuals, mc

ZAf ,1  and 
mc
CXf ,1  will no longer appear in the element residual equations. If qZA and qCX represent the out-

ward boundary flux through Edges 1-2 and 1-5, respectively, Equations 15 through 17 become: 

 ,
1 1 1, 1, 1,2 2
A bf A ZA ZA AB

AB B A

q l l
R R V U U

          (18) 

   ,
1 1 1, 1, 1, 1, 1, 1,2 2
B bf B BC AB

BC C B AB B A

l l
R R V U U V U U                (19) 

 ,
1 1 1, 1, 1,2 2
C bf C CX CX BC

BC C B

q l l
R R V U U

           (20) 

where bfAR ,
1 , bfBR ,

1 , and bfCR ,
1  represent element residuals with flux-type boundary conditions 

taken into account. 
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Equation 18 is linearly dependent on Equation 19 and Equation 20. This is again a Neumann 
problem, and we can enforce 0,1 AU  and solve Equation 19 and Equation 20 for BU ,1  and CU ,1 . 

The normal sub-edge fluxes can be computed then with 

1,
mc
ZA ZAV q   (21a) 

 1, 1, 1,
mc
AB AB BV V U   (21b) 

 1, 1, 1, 1,
mc
BC BC C BV V U U    (21c) 

1,
mc
CX CXV q  (21d) 

Situation 2. Some, but not all, boundary edges are assigned flux-type boundary conditions: In the 
two-dimensional case here, we consider when only one of the two connected boundary edges is 
assigned a flux-type boundary condition. Suppose the outward boundary flux through Edge 1-2 
is qZA, Equation 15 through Equation 17 become: 

 ,
1 1 1, 1, 1,2 2
A bf A ZA ZA AB

AB B A

q l l
R R V U U

          (22) 

   ,
1 1 1, 1, 1, 1, 1, 1,2 2
B bf B BC AB

BC C B AB B A

l l
R R V U U V U U                (23) 

   ,
1 1 1, 1, 1, 1, 1,0

2 2
C bf C CX BC

CX C BC C B

l l
R R V U V U U                (24) 

We thus solve Equation 22 through Equation 24 for AU ,1 , BU ,1 , and CU ,1 . Then the normal sub-

edge fluxes can be computed with 

1,
mc
ZA ZAV q   (25a) 

 1, 1, 1, 1,
mc
AB AB B AV V U U    (25b) 

 1, 1, 1, 1,
mc
BC BC C BV V U U    (25c) 

 1, 1, 1,0mc
CX CX CV V U    (25d) 

Situation 3. None of the boundary edges is assigned a flux-type boundary condition: In this case, 
we solve Equation 15 through Equation 17 for AU ,1 , BU ,1 , and CU ,1 , and compute the normal 

sub-edge fluxes by using 

 1, 1, 1, 0mc
ZA ZA AV V U    (26a) 
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 1, 1, 1, 1,
mc
AB AB B AV V U U    (26b) 

 1, 1, 1, 1,
mc
BC BC C BV V U U    (26c) 

 1, 1, 1,0mc
CX CX CV V U    (26d) 

Summary of sub-edge flux computation. Suppose there are M elements connected at a 
node, the following can be drawn from the discussion above in the process of constructing the 
element residual equations around the node: 

(1) Use element residuals from the FE integration to construct the M element residual equa-
tions, one for each element. 

(2) If the node is an internal node, set one U value to zero and solve the others. 

(3) If the node is a boundary node, set the “outside” U’s to zero (e.g., 1, 1, 0X ZU U  ). 

(4) If the node is a boundary node and all the connected boundary edges are assigned flux-
type boundary conditions, set one U value to zero and solve the others. 

The constructed element residual equations are then solved with a full-pivoting direct solver to 
minimize possible numerical error. The conservative sub-edge fluxes are computed using the 
computed U’s as well as the specified boundary fluxes. 

Compute edge fluxes based on sub-edge fluxes. The conservative normal flux through 
an element edge can then be computed by taking arithmetic average of its two corresponding 
sub-edge fluxes. In Figure 2, for example, the two conservative normal sub-edge fluxes of 
Edge 1-2 are mc

ABV ,1  and mc
ABV ,2 . The conservative normal flux of the edge (i.e., mc

ABV ) is computed as 

1, 2,

2

mc mc
AB ABmc

AB

V V
V


  (27) 

Extension to three-dimensional space. The extension of the local approach from 2- to 
3-dimensional space is straightforward. For easy visualization, we use hexahedral elements for 
demonstration. By using the summary of sub-face flux computation above, we construct the 3-D 
element residual equations for the corresponding scenario as follows. 

Scenario 1. Around an internal node: As shown in Figure 4, Node 14 is an internal node con-
nected to eight hexahedral elements and associated with 12 sub-face fluxes. The eight element 
residual equations associated with Node 14 are 

14, 0AU   (28) 
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Figure 4. The eight hexahedral elements associated with an internal node (i.e., Node 14) and the 
12 conservative sub-face flows around Node 14: (a) elements are connected, (b) elements are 
separated. 

   

 

14 14, 14, 14,

14, 14, 14, 14, 14, 14,

14, 14, 14,

     
4 4

       
4

B mc mc mc
BA FB BD

BA FB
BA A B FB B F

BD
BD D B

R f f f

A A
V U U V U U

A
V U U

  

             

     

 (29) 

   

 

14 14, 14, 14,

14, 14, 14, 14, 14, 14,

14, 14, 14,

     
4 4

         
4

C mc mc mc
DC GC AC

DC GC
DC C D GC C G

AC
AC C A

R f f f

A A
V U U V U U

A
V U U

   

              

     

 (30) 

   

 

14 14, 14, 14,

14, 14, 14, 14, 14, 14,

14, 14, 14,

     
4 4

         
4

D mc mc mc
DC HD BD

DC HD
DC C D HD D H

BD
BD D B

R f f f

A A
V U U V U U

A
V U U

  

             

     

 (31) 

   

 

14 14, 14, 14,

14, 14, 14, 14, 14, 14,

14, 14, 14,

     
4 4

         
4

E mc mc mc
FE EA EG

FE EA
FE E F EA A E

EG
EG G E

R f f f

A A
V U U V U U

A
V U U

   

              

     

 (32) 
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   

 

14 14, 14, 14,

14, 14, 14, 14, 14, 14,

14, 14, 14,

     
4 4

         
4

F mc mc mc
FE FB FH

FE FB
FE E F FB B F

FH
FH H F

R f f f

A A
V U U V U U

A
V U U

  

             

     

 (33) 

   

 

14 14, 14, 14,

14, 14, 14, 14, 14, 14,

14, 14, 14,

     
4 4

         
4

G mc mc mc
HG GC EG

HG GC
HG G H GC C G

EG
EG G E

R f f f

A A
V U U V U U

A
V U U

   

              

     

 (34) 

   

 

14 14, 14, 14,

14, 14, 14, 14, 14, 14,

14, 14, 14,

     
4 4

         
4

H mc mc mc
HG HD FH

HG HD
HG G H HD D H

FH
FH H F

R f f f

A A
V U U V U U

A
V U U

  

             

     

 (35) 

where BAA  denotes the face area associated with the interface between Elements (B) and (A); and 
R is element residual, V is estimated normal sub-face flux, U is sub-element-based quantity 
employed for flux correction, as defined previously. It is noted that the sub-face area is equal to 
the face area divided by the number of face nodes, e.g., it is 4 for quadrilateral and 3 for triangu-
lar faces. 

Scenario 2. Around a boundary node: In Figure 5, Node 8 is a boundary node at which four 
hexahedral elements are connected. It is associated with eight sub-face fluxes, where four of 
them are associated with boundary faces. By setting 0,8,8,8,8  ZYXW UUUU , the four ele-

ment residual equations associated with Node 8 are 

     
8 8, 8, 8,

8, 8, 8, 8, 8, 8, 8, 8,     0
4 4 4

A mc mc mc
BA AW AC

AW ACBA
BA A B AW A AC C A

R f f f

A AA
V U U V U V U U

   

                      
 (36) 

     
8 8, 8, 8,

8, 8, 8, 8, 8, 8, 8, 8,      0
4 4 4

B mc mc mc
BA BX BD

BA BX BD
BA A B BX B BD D B

R f f f

A A A
V U U V U V U U

  

                     
 (37) 

     
8 8, 8, 8,

8, 8, 8, 8, 8, 8, 8, 8,     0
4 4 4

C mc mc mc
DC CY AC

DC CY AC
DC C D CY C AC C A

R f f f

A A A
V U U V U V U U

   

                      
 (38) 
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Figure 5. The four hexahedral elements associated with a boundary node (i.e., Node 8) and the eight 
conservative sub-face flows around Node 8: (a) elements are connected, (b) elements are 
separated. 

     
8 8, 8, 8,

8, 8, 8, 8, 8, 8, 8, 8,     0
4 4 4

D mc mc mc
DC DZ BD

DC DZ BD
DC C D DZ D BD D B

R f f f

A A A
V U U V U V U U

  

                     
 (39) 

Because the specified boundary fluxes are already accounted for in computing element residuals, 
Equation 36 through Equation 39 will be modified if they involve flux-type boundary faces. For 
example, if Boundary Faces 7-8-14-13 and 8-9-15-14 are assigned flux-type boundary condi-
tions, Equation 36 and Equation 37 become 

   

,
8 8 8, 8, 8,

8, 8, 8, 8, 8, 8,      
4 4

A bf A mc mc mc
AW BA AC

ACBA
BA A B AC C A

R R f f f

AA
V U U V U U

    

              
 (40) 

   

,
8 8 8, 8, 8,

8, 8, 8, 8, 8, 8,      
4 4

B bf B mc mc mc
BX BA BD

BA BD
BA A B BD D B

R R f f f

A A
V U U V U U

   

             
 (41) 

In this case, we solve Equation 38 through Equation 41 for AU ,8 , BU ,8 , CU ,8 , DU ,8 . 

When all the boundary faces associated with Node 8 are specified with flux-type boundary con-
ditions, Equation 38 and Equation 39 become 
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   

,
8 8 8, 8, 8,

8, 8, 8, 8, 8, 8,      
4 4

C bf C mc mc mc
CY DC AC

DC AC
DC C D AC C A

R R f f f

A A
V U U V U U

    

              
 (42) 

   

,
8 8 8, 8, 8,

8, 8, 8, 8, 8, 8,       
4 4

D bf D mc mc mc
DZ DC BD

DC BD
DC C D BD D B

R R f f f

A A
V U U V U U

   

             
 (43) 

Now the four element residual equations are Equation 40 through Equation 43. But one of them 
has to be replaced by setting one U value to zero due to linear dependency among the four equa-
tions, as discussed before. If here we set 0,8 AU , and use it to replace Equation 40, we are to 

solve Equation 41 through Equation 43 for BU ,8 , CU ,8 , DU ,8 . The computed U’s are then used to 

correct normal sub-face flux, followed by taking arithmetic average of the conservative sub-face 
fluxes to obtain conservative normal face flux. 

The Global Approach. In the global approach, the conservative normal fluxes are first related 
to element residuals at the element level to satisfy the local conservation. A global residual equa-
tion (in matrix form) is then formed by assembling all element residual equations and solved for 
all the element-based U’s. These U’s are used to correct the normal fluxes through element 
edges/faces for mass conservation. 

Scenario 1: For elements whose edges are all internal. As shown in Figure 6 below, Element 
(A) is an internal element: all of its element edges are internal. Therefore, the following element 
residual equation exists for Element (A): 

1 2 3
A A A A mc mc mc mc mc mc

AB CA AD AB AB CA CA AD ADR R R R f f f V l V l V l             (44) 

where 
 ER  = total element residual of element (E) 
 E

iR  = element residual associated with Node i at element (E) 

 mc
EEf 21

 = normal edge flow from Element (E1) to Element (E2), which conserves mass locally 

 mc
EEV

21
 = normal edge flux from Element (E1) to Element (E2), which conserves mass locally 

 
21EEl  = edge length associated with the interface between Elements (E1) and (E2) 

Equation 44 can be written further as 

   
 

1 2 3

                                  

A A A A AB B A AB CA A C CA

AD D A AD

R R R R V U U l V U U l

V U U l

                
     

 (45) 

where 
21EEV =  given estimated normal edge flux from Element (E1) to Element (E2). 
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Figure 6. An internal triangular element (i.e., Element (A)) and its three neighbor elements: (a) elements 
are connected, (b) elements are separated. 

Equation 45 is the residual equation for Element (A). Likewise, we can compose the residual 
equation for each internal element. The conservative fluxes through the three internal edges of 
element (A) are computed with 

 mc
AB AB B AV V U U        (through Edge 1-3) (46a) 

 mc
CA CA A CV V U U        (through Edge 1-2) (46b) 

 mc
AD AD D AV V U U        (through Edge 2-3) (46c) 

Scenario 2: For elements that contain boundary edges. As shown in Figure 7 below, Element 
(A) has two boundary edges (i.e., Edges 1-2 and 1-3) and one internal edge (Edge 2-3). Without 
the flux-type boundary conditions applied, the residual equation for Element (A) is: 

     
1 2 3

     

mc mc mc
A A A A AB AZ AX

AB B A AB AZ Z A AZ AX X A AX

R R R R f f f

V U U l V U U l V U U l

     

                     
 (47) 

Situation 1. All boundary edges are assigned flux-type boundary conditions: When flux-type 
boundary conditions have been taken into account in computing the element residuals, mc

AZf  and 
mc

AXf  will no longer appear in the element residual equations. If qAZ and qAX represent the outward 
boundary flux through Edges 1-2 and 1-3, respectively, Equation 47 becomes: 

 bf mc
A A AZ AX AB AB B A ABR R q q f V U U l           (48) 
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Figure 7. A boundary triangular element (i.e., Element (A)) that has two boundary  
edges and one internal edge. 

The outward normal flux through Edges 1-2, 1-3 and 2-3 are computed by 

mc
AZ AZV q      (through Edge 1-2) (49a) 

mc
AX AXV q      (through Edge 1-3) (49b) 

 mc
AB AB B AV V U U        (through Edge 2-3) (49c) 

Situation 2. Some, but not all, boundary edges are assigned flux-type boundary conditions: In the 
two-dimensional case here, we consider when only one of the two boundary edges is assigned a 
flux-type boundary condition. Suppose the outward boundary flux through Edge 1-2 is qAZ, 
Equation 46 becomes: 

                          0

bf mc mc
A A AZ AB AC

AB B A AB AX A AC

R R q f f

V U U l V U l

   

             
 (50) 

The outward normal fluxes through the three element edges are computed with 

mc
AZ AZV q      (through Edge 1-2) (51a) 
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 0mc
AX AX AV V U        (through Edge 1-3) (51b) 

 mc
AB AB B AV V U U        (through Edge 2-3) (51c) 

Situation 3. None of the boundary edges is assigned a flux-type boundary condition: In this case, 
the outward normal fluxes can be computed by using 

 0mc
AZ AZ AV V U        (through Edge 1-2) (52a) 

 0mc
AX AX AV V U        (through Edge 1-3) (52b) 

 mc
AB AB B AV V U U        (through Edge 2-3) (52c) 

Extension to three-dimensional space. The extension of the global approach from two- to 
three-dimensional space is also straightforward. Again, we use hexahedral elements for demon-
stration. 

Scenario 1: For elements whose faces are all internal. As shown in Figure 8 below, Element 
(A) is an internal element: all its six element faces are internal. The element residual equation 
associated with Element (A) is 

     
     

1 2 3 4 5 6 7 8

      

      

         

A A A A A A A A A

mc mc mc mc mc mc
AB AC AD AE AF AG

AB B A AB AC C A AC AD D A AD

AE E A AE AF F A AF AG G A AG

R R R R R R R R R

f f f f f f

V U U A V U U A V U U A

V U U A V U U A V U U A

       

     

                     
                     

 (53) 

Scenario 2: For elements that contain boundary faces. As shown in Figure 9 below, Faces 2-
3-7-6, 1-2-6-5, and 1-4-3-2 that are associated with Element (A) are boundary faces. Without the 
flux-type boundary conditions applied, the residual equation for Element 1 is: 

     
     

1 2 3 4 5 6 7 8

       

      0 0

         0

A A A A A A A A A

mc mc mc mc mc mc
AB AX AY AE AZ AG

AB B A AB AX A AX AY A AY

AE E A AE AZ A AF AG G A AG

R R R R R R R R R

f f f f f f

V U U A V U A V U A

V U U A V U A V U U A

       

     

                     
                     

 (54) 

Situation 1. All boundary faces are assigned flux-type boundary conditions: If qAX, qAY, qAZ 
represent the specified outward boundary fluxes through the three boundary faces and have been 
taken into account in computing the element residuals, Equation 54 becomes: 
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Figure 8. An internal hexadedral element (i.e., Element (A)) that has six internal faces. 

Figure 9. A boundary hexadedral element (i.e., Element (A)) that has three boundary and three internal 
faces. 
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            

bf mc mc mc
A A AX AY AZ AB AE AG

AB B A AB AE E A AE AG G A AG

R R q q q f f f

V U U A V U U A V U U A

      

                     
 (55) 

The normal fluxes for Boundary Faces 2-3-7-6, 1-2-6-5, and 1-4-3-2 are computed with 

mc
AX AXV q      (through Face 2-3-7-6) (56a) 

mc
AY AYV q      (through Face 1-2-6-5) (56b) 

mc
AZ AZV q      (through Face 1-4-3-2) (56c) 

Situation 2. Some, but not all, boundary faces are assigned flux-type boundary conditions: Sup-
pose Face 2-3-7-6 is the only boundary face of Element (A) assigned an outward normal boun-
dary flux, qAX, the element residual equation for Element (A) is 

     
   

,

       0

          0

A bf A mc mc mc mc mc
AX AB AD AE AF AG

AB B A AB AD A AB AE E A AE

AF A AB AG G A AG

R R q f f f f f

V U U A V U A V U U A

V U A V U U A

      

                     
             

 (57) 

The outward normal fluxes through Boundary Faces 2-3-7-6, 1-2-6-5, and 1-4-3-2 are computed 
by 

mc
AX AXV q      (through Face 2-3-7-6) (58a) 

 0mc
AY AY AV V U        (through Face 1-2-6-5) (58b) 

 0mc
AZ AZ AV V U        (through Face 1-4-3-2) (58c) 

Situation 3. None of the boundary faces is assigned a flux-type boundary condition: In this case, 
the outward normal fluxes can be computed by using 

 0mc
AX AX AV V U        (through Face 2-3-7-6) (59a) 

 0mc
AY AY AV V U        (through Face 1-2-6-5) (59b) 

 0mc
AZ AZ AV V U        (through Face 1-4-3-2) (59c) 

Summary of conservative flux computation using the global approach. We’ve 
discussed how the element residual equation for an element, either internal or containing 
boundary faces, is composed in both two- and three-dimensional spaces. Suppose there are 
totally M elements in the FE computational mesh; we can construct M element residual 
equations, one for each element. These M element residual equations are assembled to form a 
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global matrix equation based on the face-element connectivity. This global matrix equation is 
then solved for the element-based U’s that are used to correct normal face flux for mass 
conservation. 

SOFTWARE DEVELOPMENT: We developed a software toolkit named Consistent/inconsistent 
Conservative Flux Computation Toolkit (CCFlux) to assist application developers with comput-
ing locally conserved fluxes. Systems, e.g., the shallow water system, solved in the primitive 
form would preserve local mass conservation when fluxes are computed consistently. However, 
systems, such as subsurface flow, solved in a derived form without holding an explicit conserva-
tion law would not produce local-mass conserved fluxes because the flux is computed inconsis-
tently with the discrete equation being solved. The goal is to obtain locally conserved flux across 
edges in 2-D or faces in 3-D systems. In the CCFlux toolkit, functionalities include (1) construc-
tion of a unique edges/faces map, (2) local renumbering of neighbor elements around a node on 
the index space, and (3) an efficient edge/face manipulation for divergence-free operation. The 
toolkit will be incorporated into different application codes, e.g., ADH (C code) [5], 
pWASH123D (mixed C and Fortran code) [6], or even the old-fashioned Fortran-77 FEMATER 
code [7]. Parallel mesh manipulation for flux calculation is embedded in CCFlux. 

Presumably the mesh has a unique global element ID (GEid) assigned to each element shown in 
Figure 10, though each processor has its own local set of element IDs (LEid). This requirement 
defines unique flux direction systematically without exception in parallel simulation. In CCFlux, 
the first and second elements adjacent to an edge or a face store lower GEid and higher GEid, 
respectively, but perhaps lower LEid and higher LEid, respectively. However, the flux direction 
across a boundary edge is always defined from inside to outside of the domain. Therefore, the 
second element adjacent to a boundary edge is “-1,” implying nonexistent. 

Figure 10. A partitioned 2-D domain showing global element ID and the edge list  
collecting unique edges on each processor. 
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In Figure 11, the red color arrows around vertex 32 show the flux direction associated with each 
adjacent sub-edge. The total flux of Edge 31-32 is the sum of two computed fluxes of this sub-
edge based on node 32 and node 31. Note that vertex 32 and vertex 31 can be owned by different 
processors. The link list sketched at the bottom of Figure 11 collects all the unique edges on each 
processor. The pointer “Next” points to the next unique edge. However, “Next2[0]” and 
“Next2[1]” point to the next edge adjacent to the respective vertex comprising this edge. The 
first entry of “Next2” points to the next edge adjacent to the vertex with lower local vertex ID on 
the edge, while the second entry associated with the other vertex on this edge. 

Figure 11. Three link lists collecting all unique edges, edges adjacent to vertex 
32, and vertex 36. 

This design of data structure avoids duplicate edge nodes, which can waste memory and CPU 
time spent in copying data among duplicate edge nodes. Each edge node has two data fields to 
store computed data defined by application codes. Each one is obtained based on each vertex on 
the edge. The CCFlux toolkit also renumbers the element ID adjacent to each vertex. For exam-
ple, in Figure 11 those 6 elements adjacent to vertex are numbered to from 0 to 5. The toolkit can 
also provides a set of Boolean values indicating whether the adjacent flux direction of a node 
needs to be flipped if the circulation condition is imposed. 

The toolkit equips a set of API functions listed in Table 1. The following three functions are 
designed for different application codes, and must be incorporated at the initialization stage. 
They are adhCCFinitMesh for ADH, pWASHCCFinitMesh for pWASH123D, and 
fwCCFinitMesh for FEMWATER. Three destroy functions, adhCCFdestroyMesh, 
pWASHCCFdestroyMesh, and fwCCFdestroyMesh are also required at the finalized stage. 
The data handler, CCFmesh, separates the flux calculation from others in the application to 
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make the algorithm implementation portable. The ultimate goal of the toolkit development 
reusable and modular codecan thus be reached. 

Table 1. API functions 
API function Return value* 

face_node=CCF_GET_1ST_VTX_NEIGHBOR_FACE(mesh,i) Return the 1st face (i.e., face node shown in 
Figure 11) adjacent to vertex i. 

face_ptr=CCF_GET_FACE_POINTER(face_node) Return the face pointer encapsulating the 
following information: face number (i.e. 0, 1, 
or 2 for a triangle) and the element pointer 
that the face_node resides. 

ierr=CCFface_vertices(mesh,face_ptr,vtx_list) Return the vertex list comprising the face that 
the face_ptr points to. 

Sign_flipped=CCF_GET_FACE_SGN_DATA2VTX(mesh,i) Indicating whether each flux direction across 
adjacent faces next to node i needs to be 
flipped if circulation condition is imposed.  

data_ptr=CCFget_face_node_data(mesh,face_node) Return the address pointing to user-defined 
data associated with the face_node. 

CCFface_neighbor_elements(mesh,face_ptr,elmID,elmID+1) Return the local element ID adjacent to the 
face that the face_ptr points to. The flux 
direction is defined from elmID[0] to elmID[1]. 

elm_face=CCFget_face_tuple(mesh,ptr,j) Return the 2 adjacent compact element ID (0 
to 5 show in Figure 11) of the jth face next to 
the vertex encapsulated by the pointer ptr.  

face_node=CCFget_next_vtx_neighbor_face(mesh,face_ptr,face_node,elmID[0],i) Return the next face_node of the current 
face_node retrieved from the face_list based 
on the info. of vertex i. Either the one linked 
by next2[0] or next2[1] is returned.  

CCFsend(mesh) Synchronize face data among processors 

* “Face” is used to represent 2-D edge and 3-D face in this column 

 

To demonstrate the algorithmic implementation, the local approach of Larson-Niklasson method 
is used to calculate the U values described from Equation 2 to Equation 10. Each U value is 
associated with an element adjacent to the vertex shown in Figure 2. For the 2-D shallow water 
flow in ADH, the estimated flux is the length integration of hV (a face is actually an edge in 
2-D), shown in the first loop of the pseudo code in Figure 12. Followed is the loop visiting each 
vertex to construct a local linear system, in which the total number of rows equals the number of 
elements including the vertex. The LU direct solver is then used to solve this linear system with 
unknown U. Once U is obtained, the mass conserved flux, i.e., (hV)mc, can be calculated based on 
the formulation from Equation 11a to Equation 11f. The final flux value across each face is 
actually the average of the local conserved (hV)mc associated with the vertex sitting on the edge. 
Before the computation of the final flux, the function CCFsend must be executed to 
synchronize the edge data (hV)mc for summing on the node star. To verify the result, we can 
simply compute the difference between the total flux across all the faces and the sum of 
boundary fluxes described in the governing equation. This verification function checks every 
element throughout the entire domain. The maximum value of the difference is then found and 
given to the user. Ideally it is zero but can practically be near the user’s prescribed error 
tolerance for the application simulation. 
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Figure 12. Pseudo code for the Larson-Niklasson implementation. 

The implementation on a 3-D mesh should be similar except that some geometric issues need to 
be tackled. The CCFlux toolkit needs to be flawless for both 2-D and 3-D meshes. Currently, we 
are in the middle of debugging 3-D cases. A new version of CCFlux will be released after the 
3-D bug-free implementation is completed. 

EXPERIMENTAL RESULTS: We demonstrate the locally mass-conservative flux calculation 
on an example used in the article by Tate et al. [8]. The domain of interest is San Diego Bay in 
CA, which covers an area of approximately 560 km2 and has a mean depth of 6.5 m. This area 
was discretized with 10,999 triangular elements and 6,311 nodes, as shown in Figure 13. The 
simulation took the tide shown in Figure 14 as the driving force and used a time-step size of 
360 sec. The total simulation time was 24 hours, which is about a diurnal cycle. The tidal boun-
dary condition was applied to the nodes included in the section of open boundary (Figure 13). 
The rest of the domain boundary was set to closed boundary, i.e., no normal flow. 

Figure 13. Domain discretization of San Diego Harbor. 

Foreach face do 
 data_ptr[0]=n●∫N[0](hV)dl 
 data_ptr[1]=n●∫N[1](hV)dl 
Endfor 
Foreach owned vertex do 
 pick elmID[0] or elmID[1] based on sign_flipped 
 compute element residual, i.e., R1A, …, R1F 
 construct A and b => AU = b 
 set U1,A=0, LU direct solver is used to obtain sol. 
 compute (hV)mc for each face 
Endfor 
CCFsend(mesh) /* sync face data */



ERDC TN-SWWRP-10-4 
August 2010 

24 

Figure 14. The tidal boundary condition. 

We selected six nodes to examine the computed conservative fluxes. Among these six nodes, 
Nodes 21 and 22 are on the open boundary (Figure 15a), Nodes 4684 and 4685 are on the closed 
boundary (Figure 15b), and Nodes 405 and 2997 are interior nodes (Figure 15c). Figure 16 
shows the flow direction, which is defined from the lower global element ID to the higher one. 
Figure 17 shows the water depth color contour and scaled velocity vector at simulation time = 
3,600 s. Table 2 shows the estimated normal sub-edge flow (column 2), the conservative normal 
sub-edge flow (column 3) and the total nodal flow (column 4) at that time step. The flow rate 
shown in columns 2 and 3 are positive when the normal flow direction is the same as specified in 
Figure 16. The positive and negative signs associated with the total nodal flow in the “Nodal 
Flow” column represent the out-going and in-coming, respectively, flow at the nodes. As shown 
in Table 2, at simulation time = 3,600 the total nodal flow at Nodes 21 and 22 are negative, indi-
cating incoming flow at those two open boundary nodes due to the rising tide (Figure 14). On the 
other hand, the total nodal flow at both the two interior nodes (i.e., Nodes 405 and 2997) and the 
two closed boundary nodes (i.e., Node 4684 and 4685) was zero, as expected in our derivation 
given in this technical note. Therefore, we have verified the implementation of the local 
approach for computing conservative normal fluxes on element edges in solving 2-D shallow 
water flow in ADH. The computational results show the maximum difference computed by the 
verification function mentioned in the section of “SOFTWARE DEVELOPMENT.” 
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(a) (b) 

(c) 

Figure 15. Locations of the six nodes selected to examine the computation of conservative flux: 
(a) Nodes 21 and 22 are on the open boundary, (b) Nodes 4684 and 4685 are on the closed 
boundary, and (c) Nodes 405 and 2997 are interior nodes. 
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(a) (b) 

(c) (d) 

Figure 16. Zoom-in of the mesh discretization abound the six selected nodes: (a) Nodes 21 and 22, 
(b) Nodes 4684 and 4685, (c) Node 405, and (d) Node 2997; numbers in red are the global 
node IDs; black arrows are used to define positive flow direction across each sub-edge 
around the selected nodes. 
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Figure 17. Computed water depth and velocity vector at simulation time = 3,600 s. 
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Table 2. Results of sub-edge and nodal flow associated with the six selected 
nodes at simulation time = 3,600 seconds 
Sub-edge (two end nodes) Estimated Flow* (ft3/s) Conservative Flow** (ft3/s) Nodal Flow*** (ft3/s) 

Around Node 21: 

21-22 2.7838E+04 2.7838E+04 -4.9348E+04 

21-64 1.3247E+04 1.3162E+04 

21-65 3.3049E+03 3.1082E+03 

21-62 -1.5188E+04 -1.5625E+04 

21-20 -2.1510E+04 -2.1510E+04 

Around Node 22: 

22-23 3.4450E+04 3.4450E+04 -6.3437E+04 

22-66 2.0206E+04 2.0516E+04 

22-67 2.4817E+03 2.8831E+03 

22-64 -1.5343E+04 -1.4908E+04 

22-21 -2.8987E+04 -2.8987E+04 

Around Node 405: 

405-404 4.8676E+02 4.8744E+02 0.0000E+00 

405-430 6.1192E+02 6.3997E+02 

405-458 4.3372E+02 4.6648E+02 

405-459 -1.4027E+02 -1.6370E+02 

405-406 -7.7235E+02 -7.9921E+02 

405-355 -5.2722E+02 -5.3544E+02 

Around Node 2997: 

2997-2998 -3.3387E-02 -3.3632E-02 0.0000E+00 

2997-2936 -1.2641E-01 -1.2681E-01 

2997-2935 3.6237E-02 3.7106E-02 

2997-2996 1.3369E-01 1.3483E-01 

2997-3056 4.8901E-02 4.7986E-02 

Around Node 4684: 

4684-4686 -4.3777E-06 0.0000E+00 0.0000E+00 

4684-4621 -2.6924E-04 -6.3892E-03 

4684-4622 4.4110E-03 6.5927E-03 

4684-4685 -7.0438E-03 0.0000E+00 

Around Node 4685: 

4685-4684 7.6636E-03 0.0000E+00 0.0000E+00 

4685-4622 3.7038E-03 0.0000E+00 

* Estimated flow = (computed water depth) x (computed velocity) x (sub-edge length) 
** Conservative flow = (computed conservative flux) x (sub-edge length) using the local approach 
*** Nodal flow = computational result by substituting the convergent solution into the matrix equation of mass conservation 

 

SUMMARY: In this technical note, two algorithms to compute locally mass-conservative 
edge/face fluxes are presented. The local approach wins over the global approach and these were 
derived based on the Larson-Niklasson method. Obviously the global approach requires more 
memory consumption for the linear system, contrasted to the local approach, whose linear sys-
tem size is defined by the total number of adjacent elements to a node. The global approach may 
require an efficient linear solver, while the local approach can simply use a direct solver. 



ERDC TN-SWWRP-10-4 
August 2010 

29 

Our software development aims to develop the CCFlux toolkit to support the solution of the local 
approach. A set of light-weight application interface functions facilitates easy incorporation to 
different applications. The aforementioned local approach was implemented in the 2-D shallow 
water flow module in the ADH model. An experimental case solving the San-Diego Bay area 
was presented for demonstration. The result verified the correct implementation of the locally-
conservative flux computation and the CCFlux toolkit. More cases, including 3-D groundwater 
flow, 3-D CFD problems, and 3-D shallow water flow, will be built for demonstration in the near 
future. 
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