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1. Introduction/Background 

Ever since Richard Feynman piqued the interest of researchers with his talk, There’s Plenty of 
Room at the Bottom, there has been a considerable amount of work done in the field of 
miniaturized devices.  Due to the increased precision of device fabrication techniques, partially 
driven by the large commercial demand for faster and lower power silicon microprocessors, 
researchers have the ability to design and fabricate devices on the micro- and nano-scales (1).  In 
recent years, research regarding these devices, referred to as micro-electro-mechanical systems 
(MEMS), has become increasingly popular. 

The concept of radio frequency (RF) MEMS switches is a specific area that shows a great deal of 
promise.  Recently, researchers have demonstrated a number of advantages that RF MEMS 
switches have over the popular alternatives, specifically PiN diodes and field effect transistors 
(FET).  These advantages include high isolation, low insertion loss, and very low power 
consumption (2).  In addition, these switches have shown near linear operation over the intended 
range of use, from near DC to 50 GHz.  This results in a reduction of spurious products during 
switching, which loosens the constraints imposed on other components within the RF system. 

In addition to the general attention of RF MEMS switches within high frequency systems, the 
defense arena has shown a considerable amount of interest in producing phased array antennas 
for both communication and radar systems (3).  In reference 4, a Ku-Band, 3-bit phase shifter 
was demonstrated with a maximum insertion loss of 1.23 dB/bit, compared to the 1.6 dB/bit 
insertion loss achieved by a gallium arsenide (GaAs)-FET design (2). 

Despite these advantages, several hurdles remain before wide-scale adoption takes place.  One of 
the primary hurdles is integration.  Use of the popular RF-enabling fabrication technologies, such 
as bipolar junction transistor enabled complimentary metal oxide semiconductor technologies 
(BiCMOS), RF-CMOS, and silicon-germanium (SiGe), allows digital CMOS circuitry to be 
fabricated on the same die as the high frequency components.  Most MEMS technologies, 
however, have not maturated to the point of a process marriage at that level.  This results in a 
large, more complicated, and more costly system, with an increased potential for failure.  
Motivated by that issue, the groundwork has begun to design a CMOS alternative for RF MEMS 
switch systems, as shown in (4). 

The other, more detrimental hurdle results from the reliability of these devices.  Numerous 
techniques have been experimented with in order to achieve the high (over 20 billion-cycle) 
reliability required by a defense or commercial product.  The remainder of this report will 
examine piezoelectrically actuated RF MEMS switches, and a potential improvement in 
reliability through contract resistance improvement. 
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The MEMS devices we tested (see figure 1) used the inverse piezoelectric effect to produce the 
mechanical motion that opened and closed the switch.  The inverse piezoelectric effect occurs 
when an applied electric field induces mechanical motion.   

 

Figure 1.  Optical profilometer image illustrating the primary components  
of the tested PZT switches. 

In this specific situation, the switch uses two arms/actuators created from a platinum-PZT-
platinum sandwich and a lower structural layer.  An electric field is produced by grounding one 
of the platinum electrodes and supplying a bias potential to the other electrode.  Upon generation 
of that electric field, the piezoelectric material in the middle, PZT, experiences a compressive 
strain that produces a moment about the neutral axis of the structure, causing it to deflect.  With 
proper design of the actuator structure and location of the neutral axis, the cantilever can be 
made to bend up, raising the RF contact pad, which forms the electrical connection between the 
RF input and output lines. 

It is in that contact point that this report is concerned.  Specifically, the contact materials are 
altered from a gold (Au)/platinum (Pt) combination to a Au/ruthenium (Ru) combination.  It is 
theorized that this change will lead to a much more gradual increase in contact resistance over 
the lifetime of the device. 

A testing procedure is established to verify objectively the performance of each device and the 
criterion for a malfunctioning device in section 2.  Section 3 provides and discusses the results 
measured during those tests.  Section 4 summarizes those results and draws a conclusion 
regarding the effectiveness of Au/Ru contacts versus Au/Pt contacts. 
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2. Experimental Procedure 

This study focused on one specific switch design (see figure 2).  This switch varies from the 
version presented in (5) because of the two clamped-clamped strips that are anchored above and 
perpendicular to the movable RF contact pad.  We chose this switch over the switch described in 
(5) because it is generally less susceptible to bending during the top metal liftoff process step 
than is the dual cantilever structure.  It may also reduce switch bounce and, thus, have a direct 
impact on switch contact lifetime. 

 

Figure 2.  An optical image of the PZT switch tested.  This  
switch is characterized by two overhanging clamps  
that are bridged by the RF contact pad when the device closes. 

The device testing was broken into two stages.  In stage one—the preparation stage—device 
functionality was examined.  Since this study’s purpose was to examine the impact of only the 
contact material on device lifetime, it was important to eliminate devices that showed other, 
unrelated issues.  While we had already laid the groundwork for stage, a portion of this study 
was intended to standardize the procedure for future testing.   

All preparation steps were performed on a sample of 13 devices, with contact resistances and 
poling voltages recorded during each step.  The preparation effectiveness was then examined in 
order to determine if any changes were necessary before stage two, the lifetime testing.  

The preparation stage testing setup (figure 3) required several pieces of equipment.  A DC 
source, connected to the device under test via two DC probes, supplied the actuation voltage.  
The testing procedure required actuation voltages from 0 V to 25 V.  Either a network analyzer 
with a bias-t connection (shown) or semiconductor parameter analyzer produced the signal down 
the RF path by way of two RF probes. 
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Figure 3.  The test setup for the preparation phase of testing. 

The preparation stage was broken into three steps.  The first step involved poling each device for 
1 min.  It has been shown that poling piezoelectric ceramic materials, specifically PZT in (6), 
with a strong electric field effectively aligns the domains in the direction of the field.  The 
electric field was produced by a 20 V potential difference between the two electrodes.  This, in 
turn, results in increased mechanical deflection at a given bias voltage.  This poling voltage was 
applied for 1 min and the switch was then toggled. 

Following device-poling, we used current conditioning to improve the contact resistance of each 
device.  As indicated by (7), currents as high as 100 mA have been shown to break up 
contamination on electrical contacts, thus providing reduced contract resistance.  In these 
devices, the RF line provided a direct electrical path to the contact.  In order to apply current 
along the RF line, a bias-t setup (see figure 3) was first connected; the DC source used in that 
configuration supplied 2 V with a maximum current of 75 mA.  Then, the actuation voltage was 
swept from 0 V to 25 V.  The current was limited to 75 mA in order to avoid damaging the 
contacts. 
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The final preparation step was to measure the device’s new minimum actuation voltage and 
contact resistance.  These measurements were taken with 0 V DC supplied to the bias-t.  At this 
point, devices were binned into one of four categories: no electrical contact (stuck open), shorted 
(stuck closed), contact resistance below 5 , and contact resistance greater than 5 .  We only 
used devices with a contact resistance below 5  for the second stage of testing. 

After verification of the testing preparation stage, an electroglass probe station was used to 
automate the process.  In that setup, the network analyzer and DC power supply were replaced 
by a semiconductor parameter analyzer.  A computer was used to control the probe station and 
record the data obtained by the parameter analyzer. 

The second stage of testing, termed lifetime testing, involved cycling the switch until failure.  A 
failed switch was defined as a switch where the average voltage dropped below 50% of the 
expected average for more than 10 samples. 

The setup (figure 4) required multiple pieces of testing equipment.  First, we used a function 
generator and amplifier sequence to supply the actuation voltage—a 15 Vpp square wave at 1000 
cycles per second with a 50% duty cycle.  Another function generator supplied a voltage along 
the RF path.  Two square wave pulses were supplied per actuation pulse.  The first pulse 
occurred sufficiently after the visible switch bounce subsided and lasted for 0.25 ms.  The second 
pulse occurred after the removal of the actuation voltage and lasted for 0.25 ms.  We used this 
technique, called cold switching, to avoid electrical arcs that could occur during state transitions. 

 

Figure 4.  The lifetime testing setup used in the study. 

In addition to the function generators, a multimeter and an 18 K load resistor were placed in 
series with the switcher’s output.  The multimeter was used to read the mean voltage output from 
the switch, and an attached computer recorded that value once every second.  Finally, an 
oscilloscope was used to allow visual verification of correct operation for each of the signals.  
This setup was used to record the lifetime of 10 Pt/Au contact switches and 10 Ru/Au switches. 
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3. Results and Discussion 

As mentioned previously, the first step of the preparation stage was to pole the devices for 1 min.  
Figure 5 shows a comparison between the actuation voltage required before poling and 
afterwards.  As is shown, before poling occurred, a majority of the devices required an actuation 
voltage greater than 12 V.  After poling, all of the devices were successfully actuated under 8 V.  

 

Figure 5.  The activation voltage required to make electrical contact before and after device poling. 

Step 2 of the preparation stage was current conditioning.  The pre-conditioning and post-
conditioning contact resistances are presented in figure 6.  Before this step, a majority of the 
devices had a contact resistance over 200  and some were over 1 K.  After conditioning, the 
contact resistance of each device was under 5 . 
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Figure 6.  The contact resistance observed before and after device current conditioning. 

The results we obtained were sufficient to provide confidence in the preparation method.  
Following that verification, the automated preparation system aforementioned was used to 
examine a complete wafer composed of half Au/Ru devices and half Au/Pt devices.  Table 1 
shows a summary of these results. 

Table 1.  A summary of the data recorded throughout the testing process. 

 Platinum/Gold Ruthenium/Gold 
Initial Conditions   

 Average Vact 15.33 V 17.32 V 
 Average Rc 2518.90  14285.14  
 Working Devices 21 19 

Post-Preparation Conditions   
 Average Vact 7.52 V 9.29 V 
 Average Rc 9.61  14.45  
 Working Devices 21 24 

Lifetime   
 Average Lifetime 2.2 Million Cycles 6.2 Million Cycles 
 Minimum Lifetime 37,000 Cycles 29,000 Cycles 
 Maximum Lifetime 10 Million cycles 33 Million Cycles 
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The wafer contained 31 Au/Pt devices and 28 Au/Ru devices.  The average Vact is the average 
actuation voltage required to achieve electrical contact, and the average Rc was the contact 
resistance recorded for the device.  Both numbers only take into account those devices that 
achieved electrical contact without being stuck closed. 

For both types of contacts, the actuation voltage required after preparation was approximately 
half of the initial Vact.  The contact resistance also decreased substantially.  Note that the Rc 
shown includes the resistance of the cables used to take the measurements. 

One point of interest is that five Au/Ru devices were unable to make electrical contact initially 
due to a combination of a high Rc and Vact.  After conditioning, these devices were able to 
function at a much more acceptable level. 

The final row in table 1 shows the lifetime results obtained for a sample of 20 devices—10 Au/Pt 
devices and 10 Au/Ru devices.  Devices with Ru contact material lasted approximately three 
times longer than the Pt version.  In both situations, several devices failed relatively quickly.  Of 
the top six performing devices, four of them used the Ru/Au contact combination, including the 
best performing device. 

4. Conclusion 

This study has shown the validity of a method that objectively prepares and separates functional 
devices from those that are not working as intended.  In addition, the contact material 
combination of Au/Ru was shown to produce devices that lasted three times longer than the 
Au/Pt alternative. 

Throughout the course of this study, humidity was observed to negatively impact the lifetime of 
these devices.  For several days, the humidity was over 50% within the laboratory due to a 
malfunctioning air conditioner.  Measurements taken at that time were discarded since they 
introduced an unintended variable into the study.  All future measurements were conducted in an 
enclosed space, with nitrogen added to reduce the humidity.  The container averaged a humidity 
level of approximately 7%–10%.  We now believe that given more time for the wafer to adjust to 
the low humidity environment, the device lifetime could have improved substantially; a future 
study is needed to confirm this theory.  
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List of Symbols, Abbreviations, and Acronyms 

ARL U.S. Army Research Laboratory 

Au gold 

BiCMOS bipolar junction transistor enabled complimentary metal-oxide-semiconductor 
technology 

CMOS complementary metal-oxide-semiconductor 

FET field effect transistors 

GaAs gallium arsenide 

MEMS microelectromechanical system 

Pt platinum 

PZT zirconate titanate 

Rc contact resistance 

RF radio frequency 

Ru ruthenium 

SiGe silicon-germanium 

Ti titanim 

Vact actuation voltage 

Zr zirconium 
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