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1. Introduction 
 
The goal of this research was to explore a new approach to machine learning, 
called Never Ending Learning.  Although machine learning research has been 
increasingly successful in recent years, this effort addressed developing a 
machine learning system that learns cumulatively forever, using what was 
learned yesterday to improve its ability to learn tomorrow, and improving daily, 
indefinitely.  This effort performed research toward such a system, including the 
development of a system capable of operating continuously, 24x7, and improving 
its competence daily for at least a month before hitting a possible plateau in 
performance.” 
 
Progress toward the longer-term goal of producing a never-ending language 
learner, is described herein.  By a “never-ending language learner” we mean a 
computer system that runs 24 hours per day, 7 days per week, forever 
performing two tasks each day: 
 
1. Reading task: extracting information from web text to further populate a 

growing knowledge base of structured facts and knowledge. 
 
2. Learning task: learning to read better each day than the day before, as 

evidenced by its ability to go back to yesterday’s text sources and extract more 
information more accurately. 

 
The thesis underlying this research is that the vast redundancy of information on 
the web (e.g., many facts are stated multiple times in different ways) will enable a 
system with the right learning mechanisms and capabilities for self-reflection to 
learn with only occasional outside supervision.  We also hypothesize that the 
architecture we describe here can be used as a platform for conducting 
increasingly sophisticated research in natural language understanding.  
 
We first describe a general approach to building a never-ending language learner 
that uses semi-supervised learning methods, an ensemble of varied knowledge 
extraction methods, and a flexible knowledge base representation that allows the 
integration of the outputs of those methods. We also discuss design principles for 
implementing this approach. 
 
We then describe a prototype implementation of our approach, called Never-
Ending Language Learner (NELL).  At present, NELL acquires two types of 
knowledge: (1) knowledge about what noun phrases refer to some specified 
semantic categories, such as cities, companies, and universities, and (2) 
knowledge about what pairs of noun phrases satisfy some specified semantic 
relations, such as hasOfficesIn (organization, location). NELL learns to acquire 
these two types of knowledge in a variety of ways. It learns free-form text 
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patterns for extracting this knowledge from sentences on the web, it learns to 
extract this knowledge from semi-structured web data such as tables and lists, it 
learns morphological regularities of instances of categories, and it learns 
probabilistic horn clause rules that enable it to infer new instances of relations 
from other relation instances that it has already learned. 
 
Overall, this project was a success in meeting its ambitious goals and 
deliverables.   At the end of this project we now have successfully developed a 
system that has been running 24 hours/day, 7 days/week, for six weeks, and 
continues to run.   
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2. Technical Approach 
 
This system performs continuous learning and continuous information extraction 
from the web.  Each day it (1) extracts additional beliefs from 500,000,000 web 
pages in order to populate its growing knowledge base, and (2) learns to improve 
its reading ability, by learning new extraction patterns and new inference rules to 
infer yet more beliefs.   As of February 22, 2010, this system has been running 
non-stop for over six weeks, processing half a billion web pages, and has 
extracted thus far approximately 200,000 beliefs to populate an ontology 
containing approximately 180 categories and relations.  These categories range 
from “city” and “company” to “emotion” and “furniture”, and relations range from 
“playsSport (athlete, team)” to “headquartedIn (company, city).”  We evaluated 
the accuracy of the extracted facts when it had reached a collection of 88,000 
beliefs, and at that point we found an estimated precision of 0.90.   Importantly, 
NELL is designed as a never-ending language learner, and we intend to run it 
continuously for at least the coming year, funding permitting.  Our estimate is that 
it will have well over 1 million extracted beliefs at that point, and an even more 
accurate learned reading ability. 
 
The four key design choices in achieving this result are: 
 
1.  A new approach to semi-supervised learning for information extraction.  In 
particular, whereas earlier work on semi-supervised learning for information 
extraction had primarily considered training a single extractor at a time (e.g., an 
extractor for “companies”), we developed in this project a much more accurate 
semi-supervised learning approach that learns hundreds of extractors 
simultaneously, and couples the training of all of these.  By simultaneously 
learning these, and by coupling them using constraints available from the 
predicate ontology (eg., the constraints that “city” is a subset of “locations”, is 
mutually exclusive with “emotions”, and is a necessary condition for the second 
argument to the relation “mayorOf (politician, city)”) we found we could achieve a 
major improvement in extraction accuracy.  
 
2.   Designing learning methods whose accuracy automatically improves as 
the corpus size and ontology size scale up.  The semi-supervised learning 
algorithms noted above achieve an accuracy that improves as the number of 
ontology predicates increases.  This is due to the fact that larger ontologies 
provide a larger nest of constraints to inform learning from unlabeled data.  In 
addition, these algorithms also improve in accuracy as the size of the unlabeled 
text corpus grows.  Therefore, we have increased our corpus to half a billion web 
pages collected by Prof. Jamie Callan (the ClueWeb data set), Carnegie Mellon 
University.   
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3.  Driving language processing to extract facts into a user-specified ontology.  
In contrast to some other recent efforts at large scale information extraction, such 
as Prof. Oren Etzioni’s “Textrunner” system (University of Washington), the NELL 
system requires the user to specify an initial ontology as input to NELL.  This 
ontology defines the categories and relations of interest, and can be seen as 
equivalent to specifying a database schema.  We find three advantages of this 
ontology-driven formulation of the problem, compared to ontology-free 
approaches such as Textrunner.  First, the given ontology allows a prospective 
user to specify what types of information is of interest, as opposed to assuming 
every stated fact is of interest (note this is particularly important since we wish to 
grow the extracted knowledge base to fit the data schema for specific computer 
programs that need specific types of knowledge).  Second, this ontology provides 
a focus for the language learning, so that the system can spend greater effort on 
the targeted knowledge types, initially ignoring thousands of other types of 
knowledge outside the ontology.  Third, we find that the information provided as 
part of the ontology (e.g., that “city” is a subset of “locations” and is one of the 
argument types for “mayorOf”) is precisely the kind of information used by our 
semi-supervised learner to couple the training of its multiple extractors and to 
produce its high accuracy.  While we feel future work will need to examine how 
NELL can automatically extend the ontology initially provided by the user, the 
focus and constraints provided by this initial ontology are extremely important to 
the success of our approach. 
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4.  A learning architecture that attempts to learn multiple types of knowledge, 
where successful learning of one type of knowledge results in stronger learning 
of the other.  NELL currently learns four distinct types of knowledge.   Of course, 
it is learning to extract many different ontology predicates (e.g., “city”, 
“sportsTeam”), but here we mean to say that for each of these predicates it has 
four different learners that acquire four distinct and complementary ways to 
extract instances of the predicate.  These are: 
 

• Coupled Pattern Learner (CPL): A free-text extractor which learns and 
uses contextual patterns like “mayor of X” and “X plays for Y ” to extract 
instances of categories and relations.  CPL learns text extraction patterns, 
such as “if one finds the string ‘mayor of X’, then X is a city.” CPL uses co-
occurrence statistics between noun phrases and contextual patterns (both 
defined using part-of-speech tag sequences) to learn extraction patterns 
for each predicate of interest and then uses those patterns to find 
additional instances of each predicate. Relationships between predicates 
are used to filter out patterns that are too general. CPL is described in 
detail by Carlson et al. (2010). We used code provided by the authors. 
Probabilities of candidate instances extracted by CPL are heuristically 
assigned using the formula 1 – 0.5c, where c is the number of promoted 
patterns that extract a candidate. In our experiments, CPL was given as 
input a corpus of 2 billion sentences, which was generated by using the 
OpenNLP package (http://opennlp.sourceforge.net)  to extract, tokenize, 
and part-of- speech tag sentences from the 500 million web page 
ClueWeb09 data set (Callan and Hoy 2009). 

 
• Coupled SEAL (CSEAL): A semi-structured extractor which queries the 

Internet with sets of beliefs from each category or relation, and then mines 
lists and tables to extract novel instances of the corresponding predicate. 
CSEAL uses mutual exclusion relationships to provide negative examples, 
which are used to filter out overly general lists and tables. CSEAL is also 
described by Carlson et al. (2010), and we used code provided by the 
authors, based on that of Wang and Cohen (2009). Given a set of seed 
instances, CSEAL performs queries by sub-sampling beliefs from the 
knowledge base (KB) and using these sampled seeds in a query. CSEAL 
was configured to issue 5 queries for each category of interest and 10 
queries for each relation of interest, and to fetch 50 web pages per query. 
Candidate facts extracted by CSEAL are assigned probabilities using the 
same method as for CPL, except that c is the number of unfiltered 
wrappers that extract an instance.  CSEAL learns web page wrappers that 
typically capture Hyper-Text Markup Language (HTML) structure such as 
lists that support extraction. 

 
  

http://opennlp.sourceforge.net
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• Coupled Morphological Learner (CML):  A set of binary L2-regularized 
logistic regression models—one per category—which classify noun 
phrases based on various morphological features (words, capitalization, 
affixes, parts-of-speech, etc.). Beliefs from the KB are used as training 
instances, but at each iteration CML is restricted to predicates which have 
at least 100 positives. As with CSEAL, mutual exclusion relationships are 
used to identify negative instances. CML examines candidate facts 
proposed by other components, and classifies up to 30 new beliefs per 
predicate per iteration, with a minimum posterior probability of 0.75. These 
heuristic measures help to ensure high precision, generating increased 
support for existing candidates and enforcing morphological constraints on 
other subsystems.  CML learns morphological classifiers of noun phrases 
that consider only the internal structure of the noun phrase to determine its 
type (e.g., it may learn that a noun phrase containing two capitalized 
words, where the second word ends in the three letters ‘ski’, is likely to be 
a person name). 

 
• Rule Learner:  learns probabilistic first order rules (horn clauses) that do 

not extract information from text, but instead capture empirical regularities 
among the hundreds of thousands of extracted beliefs, and infer new 
knowledge base beliefs directly from existing beliefs.  For example, one 
learned rule indicates that “If AthletePlaysOnTeam (A,T) and 
TeamPlaysInLeague (T,L), Then AthletePlaysInLeague (A,L)” 

 
 
Examples of knowledge acquired by each of these four learners are illustrated 
below. 
 
Figure 1 shows example text extraction patterns acquired by CPL for the relation 
“AthletePlaysSport (arg1, arg2).”  Note these patterns apply only if arg1 
separately matches the definition of an “athlete” by the athlete classifier, and only 
if arg2 separately matches the definition of a “sport.” 
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Figure 1: Example text extraction patterns 

 
Table 1 shows example URL-specific extraction templates learned by CSEAL for 
a variety of ontology predicates.  Note each row describes a different extraction 
pattern.  The left column indicates the predicate being extracted, the second 
column the URL to which the patterns applies, and the third column gives the 
learned pattern. 
 
 

Table 1: Example Text Extraction Patterns 

 
 
 
 
Table 2 shows weights learned by the morphological extractor CML for several 
ontology predicates. Positive and negative weights indicate positive and negative 
impacts on predicted probabilities, respectively. Note that “mountain” and 
“college” have different weights when they begin or end an instance. The learned 
model uses part-of-speech features to identify typical music group names (e.g., 
The Beatles, The Ramones), as well as prefixes to disambiguate art movements 
from, say, academic fields and religions. 
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Table 2: Example feature weights induced by the morphology classifier 

 
 
Table 3 shows first order horn clause rules acquired by RL.  Each row describes 
a different rule, in which the consequent is concluded if the antecedents are 
satisfied.  The probability in the left column is the probability of the consequent 
given the antecedents.     
 

Table 3: Web page extraction templates learned by the CSEAL system 

 
 
 
These four learning methods are integrated using the system architecture in 
Figure 2 and summarized below.  Notice the four “Subsystem components” in 
this diagram correspond to the four learning methods described above.  Each 
learning method can access the shared knowledge base, and each can suggest 
new “candidate facts” to add to the knowledge base.   The “Knowledge 
Integrator” component assesses the level of support for each candidate and 
determines which candidate facts to promote to full status as “beliefs” in the 
knowledge base.   The ongoing run of the system is an iterative process in which 
each of these four modules can continually access the shared Knowledge Base 
to obtain new facts contributed by other modules, use these as new system-
labeled training examples, retrain themselves and then propose new candidate 
facts.   
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Figure 2:  Never­Ending Language Learner Architecture 

 
Our approach is organized around a shared knowledge base (KB) that is 
incrementally and continuously grown and used by a collection of 
learning/reading subsystem components that implement complementary 
knowledge extraction methods. The starting KB defines an ontology (a collection 
of predicates defining categories and relations), and a handful of seed examples 
for each predicate in this ontology (e.g., a dozen example cities). The goal of our 
approach is to continuously grow this KB by reading, and to learn to read better. 
 
Category and relation instances added to the KB are partitioned into candidate 
facts and beliefs. The subsystem components can read from the KB and consult 
other external resources (e.g., corpora or the Internet), and then propose new 
candidate facts. Components supply a probability for each candidate and a 
summary of the source evidence supporting it. The Knowledge Integrator (KI) 
examines these candidate facts and promotes the most strongly supported of 
these to belief status. This flow of processing is depicted in Figure 2.  
 
In our initial implementation, our approach operates iteratively.  On each 
iteration, subsystem components are run to completion given the current KB, and 
then the KI makes its decisions on which candidate facts to promote. The KB 
grows, and this provides stronger training information to each component, and 
this in turn allows each component to learn to read better. In this way, our 
approach can be seen as implementing a coupled, semi-supervised learning 
method in which multiple components learn and share complementary types of 
knowledge, overseen by the KI. 
 
This kind of iterative learning approach can suffer if labeling errors accumulate. 
To help mitigate this issue, the system may interact with a human for 10-15 
minutes each day, to help the learner stay “on track,” though the experiments 
reported here make limited use of such human input. 
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The following design principles are important in implementing this approach: 
 

• Use subsystem components that make uncorrelated errors. When multiple 
components that make uncorrelated errors propose the same candidate 
fact, we can typically be quite confident in that belief. 

 
• Learn multiple types of inter-related knowledge. For example, we use one 

component that learns to extract predicate instances from text resources, 
and another which learns to infer relation instances from other beliefs in 
the KB. This provides multiple, independent sources of the same types of 
beliefs. 

 
• Use coupled semi-supervised learning methods to leverage constraints 

between predicates being learned (Carlson et al. 2010). To provide 
opportunities for coupling, arrange categories and relations into taxonomy 
and declare most categories and relations to be mutually exclusive. 
Additionally, specify the expected category of each relation argument to 
enable type-checking. Subsystem components and the KI can benefit from 
methods that leverage coupling. 

 
• Distinguish high-confidence beliefs in the KB from lower-confidence 

candidates, and retain source justifications for each belief. 
  
• Use a uniform KB representation to capture candidate facts and promoted 

beliefs of all types, and use associated inference and learning 
mechanisms that can operate on this shared representation. 

 
 
The implementation of the Knowledge Integrator (KI) promotes candidate facts 
suggested by the other components to the status of beliefs, using a hard-coded, 
intuitive strategy. Candidate facts that have high-confidence from a single source 
(those with posterior > 0.9) are promoted, and lower-confidence candidates are 
promoted if they have been proposed by multiple sources independently. KI 
exploits relationships between predicates by respecting mutual exclusion and 
type checking information. In particular, candidate category instances are not 
promoted if they already belong to a mutually exclusive category, and relation 
instances are not promoted unless their arguments are at least candidates for the 
appropriate category types (and are not already believed to be instances of a 
mutually exclusive category). In our current implementation, once a candidate 
fact is promoted as a belief, it is never demoted. The KI is configured to promote 
up to 250 instances per predicate per iteration, but this threshold was rarely hit in 
our experiments. 
 
The KB in NELL is a reimplementation of the Theo frame-based representation 
(Mitchell et al. 1991) which was originally designed to support integrated 
representation, inference and learning. 
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3. Evaluation 
 
An experimental evaluation was conducted to explore the following questions: 

 
• Can NELL learn to populate many different categories (100+) and 

relations (50+) for 20+ iterations of learning and maintain high precision? 
 
• How much do the different components contribute to the promoted beliefs 

held by NELL? 
 

4. Methodology 
 
The input ontology used in the experiments included 123 categories each with 
10–15 seed instances and 5 seed patterns for CPL. Categories included 
locations (e.g., mountains, lakes, cities, museums), people (e.g., scientists, 
writers, politicians, musicians), animals (e.g., reptiles, birds, mammals), 
organizations (e.g., companies, universities, web sites, sports teams), and 
others.  Fifty-five relations were included, also with 10–15 seed instances and 5 
negative instances each (typically generated by permuting the arguments of seed 
instances). Relations captured relationships between the different categories 
(e.g., teamPlaysSport, bookWriter, companyProducesProduct). 
 
In our experiments, CPL, CSEAL, and CML ran once per iteration. RL was run 
after each batch of 10 iterations, and the proposed output rules were filtered by a 
human. Manual approval of these rules took only a few minutes. 
 
To estimate the precision of the beliefs in the KB produced by NELL, beliefs from 
the final KB were randomly sampled and evaluated by several human judges. 
Cases of disagreement were discussed in detail, with final decisions made by 
another judge. Facts which were once true but are not currently (e.g., a former 
coach of a sports team) were considered to be correct for this evaluation, as 
NELL does not currently deal with temporal scope in its beliefs. Spurious 
adjectives (e.g., “today’s Chicago Tribune”) were allowed, but rare. 
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5.  Results 
 
After six days of running, NELL completed 22 iterations of execution. 88,502 
beliefs were promoted across all predicates (95% of these belonged to 
categories and 5% to relations.) Following an initial burst of almost 10,000 beliefs 
promoted during the first iteration, NELL continued to promote a few thousand 
more on every successive iteration, indicating strong potential to learn much 
more if it were left to run for a longer time.  
 
To estimate the overall precision of these 88,502 beliefs, we sampled 100 of 
them uniformly and judged their correctness. 90 out of 100 were judged to be 
correct. Only a few items were debated by the judges: examples are “right 
posterior,” which was judged to not refer to a body part, and “green leafy salad,” 
which was judged acceptable as a type of vegetable. “Proceedings” was 
promoted as a publication, which we considered incorrect (it was most likely due 
to noun-phrase segmentation errors within CPL). Two errors were due to 
languages (“Klingon Language” and “Mandarin Chinese language”) being 
promoted as ethnic groups. (“Southwest”, “San Diego”) was labeled as an 
incorrect instance of the hasOfficesIn relation, since Southwest Airlines does not 
have an official corporate office there. Many system errors were subtle; one 
might expect a non-native reader of English to make similar mistakes. 
 
To estimate precision at the predicate level, we randomly chose 7 categories and 
7 relations which had at least 10 promoted instances for manual judgment. For 
each chosen predicate, we sampled 25 beliefs and judged their correctness. 
Table 4 shows these predicates, the estimates of precision, and the number of 
beliefs promoted in total for each.  Most predicates are very accurate, with 
precision exceeding 90%. Two predicates, cardGame and productType, fare 
much worse. The cardGame category seems to suffer from the abundance of 
web spam related to casino and card games, which results in parsing errors and 
other problems. 
 
As a result of this noise, NELL ends up extracting strings of adjectives and nouns 
like “deposit casino bonuses free online list” as incorrect instances of cardGame. 
Most errors for the productType relation came from associating product names 
with more general nouns that are somehow related to the product but do not 
correctly indicate what kind of thing the product is, e.g., (“Microsoft Office”, “PC”). 
Some of these productType beliefs were debated by the judges, but were 
ultimately labeled incorrect, e.g., (“Photoshop”, “graphics”).  In our ontology, the 
category for the second argument of productType is a general “item” super-
category in the hierarchy; we posit that a more specific “product type” category 
might lead to more restrictive type checking. 
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Table 4: Estimates of precision and numbers of promoted beliefs for selected predicates 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As described in the technical section, NELL uses a Knowledge Integrator which 
promotes high-confidence single-source candidate facts, as well as candidate 
facts with multiple lower-confidence sources. CPL and CSEAL each were 
responsible for many promoted beliefs on their own.  However, more than half of 
the beliefs promoted by KI were based on multiple sources of evidence.  While 
RL was not responsible for many promoted beliefs, those that it did propose with 
high confidence appear to be largely independent from those of the other 
components. 
 
  

Predicate  Precision Promotions  
cardGame  40% 584  
city  92% 4311  
magazine  96% 1235  
recordLabel  100% 1384  
restaurant  96% 242  
scientist  96% 768  
vertebrate  100% 1196  

athletePlaysForTeam  100% 113  

ceoOfCompany  100% 82  
coachesTeam  100% 196  
productType  28% 35  
teamPlaysAgainstTeam  96% 283  
teamPlaysSport  100% 79  
teamWonTrophy  88% 119  
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CPL was designed to allow efficient learning of many predicates simultaneously 
from a large corpus of sentences extracted from web text.  Gathering the 
statistics needed from the text corpus is the most expensive part of the algorithm.  
The statistics needed come from two types of queries.  First, in the extraction 
step, CPL has a list of promoted instances and patterns, and needs to know 
which patterns and instances co-occur with those instances and patterns. 
Second, in the filtering and ranking steps, CPL needs to know which candidate 
patterns occur with which promoted instances, and which candidate instances 
occur with which promoted patterns.  CPL gathers these statistics from a pre-
processed text corpus which specifies how many times each noun phrase occurs 
with each category pattern in the corpus, and also how many times each pair of 
noun phrases occurs with each relation pattern.  The preprocessing can be done 
quickly using the MapReduce framework (Dean and Ghemawat 2008).  In each 
iteration of CPL, CPL gathers corpus statistics from this data set by scanning 
through the preprocessed data in two passes: one for extracting candidates and 
one for counting co-occurrences. CPL can perform one pass in about 15 minutes 
from a data set derived from 200 million web pages. 
 
As for the quality of RL’s learned rules, at iteration 10, RL proposed 85 rules, of 
which 75 (88%) were approved.  At iteration 20, RL proposed 135 rules, of which 
127 (94%) were approved. 
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6.  Discussion 
 
These results are promising. Preliminary implementation of NELL was able to 
maintain high precision and a consistent rate of knowledge accumulation with a 
very limited amount of human guidance. We consider this to be significant 
progress toward our goal of building a never-ending language learner. 
 
The importance of our design principle of using components which make mostly 
independent errors is generally supported by the results. More than half of the 
beliefs were promoted based on evidence from multiple sources. However, in 
looking at errors made by the system, it is clear that CPL and CMC are not 
perfectly uncorrelated in their errors 
 
This behavior suggests an opportunity for leveraging more human interaction in 
the learning process. Currently, such interaction is limited to approving or 
rejecting inference rules proposed by RL. However, we plan to explore other 
forms of human supervision, limited to approximately 10–15 minutes per day. In 
particular, active learning holds much promise by allowing NELL to ask “queries” 
about its beliefs, theories, or even features about which it is uncertain.  
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7. Conclusion and Ideas for the Future 
 
We have developed architecture for a never-ending language learning agent, and 
described a partial implementation of that architecture which uses four 
subsystem components that learn to extract knowledge in complimentary ways. 
After running for six days, this implementation populated a knowledge base with 
over 88,000 facts with an estimated precision of 90%. 
 
These results illustrate the benefits of using a diverse set of knowledge extraction 
methods which are amenable to learning, and a knowledge base which allows 
the storage of candidate facts as well as confident beliefs. There are many 
opportunities for improvement, though, including: (1) self-reflection to decide 
what to do next, (2) more effective use of 10–15 minutes of daily human 
interaction, (3) discovery of new predicates to learn, (4) learning additional types 
of knowledge about language, (5) entity-level (rather than string-level) modeling, 
and (6) more sophisticated probabilistic modeling throughout the implementation. 
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8.  Publications associated with this project: 
 
The publications below are available at Carnegie Mellon University’s Read the 
Web project website, http://rtw.ml.cmu.edu/readtheweb.html. 
 
• Coupled Semi-Supervised Learning for Information Extraction.  Andrew 

Carlson, Justin Betteridge, Richard C. Wang, Estevam R. Hruschka Jr. and 
Tom M. Mitchell. Proceedings of the Third ACM International Conference on 
Web Search and Data Mining (WSDM 2010).  

 
• Populating the Semantic Web by Macro-Reading Internet Text.  Tom M. 

Mitchell, Justin Betteridge, Andrew Carlson, Estevam Hruschka, and Richard 
Wang. Invited paper, Proceedings of the 8th International Semantic Web 
Conference (ISWC 2009).  

 
• Coupling Semi-Supervised Learning of Categories and Relations  Andrew 

Carlson, Justin Betteridge, Estevam R. Hruschka Jr. and Tom M. Mitchell. 
Proceedings of the NAACL HLT 2009 Workshop on Semi-supervised 
Learning for Natural Language Processing.  

   

http://rtw.ml.cmu.edu/readtheweb.html


18 
 

9. References 
 
Banko, M., and Etzioni, O. 2007. Strategies for lifelong knowledge extraction 
from the web. In K-CAP, 95–102. 
 
Bunescu, R. C., and Mooney, R. J. 2007. Learning to extract relations from the 
web using minimal supervision. In Proc. of ACL, 576–583. 
 
Callan, J., and Hoy, M. 2009. Clueweb09 data set. 
http://boston.lti.cs.cmu.edu/Data/clueweb09/. 
 
Carlson, A.; Betteridge, J.; Wang, R. C.; Jr., E. R. H.; and Mitchell, T. M. 2010. 
Coupled semi-supervised learning for information extraction. In Proc. of WSDM. 
 
Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on 
large clusters. Commun. ACM, 51(1):107-113, 2008. 
 
Lenat, D. B. 1983. Eurisko: A program that learns new heuristics and domain 
concepts. AI Magazine 21(1-2):61–98. 
 
Mitchell, T. M.; Allen, J.; Chalasani, P.; Cheng, J.; Etzioni, O.; Ringuette,M. N.; 
and Schlimmer, J. C. 1991. Theo: A framework for self-improving systems. 
Architectures for Intelligence 323– 356. 
 
Nahm, U. Y., and Mooney, R. J. 2000. A mutually beneficial integration of data 
mining and information extraction. In Proc. of AAAI, 627–632. 
 
Nii, H. 1986. Blackboard application systems and a knowledge engineering 
perspective. AI Magazine 7(3):82–107.  
 
Quinlan, J. R., and Cameron-Jones, R. M. 1993. Foil: A midterm report. In 
ECML. 
 
Wang, R. C., and Cohen,W.W. 2009. Character-level analysis of semi-structured 
documents for set expansion. In Proc. of EMNLP. 
 
 
 
 
 
 
 
 
 
 

http://boston.lti.cs.cmu.edu/Data/clueweb09/


19 
 

10.  List of Acronyms 
 
 
CPL   Coupled Pattern Learner 
 
CML  Coupled Morphological Learner 
 
HTML  Hyper-Text Markup Language  
 
KB  Knowledge Base 
 
KI  Knowledge Integrator 
 
NELL   Never-Ending Language Learner 
 
CSEAL Coupled Set Expander for Any Language 
  
RL   Rule Learner 
 




