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Abstract- Fourier transform methods are the standard way 
for determining time-domain pulse structure and arrival 
time from a set of continuous wave (discrete frequency) 
underwater acoustic model calculations. This technique 
requires a large number of computer model runs at closely 
spaced frequencies, often making it computationally 
expensive. It has the advantages of including the correct 
attenuation at each frequency component, and of correctly 
treating continuity requirements at the water/sediment 
interface.  Direct time-domain computer models are not as 
accurate for ocean bottoms with strong attenuation over a 
large bandwidth of frequencies. In this work the 
frequency-domain/Fourier approach is optimized for 
maximum efficiency at a given level of acceptable 
imprecision.  Techniques are presented to improve the 
efficiency of the individual frequency component 
calculations, and to avoid running many of the frequencies. 
Efficiencies at individual frequencies are gained through 
intelligent selection of grid parameters in the ocean 
acoustic model (a parabolic equation model).  Further 
improvements are achieved through intelligent zero 
padding schemes, and by interpolating envelope functions 
at the receiver location in order to estimate (and hence 
avoid running) up to 90% of the calculations required by 
the Nyquist sampling theorem. The effects of the various 
approximations are shown in the examples. 

 

I. INTRODUCTION 

Fourier synthesis of time domain (TD) results from 
continuous wave (CW) model calculations is the standard[1] 
way of accurately modeling pulse propagation in underwater 
acoustics.  Direct TD modeling is possible[2], however an 
accurate treatment of frequency-dependent bottom attenuation 
over large bandwidths remains a challenge.  For accurate TD 
results the procedure involves making many CW runs over the 
relevant frequency band, each correctly treating the frequency-
dependent bottom attenuation, followed by Fourier synthesis. 

The practical limitations of synthesizing TD results from 
many CW model results are largely imposed by the total time 
window of the result (Tl), which is governed by the frequency 
spacing of  the CW runs (Δf):  Tl =1 Δf  

While it is desirable to include the entire time for 
propagating a signal pulse from the source to receiver point, in 
practice this may necessitate a very small value for Δf, which 
will consequently require a large transform size with a 
correspondingly large number of  CW model runs. 

A simple optimization to somewhat alleviate this frequency 
sampling problem is to zero-pad the frequency band outside of 
the source’s significant bandwidth, thus eliminating many of 
the otherwise required model runs.  While certainly better than 
running all frequencies and subsequently multiplying results 
outside the source’s bandwidth by zero, even this optimization 
seldom improves runtimes by more than a factor of two. 

Another commonly used optimization is to choose a time 
window long enough to contain the pulse at the receiver 
location, but not necessarily long enough to contain the entire 
propagation time.  The total propagation time can later be 
estimated from range and a reference sound speed in the water 
column, and the total propagation time obtained by adding on 
subsequent time window values until the estimated time is 
approximately reached.  There are two potential problems 
associated with this method: (1) the estimated propagation 
time may not be accurate in complicated underwater 
environments, thus making the stacking of time window 
lengths imprecise; and, (2) the time window chosen may not 
be long enough to contain all multipath arrivals of the pulse, 
thus, leading to wrap around in the final TD result. 

The optimization method developed here is to make a 
limited number of model runs at regular spacings across the 
bandwidth of interest, and to then interpolate the pressure, as 
amplitudes and phases, to a sufficiently high sampling rate.  
This results in significantly reduced runtimes for the 
underlying CW model, with little degradation in the final TD 
result.  In subsequent sections of this work, this method is 
detailed in the context of a developmental example, and 
directions for further research are described. 

 

II. METHOD AND DEVELOPMENTAL EXAMPLE 

The method described here and the physical motivation 
behind it are best illustrated with the aid of a elementary 
example.  For simplicity and manageable computational times, 

0-933957-38-1 ©2009 MTS



 

a Gaussian pulse centered at 100 Hz. with a width of  5 Hz. 
was used as the source.  The test environment, including 
source and receiver locations, is shown in Fig. 1.  The long 
propagation range (141 km) and seamount  near 90 km were 
chosen to give a variety of very difficult challenges to the 
methods tried.  The parabolic equation underwater acoustic 
propagation model, RAM[3], was used to simulate the 
acoustic propagation. A transmission loss (TL) field plot at the 
center frequency was generated and is shown in Fig. 2.  A TL 
level of roughly -95 dB for the center frequency at the receiver 
point shows that there will be significant acoustic energy 
present in the water column, even at this relatively distant 
range. 
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FIGURE 1. TEST ENVIRONMENT FOR DEVELOPMENTAL EXAMPLE.  

SOURCE POSITION IS SHOWN ON ORIGIN AXIS, RECEIVER 
POSITION IS SHOWN AT 141 KM RANGE. 

 
 

 
FIGURE 2. TRANSMISSION LOSS FIELD PLOT AT THE CENTER 

FREQUENCY OF 100 HZ.  

 
A reference TD solution was generated using conventional 

Fourier synthesis. The RAM model was used to obtain the 
CW acoustic propagation; 512 individual frequency runs were 

made in a band 50 to 150 Hz.  Zero padding, as discussed 
above, was applied to frequencies where the source weighting 
function was more than 100 dB down from the center  
frequency strength; this corresponded to 100±24 Hz.  Out of  
the original 512 frequencies, only 246 actually required model 
runs, requiring 300 seconds on a desktop computer1.  Because 
of the sparse frequency sampling rate, the propagation time to 
the 141 km receiver range was wrapped an estimated 18 times.  
The resulting output pulse is shown in Fig. 3. 

 

 
FIGURE 3. FOURIER SYNTHESIZED OUTPUT PULSE FROM TEST 

SOURCE AND ENVIRONMENT. 

 
Examination of the complex pressure components of the 

pulse as a function of frequency (Fig. 4) shows a sinusoidal-
like regularity. A simple way to reliably interpolate between 
the calculated frequencies is not evident.  For clarity, this and 
subsequent figures will only show the band 100±5 Hz, 
however the relevant features are representative across the 
entire bandwidth. 
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FIGURE 4. COMPLEX PRESSURE COMPONENTS NEAR THE 

CENTER FREQUENCY.  SAMPLE POINTS ARE SHOWN. 

                                                           
1 2 GHz Macintosh G5 computer, using the OSX 10.4 
operating system and Absoft Fortran 7.0 compiler. 



 

Transforming the complex pressures into their phase and 
magnitude components greatly simplifies the structure, as is 
shown in Fig. 5.  The magnitude varies slowly and regularly in 
a narrow band at roughly ±20% of its average value, while the 
phase appears to be an approximately linear function wrapped 
in the interval from –π to +π.  This and several other trial 
cases have shown that the phase varies regularly in the manner 
seen here with a fairly consistent slope that may be positive or 
negative, depending on the underwater environment and 
receiver placement. Given the goal of eliminating the 
necessity of running many of the intermediate frequencies, the 
regularity shown in these figures makes it clear that at least 
some success may be had using interpolation if a way to 
reliably unwrap the phase can be found. 
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FIGURE 5. PHASE (A) AND MAGNITUDE (B) OF THE COMPLEX 
PRESSURE NEAR THE CENTER FREQUENCY.  SAMPLED POINTS 

ARE SHOWN. 

 
If it can be guaranteed that the phase wrap count can be 

accurately maintained between sample frequencies, the 
frequency domain may be sampled more coarsely than 
indicated in the Introduction.  Note that this will not violate 
the Nyquist sampling requirement[4] for transforming 
between the frequency and time domains, because it only 
requires that the complex pressures be sampled at or above a 
certain level. There is no requirement on the model (or method) 
by which the pressure values are generated. 

One very simple algorithm for unwrapping the phase 
reliably for large frequency strides is to thoroughly sample 
near the center frequency, and to obtain an average frequency 
slope in this region.  Trial unwraps in more sparsely sampled 
frequency ranges can then be made by linearly extrapolating 

along this slope out to the next phase point, and counting the 
number of unwraps that will bring the extrapolated phase 
nearest to the target phase.  By keeping track of the total 
unwrap at each calculated frequency, the phase relationship  
shown in Fig. 5a can be reduced to a nearly linear function.  
Subsequent interpolation to the desired sample rate can then 
be made, followed by transformation into the final TD result. 

The results of this procedure applied to the example case  
are shown in Figs. 6 and 7.  The frequency stride for the 
interpolated result is 1.8 Hz., or 10 times the original sampling 
rate.  The section ±2 Hz around the 100 Hz center frequency 
has been fully sampled to obtain the average frequency slope 
for the above-described unwrapping procedure.  The overall 
speed gain from this optimization is a factor of 7.3. 
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FIGURE 6. INTERPOLATED AND ORIGINAL PHASES IN THE (A) 

85–95,  (B) 95–105 (CORRESPONDING TO FIG. 5), AND (C) 105–
115 HZ FREQUENCY BANDS.  MIS-WRAPS ARE SEEN NEAR  94 

AND 104 HZ. 



 

 

 
FIGURE 7.  INTERPOLATED AND ORIGINAL MAGNITUDE OF THE 

PRESSURE, ACROSS THE ENTIRE FREQUENCY BAND. 

 
A number of mis-wraps in the interpolated phase caused by 

the increased frequency stride are evident in Fig. 6, and 
several large deviations from the original pressure amplitude 
are seen in Fig. 7.  However, when transformed into the time 
domain, the final result is in good agreement with the original 
solution, as shown in Fig. 8. 

 

 
FIGURE 8.  TIME DOMAIN RESULTS FROM THE PHASE AND 

MAGNITUDE INTERPOLATION OF THE  CASE DESCRIBED IN THE 
TEXT, OVERLAYED ON THE ORIGINAL RESULTS FROM FIG. 3. 

 
The RAM model was used to generate the examples 

presented in this paper. However, the technique presented, 
which converts multiple CW results into broad band pulse 
results, is applicable to any CW propagation model. A ten-fold 
decrease in overall computational time is typical. It is possible 
to achieve significantly greater reductions in overall 
computational time if the technique is mated to a particular 
propagation model and both technique and model are 
optimized for the ocean environment under consideration. As 
an example, consider that the arrival times and general pulse 

structure are desired for an acoustic pulse traveling in a 
shallow-water waveguide environment. The center frequency 
of the pulse is 1 kHz and the acoustic bandwidth is 1 kHz, 
extending from 500 Hz to 1,500 Hz. It is possible to choose 
different propagation parameters for the RAM model that are 
critically sensitive for each CW frequency component used in 
the Fourier synthesis; similarly, constraints can be lessen on 
less sensitive parameters. When combined with the technique 
discussed above, the result shown in Fig. 9 is obtained. 

 

 
FIGURE 9.  TIME DOMAIN RESULTS FOR A 1 KHZ BANDWIDTH 

WITH CENTER FREQUENCY AT 1 KHZ.  THE FULLY SYNTHESIZED 
PULSE IS SHOWN IN BLACK AND REQUIRED 300 MINUTES TO 

GENERATE.  THE PHASE-MAGNITUDE INTERPOLATION RESULT 
SHOWN IN RED TOOK 40 SECONDS. 

 
The black curve is the result obtained by running the RAM 

model for each frequency over the entire 1 kHz bandwidth and 
performing a Fourier synthesis. The RAM model parameters 
were standard selections that ensure high-fidelity propagation 
predictions for each particular acoustic frequency. The red 
curve is the result obtained by applying the technique 
discussed in this paper together with RAM model parameters 
that were chosen to retain only the essential physics needed to 
generate a broad band result from sparsely selected CW 
results. The fully synthesized pulse (black curve) required 300 
minutes on a desktop computer. The sparse synthesized pulse 
(red curve) was obtained in only 40 seconds on the same 
computer. While not a perfect replica, the red curve retains the 
correct first arrival time, very nearly the same second arrival 
time, and preserves the overall structure of the pulses. There is 
a 450 times reduction in run time. A future paper will discuss 
in detail how the phase-magnitude interpolation method can 
be combined with the RAM propagation model to produce 
rapid broad band simulations. 

 

III. FUTURE DEVELOPMENT 

In the work presented, a basic observation of the behavior 
of acoustic phase and amplitude with respect to frequency in 



 

an underwater waveguide environment has led to the 
development of a technique that can rapidly produce a TD 
result from a sparse number of CW calculations.  The initial 
results are very encouraging and give insight as to where 
improvements could be made. 

Further research is needed in the phase unwrapping part of 
the algorithm.  Using variances in the slope of the phase in the 
sampled band, or sampling the average slope at several places 
in the source band, could produce a more reliable unwrapping.   
A more robust approach is to apply a series expansion to the 
total pressure field.  Accurate phase estimates may be possible 
by using information obtained from the derivative of the 
magnitude function. 

Another improvement under consideration is a more 
sophisticated interpolation scheme.  In the work presented, a 
linear scheme was used. Higher-order interpolation algorithms 
could improve the magnitude interpolation. 

Finally, because a TD pulse is being reconstituted from 
heavily decimated information, this method may be useful as a 
sound compression algorithm.  The requirement of starting 
with complex pressures, and possibly the inability to encode a 
continuous signal as opposed to the isolated pulse in this 
example, may prove to be practical limitations on the 
method’s usefulness in sound compression applications.  This 
interesting ancillary application warrants further investigation. 

 
 

IV. SUMMARY 

A rapid method for computing and transforming underwater 
acoustic CW model results into TD signals has been presented. 
The method is based on the observed behavior of pressure 
phase and magnitude in an underwater waveguide 
environment.  An example of pulse propagation using this 
method was presented with a net speedup of 7.3. When the 
method was combined with environmentally optimized 
propagation model parameters, and allowances for acceptable 
error were considered, a speedup of 450 was realized. 
Directions for possible future work were discussed. 
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