Ground Vehicle Power & Mobility Overview for
For Japan TRDI
15 Mar 10
1. REPORT DATE
15 MAR 2010

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
Ground Vehicle Power & Mobility Overview for For Japan TRDI

5a. CONTRACT NUMBER
-

5b. GRANT NUMBER
-

5c. PROGRAM ELEMENT NUMBER
-

5d. PROJECT NUMBER
-

5e. TASK NUMBER
-

5f. WORK UNIT NUMBER
-

6. AUTHOR(S)
-

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA

8. PERFORMING ORGANIZATION REPORT NUMBER
20611RC

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
-

10. SPONSOR/MONITOR’S ACRONYM(S)
TACOM/TARDEC

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
20611RC

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
-

15. SUBJECT TERMS
-

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 unclassified

 b. ABSTRACT
 unclassified

 c. THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT
 SAR

18. NUMBER OF PAGES
 11

19a. NAME OF RESPONSIBLE PERSON
 -

Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
GVPM Vision and Mission

VISION:
To be the Best in the World at determining and delivering the Best Integrated Power, Energy and Mobility Solutions for the Joint Warfighters’ needs; and to be the Army’s recognized “focal point” for Power, Energy and Mobility Technology expertise and the GVPM Technology Systems Integrator for the current and future force ground vehicle systems.

MISSION:
To research, develop, test, validate and integrate the right Power, Energy and Mobility technology solutions to provide superior capabilities for the current and future force ground system forces.
The Challenges

- Battlefield consumption of energy increasing
 - New C4ISR technologies
 - IED Defeat Systems
 - New weapons

- Energy security problematic
 - Increasing dependence on foreign oil
 - Alternative sources sought -- wind, solar, bio-mass, waste to energy

- Operational issues
 - Battery usage & limitations – energy & power density
 - Demand for auxiliary power on-board vehicles
 - Emphasis on silent (“quiet”) watch
 - Unmanned vehicles (air/ground)
 - Unattended sensors
 - Inefficient management/ distribution of power
 - Demand for soldier-wearable power

- Increased emphasis on system power metrics (KPPs, low consumption components)
<table>
<thead>
<tr>
<th>Power Generation</th>
<th>Energy Storage</th>
<th>Thermal Transport & Distribution</th>
<th>Power Control & Distribution</th>
<th>Track & Suspension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel Engines</td>
<td>JP-8 Fuel Cells</td>
<td>Radiators</td>
<td>Power Controllers for Power Management</td>
<td>Track Systems</td>
</tr>
<tr>
<td>Rotary Engines</td>
<td>Turbine Engines</td>
<td>Heat Recovery</td>
<td>Wide Band Gap Materials (SiC)</td>
<td>Suspension Systems</td>
</tr>
<tr>
<td>Transmissions</td>
<td>Alternators</td>
<td>Phase Change Cooling</td>
<td>High Temperature SiC Modules</td>
<td>Electronic Stability Control</td>
</tr>
<tr>
<td>Traction Motors</td>
<td>Integrated Starter Generator</td>
<td>Advanced Electronics Cooling</td>
<td>Pulse Power Switching</td>
<td>Elastomer Research</td>
</tr>
<tr>
<td>Integrated Starter Generator</td>
<td>Drivelines</td>
<td>Advanced Batteries</td>
<td>High Temp Inductors</td>
<td></td>
</tr>
</tbody>
</table>
Army Ground Vehicle Technology P&E Challenges

- High power and temperature capable Power Electronics.
- Advanced component and system Thermal Management systems.
- Advanced component and system Power Management systems.
- Military adaptable, high power density, efficient, Diesel Engines.
Hybrid Electric Technology

Problem:
- Hybrid electric systems for combat and tactical vehicles are challenged to meet mobility requirements within the specified space and weight constraints.
- The State Of the Art power electronics operate at low temperatures resulting in a large thermal burden, increasing the power needed from the prime mover to cool the system.
- These challenges result in over sizing the engine/generator to gain power lost to the cooling system.

Research Challenges:
- Research high temperature / high frequency compact power electronics.
- Research high power / high torque density motor / generators.

Traction Motor
DC-DC Power Converter
Integrated Starter Generator
Problem:
• High power battery packs sized for combat hybrid electric vehicles are too large or extremely costly.
• High power advanced batteries for combat hybrid vehicle application must be safer and more reliable.

Research Challenges:
• Research thermal runaway process and its control.
• Research power vs. energy trade-off design optimization.
• Research manufacturing process development and cost control.
• Research thermal management.
• Research cell & system, safety & reliability.
• Research system control & cell and battery management systems.
• Research alternative electrochemical improvements, including alternative chemistries and battery materials.
Problem:
- Current high power commercial engines/powertrains are not *compact* enough for future manned ground combat platforms.
- Future ground combat vehicles will require *lighter and more efficient* powertrains that occupy less space, improve vehicle mobility, reduce fuel consumption and thermal load.
- Current state of the art engines require development to operate on one fuel forward (JP-8) and meet future vehicle power and mobility needs.

Research Challenges:
- Diesel combustion research to decrease physical burn time.
- Propulsion system research to increase power density and efficiency.
- Propulsion system thermal management research.
- Research combustion optimization strategy for JP-8 military version of an emission compliant commercial. Engine control strategy for maintaining power with alternative heavy fuels.
Problem:

- Current non-primary power approach in field is inadequate for silent watch.
- Lead-acid batteries store insufficient energy to meet War Fighter requirements for vehicle silent watch (main engine off). Silent watch requirements vary from several hours to 24 hours. Current approach requires restarting of main engines during silent watch to recharge batteries, causing excessive fuel use, acoustic and thermal signatures.

Research Challenges:

- Research engine-generator technologies with high power densities and low acoustic signatures.
- Integration of fuel cells with JP-8 reformers to create APU system compatible with combat vehicle requirements
- Research fuel cell system optimization with batteries and ultra-capacitors.
Problem:
• Current and future force electrical power demands exceed power generation and energy storage capabilities.
• Advanced power generation systems depend on sophisticated control methodologies for safe operation.
• Limited fuel availability in the field.
• Increasing number and size of electrical loads on a vehicular platform increases the heat generation.
• Presently, no automated way to recover from faults and induced faults (i.e. Sympathetic tripping, chain tripping of loads).
• Current vehicular electrical architectures contain vehicle-unique electrical components which increase the logistics burden.

Research Challenges:
• Research ability to accurately monitor and control the power distribution and react to fluctuating loads and sources in real time through algorithm development.
• Research common architecture approach (plug & play) for future electrical power equipment insertion.
• Research power requirements of military equipment and load management strategy.
Problem:
• Cooling systems are insufficient to meet mobility requirements of future combat vehicles.
• Vehicular space claims limit additional heat rejection ability
• Increased demands for electrical power significantly impacts vehicle’s cooling system sizes and weights
• Thermal degradation has direct impact on component life and reliability.
• Lack of intelligent control strategies for power system adds to thermal burden.
• Insufficient data exists on the efficiency benefits of emerging technologies applied to vehicle power electronics

Research Challenges:
• Intelligent thermal (heating/cooling) management system have not yet been explored
• Develop technology that requires less volume and greater heat rejecting capacity than current technology