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Residual Stresses

Synchrotron EDXRD Strain & Phase Mapping
Thermal Sprayed Nanostructured Coatings
In situ four-point bending experiments
Eigenstrain Analysis

Reliable Life prediction

Applications to Engineering Systems
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SLESss TYPE OF RESIDUAL STRESSES
e MEASURED BY EDXRD
Type I o; Macroscale

TR Type II o;; Mesoscale
ownl A [ 4 [N Type III o;; Nanoscale

For a two phase material, the

macrostress o (type I) 1s

continuous across phases, but the
type II and III stresses are not. As a
result, even when the sampling
area 1s greater than the
characteristic areas for type oy 11
and type oy 111, non-zero phase-
average microstresses can be

M and B odenobe matriz and reinforcensent respectively recorded- COHSlderlng the Stresses

Residual stress fields can be categonsed according to in tWO phases-

characteristic length scales b, lpy. and ki over which
they self-equilibrate; for Type | Iy represents consider-

able fraction of componant; for type I, ly i& compar. O=f<GOL>H+(1_f)<GB>H where f 1s

able to grain dimensions, while for type lll, I, , is less

than grain diameter the volume fracrion of phase o.
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“+d, values to determine strains.
*How:
“*Find regions with Stress-free
“*Find samples of Stress-free
“+Use powders
+Use of equilibrium conditions:
“*Multi phases
“**Force/moment balance

Constitutive equation
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i\1_ 2y (811 T E€9p + 833)
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High Resolution Probe
3 T volume 2 um
* Materials: Cementite/Ferrite; Ti-6Al-4V substrate

Etot

®* New Alumina/Titania coatings with new bond coating

® New Titania (Rutile) coating, Amorphous Fe-C-B alloy coating
® Diamond Like Coatings, Aluminum alloy coatings,

® 4-point bending - unload cycle

® homogeneous plastic deformation macro/micro scopically

® Measured:

® Lattice strain response for individual phases and reflections.







4130 Steel
2 phases: cementite + ferrite
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Ti-6Al-4V /Substrate

Thermal and Mechanical:

Young’s Modulus = 115 GPa
Poisson’s Ratio = 0.349
CTE=10x 10°% K-

NSMG |




Distribution of o and 3 phase of Ti6Al-4V as a function of Temperature
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Thermal strain in o and 3 phase of Ti6Al-4V as a function of Temperature
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Thermal Sprayed
Nanostructured Coatings



Welcome to

Rutgers

The State University
of New Jersey

« n-Al203-13TiO2 coatings
fabricated by conventional
plasma spray

« 2X the bond strength and 4X
the wear resistance

- Extraordinary deformability
without failure

 Direct transition to fleefaagcia. Gruber No failure even after
industry (fully commercial) Severe deformation

T —

No visible damage after
Four years of service

MCM shafts fail after 18months service Uncoated shaft experiences

Requiring dry docking for weld repair Severe scoring damage

Courtesy Dr. Larry Kabacoff and Dr .Patricia Gruber ONR ISOPE 2007



Ad‘o;maw;:yced Coating Technology Development for Enhanc«h
Durability and Reduced Cost in Naval Applications

. Reconstituted
Syll)ltheslzed Powder
owder _
ces s S8
L 9 9. 0
“ e ‘: -~ S
® g ® o® ® L
LI

p //f////z///,gz,

@/ﬂ////ﬂ%

Thermal Spray of Powder

Nanocoated Component
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Courtesy Dr. L. Kabacoff ONR
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Oxide inclusions  Pores/voids Cohesive strength Particle Substrate
between particles roughness
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Substrate . substrate

roughness
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Nanostructured Coatings @Dk

Material Systems

1. A|203- 1 3W'|'°/oTiOz coatings made from starting micron

size (Metco 130) and nanosized powders (Inframat 2613)(Particle size 20-
30 nm) With Grit Blasting

In addition we compared the phases and strains as a function of coating
thickness in both micro- and nano- coatings.

Substrates: 1) 1020 Steel (with a Ni bond coat)
2) Titanium (with a Ti bond coat)

Varying thickness of micro- and nano- coatings were applied.
Substrates were grit blasted (compressive stresses).

Table 1, summarizes the coating samples produced with 1020 steel.
Table 2 is similar for the titanium substrate coating samples produced.

All the samples were prepared by A&A company,
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Starting Powder Substrate Coating thickness Designation
None T1
Grit blast only T2
Grit blast and bond coat T3
2 passes on T3 T4

Micron Titanium Typical coating on T3 T5
Over-coating, on T3, | T6
before failure
Over-coating, on T3, | T7
after failure
2 passes on T3 TS
Typical coating on T3 TO
Over-coating, on T3, | T10
before failure

Nanosize Titanium Over-coating, on T3, | T11
after failure
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A series of EDXRD spectra as a function of (x;) depth for a nano-alumina-
titania coating on a Ti substrate. Note that the spectra are displaced equally so
that the coding region can be seen. The Miller indices for the Ti (hcp) substrate
and the spinel structure phase in the coating are indicated.

nano-alumina-coating
on Ti

y-Al,O; (spinel)
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Wide view of EDXRD patterns of powders obtained by delaminating TS titania-
alumina coatings under 4-point compression and then grinding the coating into powder.
The T5 is a typical thickness micro-coating and T9 is a typical thickness nano-coating.
Note: the y-Al, O, spinel and a-Al,O, corundum Bragg line indexing; the expected Ce
atomic fluorescence lines in the nano material; .
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Phase Mapping 0\RY peoommen

Ti-K edge XAS near edge structures for a series of Ti compounds. The pre-edge
features are shown on an expanded scale in the inset of the figure. Comparison of the
n- and p-feed powder spectra are to the anatase phase TiO2 standard clearly confirm
this as the the feed powder phase in both cases. The Ti environment in the plasma
sprayed (PS) n- and p- coatings are dramatically differend and are unambiguously not
anatase phase. Note that the FS oscillations above the edge are sharper for the py-PS-
coating (relative to the u-PS-coating). The broadening of the p-PS-coating FS features
are typical of a more disordered local environment as expected for nano-phase materials.

e = iF ]
v ; v v ks
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n-TiOfeed-pwr _# " e,
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reduced Ti.
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A comparison plot of the e55 strain in as-received titanium substrate, and grit blasted

titanium substrate. It can be noted that in the grit balsted sample surface compression
introduces a bending moment in the other underlying bulk material which is clearly
visible by the sloping data between 0<x3<1.5

0.0035 ' . - : - : - 1600
0.003 | -s00
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— g 1400 o
S 0.002 -
) i -200 E
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Effect of bond coat on compressive strain €;5 of Grit Blasted Ti

Grit Blasted and bond coating
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VALIDATION 2. Grit Blasted

“ 00000

5080,0,0.0.0,0

©00

Plastically deformed layer S*ijzgpij(xs)n E, Vv

O (Center of bilayer)

Schematic of model for Grit Blasted
strains/stresses




€5; strain

scattered
- beam

Strain profile of €4, across the entire
thickness of a Ti double-sided shot
peened specimen. The inset shows
schematic of the x-ray scattering
geometry along with the definition of
the coordinate directions. Note the
schematic representation of the lip
which was optically profiled in Figure
above.

VALIDATION 2.

The strain profiles of €,5 and €, in the
vicinity of the peened surface layer and
the underlying bulk material of the Ti
specimen. The insets illustrate the x-
ray scattering geometries for the €44
(top) and €,, (bottom) measurements.
Note the stress scale (lower right) uses
E=118 GPa and v=0.33 . g5, =-2
\Z(QERY IEE




In-situ 4-point bending experiment
Ti

P=2F

M=F (d; - d,)
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Bending released: Residual stresses and bending
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Strain Mapping S ss

£, depth (x;) variation profiles of of DLC/4142 steel
substrate test specimen at various load levels
In the four point bending geometry




€45 depth (x5) variation profiles of of alumina-titania-coating/Ti-
substrate test specimen at various load levels in the four point
bending geometry.

|]I|'_'|E|ﬂ --------------------------- ---'r---'|---—--—---'----r---r---'r----|---1—---'---—F--—r---'r---'r----§ E]..WE
o P ({lb) M (Nm)
0.006 | 33 0 0 . {0006
0,004 I LTI I A Eqs {0.004
449 13.5 B
Yo 0002} o S, {0002
. oy T
=] i | ";‘_:'.1-::5‘_:25 10 E’
= Moo | T 2
- g
i 0.002 -umﬂ%
0004 coating | coating .
tension i
oo tension o
0,008 | . . . o 0008
02 045 5% =1.5

X5 (mm)




INATIONAL LABORATORY

P' TYTC
TDP Coat E GYBC
M Bond Coat .
¥/ Oyse M
Substrate

MNeutral Axis (N.A.)

? Tension
= X

Compression

Ty

)] . T T
-

0.0 0.1 0.2 03 0.4 0.5 C.6 0.7 0. 0.9 1.
8 ° Fig. 2. Schematic illustration of the bending stress in the coating
(a) Displacement (mm) under Four point bend test.
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X3
h, Ec, Ve, £°(X;) Coating Layer 4
X +BC - > X2
1 hs Egcs Veer £°°(X5) Bond Coating Layer 3
| hy E,, v;, €P(X5) Sub. Grit Blasted Layer 2
x1 A
E,s vy Substrate Layer 1
h, .
I—1
A 4 /
I—2
Schematic of the layered stack structure of the
substrate/coating materials systems used in this study




stresses and strain —the elasto-plastic analysis Eigenstrain

Elastic body
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Equations of the multiaxial stresses and Hencky’s
equations of plasticity
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[A], [B] and [D] are the elastic stiffness matrices derived by Tsai(1988):

=Jn [C(x3)] dx3, [B 1=y [C(x3)] x3dx3 and [D 1= [C(x3)] x5° dxs  (10)
N *and M * are the forces and moments respectively, generated by the eigenstrains S*ij(X3)
I lc( X, )g" (x,)dx, and M I lC( X )JE" (x, )xdx, (11)
From (8) and (9) we obtain:

N+N") [lA] [B]]&° _[c’ g’ 12)
i) |[8) [p]| & i
Eq. (12) depicts 3 algebraic equations for N and three for M totaling 6 equations.

By inverting the matrix of these equation we solve with respect to the 6 components
of Sijo and Kjj -

ey e



Modulus and yield stress @Dk

The material properties used in this analysis are E = 116.3 GPa, v = 0.349, K = 855
MPa, and n = 0.0149

The stress strain curve for Ti-6Al-4V alloy expressed bv the Ramberg-Osgood eauation:

o0 ——————
1 L

o o \n :
&=—+| — | 1s depicted in Figure §. 800 |
E (Kj P s 18

Ramberg-Osgood Equation
e=c/E+{c/K)1m

for Ti-6Al-4V alloy
E=116.3 GPa, v =0.349
K = 855 MPa, n =0.0149

BOO -

stress MPa

400

200

U |||||||||||||||||||
0 0.0& 0.1 014 0.z

Experimental results from slopes of Bending versus strain curves4-pdfiit
bending experiments the Elastic Modulus of Ti-6Al-4V substrate.

E’'=137 GPa E=117+¥3 GPa and yield stress 6,=843 MPa

Literature: E=116.3+3 GPa, ¢,=830 MPa E_,.;;,, and K.
Fracture toughness, Tensile strength of Coating ~0,



Strain N\a ping | N

€41 depth (x5) variation profiles of of alumina-titania-coating/Ti-

substrate test specimen at various load levels
in the four point bending geometry
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€45 depth (x5) variation profiles of of alumina-titania-coating/Ti-
substrate test specimen at various load levels in the four point
bending geometry.
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Energy Dispercsive X-ray Diffraction

Macroscopic

Residual
Stress

* Non-destructive Measurements
« gauge evolution of RS

for processing improvements
 validate FE Model

Microscopic

Micromechanisms of Deformation:
* Intergranular

 Interphase

« Phase Transformation

*Fracture toughness




Thank you.

Questions ?
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EDXRD Residual Stress |

In-situ Synchrotron triaxial strain measurements
Anisotropic materials

Small strain systems

Real time studies

Small diffraction volumes (e.g. gradients, buried
interfaces, grain boundaries,)

Line Broadening studies

Email tsakalak@rci.rutgers.edu




EDXRD Capabilities [

Two themes (0-300 KeV photons)
a) High resolution Energy Dispersive X-ray Diffraction (EDXRD) 1 um to 1 cm

b) High Energy EDXRD :Penetration depth ~ 2 inches of steel and 2 ft of Al
Two strategies

a) Strain Mapping (Internal/Residual Stress Spatial Distributions)

b) Phase Mapping ( Spatial Distributions of Phases Stresses in each phase)
Three Scales:

a) Nanometer scale 0.1 to 100 nm (Line broadening EDXRD is best.

b) Mesoscopic scale 100 nm to 5 um (individual grains, particles etc)

c) Macroscopic scale 5 um to 10-100 mm

In situ Load/stress application ( tensile, compressive, three point
bending, etc load during measurement)

Performance studies in fatigue, fracture toughness, crack propagation,
thermal shock stress effects and weldmends, shot $ laser peening, & other.

Measurement of microscopic stresses within each phase due to mismatch
stresses and or thermal effects.




4-point bending
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Complex strain regimes
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Integrating over cross section area we obtain the moment

EI \d*v ,
M = —_1[011L2x3dx3 = (1_sz dx; = Elk,,
R)
Where E = E - and [ = Lh
1—v 12

The transverse strain €33=(1/E)(—v( 611+022))=—V(1+V)o1:=[-V/(1-V)] €11
€33=[—V/(1-V)] €11
For v=1/3 , 833=—(1/2) €11
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Micromechanics and Kirchoff’s formalism of multilayers
For such loading, we can neglect the transverse components ot the strain €z;. Large
deformations have not been employed here due to the small thickness. In the context of
micromechanics the elastic strain tensor eelij 1s given by:

tot

i( X3)—€ §(X3) (1)

where the total strain from classical Kirchoff plate theory is given by:

e%j(x3)=¢
£'%i(x3)=€"5+K;j X3 (2)
where the curvatures &; and the strains £’; at x; = 0 can be assumed to be constant in the

plate and 1, j indices take values 1, 2 (in plane stresses case).

From micromechanics the constitutive equation can be written as:

Gii(x3)=[Cija 1(€a-€ 1) (3)

where Cjj represent the general stiffness matrix ~ for the in plane stress-strain tensor case.
From Egs. (2) and (3) we can obtain the resultant force and moment due to the stress
distribution in the x; through the thickness of our plate.

Nij=lh Gii(x3) dxs and M=), 6;(x3) X3 dx3



