Investigation of Remote Sensing Imagery for the Philippine Waters

Christopher R. Jackson
Global Ocean Associates
6220 Jean Louise Way
Alexandria, VA 22310
phone: (703) 822-9760 fax:(703) 822-9754 email: goa@internalwaveatlas.com

Award Number: N00014-07-M-0354
http://www.internalwaveatlas.com

LONG-TERM GOALS

The long term goal of the project is to enhance our understanding of the oceanographic processes and features arising in and around straits, and improve our capability to predict the spatial and temporal variability of these regions.

OBJECTIVES

The principal objective is to characterize the type and distribution (geographic and temporal) of oceanographic signatures visible in remote sensing imagery around the Philippine Archipelago.

APPROACH

The effort made use of historical synthetic aperture radar (SAR) and optical imagery to identify the features in the Philippines straits. These data were then combined with data collected in support the field programs undertaken in 2007, 2008 and 2009.

WORK COMPLETED

Over 150 historical SAR images were obtained from the European Space agency and the Alaska Satellite Facility and were examined for oceanographic features. Feature locations were tagged and input into Google Earth for dissemination among team members and to support the PhilEx cruises. SAR data acquisition planning was done with cruise scientists and CSTARS at the University of Miami for 2008 and 2009. More than 150 images were obtained during the cruise periods and were obtained/analyzed and disseminated in near real time to support the cruise operations. SAR imagery was also converted to wind speed imagery and disseminated for both near real time and post cruise analysis.

RESULTS

A large number of oceanographic features were identified around the Philippine Archipelago. These included both current and flow features as well as natural slicks, eddies, wind features and a large number of fine scale internal wave occurrences. Internal wave were noted between Palawan and Panay...
1. REPORT DATE
2009

2. REPORT TYPE

3. DATES COVERED
00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
Investigation of Remote Sensing Imagery for the Philippine Waters

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

Global Ocean Associates, 6220 Jean Louise Way, Alexandria, VA, 22310

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES 3

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Std Z39-18
as well as to the southwest of the two straits (San Bernadino and Serigao) open to the Pacific Ocean. More than Strong wind signatures dominated many of the images acquired during the Winter Moonsoons season in both 2008 and 2009.

Figure 1. The locations of oceanographic signatures noted in historical synthetic aperture radar imagery in and around the northern half of the Philippine Archipelago.

A brief summary of the dominant Philippines ocean features broken down by region is

- **San Bernardio Strait**
 - persistent current signatures, internal waves.
- **Dipolog Area**
 - devoid of any oceanographic features
- **Surigao Strait**
 - Currents, internal waves and an unusual ripple pattern on the eastern side
- **Mindoro/Tablas**
 - Wind and gap flow features, internal waves between the Cuyo Islands and Panay, natural slicks along the west coast of Mindoro, flow feature are visible to the southwest of Mindoro (suloys, vortexes)

Cruise participants reported that the near real time processing and dissemination was very useful to planning the in situ observations.
Figure 2. Portion of an Envisat SAR image acquired southwest of Mindoro Island on 23 February 2008. The image shows a variety of oceanographic features including internal waves, currents, a suloy, vortex and ship wake.

RELATED PROJECTS

Work done under N00014-05-C-0190 and N000014-08-C-0215 for the Development of a Nonlinear Internal Wave Tactical Decision Aid was used to produce a prediction of the location of nonlinear solitary waves in the Sulu Sea for investigation as part of the 2009 PhilEx Cruise.