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PROJECT SUMMARY 

 

Analytical solutions for the impact and blast response of naval composite structures were developed 
in this research grant.  Finite element analysis using ABAQUS and experimental results found in the 
open literature were also considered in conjunction with the work.  Four problems, in particular, were 
addressed during the course of this grant period.  These were as follows:  (1) low velocity impact of a 
sandwich panel with CorematTM, a high impact resistant core, (2) blast response of a composite 
sandwich panel with traditional PVC foam cores; (3) high velocity impact and perforation of a 
composite sandwich panel again with traditional PVC foam cores; and (4) implosion of a laminated 
composite cylinder under external blast.  This report summarizes the analyses and findings 
associated with these four problems.   
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OBJECTIVES 

The objective of this project was to develop analytical models for predicting the deformation and 
failure of naval composite structures subjected to blast and projectile impact loading.  These 
analytical models are essential for elucidating physical mechanisms that control the survivability of 
composite structures under blast and impact.   
 
 

TECHNICAL APPROACH 
 
The Principal Investigator (PI) used analytical modeling with FEA simulations for verification 
purposes.  Some analytical models were developed from experimental results found in the open 
literature.  

 
 

MAJOR ACCOMPLISHMENTS 
 

Four problems were addressed during the course of this grant period.  These were as follows:   
(1) low velocity impact of a sandwich panel with CorematTM, a high impact resistant core, (2) blast 
response of a composite sandwich panel with traditional PVC foam cores; (3) high velocity impact 
and perforation of a composite sandwich panel, again with traditional PVC foam cores; and  
(4) implosion of a laminated composite cylinder under external blast.  This section summarizes major 
findings of the above-mentioned problems.  Specific details of the analyses can be found in the ONR 
publications listed at the end of this report. 
 
A. Low-Velocity Impact of Composite Sandwich Panels 

In 2007, the PI developed analytical solutions for the quasi-static and low-velocity perforation of 
sandwich panels with woven roving E-glass/vinyl ester facesheets and CorematTM[1,2].  The 
analytical model was developed using experimental results from Mines et al. [3] and is an extension 
of the PI’s earlier work on impact of sandwich panels consisting of E-glass/epoxy facesheets with 
aluminum honeycomb core [4].   CorematTM is a high density/high energy absorption resin 
impregnated non-woven polyester with 50% microsphere, and is commonly used in the marine 
industry because of its high impact resistance [5].  Impregnated CorematTM has a density of around 
610 kgm-3, while the standard foam density for marine craft is 100 kgm-3.  It is primarily used in decks 
and hulls that are susceptible to high impulsive loads.  The compressive stress-strain curves shown 
in Fig. 1 indicate that CorematTM does not exhibit the typical elastic-perfectly plastic behavior of 
crushable foams but rather elastic-linear strain hardening (or bi-linear) material behavior.  This is 
because of its high density.  
 
 

 

 

 

 

 

 

 

Figure 1 Compressive stress-strain behavior of Coremat and Divinycell H100 foams. 

The panel deformation was decomposed into local indentation and global deformation.  A multi-stage 
perforation process involving delamination, debonding, core shear fracture and facesheet fracture 
was used to predict failure loads.  As shown in Fig. 2, analytical predictions of the quasi-static load-
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deflection response were within 5% of the test data, and the calculated failure load was about 25% 
higher than the test data.  An equivalent two degree-of-freedom mass-spring-dashpot system was 
used to find the dynamic response of the composite sandwich panel subjected to a drop-weight 
impact by a rigid hemispherical-nose projectile.  The predicted contact force histories from the 
equivalent two degree-of-freedom model were within 10% of test data (see Fig. 3).   
 
 

 

 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

        
 

Figure 2  Variation of quasi-static load with indenter displacement. 
 
 
 
 
 
 
 
 

 

 

 

 
 
 
 
 

 
 
 
Figure 3  Contact force history with 10 kg mass projectile travelling at various speeds. 

 
 
The analytical model specifically showed how local core properties can influence the deformation 
and ultimate failure of a composite sandwich panel.  It also provided a simple way to approximately 
describe the material response of non-traditional, high density and damping foams such as 
CorematTM.  The analytical results indicated that the high core crushing resistance and damping of 
the CorematTM limited the amount of local indentation compared to global panel deformation.  As a 
result, the CorematTM sandwich panel first ruptured in the distal facesheet rather than the impacted 
facesheet.  Such a failure mode may be desirable from a practical standpoint since the outer surface 
of a composite sandwich vessel undergoing impact from external sources, would remain intact if 
damage were to just initiate.   
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B. Blast Response of Sandwich Panels 

In 2008, the PI developed a transient, wave propagation model to examine the damage resistance of 
composite sandwich panels subjected to blast and high velocity projectile impact [6-8].  Analytical 
solutions were derived for the transient response and damage initiation of a foam-core composite 
sandwich panel subjected to uniformly-distributed, pressure pulse loading.  The panel response was 
modeled in two consecutive phases: (1) a through-thickness wave propagation phase leading to 
permanent core crushing deformations (Fig. 4) and (2) a transverse shear wave propagation phase 
resulting in global panel deflections (Fig. 5).   
 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 4 Transmission of stress waves through facesheets and foam in sandwich panel.  

 

Global equilibrium equations of motion were formulated from the system Lagrangian and used to 
obtain transverse deflection and shear rotations.  Finite element analysis (FEA) using ABAQUS 
Explicit was also done.  The predicted transient deformation of the sandwich panel was within 7% of 
FEA results using ABAQUS Explicit (see Fig. 6).  Analytical predictions of the critical impulse for 
damage initiation also compared fairly well with ABAQUS predictions. 
 
Damage initiation of sandwich panels with 2mm-thick, E glass vinyl ester facesheets and two other 
cores, namely Divinycell H200 and Klegecell R300 foams, were considered in addition to the 
Divinycell H100 foam core.  As shown in Figure 7, the analytical predictions for the critical impulse to 
failure compared well to ABAQUS predictions, thereby rendering the analytical model a useful design 
tool for manufacturing blast resistant composite sandwich panels.   
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   (a)       (b) 
   
 Figure 5  Global panel bending/shear response:  (a) Deformation profiles and (b) Velocity fields. 
 

 

    

 

 

 

 

 

 

 

 

Figure 6  Transient deflection profiles of composite sandwich. 
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Figure 7  Variation of critical impulse to failure with core material properties. 

 
 
C. High-Velocity Impact 
 
Also in 2008, analytical solutions for the deformation response of a composite sandwich panel 
subjected to high velocity impact by a rigid blunt, cylindrical projectile were derived using Lagrangian  
mechanics [8-10].  Waves travelling through the sandwich core thickness and laterally across the 
panel were incorporated in a previously developed two degrees-of-freedom model for the sandwich 
panel.  Modelling the sandwich with two degrees of freedom allowed local indentation and core 
crushing to be coupled with global bending/shear deformations of the sandwich.  Unlike most high 
velocity impact solution, the solution was fully deterministic and involved the use of no empirical 
equations.   Lagrange's equations of motion were written for the projectile and effective mass of the 
facesheets and core as the shock waves travel through sandwich panel.  Simple facesheet and core 
failure criteria (see Fig. 8) were used to determine when to impose changes in the load-bearing 
resistance of the sandwich during penetration.    
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Figure 8  Penetration and perforation of composite sandwich panel:  (a) Incident facesheet fracture, 
(b) Localized core crushing and shear fracture, (c) Rupture of distal facesheet and (d) Expulsion of 
plug and projectile. 
 
As shown in Figs. 9 (a) and (b), the analytical solution for the local indentation and global deflection 
under the projectile was found to be within 20% of FEA results.  Analytical predictions of the 
projectile residual velocities were also found to be in good agreement with published experimental 
data [11].   Figure 10 compares predicted and experimental residual velocities of a steel projectile 
perforating composite sandwich panels consisting of woven roving E-glass polyester facesheets and 
PVC H130 foam core. 
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Figure 9  Analytical and FEA results:  (a) FEA model and (b) Transient deflections.  
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10 Comparison of the residual velocity between analytical model and test results from Wen et 
al. [11]. 
 

D. Implosion of Composite Cylindrical Shells 

In 2009, the PI examined the dynamic stability of a composite cylindrical shell subjected to external 
shock loading [12,13].  Analytical solutions for the dynamic pulse buckling, vibration and failure 
laminated composite cylindrical shells subjected to uniform overpressure and asymmetric pressure 
pulse (side-on explosion), as shown in Fig. 11, were developed.   
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Figure 11  
Composite 

cylinder under 
external pressure pulse loading: (a) Shell geometry,  
(b) Uniform overpressure and (c) Side-on explosion. 
 
 
The solution for the radial shell deformations was represented by Mathieu differential equations and 
the dynamic instability of the shells was determined from a Mathieu stability diagram, as depicted in 
Fig. 12.   
 
 
 

 

 

 

 

 

 

 

 

Figure 12  Stability diagrams for 
woven E- Glass/Vinyl Ester shell 

with side-on explosion and increasing impulse cvo / (shaded regions are stable). 

 
It was found that the stability of the shells depended on lay-up, aspect ratio as well as impulse 
distribution.  For a given layup, the critical buckling impulse generally decreases as the aspect ratio 
increases (thinner shells).  However, Fig. 13 shows that at a given aspect ratio, the buckling load, Icr, 
depends on shell layup.  
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Figure 13 Effect of shell aspect ratio and layup on the critical buckling impulse. 

   

The stable vibration response of woven E-Glass/Vinyl Ester shell with side-on explosion also 
compared well with finite element solutions using a dynamic, implicit analysis in ABAQUS Standard 
as shown in Fig. 14.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14 Transient deflections of the orthotropic, woven roving E-Glass/Vinyl Ester shell: 
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First-ply failure of the woven E-Glass/Vinyl Ester shell with side-on explosion was predicted using a 
modified Hashin-Rotem failure criterion.  Figure 15 show the variations of shell impulses for fracture 
and instability with the shell aspect ratio.  It was concluded that the thinner shells were more likely to 
fail by dynamic instability, whereas the thicker shells were more likely to fail by first-ply failure.   

 

 

Figure 15  Influence of aspect ratio on the type of failure for woven E-Glass/Vinyl Ester shell with 
side-on pressure pulse. 

 

IMPACT OF RESEARCH/TRANSITIONS 
 

The analytical solutions provide simple tools for estimating blast and impact response.  They are 
used for setting up experiments and benchmarking more refined FEA.  The ONR Publications listed 
at the end of this report will help the US Navy to design more effective composite structures for 
military ships, submarines and carriers. 
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Dynamic pulse buckling of woven E-Glass/Vinyl Ester and laminated E-Glass/Epoxy cylindrical shells sub-
jected to uniform overpressure and asymmetric pressure pulse (side-on explosion) were examined. The
solutions for the radial shell deformations were represented by Mathieu differential equations. The
dynamic instability of the shells was determined from a Mathieu stability diagram. It was found that
the stability of the shells depended on lay-up, aspect ratio as well as impulse distribution. The stable
vibration response of the shells with side-on explosion compared well with finite element solutions using
a Dynamic, Implicit analysis in ABAQUS Standard. First-ply failure of the woven E-Glass/Vinyl Ester shell
with side-on explosion was predicted using a modified Hashin–Rotem failure criterion. It was shown that
the thinner woven E-Glass/Vinyl Ester shells were more likely to fail by dynamic instability, whereas the
thicker woven E-Glass/Vinyl Ester shells were more likely to fail by first-ply failure.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Laminated composite cylindrical shells have widespread appli-
cations in aerospace and marine industries. In some of these appli-
cations, the strength and stability of the composite cylindrical shell
may be compromised by external pressure pulse loading, such as
one caused by a nearby explosion. There are basically two types
of failures that can occur when a laminated composite shell is sub-
jected to external blast: (1) dynamic buckling or instability and (2)
stable transient and vibratory response with possible ply-by-ply
failure. Most of the papers written on the blast response of
composite shells deal with shell vibration response and involve
numerical solutions [1–3]. There is very little, if any, in the open-
literature on the dynamic stability of composite shells exposed to
external blast. In addition to this, most of the solutions concerning
the dynamic stability of shells involve uniformly-distributed pres-
sure, which is either periodic or suddenly applied and kept con-
stant (step loading). Neither of these dynamic loads describes the
pressure pulse loading which results from a blast.

The dynamic stability of a composite shell under periodic load-
ing was investigated by Bolotin [4], who introduced this as a prob-
lem involving parametric resonance. Bolotin used Fourier series to
derive the vibration response of the shell in terms of Mathieu–Hill
equations. He converted simple Mathieu–Hill equations into a
standard form of generalized eigenvalue problems to study and
compute the dynamic buckling loads of cylindrical shell. Birman
and Simitses [5] used a similar approach to examine the stability
of long cylindrical sandwich shells subjected to uniform lateral
ll rights reserved.

: +1 330 972 6027.
t).
periodic pressure loading. With Sanders shell theory and a plane
strain assumption, they investigated the dynamic stability of these
vibrations through the solution of linearized equations for per-
turbed motion. Ganapathi and Balamurugan [6] studied the dy-
namic instability of composite circular cylindrical shells
subjected to combined periodic axial/radial loading. They studied
the effect of ply-angle, thickness, aspect ratio on the dynamic sta-
bility of the shell. They concluded that for a given shell the value of
circumferential wave number plays an important role in predicting
the dynamic instability region and the effect of pulsating pressure
loads on the dynamic instability zone is significant, even for small
load amplitudes. Schokker et al. [7] used the p-version finite ele-
ment analysis and axisymmetric solid elements to compute the
buckling and vibration modes of interior ring stiffened composite
shell subjected to hydrostatic pressure loading. They found that
the dynamic limit load of an imperfect composite cylindrical shell
can be significantly lower than the static limit load.

Under blast loading, the external pressure is impulsive and can
be non-uniformly distributed, depending on the stand-off distance
of explosion source. The specific type of dynamic instability that
occurs under impulsive loading is termed dynamic pulse buckling.
Bisagani [8] has examined dynamic buckling of a composite shell
under an impulsive axial compressive load, but analytical solutions
for the composite shell under external, radial impulsive loading
have not been given to date. Although the dynamic pulse buckling
due to external pressure pulse has not been addressed for compos-
ite shells, it has been dealt with substantially for isotropic, metallic
shells [9]. One of the earliest papers on the dynamic pulse buckling
of an isotropic, elastic shell subjected to nearly uniform radial im-
pulse was written by Goodier and McIvor [10]. This paper and
many others involving pulse buckling were compiled cohesively

http://dx.doi.org/10.1016/j.compstruct.2009.12.013
mailto:hoofatt@uakron.edu
http://www.sciencedirect.com/science/journal/02638223
http://www.elsevier.com/locate/compstruct


Nomenclature

a shell radius
an, bn Fourier coefficients of the normalized radial deflection
cn, dn Fourier coefficients of the normalized tangential deflec-

tion
Aij membrane stiffness matrix
Bij coupling stiffness matrix
c circumferential wave speed
dS differential shell surface area
Dij bending stiffness matrix
Eij Young’s modulus
Gij shear modulus
h shell thickness
Icr impulse for instability
l length of shell
L Lagrangian
n mode number in Fourier series
N number of plies
Nij membrane resistance
Mij bending moment resistance
p pressure pulse
po pressure pulse amplitude
qn generalized Lagrangian coordinate
�Qij transformed stiffness matrix
r radial coordinate
SL, ST longitudinal and transverse shear strength
t time
T kinetic energy
U strain energy
v tangential deflection
vo initial velocity amplitude
w radial deflection
x axial coordinate
XC, YC longitudinal and transverse compressive strength

XT, YT longitudinal and transverse tensile strength
z through-thickness coordinate
a bending-to-membrane stiffness ratio
an, bn Fourier coefficients of the initial radial velocity
an, bn Fourier coefficients of the initial radial velocity
cxh in-plane shear strain
DT pulse duration
eb bending strain
ex axial strain
exh in-plane shear strain
eh hoop strain
ehm mid-surface hoop strain
f = w/a normalized radial deflection
h circumferential coordinate
jx bending curvature in axial direction
jxh twisting curvature
jh bending curvature in hoop direction
j0 curvature in hoop direction at h = 0
jp curvature in hoop direction at h = p
l Mathieu stability parameter
mij Poisson’s ratio
P total potential energy
q shell density
rx axial stress
rh circumferential stress
s = ct/a normalized time
sxh shear stress
u deformed circumferential position
w = v/a normalized circumferential deflection
X Mathieu stability parameter
½�� ¼ @½�=@s normalized time derivative

½�0 ¼ @½�=@h derivative with respect to h
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to explain the phenomenon of dynamic pulse buckling of isotropic,
elastic–plastic structures in Ref. [9]. The present paper examines
dynamic pulse buckling of a laminated composite shell subjected
to impulsive pressure loads. In particular, the influence of shell
anisotropy and pressure pulse asymmetry, such as one caused by
a side-on explosion, are examined.

2. Problem formulation

Consider a long and thin, laminated composite cylinder of ra-
dius a and thickness h, subjected to impulsive pressure loading
as shown in Figs. 1a–c. The composite shell may be subjected to
uniformly-distributed impulsive pressure loads

pðtÞ ¼ po 1� t
DT

� �
ð1Þ

or an asymmetric impulsive pressure loads, such as one caused by a
side-on explosions.

pðh; tÞ ¼ po cos2 h 1� t
DT

� �
; jhj 6 p=2

0; jhj > p=2

(
ð2Þ

where po is the peak pressure, DT is the pulse duration and t is time.

3. Shell kinematics

The analysis is limited to shells that are thin, a/h > 10, and long,
l/a > 20, where l is the length of the shell. The later assumption
combined with the fact that the pressure load do not vary along
the shell longitudinal axis allows us to consider the cylinder as a
ring deforming under plane strain conditions. Following the plane
strain assumptions ex = 0, exh = 0, jx = 0, and jxh = 0. The hoop strain
eh in the shell is

eh ¼ zjh ð3Þ

where ehm is the mid-surface strain, jh is the change in curvature of
the shell and is z the radial coordinate in shell measured from the
mid-surface of the shell. The mid-surface hoop strain of the shell
is found by considering the differential arc length before and after
deformation shown in Fig. 2. Points on the mid-surface of the cylin-
drical shell have polar coordinates a, h. After the deformation, points
have polar coordinates r, u in the deformed configuration. The
cylindrical shell has radial displacement w(h, t) and angular dis-
placement v(h, t) where

w ¼ a� r ð4Þ

and

v
a
¼ /� h ð5Þ

The mid-surface strain is the change in length of the element di-
vided by its undeformed length adh:

ehm ¼
1

adh
dr
dh

dh

� �2

þ r
d/
dh

dh

� �2
" #1

2

� adh

8<
:

9=
; ð6Þ



Fig. 1. Composite cylinder under external pressure pulse loading: (a) shell geometry, (b) uniform overpressure, and (c) side-on explosion.

Fig. 2. Shell kinematics.
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Differentiating Eqs. (4) and (5) give

dw
dh
¼ � dr

dh
ð7Þ

d/
dh
¼ 1þ 1

a
dv
dh

ð8Þ

Substituting Eqs. (7) and (8) into Eqs. (6) gives

ehm ¼
1
a

@w
@h

� �2

þ ða�wÞ2 1þ 1
a
@v
@h

� �2
 !" #1

2

� 1 ð9Þ

The change in shell curvature is

jh ¼
1
a2

@2w

@h2 þw

 !
ð10Þ
4. Equations of motion

It is convenient to derive the equations of motion for the shell
using the Lagrangian method. In this method, the Lagrangian is
L = T–P, where T is the kinetic energy and P is the total potential
energy of the shell. The kinetic energy of the shell is given by

T ¼ 1
2
qh
Z 2p

0

@w
@t

� �2

þ @v
@t

� �2
" #

adh ð11Þ
The total potential energy of the shell is the sum of the strain energy
U and potential of the work done by external forces. For an impul-
sively loaded shell, the total potential energy of the shell consists
only of strain energy because energy is transferred from the pres-
sure pulse as an initial velocity or impulse. There are no loads acting
on the shell during deformation and P = U.

4.1. Strain energy of a laminated shell

The elastic strain energy of a laminated composite shell is given
by

U ¼ 1
2

Z
S
ðNxexm þ Nhehm þ Nxhexh þMxjx þMhjh

þMxhjxhÞdS ð12Þ

where dS = adhdx is the differential shell surface area and the mem-
brane resistance (Nx, Nh, Nxh) and bending moment resistance
(Mx, Mh, Mxh) are given in terms of mid-surface strains (exm, ehm, exhm)
and curvature (jx, jh, jxh) by the following:

Nx

Nh

Nxh

Mx

Mh

Mxh

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
¼

A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

2
666666664

3
777777775

exm

ehm

exhm

jx

jh

jxh

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð13Þ

where Aij ¼
PN

k¼1ðQijÞkðzk � zk�1Þ is the membrane stiffness,
Bij ¼ 1

2

PN
k¼1ðQijÞkðz2

k � z2
k�1Þ is the coupling stiffness,

Dij ¼ 1
3

PN
k¼1ðQijÞkðz3

k � z3
k�1Þ is the bending stiffness, Qij is the re-

duced stiffness matrix, and N is the total number of plies (the sub-
scripts ij refer to the composite material directions 1, 2, 6).
Following the plane strain assumption, the elastic strain energy of
the long, composite shell reduces to

U ¼ 1
2

Z 2p

0
ðA22e2

hm þ B12ehmjh þ B22ehmjh þ D22j2
h Þadh ð14Þ

A special class of laminated composite shells for which B12 = 0 and
B22 = 0, is examined in this paper. These include shells that are
orthotropic, mid-plane symmetric as well as those consisting of
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anti-symmetric angle-ply laminates. For these types of laminated
composite shells, the elastic strain energy becomes

U ¼ 1
2

Z 2p

o
ðA22e2

hm þ D22j2
hÞadh ð15Þ

However, the theory is not restricted to only these classes of
shells. Other laminated shells which do not fall into the above-
mentioned category may still have B12 = 0 and B22 = 0. An example
of this is a balanced quasi-isotropic shell with a shell lay-up of
[60�/0�/�60�].

4.2. Initial velocity

The initial velocity imparted to the shell from the impulsive
pressure is found from conservation of momentum

qh
dw
dt
ðh; 0Þ ¼

Z DT

0
pðh; tÞdt ð16Þ

Substituting the pressure pulse defined in Eqs. (1) and (2) into Eq.
(16) gives

dw
dt
ðh;0Þ ¼ vo ð17Þ

for the uniformly distributed load and

dw
dt
ðh;0Þ ¼ vo cos2 h ð18Þ

for the side-on pressure pulse, where vo ¼ poDT
2qh is the amplitude of

the distributed velocity field.

4.3. Normalized variables

Define a normalized radial deflection f ¼ w
a , tangential deflec-

tion w ¼ v
a and time s ¼ ct

a , where c ¼
ffiffiffiffiffi
A22
qh

q
is the wave speed in

the circumferential direction.
The kinetic and potential energy in terms of the above normal-

ized variables are

T ¼ 1
2

A22a
Z 2p

0
ð_f2 þ _w2Þdh ð19Þ

where ½�� ¼ @½�=@s and

U ¼ 1
2

A22a
Z 2p

0
½ðw0 � fÞ2 þ ðw0 � fÞðf02 � 2fw0Þ þ a2ðf00 þ fÞ2�dh

ð20Þ

where a2 = D22/(a2A22) and []
0
= o[]/oh.

The normalized initial velocity are

_fðh; 0Þ ¼ vo

c
ð21Þ

for the uniformly pressure loaded shell and

_fðh; 0Þ ¼ vo

c
cos2 h ð22Þ

for the shell with side-on pressure loading.

5. Fourier series solution

Assume Fourier series representation of normalized radial and
tangential displacement

f ¼ a0ðsÞ þ
X1
n¼1

½anðsÞ cos nhþ bnðsÞ sin nh� ð23Þ

and

w ¼
X1
n�1

½cnðsÞ cos nhþ dnðsÞ sin nh� ð24Þ
where n is the mode number. The term at n = 0 or a0(s) is the
breathing mode whereby the shell goes in and out of hoop compres-
sion. The term at n = 1 denotes rigid-body motion, while the terms
for n P 2 are bending modes.

Inextensional deformations of thin rings and shells originated
from Lord Rayleigh [11], when he showed that displacement due
to the extension of mid-surface are negligibly small in comparison
with displacements due to bending. Goodier and McIvor [10] later
demonstrated that the amplitude of the extensional modes were
indeed negligible compared to the amplitude of the bending modes
in studying the stability of an isotropic elastic shell subjected to
uniform radial impulse. Following the inextensionality condition,
w
0
= f � a0. This condition implies that cn = �bn/n and dn = an/n.
Substituting Eqs. (23) and (24) into Eqs. (19) and (20) and using

inextensionality condition give

T ¼ pA22a a2
0 þ

1
2

X1
n¼1

n2 þ 1
n2

� �
ð _a2

n þ _b2
nÞ

" #
ð25Þ

for the kinetic energy

U ¼ pA22a a2
0ð1þ a2Þ þ 1

2

X1
n¼1

½a2ðn2 � 1Þ2 � ðn2 � 2Þa0�ða2
n þ b2

nÞ
( )

ð26Þ

for the strain energy. Note that the integration in Eqs. (19) and (20)
are simplified because f and w are orthogonal over the integration
limits. Since deflections are small, terms of order higher than a2

n

and b2
n have been neglected. Lagrange’s equations of motion for

the shell is given by

d
ds

@T
@ _q

� �
þ @U
@qn
¼ 0 ð27Þ

where the generalized Lagrangian coordinate qn represents an and
bn.

Substituting Eqs. (25) and (26) into Eq. (27) gives the solution
for the breathing mode (n = 0)

€a0 þ a0ð1þ a2Þ � 1
4

X1
n¼1

ðn2 � 2Þða2
n þ b2

nÞ ¼ 0 ð28Þ

and for modes of n P 1

€an þ
n2

n2 þ 1
ðn2 � 1Þ2a2 � ðn2 � 2Þa0

h i
an ¼ 0 ð29Þ

and

€bn þ
n2

n2 þ 1
½ðn2 � 1Þ2a2 � ðn2 � 2Þa0�bn ¼ 0 ð30Þ

The breathing mode is in general coupled with the rigid-body mo-
tion and bending modes. The above equations of motion are solved
with initial conditions:

fðh;0Þ ¼ 0 and _fðh;0Þ ¼ a0 þ
X1
n¼1

½an cos nhþ bn sin nh� ð31Þ

where _a0ð0Þ ¼ a0; _anð0Þ ¼ an;
_bnð0Þ ¼ bn, a0(0) = 0, an(0) = 0, and

bn(0) = 0.
When deflections are small, a2

n and b2
n are negligible compared

to an and bn.
In addition, a2� 1 because it is on the order of (h/a)2. Eqs. (28)–

(30) then reduce to

€a0 þ a0 ¼ 0 ð32Þ
€an þ ðXn � ln sin sÞan ¼ 0; n P 1 ð33Þ
€bn þ ðXn � ln sin sÞbn ¼ 0; n P 1 ð34Þ

where Xn ¼ a2n2ðn2�1Þ2
ðn2þ1Þ and ln ¼

n2ðn2�2Þ
ðn2þ1Þ a0.



Table 1
Material properties of 0/90 woven roving E-glass/Vinyl Ester and uni-directional E-
Glass/Epoxy.

Material 0/90 Woven roving Uni-directional
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The differential equations described in Eqs. (33) and (34) are
Mathieu equations. The interested reader may find applications
of Mathieu equations in dynamic stability analysis and nonlinear
vibrations of several other mechanical systems discussed in Refs.
[4,12], respectively.

An nth mode solution may become unstable for certain values
of ln and Xn in Eqs. (33) and (34). Stability of these linear differen-
tial equations with periodic coefficients is analyzed using Floquet
theory [13]. A MATLAB program was written to determine the val-
ues of ln and Xn that would give stable and unstable modal solu-
tions, and the results are plotted in Fig. 3. Here values of ln and Xn

that give stable solutions of an and bn lie in the shaded regions,
while values of ln and Xn that give unstable solutions of them
lie in the un-shaded regions. The Mathieu stability diagram is used
to examine dynamic stability of the shell with uniform and side-on
pressure pulse loadings in the next section.

5.1. Uniform pressure

Under uniform pressure load, there can be no rigid-body motion
of the shell. Hence, the terms involving n = 1 do not exist and the
solution for the shell is given in terms of its Fourier series

f ¼ a0ðsÞ þ
X1
n¼2

½anðsÞ cos nhþ bnðsÞ sin nh� ð35Þ

The initial velocity condition becomes

_fðh; 0Þ ¼ a0 þ
X1
n¼2

½an cos nhþ bn sin nh� ð36Þ

For the uniform velocity, a0 ¼ vo
c . The coefficients an and bn will be

non-zero because of shell imperfections, which are not considered
at this time.

5.2. Side-on pressure

For the side-on distributed pressure pulse described by Eq. (2),
the shell deforms and moves with rigid-body motion (n = 1 term is
not neglected) and only the cosine terms of the Fourier series are
retained because of load symmetry, i.e., bn = 0:

f ¼ a0ðsÞ þ
X1
n¼1

anðsÞ cos nh ð37Þ

The centroid of the shell will have a non-zero velocity in a fixed
plane and motion will be referred to a plane travelling with it.
The initial velocity of the shell is then written as

_fðh; 0Þ ¼ a0 þ
1
2
a1 cos hþ

X1
n¼2

an cos nh ð38Þ
Fig. 3. Mathieu stability diagram (stable regions are shaded).
The Fourier coefficients for the initial velocity in Eq. (22) gives
a0 ¼ 1

4
vo
c and

an ¼
1

2p
2
n

sin
np
2

	 

þ 1
ðnþ 2Þ sin

pðnþ 2Þ
2

� ��

þ 1
ðn� 2Þ sin

pðn� 2Þ
2

� ��
m0

c
; n P 1 ð39Þ

With the exception of the n = 2 term, all even terms vanish in Eq.
(39). Once again the stability of the solution depends on the values
of ln and Xn. If these lie in the stable regions of the Mathieu stabil-
ity diagram, the shell undergoes deformation with each mode
shape. For a brittle, laminated composite shell, the shell may also
fail due to excessive deformation even if does not undergo dynamic
pulse buckling.

6. Dynamic stability

The stability of the composite shell when it is subjected to a
uniform overpressure and side-on explosion is examined in the
next sections. Four laminated shell geometries are chosen: (1) an
orthotropic shell made of woven roving E-Glass/Vinyl Ester and
three E-Glass/Epoxy shells with (2) a symmetric, layup ([60�/
�45�]s), (3) an anti-symmetric layup (75�/�15�/15�/�75�) and (4)
a quasi-isotropic layup (60�/0�/�60�). Each of the cylinders has a
total shell thickness h = 4 mm and a shell radius a = 80 mm (or
an aspect ratio of a/h = 20), unless specified otherwise. Material
properties for the woven roving E-Glass/Vinyl Ester [14] and unidi-
rectional E-Glass/Epoxy [15] are given in Table 1.

6.1. Uniform overpressure

First consider the stability of the woven roving E-Glass/Vinyl Es-
ter, orthotropic shell. With the geometric and material properties
specified above, a2 = D22/(E22a2) = 2.08e�4 for the orthotropic shell.
This value is used to generate coordinates of ln and Xn for three
different normalized velocity vo/c on the Mathieu stability diagram
shown in Figs. 4a and b. For any given value of vo/c, ln increases
roughly parabolically with Xn but the higher modes are less likely
to fall in the unstable (un-shaded) regions. However, the instability
also depends on Xn. The region in which modes will most likely be-
come unstable lie near X = 0.25. For this particular orthotropic
shell, Mode 6 would be the first unstable mode since
E-Glass/Vinyl Ester E-Glass/Epoxy

Density (kg/m3) 1391.3 2050
E11 (GPa) 17 48
E22 (GPa) 17 12
E33 (GPa) 7.48 12
m12 0.13 0.19
m23 0.28 0.26
m13 0.28 0.19
m31 0.12 0.05
G12 = G21 (GPa) 4.0 6
G23 = G32 (GPa) 1.73 5
G13 = G31 (GPa) 1.73 6
XT (MPa) 270 1020
XC (MPa) 200 490
YT (MPa) 270 8
YC (MPa) 200 78
ZT (MPa) 23.22 8
ZC (MPa) 343.5 78
SL (MPa) 40 23
ST (MPa) 31.6 66



Fig. 4. Stability diagrams for woven E-Glass/Vinyl Ester shell with uniform overpressure and increasing vo/c: (a) first seven modes and (b) region near X = 0.25.

Fig. 5. Response of Modes 5–7 for woven E-Glass/Vinyl Ester shell with uniform overpressure: (a) vo/c = 4.25e�6, (b) vo/c = 1.45e�4 and (c) vo/c = 5.67e�4.
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X6 = 0.2478. As one increases vo/c, points on the Mathieu stability
diagram shift upwards until the point at X6 = 0.2478 just becomes
unstable. This is clearly shown by the solid circle in Fig. 4b. Thus
Mode 6 just becomes unstable at a critical impulse velocity of vo/
c = 1.45e�4. The response of Mode 6 and its adjacent modes, Modes
5 and 7, are shown in Fig. 5b for vo/c = 1.45e�4. As one can see,
Modes 5 and 7 exhibit stable oscillations, but the amplitude of
oscillations of Mode 6 increases without bound. Mode 6 will al-
ways be unstable if the impulse velocity is greater than this critical
value, as observed when vo=c ¼ 5:67e�4. The response of Modes 5,
6 and 7 for the three values of vo=c are shown in Figs. 5a and c for
contrast. If the impulse velocity is less than this critical value, sta-
ble oscillations are observed and the shell undergoes elastic
vibrations.

6.1.1. Effect of layup
The stability diagrams for the symmetric, anti-symmetric and

quasi-isotropic E-Glass/Epoxy shells with h = 4 mm and a shell ra-
dius a = 80 mm are given in Fig. 6. Even though all these shells have
the same geometry and are made from the same uni-directional E-
Glass/Epoxy ply, the different layups result in different a2 and c
values as shown in Table 2. Mode 6 is still the critical mode for
instability but its proximity to X = 0.25 depends on a2. According
to Fig. 6, the anti-symmetric layup gives the highest critical vo/c.



Fig. 6. Stability diagrams for E-Glass/Epoxy shells with various layups and uniform
overpressure.

Table 2
Critical buckling impulse for composite shells with uniform overpressure.

c (m/s) a2 Icr (Pa s) Unstable
modes

Orthotropic E-Glass/Vinyl Ester 3525 2.08e�4 3.5 6
Symmetric E-Glass/Epoxy

([60�/�45�]s)
3723 2.39e�4 65.3 6

Anti-symmetric E-Glass/Epoxy
(75�/�15�/15�/�75�)

3763 2.95e�3 189.0 6

Quasi-isotropic E-Glass/Epoxy
(60�/0�/�60�)

4321 1.82e�4 69.6 6
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However the critical impulse for each shell Icr also depends on the
circumferential wave speed, c which changes with shell layup. The
critical impulse for the shell is calculated from the formula Icr =
Fig. 7. Stability diagrams for woven E-Glass/Vinyl Ester shell with various aspect r

Fig. 8. Critical buckling impulse v. Aspect ratio for E-Glass/Epoxy shells with
various layups and uniform overpressure.
poDT/2 = qhvo, and is listed in Table 2 for the three E-Glass/Epoxy
shells together with the woven E-Glass/Vinyl Ester shell. The
anti-symmetric E-Glass/Epoxy shell still has the highest buckling
resistance of all three layups.

6.1.2. Effect of aspect ratio
Points on the Mathieu stability diagram shift to the left as a2 de-

creases and to the right as a2 increases. Since the shell becomes thin-
ner as a2 decreases, thinner shells are more likely to become
unstable as the higher modes shift leftwards into the unstable region
of Mathieu stability diagram. Figs. 7a and b show how aspect ratio
affects the stability of the woven E-Glass/Vinyl Ester shell. The
unstable mode is listed for each aspect ratio in Figs. 7a and b. The
shells with a/h = 10, 20 and 40 become unstable at modes 6, 6, and
8, respectively. The thinner shells with a/h = 80, 100, and 200 have
become unstable at higher modes of 11, 13 and 18, respectively.

In general, the critical impulse increases with lower aspect ratios
(thicker shells). Thicker shells have greater bending resistance and
should buckle at higher loads. However, the complicated nature of
Matheiu stability diagram results in exceptions to this rule. For
the orthotropic E-Glass/Vinyl Ester shell, the critical impulse veloc-
ity is minimum when a/h = 20 because X6 is very close to X = 0.25.
The critical impulse velocity for the shell with a/h = 40 is higher than
for the shell with a/h = 20 even though it is thinner. The variation of
the critical impulse Icr with shell aspect ratio is shown in Fig. 8 for
the E-Glass/Epoxy shell with the three different layups. The anti-
symmetric layup has a very visible minimum Icr at a/h = 10. The
symmetric and quasi-isotropic layups also appear to have Icr that
are below the general trend at a/h = 40 and a/h = 80, respectively.

6.2. Side-on pressure

The Fourier coefficients for even modes greater than 2 are zero
with the side-on pressure described by Eq. (2), and this will affect
atio and uniform overpressure: (a) a/h = 10, 20, 40 and (b) a/h = 80, 100, 200.

Fig. 9. Stability diagrams for woven E-Glass/Vinyl Ester shell with side-on pressure
pulse and increasing vo/c.



Fig. 10. Response of Modes 3, 5, 7, and 9 for woven E-Glass/Vinyl Ester shell with side-on pressure pulse: (a) vo/c = 2.23e�2, (b) vo/c = 4.49e�2 and (c) vo/c = 5.35e�2.
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stability of the shell since some Xn values do not exist. For in-
stance, in the woven E-Glass/Vinyl Ester, orthotropic shell, the fifth
and seventh mode both just become unstable when vo/c = 4.49e�2

as shown in Fig. 9. Figs. 10a–c show the response for the Modes
3, 5, 7, and 9 with impulse velocities below and above this thresh-
old value. When vo/c = 2.23e�2, all modes are stable. At vo/c =
4.49e�2, Mode 7 is unstable and Mode 5 shows a beating phenom-
enon and is on the verge of unstable oscillations. At vo/c = 5.35e�2,
Modes 5 and 7 are unstable while Mode 9 begins to show the same
beating phenomenon as Mode 5 did at vo/c = 4.49e�2. As seen in
Fig. 9, that Mode 9 lies on the Mathieu stability boundary when
vo/c = 5.35e�2. The critical impulse for buckling instability for this
shell corresponds to vo/c = 4.49e�2 or Icr = 882 Pa s, which is much
higher than the critical impulse for the same shell under uniform
overpressure. Thus pressure pulse distribution can affect the buck-
ling resistance of the shell.
Fig. 11. Stability diagrams for E-Glass/Epoxy shells with various layups and side-on
pressure pulse.
6.2.1. Effect of layup
The stability diagram for the various layups of E-glass/Epoxy

shells are given in Fig. 11, which also indicates which modes are
unstable. Note that the unstable modes are not the same for each
shell. Table 3 summarized the critical impulse and unstable modes
for each shell. Here it is shown that the symmetric E-Glass/Epoxy
has the highest buckling strength for the case of side-on pressure.
This is in contrast to the anti-symmetric layup for the case of uni-
form overpressure.

6.2.2. Effect of aspect ratio
The variation of Icr with aspect ratio for all the various layups

for the E-Glass/Epoxy shell are shown in Fig. 12. As in the case of
uniform overpressure, the critical buckling impulse is a compli-
cated function of shell aspect ratio and layup. In general, the crit-
ical buckling impulse decreases as the aspect ratio increases
(thinner shells). However, anomalies to this rule because of the
complicated nature of the Mathieu stability diagram. For instance,
in the case of the anti-symmetric layup, the critical buckling im-
pulse of the shell with an aspect ratio of 80 is lower than that for
Table 3
Critical buckling impulse for composite shells with side-on pressure pulse.

c (m/s) a2 Icr

(Pa s)
Unstable
modes

Orthotropic E-Glass/Vinyl Ester 3525 2.08e�4 882 5,7
Symmetric E-Glass/Epoxy

([60�/�45�]s)
3723 2.39e�4 1247 5

Anti-symmetric E-Glass/Epoxy
(75�/�15�/15�/�75�)

3763 2.95e�4 902 5

Quasi-isotropic E-Glass/Epoxy
(60�/0�/�60�)

4321 1.82e�4 1090 7,9



Fig. 12. Critical buckling impulse v. Aspect ratio for E-Glass/Epoxy shells with
various layups and side-on pressure pulse.

Fig. 13. Transient response of woven E-Glass/Vinyl Ester shell with side-on
pressure pulse; po = 250 MPa, DT = 3.5 ls: (a) rigid-body motion, r(t) and (b) radial
deformation at h = 0�, 90� and 180�.

Fig. 14. Transient radial deformation profiles of the woven E-Glass/Vinyl Ester shell
with side-on pressure pulse; po = 250 MPa, DT = 3.5 ls.

Fig. 15. Finite element model of cylinder in plane strain.
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aspect ratio of 100, even though it is a thicker shell. Another point
of interest is that at a given aspect ratio, Icr depends on shell lay-
up but the dependency varies from one aspect ratio to another.
For instance, at an aspect ratio of 100, the anti-symmetric shell
has the highest buckling resistance, but at an aspect ratio of
200, it has the lowest.

7. Shell vibrations and failure

Stable shell vibrations result if the impulse is below the crit-
ical buckling value. The behavior of the woven E-Glass/Vinyl Es-
ter shell (radius a = 80 mm and thickness h = 4 mm) subjected to
the side-on pressure pulse is examined in this section. The radial
shell deflections are represented by the Fourier series expression
in Eq. (37). An impulse with po = 250 MPa and DT = 3.5 ls is cho-
sen so that ln and Xn occur in the stable region of the Mathieu
stability diagram (this shell buckles when po = 504 MPa and
DT = 3.5 ls). The rigid-body motion and radial deformation his-
tory at h = 0�, 90� and 180� are shown in Figs. 13a and b. The
peak radial deformation was found to occur at approximately
0.77 ms, which is a quarter period of the shell response. The
transient shell deformation profiles are shown for this case in
Fig. 14. These analytical solutions are compared to finite element
predictions using ABAQUS Standard, which are discussed in the
next section.

7.1. Finite element analysis

The numerical implementation involved Dynamic, Implicit
analysis with ABAQUS Standard. Dynamic, Explicit analysis,
although less computationally expensive, could not be used for this
type of problem because of numerical damping used to stabilize
the explicit algorithm in ABAQUS Explicit. The direct-integration
method provided for Dynamic, Implicit analysis in ABAQUS Stan-
dard is the Hilber–Hughes Taylor operator, which is an extension
of the trapezoidal rule. Automatic time increment with specified
half-step residual was used. A parametric study was done to deter-
mine the appropriate size of the half-step residual that would yield
accurate results. No numerical damping was specified in the
problem.

The FEA model of the cylinder in plane strain is the two-dimen-
sional ring shown in Fig. 15. Continuum plane strain elements with
full integration (CPE4) were chosen in order to account for three-
dimensional shell material properties as well as any variation in
ply orientation or layup. A total of elements 6000 were used; there
were four elements through the shell thickness (see Fig. 15). The
composite material properties were specified in a local cylindrical
coordinate (RTZ) according to the ABAQUS User Manual, Version
6.7 [16]. Specific details of the FEA, including special consider-
ations for entering material orientation, can be found in Pothula
[17].
The side-on pressure pulse with po = 250 MPa and DT = 3.5 ls
was applied to the orthotropic, woven E-Glass/Vinyl ester shell dis-
cussed in the previous section. Comparisons of the radial deforma-
tion at h = 0�, 90� and 180� from analytical and FEA results are
shown in Fig. 13. The difference between the analytical and FEA re-
sults is 7%. The analytical and FEA predictions of the radial shell
deformation for the pressure pulse at 250 MPa also compared very
well to each other, as shown in Fig. 14.



Fig. 16. Radial shell deformations for orthotropic E-Glass/Vinyl Ester shell under
various side-on pressure pulse at (a) h = 0�, (b) h = 90� and (c) h = 180�.

Fig. 17. Transient radial deformation profiles of E-Glass/Epoxy shells with side-on
pressure pulse; po = 250 MPa, DT = 3.5 ls: (a) symmetric, (b) anti-symmetric and (c)
quasi-isotropic.

M.S. Hoo Fatt, S.G. Pothula / Composite Structures 92 (2010) 1716–1727 1725
In an effort to justify the assumption of small an, the deforma-
tion response of the shell over a range of pressure pulse amplitudes
up to the point of dynamic instability was simulated with ABAQUS
Standard. Figs. 16a–c show a comparison of analytical and FEA pre-
dictions of the radial deformation history at h = 0�, 90� and 180�,
respectively, when the pressure pulse amplitude is 50 MPa,
250 MPa, and 500 MPa. The two compare very well in all cases
except when the pressure pulse amplitude approaches the buck-
ling pressure amplitude of 504 MPa. At 0�, the FEA solution at
500 MPa begins to show unstable response when the pressure
pulse amplitude is near the critical buckling pressure amplitude.
Nevertheless, the good agreement between the analytical and
FEA results validates the assumption that an is small.

Good agreement between the analytical and FEA solutions for
the E-Glass/Epoxy shells with different layups was also found.
Figs. 17a–c give a comparison of the transient deflection profiles
for the three different layups of E-Glass./Epoxy shells. Here the
shell geometry and load were kept the same as for the orthotropic
woven E-Glass/Vinyl Ester shell. Each of the four layers, which
made up the laminated composite shell, was given individual ply
properties in a local cylindrical coordinate system for the symmet-
ric and anti-symmetric layups. Only three layers were used in the
case of the quasi-isotropic layup. Overall the E-Glass/Epoxy shells
with different layups are stiffer than the orthotropic woven E-
Glass/Vinyl Ester shell. There was very little variation in the deflec-
tion for the different layups of the E-Glass/Epoxy, even though
there were noticeable differences in the critical buckling impulses
among these shells in Table 3. This is because the dynamic buck-
ling mode is 5 or higher for these shells, and the fifth modal contri-
bution to the shell radial deflection is very small compared to the
lower modes in the vibration analysis.

7.2. Shell fracture

A brittle composite shell may actually fail due to delamination
and local tensile or compressive failure of individual plies instead
of dynamic instability. To examine local ply failure, one can



Fig. 18. Transient curvature in woven E-Glass/Vinyl Ester shell (a = 80 mm,
h = 4 mm) with side-on pressure pulse; po = 200 MPa, DT = 3.5 ls.

Fig. 19. Influence of aspect ratio on the type of failure for woven E-Glass/Vinyl Ester
shell with side-on pressure pulse.
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calculate strains and use laminate shell theory and failure criteria
to determine first-ply failure. Shell fracture of the woven E-Glass/
Vinyl Ester shell is examined in this section.

The bending strains in the cylinder are given by

eb ¼ zjh ð40Þ

where from Eq. (10) the curvature is given by

jh ¼
1
a

ao �
X1
n¼2

anðn2 � 1Þ cos nh

" #
ð41Þ

The above curvature varies with time t and angular position h. They
have maximum magnitude at h = 0, p. Denote the curvature at h = 0

j0 ¼
1
a

ao �
X1
n¼2

anðn2 � 1Þ
" #

ð42Þ

and the curvature at h = p as

jp ¼
1
a

ao � 3a2 þ
X1
n¼3

anðn2 � 1Þ
" #

ð43Þ

A modified Hashin–Rotem [18] is used to examine lamina failure of
the woven roving E-Glass/Vinyl Ester. According to the modified
Hashin–Rotem failure criteria, the failure of the composite occurs
when

jrxj
XT
¼ 1 if rx > 0 or

jrxj
XC
¼ 1 if rx < 0 ð44Þ

jrhj
XT
¼ 1 if rh > 0 or

jrhj
XC
¼ 1 if rh < 0 ð45Þ

jsxhj
SL
¼ 1 ð46Þ

For an orthotropic shell, the relationship between the principal
stress and strains are given by

rx

rh

sxh

8><
>:

9>=
>; ¼

Q 11 Q 12 0
Q 12 Q 22 0

0 0 Q 66

2
64

3
75

ex

eh

cxh

8><
>:

9>=
>; ð47Þ

where Q11 ¼ E11=ð1� m12m21Þ, Q22 ¼ E22=ð1� m12m21Þ,
Q21 ¼ m12E22= ð1� m12m21Þ, and Q66 ¼ G12.

In the plane strain problem, the stresses in the shell are reduced
to

rx � �Q 12eh ð48Þ
rh ¼ Q 22eh ð49Þ

Since Q22 > Q12;rh > rx and failure of the shell will occur in tan-
gential direction. For the orthotropic shell the maximum tangential
stress would occur at the outer plies where the bending strains are
maximum, i.e., at z = ±h/2. Thus evaluating eh at z = ±h/2 from Eq.
(40) and substituting the results into Eq. (49) and then Eq. (45) give

Q 22hjh

2XT
¼ 1 if rh > 0 ð50Þ

and

Q 22hjh

2XC
¼ 1 if rh < 0 ð51Þ

The value of the curvature at which failure occurs is thus given by

jf ¼
2

hQ 22
minðXT ;XcÞ ð52Þ

The above expression describes the maximum allowable shell cur-
vature based on a Hashin–Rotem composite failure criterion. From
Table 1, one finds that XC < XT for woven roving E-Glass/Vinyl Ester.
Thus compressive failure is more likely to occur in the woven E-
Glass/Vinyl Ester shell. For the 4-mm thick shell, the curvature at
which failure occurs is jf = 5.8 m�1. The pressure pulse amplitude
that would cause compressive failure on the outer plies of the 4-
mm thick woven E-Glass/Vinyl Ester shell is found by setting either
Eqs. (42) or (43) equal to 5.8 m�1.

Figs. 18 shows the transient response of j0 and jp for the ortho-
tropic shell with radius a = 80 mm and thickness h = 4 mm, sub-
jected to side-on pressure pulse amplitude of 200 MPa. The jp
first reaches the curvature for failure value. Note that the
200 MPa pressure pulse amplitude that would just cause shell rup-
ture must be found iteratively or by trial-and-error because the
curvature is represented as a Fourier series. The pressure pulse
amplitude or impulse cannot be solved explicitly. Consideration
of failure for the different layups of E-Glass/Epoxy shells would
be more difficult since one must determine which ply would un-
dergo first-ply failure in addition to iterating for the critical curva-
ture at failure.

Since the 4-mm thick woven E-Glass/Vinyl Ester shell ruptures
below the critical buckling pressure pulse amplitude of 504 MPa,
the more likely mode of failure for this shell is compressive failure
of the outer ply rather than buckling. First-ply failure was carried
out for other shell thicknesses or aspect ratios, and the results
are shown in Fig. 19. It was found that the thicker E-Glass/Vinyl Es-
ter shells were more likely to fail by first-ply failure, while the
thinner E-Glass/Vinyl Ester shells were more likely to buckle.

8. Concluding remarks

The dynamic stability of laminated composite shells when they
are subjected to uniformly distributed overpressure and asymmet-
ric pressure pulse (side-on explosion) was examined. The shell re-
sponse was described by a set of Matheiu differential equations.
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The critical buckling impulse was found to depend on the shell lay-
up, aspect ratio and impulse distribution. In general, the critical
buckling impulse decreases as the aspect ratio increases (thinner
shells). However, certain composite shell layups do not follow this
pattern because of the complicated nature of the Mathieu stability
diagram.

The analytical solution for the stable shell vibrations was val-
idated using a Dynamic, Implicit finite element analysis in ABA-
QUS Standard. Radial shell deformations were found to be in
good agreement, within 7%, of those from FEA. It was also shown
that first-ply shell failure can occur at an impulse below the crit-
ical buckling impulse for certain aspect ratios of the woven E-
Glass/Vinyl Ester shell. A parametric study revealed that the
thicker woven E-Glass/Vinyl Ester shells were more likely to fail
by first-ply failure, whereas the thinner shells were more likely
to fail by dynamic instability. One should therefore be cautious
in assuming the mode of failure of a composite shell but instead
consider all possibilities.

The composite shells analyzed in this paper were assumed to be
ideal with no imperfections (shell eccentricity or out-of-round-
ness) and no damping. Both imperfection and damping would
modify the results. Future research is on the way to incorporate
the effects of shell imperfections and damping in the model.
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A solution methodology to predict the residual velocity of a hemispherical-nose cylindrical projectile
impacting a composite sandwich panel at high velocity is presented. The term high velocity impact is
used to describe impact scenarios where the projectile perforates the panel and exits with a residual
velocity. The solution is derived from a wave propagation model involving deformation and failure of
facesheets, through-thickness propagation of shock waves in the core, and through-thickness core shear
failure. Equations of motion for the projectile and effective masses of the facesheets and core as the shock
waves travel through sandwich panel are derived using Lagrangian mechanics. The analytical approach is
mechanistic involving no detail account of progressive damage due to delamination and debonding but
changes in the load-bearing resistance of the sandwich panel due to failure and complete loss of
resistance from the facesheets and core during projectile penetration. The predicted transient deflection
and velocity of the projectile and sandwich panel compared fairly well with results from finite element
analysis. Analytical predictions of the projectile residual velocities were also found to be in good
agreement with experimental data.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Lightweight composite sandwich panels, consisting of fiber-
reinforced polymer facesheets and polymeric foam core, are
becoming more widely used in military vehicles because they offer
greater load-bearing capabilities per unit weight and easier main-
tenance. In some instances, these composite sandwich panels may
be subjected to high velocity impact by bullets and flying debris
from a nearby explosion. The objective of this paper is to develop an
analytical model for quantifying the deformation and failure of
a polymer composite sandwich panel subjected to high velocity
projectile impact. The term high velocity impact is used to describe
impact scenarios whereby the projectile perforates the panel and
exits with residual velocity. Knowledge of the residual projectile
velocity is important for the protection of people and equipment
behind the panel, especially if the sandwich panel is used for armor
or as a sacrificial protective layer.

Projectile impact studies on polymer composite sandwich
panels have been mainly concentrated in the low velocity impact
regime because of its association with barely visible impact damage
: þ1 330 972 6027.
t).

All rights reserved.
[1–3] and finding the panel’s ballistic limit, a term used to describe
the projectile impact velocity that would just cause perforation.
This paper is concerned with projectile impacts that produce visible
damage, including facesheet indentation and fracture of facesheets
and core. Some recent survey articles on visible impact damage of
composite structures are given in Refs. [4,5]. At the ballistic limit,
the kinetic energy of the projectile is consumed completely in panel
deformation and damages associated with the projectile penetra-
tion process. The ballistic limit represents a panel’s ability to resist
projectile perforation because it provides a quantitative measure of
the maximum amount of kinetic energy the panel can absorb
before it is perforated by the projectile. There are very few papers
which deal with the issue of high velocity impact of composite
sandwich panels, i.e., situations when the projectile impact speed is
in excess of the ballistic limit. High velocity impact is dominated by
inertial forces, wave propagation and changes in material stiffness,
strength and fracture energy due to high strain rate.

Fig. 1(a–c) show three distinct types of impact regimes for
monolithic panels. In low velocity impact, the panel span (shown
with radius a) and boundary conditions affect the amount of energy
that is absorbed before perforation (see Fig. 1(a)). In high velocity
impact, the panel span and boundary conditions are irrelevant in
the impact analysis because perforation occurs during wave prop-
agation and before stress waves can reach the panel boundaries. As

mailto:hoofatt@uakron.edu
www.sciencedirect.com/science/journal/0734743X
http://www.elsevier.com/locate/ijimpeng


Nomenclature

a plate radius
C lateral wave propagation speed
Cd dilatational wave speed in core
Ce uniaxial stress elastic wave speed in core
Cf through-thickness wave speed in facesheet
Cp plastic wave speed in core
Ct through-thickness wave propagation speed
Dp plastic work dissipated in core crushing
D equivalent bending stiffness of laminate
Dij bending stiffness of facesheet
Ec core compressive Young’s modulus
Eij Young’s modulus
h facesheet thickness
he depth of elastic zone in core
hp depth of plastic zone in core
H core thickness
L Lagrangian
Lc core linear momentum
Lf facesheet linear momentum
Lp length of projectile
Lpl length of plastic zone
mc effective mass of core
mf effective mass of incident facesheet
mbf effective mass of back facesheet
mp mass of core plug
Mo projectile mass
Pc equivalent core resistance
Pcr critical core resistance at shear failure
Pbf back facesheet bending resistance
Pl local resistance of incident facesheet and core
q core plateau stress
Qij reduced stiffness matrix
r,q in-plane radial and circumferential coordinates
rp projectile radius
SL laminate longitudinal shear strength
ST laminate through-thickness shear strength
t time
T kinetic energy
Tc core kinetic energy
Tf facesheet kinetic energy

to wave travel time through incident facesheet
tI time of Phase I
Ul local strain energy of facesheet indentation
Ug global bending/shear strain energy of sandwich
U strain energy potential
Vo initial projectile velocity
V1 projectile velocity after impact
V2 back facesheet velocity under projectile
w facesheet deflection
x,y in-plane rectangular coordinates of sandwich

panel
X1 deflection of impacted facesheet
X2 deflection of back facesheet
XC laminate longitudinal compressive strength
Xf in-plane fiber failure stress
XT laminate longitudinal tensile strength
YC laminate through-thickness compressive strength
YT laminate through-thickness tensile strength
Zf laminate through-thickness strength
z through-thickness coordinate
d local indentation
D global sandwich deflection
3 strain
3D densification strain
3x strain in the x-direction
3y strain in the y-direction
gxy in-plane shear strain
l;m Lame’s elastic constant
nij Poisson’s ratio
P potential energy
rc density of core
rD density of core after densification
rf density of facesheet
s stress
sD plastic stress at densification strain
sij stress tensor
scr through-thickness shear strength of core
x extent of local indentation
x1 extent of deformation in incident facesheet
x2 radius of debonded back facesheet
X extent of global deflection
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indicated in Fig. 1(b), the panel deformation is localized to a region
(radius x) determined by the propagation speed of lateral waves
C. Some of the initial kinetic energy of the projectile is consumed in
panel deformation and fracture. The remaining initial kinetic
energy of the projectile results in residual velocities of the projec-
tile and debris after panel perforation. With increasing projectile
speed, the extent of panel deformation x decreases because of panel
perforation. Olsson [6] proposed an impactor-plate mass criterion
to distinguish low velocity impact from small-mass, wave
controlled impact. This criterion can be used to address the panel
deformation response but does not address perforation or failure of
the composite panel. If the impact velocity is very high, perforation
of the panel may occur without any panel deformation. This situ-
ation is termed ballistic impact and as shown in Fig. 1(c), is domi-
nated by the propagation of through-thickness waves. The
through-thickness wave speed Ct and plate thickness h are impor-
tant parameters in ballistic impact studies.

Although a similar distinction of impact regimes can be made
for sandwich panels with crushable cores, the penetration and
perforation of the sandwich panel is not as simple as for the
monolithic panel. Deformation and perforation of the incident
facesheet can occur without actual perforation of the entire sand-
wich. The core of the sandwich panel not only offers crushing
resistance below the incident facesheet but a nesting zone for the
projectile after it perforates the incident facesheet. In keeping with
the classification shown in Fig. 1(a–c), high velocity impact of
a sandwich panel would occur when the projectile has completely
perforated the panel and exits with non-zero residual velocity. In
order for this to happen, the projectile must perforate multiple
layers of facesheet and core materials.

One of the earliest and most comprehensive studies on high
velocity projectile impact and perforation of E-glass woven roving
facesheet and foam core sandwich panels is by Wen et al. [7]. The
study included static, low velocity and high velocity impact of
facesheets and sandwich configurations with blunt, hemispherical
and cylindro-conical nose projectiles of various diameters.
Different failure modes, dependent on the projectile nose-shape,
were highlighted in Ref. [7]. In all cases the impact energy
absorption was greater than that during static indentation because
of inertial forces and possible changes in material properties at high



Fig. 2. Projectile impact of composite sandwich panel.

Fig. 1. Classification of impact regimes: (a) Low velocity, (b) High velocity and (c) Ballistic impact.
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strain rate. Empirical formulae were used to determine the pene-
tration and perforation energies of the sandwich panel during
projectile impact.

Skvortsov et al. [8] developed a semi-analytical model to
determine the relative energy absorption of composite sandwich
panels subjected to high velocity impact. They assumed the total
energy absorbed by the panel consisted of kinetic energy, global
deformation energy and damage energy, and they derived an
expression for the sum of the kinetic and deformation energy in
terms of the damage energy. A closed-form expression for the
combined kinetic and global deformation energy of the panel was
obtained by considering bending and shear deformations of an axi-
symmetric, centrally loaded plate. The damage energy was then
estimated from experiments. The predicted panel kinetic and
deformation energy in terms of this damage energy was found to be
close to the experimental values and errors were attributed to the
strain rate effects, plastic behavior and hardening phenomena,
which were not considered in the analysis.

Velmurugan et al. [9] studied the projectile impact on composite
sandwich panels in the range of 30–100 m/s. The sandwich panels in
their study were not the typical sandwich panels in the conventional
sense. They had a core height comparable to the facesheet thickness.
The core thus acted as a bonding agent between the facesheets. An
energy balance was used to determine the ballistic limit, residual
velocity and energy absorption of three different sandwich panels.
In developing the analytical solution, they assumed the sandwich
panel acted as a single plate since the foam layer was thin and
comparable to facesheet thickness. Failure mechanisms were also
assumed uniform through the panel thickness.

None of the above-mentioned studies provides a fully deter-
ministic approach for predicting the deformation and damage of
the composite sandwich panel. The solutions provided by Wen
et al. [7] and Skvortsov et al. [8] are either empirical or semi-
empirical, and the solution provided by Velmurugan et al. [9]
addressed a laminated plate rather than a sandwich plate. In this
paper, we attempt to derive analytical solutions for projectile
impact and perforation of a sandwich panel with fiber-reinforced
laminated facesheets and foam core. A mechanistic approach is
taken to estimate the impact response and the residual velocity of
the projectile as it perforates the sandwich panel at high impact
speeds. First, a wave propagation model will be established to
calculate transient deformations and evaluate key parameters for
damage initiation and ultimate failure of facesheet and core
materials. Simple composite failure criteria will be applied for the
fracture and perforation of the facesheets and core. The loss of load-
bearing capacity of the individual facesheets and core is considered
and during each failure mechanisms is used to determine the
transient response of the projectile and panel during penetration.
High velocity impact and perforation of the composite sandwich
panel will also be simulated with ABAQUS Explicit. The numerical
predictions will be used to gage the accuracy of the analytical
model. Finally the analytical solutions will be compared to high
velocity projectile impact test data from Wen et al. [7].
2. Problem formulation

Consider the composite sandwich panel as shown in Fig. 2. The
facesheets are orthotropic plates of thickness h, and the core is
a crushable polymeric foam of thickness H. The hemispherical-nose
cylindrical projectile has a radius rp, a mass Moand a velocity Vo. The
projectile radius is assumed small compared to the core thickness,
rp<H, although the length of the projectile Lp may be on the order
of the core thickness. The projectile is assumed rigid compared to
the sandwich panel.

At the early stages of impact, compressive stress waves are
generated under the projectile. These stress waves must travel
through the incident facesheet, core and back facesheet before
global through-thickness shear and bending waves can be trans-
mitted laterally in the sandwich panel. Thus there are two phases
associated with the impact of the composite sandwich panel: Phase
I involves the propagation through-thickness waves and Phase II
involves the propagation of lateral wave.

During Phase I, the problem becomes one of local indentation
only, i.e., the incident facesheet deflects under the projectile and the
core crushes as if the back facesheet of the sandwich panel were
rigidly supported, as shown in Fig. 3(a). Local indentation under the
projectile is denoted d and the lateral extent of deformation is
denoted x. Once the through-thickness compressive stress waves
have reached the lower side of the sandwich panel, global panel
bending/shear deformation can initiate. These global bending/shear
deformations are shown independently of the local indentation in
Fig. 3(b). The global deflection under the projectile is denoted D and
the lateral extent of global deformation is denoted X. Simultaneous
local indentation and global deformation (see Fig. 3(c)) actually



Fig. 3. Local and global sandwich deformations: (a) Local indentation, (b) Global bending/shear deformation and (c) Simultaneous local and global deformation.

M.S. Hoo Fatt, D. Sirivolu / International Journal of Impact Engineering 37 (2010) 117–130120
occurs until the core can no longer crush because of material
densification or failure has occurred. A wave propagation model for
the impact response of an E-glass vinylester-Divinycell H100 foam
sandwich panel under projectile impact was presented by Hoo Fatt
and Sirivolu [10] based on Fig. 3(a–c). This impact model did not
include damage or failure of the facehseets and core, which are
likely to occur under high velocity impact. The present paper
addresses failure and is an extension of this earlier work.

If the initial projectile velocity is above the ballistic limit of the
panel, global bending/shear deformation will not take place
because localized failure of the incident facesheet and core shear
failure under the projectile during Phase I prevent the type of
deformation shown in Fig. 3(b) and (c). Fig. 4(a–d) show the
sequence of failure events that take place during projectile pene-
tration and perforation when the impact velocity exceeds the
ballistic limit. First, the incident facesheet ruptures under the
projectile as a consequence of high in-plane stresses (Fig. 4(a)).
Elastic and plastic compressive stress waves propagate within the
core directly under the projectile. The core then undergoes
through-thickness shear fracture and localized core compression
under the projectile, as shown in Fig. 4(b). The core under the
projectile becomes a plug. Debonding of the back facesheet begins
as a consequence of load transmitted by the projectile and plug.
Eventually the back facesheet ruptures when the in-plane stresses
in the back facesheet exceed critical values and the plug and
projectile are expelled from the sandwich panel (Fig. 4(c) and (d)).

Damages to the composite sandwich panel involve the interac-
tion of several complicated mechanisms that occur over multiple
length scales ranging from the microscale of individual fibers to the
macro-scale of the complete sandwich panel. The damages mani-
fest themselves in delaminations in the facesheets, debonding
between the facesheet and core, core shear fracture and fracture of
the facesheets. The above failure mechanisms may be the result of
accumulated damage and are characterized by progressive degra-
dation of material stiffness, which eventually lead to material
failure [11]. Physically based composite failure criteria, such as
Hashin’s composite failure criteria for unidirectional fiber-rein-
forced laminates [12], can be used indicate damage initiation of
a particular failure mode, but the actual failure of the material is
determined from damage evolution laws [13–15]. These damage
evolution laws are extremely complex and are usually developed
for specific composite configurations and under specific load
applications. In addition to this, crack propagation in the facesheets
is usually brittle or unstable leading to a sudden loss in panel
stiffness or impact load resistance. Fracture mechanics is often used
to calculate the critical contact loads associated with delamination
and debonding [16].

We propose to use simple failure criteria for mechanisms that
would cause significant changes in the load resistance of the
sandwich. These mechanisms are associated with failure of the
incident facesheet, core shear failure, and failure of the back face-
sheet. Previous work on static indentation and low velocity impact
of sandwich panels with hemispherical-nose projectiles has shown
that the load resistance curves up to facesheet failure remain
relatively unchanged by delamination and debonding, which are
known to occur during penetration of these panels [17,18]. This is in
contrast to composite laminates, where localized intra and inter-
laminar matrix cracking, fiber breaking, and delamination under
the projectile may have a more prominent effects on degrading the
laminate bending and membrane stiffness [19]. The transient
deformation and failure of the sandwich panel under high velocity
impact are examined in Phases I and II in the following sections.
Phase I is an initial phase, involving the propagation of through-
thickness stress waves. Phase I ends and Phase II begins when the
stress wavefront first reaches the back surface of the sandwich.
During Phase I, the impact load resistance may be reduced by the
failure of the incident facesheet and core shear fracture. Phase I is
thus broken into sub-phases Ia and Ib in order to describe the panel
behavior before and after failure, respectively. Likewise Phase II is
broken into sub-phases IIa and IIb to describe panel response
before and after back facesheet failure, respectively.
3. Phase I: Through-thickness wave propagation

Compressive stress waves must pass through the full thickness
of the sandwich, i.e., two facesheets and core, before any response
can be characterized as global sandwich deformation. The through-
thickness wave travel time depends on the wave speed in the
facesheet and core.



Fig. 4. Penetration and perforation of composite sandwich panel: (a) Incident face-
sheet fracture, (b) Localized core crushing and shear fracture, (c) Rupture of back
facesheet and (d) Expulsion of plug and projectile.

Fig. 5. Idealised compressive stress-strain curve of polymeric foam.

M.S. Hoo Fatt, D. Sirivolu / International Journal of Impact Engineering 37 (2010) 117–130 121
3.1. Through-thickness wave speed

The wave travel time through the entire thickness of the core is
given by

tI ¼
2h
Cf
þ H

Cd
(1)

where Cf is the wave speed in the through-thickness direction of
the facesheet and Cd is the dilatational wave speed in the core. The
through-thickness wave speed in an orthotropic plate is given by

Cf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E33ð1� n12n21Þ
rf ð1� n12n21 � n23n32 � n13n31 � 2n21n32n13Þ

s
(2)

where Eij, nij and rf are the elastic modulus, Poisson’s ratio and
density of the orthotropic facehseet, respectively [20]. The wave
speed in the foam is determined by the amount of core crushing.
A polymeric foam core is elastic-plastic with a compressive
stress-strain characteristic as shown in Fig. 5 [21]. The foam is linear
elastic with a compressive modulus ofEc until yielding at a flow
stress, q. Rapid compaction of cells causes the density to change
during the plateau region until full densification has occurred at eD.
The stress rises to a maximum plastic stress, sD; at the densification
strain. Both elastic and plastic waves could therefore be generated
in the foam.

The uniaxial elastic wave speed in the foam is given by
Ce ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Ec=rc

p
and the plastic wave speed is given by

Cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sD � q=ðrc3DÞ

p
[22], where rc is the foam density. The elastic

wave speed is generally faster than the plastic wave speed so that
the through-thickness wave travel time calculated in Eq. (1) is
controlled by the corresponding elastic dilatational speed. This is
given in terms of Lame’s constant, l andm, as follows:

Cd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2mÞ

rc

s
(3)

where l ¼ Ecnc=½ð1þ ncÞð1� 2ncÞ�, m ¼ Ec=½2ð1þ ncÞ� and nc is
Poisson’s ratio of the foam.

3.2. Phase Ia: local indentation

Local indentation is found by considering the projectile presses
onto the incident facesheet resting on a foam foundation. A single
degree-of-freedom model for the projectile and affected part of the
sandwich panel is considered as shown in Fig. 6(a). The projectile
and effective faceheet and core masses are represented by Mo, mf

and mc, respectively. During through-thickness wave propagation
the effective facesheet and core mass increase in time are functions
of the local indentation d and lateral extent of local indentation x1.
The local indentation resistance from incident facesheet bending/
membrane resistance as well as core plastic crushing resistance is
indicated by Plðd; x1Þ. The equation of motion governing the
dynamics of the projectile and effective facesheet mass can be
written considering the system Lagrangian. The Lagrangian Lfor
a system is defined as L ¼ T �P; where Tand P are the kinetic
energy and potential energy of the system, respectively.

3.2.1. Kinetic energy
The kinetic energy of the system is given by

T ¼ 1
2

MoV2
1 þ

1
2

mf V2
1 þ

1
2

mcV2
1 (4)

where V1is the velocity under the projectile at any time, mf is the



Fig. 6. Lumped parameter models: (a) Single dof for local indentation and (b) Two dof for coupled core crushing and back facesheet deformation.
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effective mass of the facesheet and mc is the effective mass of core.
The last two terms in Eq. (4) increase over time as waves propagate
laterally across the panel and through the thickness of the panel.
The effective mass of the facesheet is found by assuming that the
projectile induces the following linear velocity field in the
facesheet:

_w ¼ V1

�
1� r

x1

�
(5)

The spread of the deformation zone x1 in the above equation
varies with time, i.e., the velocity field has a moving boundary and
the effective facesheet mass grows as the velocity field spreads
away from the impact site. The total kinetic energy of the facesheet
is derived in Appendix A as

Tf ¼
prf h

12
x2

1V2
1 (6)

Thus the effective facesheet mass mf is given as

mf ¼
prf h

6
x2

1 (7)

The effective mass of core is more complicated to evaluate
because core particle velocities are governed by elastic and plastic
response. Elastic and plastic regions in the foam are shown in Fig. 7.
Under the projectile, the elastic wave front has advanced a distance
Cdt, while the plastic wave front has advanced a distance Lpl. As the
deformation spreads laterally, the distances from the incident
facesheet to the elastic and plastic wave fronts decrease in an
approximately linear fashion. The volume of plastic and elastic
foam is described by a truncated cone and a cone, respectively.

The particle velocity in the plastic zone is controlled by the
projectile impact speed and the velocity field of incident facesheet,
which is described in Eq. (5). Under the projectile the particle
velocity isV1and the plastic wave speed is given by Cp ¼ V1=3D[22]
The particle velocity in the elastic zone depends on the magnitude
of the elastic stress V ¼ s=rcCd. Thus the maximum particle
velocity in the elastic zone is Ve ¼ q=rcCd. It is assumed that the
elastic particle velocity decreases linearly through the thickness of
the foam. The variation of the particle velocities through the foam
thickness under the projectile and half-way across the local
deformation zone is shown in Fig. 7.

The kinetic energy in the elastic portion of foam may be
neglected when Ve is small compared to V1. The kinetic energy of
the foam is derived in Appendix B from the above-mentioned
particle velocity distribution in the plastic region as
Tc ¼
prcLpl

20ð1� 3DÞ
x2

1V2
1 (8)

The effective mass of the core is therefore

mc ¼
prcLpl

10ð1� 3DÞ
x2

1 (9)

3.2.2. Potential energy
The total potential energy of the system,

Q
; consists of the

elastic strain energy of the facesheet, Ul, and the plastic work
dissipated in crushing the core, Dp:Q
¼ Ul þ Dp (10)

Assuming in-plane deformations are negligibly small compared
to through-thickness deflections, w, the elastic strain energy due to
bending in an orthotropic facesheet is

Ul ¼
1
2

Z
S

"
D11

 
v2w
vx2

!2

þ2D12
v2w
vx2

v2w
vy2

þ D22

 
v2w
vy2

!2

þ4D66

 
v2w
vxvy

!2#
dS (11)

where Dij is the bending stiffness of the facesheet and S is the
surface area associated with indentation.

The through-thickness deflection of the facesheet is assumed to
take on the same shape as the deflection profile of an isotropic,
clamped circular plate under point load [23]:

wðrÞ ¼ d

�
2
�

r
x1

�2

log
�

r
x1

�
þ 1�

�
r

x1

�2�
(12)

where r2¼ x2þ y2. Sirivolu [24] has shown that the above deflec-
tion profile agrees very well with finite element predictions of the
transient facesheet deflection in a composite sandwich panel. To
evaluate the integral expression in Eq. (11) in polar coordinates, set
dS¼ rdrdq and derivatives with respect to x and y as
v=vx ¼ Cos qðv=vrÞ � ðSin q=rÞðv=vqÞ and v=vy ¼ Sin qðv=vrÞþ
ðCos q=rÞðv=vqÞ, respectively. The strain energy due to facesheet
bending is

Ul ¼ D
d2

x2
1

(13)

where D ¼ p½3ðD11 þ D22Þ þ 2ðD12 þ 2D66Þ�.



Fig. 7. Propagation of elastic and plastic waves in the core and the distribution of particle velocities during Phase I.
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The core absorbs both elastic strain energy and plastic work in
Phase I. The plastic work dissipated in the core plastic region shown
in Fig. 7 is

Dp ¼ 2p

Zx1

0

q3DLpl

�
1� r

x1

�
rdr

¼ pq3DLpl

3 x2
1

(14)

The length of the plastic zone is related to the indentation and
densification strain by Lpl ¼ d=3D: Therefore, the plastic work is

Dp ¼
pqdx2

1
3

(15)

The plastic work dissipated in core crushing, although dissipa-
tive, is considered part of the potential energy of the system
because the impact loading is monotonic in this phase. Thus the
potential energy of the system is

Q
¼ D

d2

x2
1

þ pqdx2
1

3
(16)

3.2.3. Equation of motion
Lagrange’s equation of motion for the projectile and effective

facesheet mass is

v

vt

�
vL

vV1

�
� vL

vd
¼ 0 (17)

where L ¼ T �P and V1 ¼ dd=dt. Substituting T and P into Eq.
(17) gives

�
Mo þmf þmc

�d2d

dt2
þ
�

dmf

dt
þ dmc

dt

�
dd

dt
þ 2Dd

x2
1

þ pqx2
1

3
¼ 0

(18)

Substituting Eqs. (7) and (9) into Eq. (18) gives

�
Moþ

prf hx2
1

6
þ

prcLplx
2
1

10ð1�3DÞ

!
d2d

dt2þ2x1
dx1

dt

�
prf h

6
þ

prcLpl

10ð1�3DÞ

�
dd

dt

þ2Dd

x2
1

þpqx2
1

3
þprCx2

1CpV1

10ð1�3DÞ
¼0

(19)

where Cp¼dLpl=dt. The densification strain can be written in terms
of the local indentation and the length of the plastic zone eD¼d=Lpl.
Thus using that Lpl¼d=eD and Cp¼V1=eD, one gets
�
Moþ

prf hx2
1

6
þ prcdx2

1
10ð1�3DÞ3D

!
d2d

dt2þ2x1
dx1

dt
��

prf h

6
þ prcd

10ð1�3DÞ3D

�
dd

dt
þ2Dd

x2
1

þpqx2
1

3
þ

prCx2
1V2

1
10ð1�3DÞ3D

¼0 (20)

The last term in Eq. (20) represents the hydrodynamic inertial
resistance of the core. Conservation of linear momentum relates the
projectileV1 with x1:

MoVo ¼ MoV1 þ
prf hx2

1

3
V1 þ

prCdx2
1

63Dð1� 3DÞ
V1 (21)

Thus,

x2
1 ¼

MoðVo � V1Þhprf h

3
þ prcd

6ð1� 3DÞ3D

�
V1

(22)

Equation (20) becomes a nonlinear second order differential
equation in d when Eq. (22) is differentiated with respect to time in
order to eliminate the term 2x1dx1=dt. The initial conditions for Eq. (20)
are applied after an instantaneous transfer of momentum at t ¼ h=Cf .
The projectile momentum is transferred to a deformation zone
x ¼ rp=2. Thus dðtoÞ ¼ 0 and dd

dtðtoÞ ¼ MoVo=ðMo þ
prf h

3 ð
rp

2Þ
2Þ; where

to ¼ h=Cf is the time it takes for a compressive stress wave to travel
through the facesheet.
3.3. Incident facesheet failure

Failure of the incident facesheet is said to take place when the
projectile has completely penetrated the facesheet. The failure
process starts with a very thin crack directly under the hemi-
spherical-nose projectile. For instance, in orthotropic woven
E-glass polyester facesheets thin cracks run parallel to the 0 and 90
degree fiber directions, thereby forming four petals that are bent
back as the projectile fully penetrates the incident facesheet [7].
The projectile contact force is resisted by both the bending resis-
tance of the cracked plate and the core crushing resistance.
Complete penetration of the facesheet occurs when these petals
suddenly bend back enough so that the facesheet can no longer
offer resistance to the contact force of the projectile.

Rather than considering crack initiation, propagation and the
sudden loss of support triggered by petal bending, we take a more
simplified approach to predict the incident facesheet failure. In
order for petaling to take place, failure of the incident facesheet
must take place over a central area equivalent to the projectile’s
cross-sectional area pr2

p . A simple failure criteria for the incident
facesheet is to apply composite failure criteria so that the facesheet
fails within this region, i.e., for r< rp.
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3.3.1. Modified Hashin-Rotem composite failure criteria
In the modified Hashin-Rotem composite failure theory for

textiles [25], the following damage mechanisms are considered:
Fiber tension

�
s11

XT

�2

¼ 1 and
�

s22

YT

�2

¼ 1 (23)

Fiber compression

�
s11

XC

�2

¼ 1 and
�

s22

YC

�2

¼ 1 (24)

Interfiber failure on plane 1

�
s31

ST

�2

þ
�

s12

SL

�2

¼ 1 (25)

Interfiber failure on plane 2

�
s23

ST

�2

þ
�

s12

SL

�2

¼ 1 (26)

Interfiber failure on plane 3

 
s33

Zf

!2

þ
�

s23

ST

�2

þ
�

s31

ST

�2

¼ 1 (27)

where XT and YT are the longitudinal and through-thickness tensile
strengths, XC and YC are the longitudinal and through-thickness
compressive strengths, SLis the longitudinal shear strength, ST is the
through-thickness shear strength, and Zf is the through-thickness
strength (for projectile impact Zf would be the through-thickness
strength in compression). The above criteria may be simplified if
one assume that the thin orthotropic facesheets are in a state of
plane stress: s33 ¼ s13 ¼ s23 ¼ 0: Only fiber tension, fiber
compression, and interfiber failure on either planes 1 and 2 are
active. Furthermore, for fabric composites with equal warp and fill
directions, s11 ¼ s22, XT¼ YT and XC¼ YC, and the same fiber
tension and compression criteria apply in both principal directions.

3.3.2. Applying the modified Hashin-Rotem composite
failure criteria

With fibers in 0 and 90 degrees parallel to the x- and y-axes, one
gets the following relationship between principal stresses and
strains:8<
:

s11
s22
s12

9=
; ¼

2
4Q11 Q12 0

Q12 Q11 0
0 0 Q66

3
5
8<
:

3x
3y

gxy

9=
; (28)

where Qij is the transformed stiffness matrix. The in-plane normal
and shear bending strains in rectangular coordinates are evaluated
in transformed polar coordinates as follows:

3x ¼ z
v2w
vx2 ¼ z

4d

x2
1

�
log
�

r
x1

�
þ cos2q

�
(29)

3y ¼ z
v2w
vy2 ¼ z

4d

x2
1

�
log
�

r
x1

�
þ sin2q

�
(30)

gxy ¼ 2z
v2w
vxvy

¼ 2z
4d

x2
1

cos qsin qlog
�

r
x1

�
(31)

Note that the above expressions for the in-plane strains are
undefined at r¼ 0 and only valid when 0 < r < x1 because the
deformation field described in Eq. (12) is for point loading. The
principal stresses calculated from Eq. (28) are also expressed in
polar coordinates as

s11 ¼ s22

¼ z
4d

x2
1

�
ðQ11 þ Q12Þlog

�
r

x1

�
þ
�

Q11cos2qþ Q12sin2q
��

(32)

s12 ¼ zQ66
8d

x2
1

cos qsin qlog
�

r
x1

�
(33)

The magnitude of principal bending stresses are greatest at the
top or bottom of the facesheet,z ¼ �h=2, thereby giving maximum
tensile or compressive stresses. Thus the modified Hashin-Rotem’s
failure parameter for in-plane fiber failure is given as

4d2h2

x4
1

1
X2

f

�
ðQ11þQ12Þlogð r

x1
ÞþðQ11cos2qþQ12sin2qÞ

�2

¼1 (34)

where Xf¼min(Xc,XT). The modified Hashin-Rotem’s failure
parameter for interfiber failure is also given by

4d2h2

x4
1

1
S2

L

�
2Q66sin qcos qlogð r

x1
Þ
�2

¼ 1 (35)

Equation (34) has a maximum value at q¼ 0�. Therefore,
a condition for in-plane fiber failure of the incident facesheet at
radial distance r is

4d2h2

x4
1X2

f

�
ðQ11 þ Q12Þlogð r

x1
Þ þ Q11

�2

¼ 1 (36)

Equation (35) has a maximum value at q¼ 45�. Therefore,
a condition for interfiber failure of the incident facesheet at radial
distance r is

4d2h2

x4
1

1
S2

L

�
Q66logð r

x1
Þ
�2

¼ 1 (37)

The above expressions are used to determine facesheet failure
by setting r¼ rp.
3.4. Core shear failure

Localized core shear failure can take place under high projectile
impact forces. The critical impact force is given by

Pcr ¼ 2prpðCet � dÞscr (38)
where scr is the through-thickness shear strength of the core. After
facesheet failure, the load transmitted to the core is

Pc ¼ pr2
p

 
qþ

rcV2
1

3D

!
(39)

Therefore, a criterion for core shear fracture is

V1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3D

rc

�
2ðCet � dÞscr � qrp

rp

�s
(40)
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3.5. Phase Ib: equation of motion after incident facesheet rupture
and core shear failure

After facesheet and core shear failure, the projectile penetrates
into the sandwich. The projectile’s contact force is resisted by the
core crushing resistance as well as friction between the interface of
the projectile and core and friction between the interface of core
and core where it has sheared. These frictional forces are very
difficult to measure because they are indistinguishable from the
through-thickness shear fracture strength of the core during
material testing. Frictional force resistance will be ignored in the
subsequent analysis. It is assumed that inertial forces and core
crushing resistance dominate the load resistance of the sandwich
panel during penetration.

The kinetic energy of the system once the incident facesheet has
failed and core has sheared is given by

T ¼ 1
2

MoV2
1 þ

1
2

mcV2
1 (41)

where mc is the mass of core in the plastic zone. The affected core is
a cylindrical region of radius rp below the projectile. Plastic stress
waves advance a distance Lpl so that the effective mass of the core is

mc ¼
pr2

prcLpl

ð1� 3DÞ
(42)

The potential energy of system is governed primarily by plastic
work dissipation in the core,

Q
¼ pr2

pqd (43)

Lagrange’s equation of motion for the projectile and effective
facesheet mass is

v

vt

�
vL

vV1

�
� vL

vd
¼ 0 (44)

where L ¼ T �P and V1 ¼ dd=dt. Substituting T and P into Eq.
(44) gives 

M0 þ
pr2

prcLpl

ð1� 3DÞ

!
d2d

dt2 þ
pr2

prcCp

ð1� 3DÞ
V1 þ pr2

pq ¼ 0 (45)

Using that Lpl ¼ d=3D and Cp ¼ V1=3D, one gets 
M0 þ

pr2
prcd

ð1� 3DÞ3D

!
d2d

dt2 þ
pr2

prc

ð1� 3DÞ3D
V2

1 þ pr2
pq ¼ 0 (46)

Equation (46) becomes a nonlinear second order differential
equation in d. The initial displacement and velocity follow from the
final conditions of Phase Ia.

4. Phase II: local core crushing and back facesheet
deformation

Phase II begins when the compressive elastic stress waves in the
foam are completely transmitted through the back facesheet. The
back facesheet debonds and deforms relative to the core under the
compressive shock wave. The two degree-of-freedom model shown
in Fig. 6(b) is used to describe the response in this stage: X1 denotes
the motion of the projectile mass Mo and the effective mass of the
core mc and X2 denotes the motion of the effective mass of the back
facesheet mbf under the projectile. As indicated in Fig. 6 (b), the
effective masses of the core and the back facesheet depend on
relative deformation X1� X2, the back facesheet deflection X2 and
lateral extent of debonding in the back facesheet x2. The core plastic
crushing resistance is indicated by Pc(X1� X2), while the back
facesheet bending resistance is given by Pbf ðX2; x2Þ. Eventually the
effective mass of the core densifies completely when the plastic
wave front in the core reaches the back faceheet. When this
happens, X1¼ X2 and the two degrees-of-freedom become a one
degree of freedom. Equations of motion are derived separately for
both these cases below.

4.1. Phase IIa: deformation before core plug formation

The velocity and deformation profiles for the back facesheet is
similar to that given for the incident facesheet in Eqs. (5) and (12),
respectively. The kinetic energy is given by

T ¼ 1
2

MoV2
1 þ

1
2

mcV2
1 þ

1
2

mbf V2
2 (47)

where V1 ¼ dX1=dt, V2 ¼ dX2=dt, mc ¼ pr2
prcLpl=ð1� 3DÞ,

mbf ¼ prf hx2
2=6 and x2 is the extent of the debonded zone. The

potential energy of system is due to core crushing and back face-
sheet bending

Q
¼ pr2

pqðX1 � X2Þ þ D
x

2
2

X2
2 (48)

Applying Lagrange’s equations of motion gives 
Mo þ

pr2
prcLpl

ð1� 3DÞ

!
d2X1

dt2 þ
pr2

prcCp

ð1� 3DÞ
V1 þ pr2

pq ¼ 0 (49)

prf hx2
2

6
d2X2

dt2
þ

prf h

6
V2

�
2x2

dx2

dt

�
þ 2D

x2
2

X2 � pr2
pq ¼ 0 (50)

Conservation of linear momentum gives 
Mo þ

pr2
prcdIo

ð1� 3DÞ3D

!
VIo ¼

 
Mo þ

pr2
prcðX1 � X2Þ
ð1� 3DÞ3D

!
V1

þ
prf h

3
x2

2V2 (51)

where dIo and VIo are the projectile’s displacement and velocity at
the end of Phase Ib. The radius of the debonded zone may be
evaluated from Eq. (51),

x2
2 ¼

3
prf hV2

" 
Mo þ

pr2
prcdI0

ð1� 3DÞ3D

!
VIo

�
 

Mo þ
pr2

prcðX1 � X2Þ
ð1� 3DÞ3D

!
V1

#
ð52Þ

Equation (52) is differentiated with respect to time and used to
eliminate 2x2dx2=dt in Eq. (50). Using that Lpl ¼ ðX1 � X2Þ=3D and
Cp ¼ V1=3D, one gets the following equations of motion: 

Mo þ
pr2

prcðX1 � X2Þ
ð1� 3DÞ3D

!
d2X1

dt2 þ
pr2

prc

ð1� 3DÞ3D
V2

1 þ pr2
pq ¼ 0 (53)

and

pr2
prc

2ð1� 3DÞ3D
V1V2 þ

2D

x2
2

X2 �
pr2

pq

2
¼ 0 (54)

The above equations of motion are no longer valid when plastic
shock waves in the foam reach the back facesheet because the foam
densifies into a rigid plug. A condition for when the plastic shock
waves in the core reach the back facesheet is



Table 1
Facesheet and foam material properties.

Woven Roving
E-Glass/Polyester

Divinycell
H130

Density (kg/m3) 1,650 130
Thickness (mm) 1.75, 3.25, 7 25
E11 (þ) (GPa) 24 –
E22 (þ) (GPa) 24 –
E33 (þ) (GPa) 10.56 –
E11 (�) (GPa) – 0.175
E22 (�) (GPa) – 0.175
E33 (�) (GPa) – 0.175
n12 ¼n21 0.15a 0.32e

n13 ¼n23 0.28b 0.32e

n31 ¼n32 0.12 0.32e

G12¼G21 (GPa) 4.0c 0.050
G23¼G32 (GPa) 1.8 0.050
G13¼G31 (GPa) 1.8 0.050
q (MPa) – 2.5
3D – 0.45
s1f (þ) (MPa) 345 –
s1f (�) (MPa) 255.2c –
s2f (þ) (MPa) 345 –
s2f (�) (MPa) 255.2c –
s3f (þ) (MPa) 36.08d –
s3f (�) (MPa) 669.17d –
s12f (þ)¼ s21f (þ) (MPa) 51.1 2
s13f (þ)¼ s31f (þ) (MPa) 45 2
s23f (þ)¼ s32f (þ) (MPa) 45 2

a Ref. [26].
b Ref. [27].
c Ref. [28].
d Ref. [29].
e Ref. [30].
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H � ðX1 � X2Þ ¼ Lpl ¼
X1 � X2

3D
(55)

The left-hand side of Eq. (55) is the current height of the core
during penetration, while the right-hand side is the current length
of the plastic zone.
4.2. Phase IIb: deformation after core plug densification

There is no relative motion between the projectile/plug and
back facesheet after the plastic shock wave reach the back face-
sheet. The kinetic energy of the system is given by

T ¼ 1
2

	
Mo þmp



V2

2 þ
1
2

mbf V2
2 (56)

where mp ¼ pr2
prcH; mbf ¼ prf hx2

2=6 and x2 is the extent of the
debonded zone.

The potential energy of system is only due to back facesheet
bending

Q
¼ D

x
2
2

X2
2 (57)

Following Lagrange’s equation of motion,

 
Mo þmp þ

prf hx2
2

6

!
d2X2

dt2 þ
prf h

6
V2

�
2x2

dx2

dt

�
þ 2D

x2
2

X2 ¼ 0

(58)

Conservation of linear momentum gives
	
Mo þmp



V1IIa þ

prf h
x2

IIaV2IIa ¼
�

Mo þmp þ
prf h

x2
2

�
V2
3 3

(59)

where V1IIa and V2IIa are the final velocities of the projectile and
back facesheet, respectively, and xIIa is the debond radius at the end
of Phase IIa. The debond radius is given by

x2
2 ¼

3
prf hV2

�	
Mo þmp



V1IIa þ

prf h

3
x2

IIaV2IIa �
	
Mo þmp



V2

�

(60)

Differentiating Eq. (60) with respect to time in order to elimi-
nate 2x2dx2=dt in Eq. (58) gives

1
2

	
Mo þmp


d2X2

dt2 þ
2D

x2
2

X2 ¼ 0 (61)

The initial displacement for X2 follows from the final value of in
Phase IIa, but the initial velocity,V2IIb, results from an instantaneous
transfer of momentum:

�
Mo þmp þ

prf h

3
x2

IIa

�
V2IIb ¼

	
Mo þmp
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prf h

3
x2

IIaV2IIa

(62)

Therefore,

V2IIb ¼

h	
Mo þmp



V1IIa þ

prf h
3 x2

IIaV2IIa

i
�

Mo þmp þ
prf h

3 x2
IIa

� (63)

4.3. Back facesheet failure

The modified Hashin-Rotem criteria for textile composites are
again used to determine back facesheet failure. Failure criteria for
in-plane fiber and interfiber failure follow from Section 3.3. The in-
plane fiber failure of the back facesheet is

4X2
2h2

x4
2X2

f

�
ðQ11 þ Q12Þlogðrp

x2
Þ þ Q11

�2

¼ 1 (64)

Similarly, interfiber failure of the back faceheet is given by

4X2
2h2

x4
2

1
S2

L

�
Q66log

�rp

x2

��2

¼ 1 (65)

5. Comparison with FEA

As an example, consider one of the high velocity projectile
impact tests of a fully clamped sandwich panel made of woven
roving E-glass polyester facesheets and PVC H130 foam core with
a hemispherical-nose projectile taken from Wen et al. [7]. The
sandwich panel had a radius of 150 mm, facesheet thickness of
1.75 mm, and core thickness of 25 mm. Material properties for the
woven roving E-glass polyester and the PVC H130 foam are given in
Table 1. Most of these properties were given in Ref. [7], but some
were also taken from references listed in the footnote of Table 1. The
sandwich panel undergoes high velocity impact by a steel cylin-
drical rod of radius 5.25 mm, mass 18 g, and velocity 165 m/s.

The projectile impact problem was modeled using ABAQUS
Explicit and continuum C3D8R elements for both the facesheets
and the foam. The FEA quarter model for the projectile and sand-
wich panel is shown in Fig. 8. The facesheets and core were
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modeled with 3 and 50 elements through the thickness, respec-
tively, in order to capture through-thickness wave propagation. The
PVC H130 foam was modeled as crushable foam with isotropic
hardening. Additional foam properties, such as the plastic hard-
ening curve were derived from the compressive stress-strain curve
for Divinycell H130 foam in Ref. [7]. A VUMAT user-material
subroutine was written to describe orthotropic facesheet material
properties and to implement the modified Hashin-Rotem’s
composite failure criteria for the woven roving E-glass polyester.
When the Hashin-Rotem’s composite failure criteria were met,
elements were eroded or deleted so that the projectile could pass
through the facesheets. This simplified criterion for element
erosion is less accurate and very conservative when compared to
the progressive damage criteria discussed earlier in Section 2.
However, it is consistent with the failure criteria used in developing
the analytical model and adequate for comparison purposes.

In the interest of computational efficiency, a few simplifications
were taken to model damage and perforation of the composite
sandwich panel in the FEA. These included the following:

1. The facesheets were homogenized with the stiffness and
strength characteristics of the woven roving E-glass polyester.
In real life, the facesheet is a laminate consisting of individual
plies that may delaminate upon impact.

2. Bonding between fachesheets and core was described by
a penalty contact interaction law whereby debonding would
occur when the inter-laminar shear stress was exceeded.
Sliding friction would also occur after debonding. A coefficient
of friction equal to 0.75 was assigned between facesheet and
core.

3. A fracture surface over which through-thickness shear fracture
of the core would occur was pre-defined. The condition for
through-thickness shear fracture was described by a penalty
contact interaction law whereby fracture would occur when
the shear strength of the core was exceeded. A coefficient of
friction equal to 0.75 was assigned between core and core.
Fig. 8. Finite element mesh of projectile impacting sandwich panel (quarter model).
The fully perforated sandwich panel in the FEA is shown in Fig. 9
using the above simplifications. Note that the projectile is still
embedded in the core after the back facesheet elements have been
eroded and there is no other penetration resistance except for core
friction. The projectile exits the panel fully with a residual velocity.
The analytical solutions for the facesheet deflection under the
projectile X1 and the back facesheet deflections under the projectile
X2 are compared to FEA results in Fig. 10(a). The corresponding
velocities of the incident and back facesheets are also given in
Fig. 10(b). The predicted results from the analytical model
compared relatively well with FEA only up to core plug densifica-
tion. The time when this occurs is indicated in Fig. 10(a) and (b).
This is because core densification at the densification strain for
H130 foam could not be predicted with the plasticity constitutive
equation for the foam in the FEA. The plastic hardening curve for
the foam in the FEA extended far beyond the densification strain
reported in Ref. [7], and there is still relative motion between X1

and X2 in the FEA because of this. In our analytical model, velocity
V2 would be equivalent to the projectile residual velocity because
the core densified and the projectile and core both move as a rigid
body. However, since the core does not densify in the FEA solution,
the V2 from FEA is not the same as the projectile velocity. The
residual velocity from the FEA is found from the projectile after it
exits the sandwich panel.

The analytical solution for the residual velocity of the
projectile was calculated to be 142.9 m/s, while that found from
the FEA was 161.1 m/s. The main reason for the discrepancy
between the analytical solution and the FEA is due to the element
erosion in the ABAQUS user-subroutine for the facesheet failure.
Too many elements were being eroded and removed in the FEA.
As may be seen in Fig. 9, all of the elements under and
surrounding the projectile were eroded in the incident facesheet
before it was fully penetrated and all of the elements at the edge
of the projectile were eroded in the back facesheets when it was
fully penetrated. When elements are eroded or deleted, they do
not contribute to the strain energy or the kinetic energy of the
plate. Removing elements under the projectile reduced the
amount of strain energy and kinetic energy that could be
absorbed in the facesheets. As a result, the FEA over-predicted
the projectile’s residual kinetic energy and velocity. A better
approach for modeling projectile penetration and perforation
would be to use an extremely fine mesh in the impact zone, the
Fig. 9. Perforated sandwich panel after eroding facesheet elements.
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Hashin-Rotem’s composite failure criteria for damage initiation,
and a progressive damage evolution to specify when to delete
elements. All of the above, however, would require computa-
tional storage and run time in excess of our current facilities. The
purpose of the FEA solution was not to accurately determine the
residual velocity of the projectile but to gage how accurate the
analytical solution would be in predicting the transient response
of the projectile and sandwich panel.
6. Comparison with test data

The residual velocity of the projectile that was reported in this
test from Wen et al. [7] was 134.1 m/s. The 1.75 mm-thick face-
sheets in the test specimen had 3 layers (plies) of woven E-glass
polyester. Thus the analytical prediction was only 6.6% higher than
the test results without accounting for friction, making any
adjustments for high strain rate in material properties, or including
accumulated damage and delamination in the facesheets. The
frictional force resistance may have been small compared to the
inertial forces and load resistances shown in Fig. 6(a) and (b) and
used to derive the equations of motion for the incident and back
facesheets. The analytical model was used to estimate the strain
rates in the facesheets and core. The in-plane strain rates of the
facesheets at the projectile radius were estimated to be around
7200 s�1 and 1100 s�1 for the incident and back facesheets,
respectively. The core through-thickness compressive strain rate
was about 6400 s�1. At these strain rates, the use of quasi-static
material properties may be inappropriate.

High strain rate material properties of the woven roving E-
glass polyester were not available, but Harding and Welsh [31]
performed high strain rate tensile tests on woven roving E-glass
epoxy, which would exhibit very similar behavior to woven
roving E-glass polyester. From their results on woven roving E-
glass epoxy, it was estimated that the woven E-glass polyester
would experience a two-fold increase in both stiffness and
strength. High strain rate material test on PVC H130 foams by
Mahfuz et al. [32] indicated that the core crushing resistance
would also be higher at 6400 s�1 than values published from
quasi-static tests. It is believed that high strain rate behavior of
the core, however, is related to the hydrodynamic inertial resis-
tance of the foam. Since this has already been taken into account
in the analytical model, adjustment of core properties due to high
strain rate was unnecessary. The analytical solution for perfora-
tion of the composite sandwich panel was re-derived using
a 200% increase in the facesheet stiffness and strength, regardless
of property direction. After re-analysis, it was found that the
projectile would leave with a residual velocity of 141.2 m/s. Since
this was only 1.2% less than the residual velocity found without
any adjustment for high strain rate, the contribution by the
facesheets must have been very small. Finally, delaminations and
other accumulated damage in the facesheets, although important
for energy absorption, appear to have little affect on the load
resistance functions assumed for local indentation and back
facesheet deflections in this test.

The high velocity wave propagation model was used to
calculate the residual velocities in several other high velocity
impact tests with the hemispherical-nose projectile from Ref. [7].
Two other woven roving E-glass polyester-H130 foam core
sandwich panels with facesheet thicknesses 3.25 mm and 7 mm
and core thickness 25 mm were also considered. The 1.75 mm,
3.25 mm, and 7 mm facesheets each had 3, 6 and 12 layers of 0/
90 degrees woven E-glass polyester, respectively. A factor of two
increase in the stiffness and strength of the facesheet was
assumed in all cases. The analytical solution and the test results
from Wen et al. [7] are compared to each other in Fig. 11. The
ballistic limit (defined by zero residual velocity) is not considered
a case of high velocity impact but rather low velocity impact,
whereby all the kinetic energy of the projectile is consumed in
panel deformation and damage. Above the ballistic limit, the
analytical predictions of the residual velocities were in relatively
good agreement with the test results. The model tends to under-
predict the test results at very high impact velocities because
both incident and back facesheet deformations become more
localized. With very high impact velocity, the situation
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approaches the ballistic impact scenario shown in Fig. 1(c),
whereby there is hardly any facesheet deformation, and core
crushing, delamination, debonding and fracture become domi-
nant mechanisms for failure. Hence, the analytical model for high
velocity impact of the composite sandwich panel may be
improved by accounting for accumulated damage in the face-
sheets by introducing a progressive reduction in the facesheet
stiffness or load resistance.
7. Concluding remarks

A wave propagation model was developed to obtain residual
velocities of a sandwich panel made with E-glass polyester face-
sheets and Divinycell H130 foam core and subjected to high
velocity impact by a hemispherical-nose, cylindrical projectile.
Unlike most high velocity impact solution, the solution is fully
determinsitic and involves the use of no empirical equations.
Lagrange’s equations of motion were written for the projectile and
effective mass of the facesheets and core as the shock waves travel
through sandwich panel. Simple facesheet and core failure criteria
were used to determine when to impose changes in the load-
bearing resistance of the sandwich during penetration. The tran-
sient deflection and velocity of the projectile and sandwich panel
compared fairly well with results from finite element analysis.
Analytical predictions of the projectile residual velocities were also
found to be in good agreement with published experimental data.
The analytical model for high velocity impact of the composite
sandwich panel may be improved by accounting for accumulated
damage in the facesheets and introducing a progressive reduction
in the facesheet stiffness or load resistance. These localized damage
mechanisms are particular important at very high projectile
velocities where the load resistance functions are primarily
controlled by them.
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Appendix A. Momentum and kinetic energy of incident
facesheet during Phase I

The momentum and kinetic energy of the facesheet are found by
assuming that the projectile induces the following linear velocity
field in the facesheet:

_w ¼ V1

�
1� r

x1

�
(A1)

whereV1 is the velocity under the projectile and x1 is the extent
of the deformation zone. Since the deformation zone increases
with time, the velocity field has a moving boundary and the
effective facesheet mass grows as the velocity field spreads away
from the impact site. The accumulated linear momentum of the
facesheet is

Lf ¼ 2p
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The kinetic energy of the facesheet is
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Appendix B. Momentum and kinetic energy of core during
Phase I

Both elastic and plastic compressive stress waves propagate in
the core with speeds Cd and Cp. Given that Cd> Cp, the plastic zone
in the foam is confined to a boundary layer just beneath the inci-
dent facesheet. The particle velocity in the foam under the
projectile is specified by the projectile velocityV1, while the particle
velocity in the foam away from the projectile is specified by the
assumed velocity field of the incident facesheet given by Eq. (5).
The plastic zone extends to a depth hp ¼ Lplð1� r

x1
Þ as shown in

Fig. 7. The depth of the plastic core under the projectile is
Lpl ¼ d=3D. Ahead of the plastic zone is the elastic zone with depth
he ¼ ðCdt � LplÞð1� r

x1
Þ: The distribution of the particle velocities

under the projectile at r¼ 0 and at r ¼ x1=2 are indicated in Fig. 7.
The momentum of the plastically deformed portion of the core

is

Lc ¼ 2prD
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dz
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where densification of the core has caused the density to become
rD ¼ rc=ð1� 3DÞ. The momentum in the plastic part of the core is

Lc ¼
prcLpl

6ð1� 3DÞ
x2

1V1 (B2)

The kinetic energy of the plastically deformed portion of the
core is

Tc ¼ prD
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Analytical Modeling of Composite
Sandwich Panels under Blast Loads
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ABSTRACT: Analytical solutions were derived for the transient response and
damage initiation of a foam-core composite sandwich panel subjected to blast
loading. The panel response was modeled in two consecutive phases: (1) a through-
thickness wave propagation phase leading to permanent core crushing deformations
and (2) a transverse shear wave propagation phase resulting in global panel
deflections. The predicted transient deformation of a sandwich panel consisting of
E-glass vinyl ester facesheets and H100 PVC foam core compared well with ABAQUS
predictions. Analytical predictions of the critical impulse for damage initiation in
several foam sandwich panels also compared well with ABAQUS predictions.

KEYWORDS: composite sandwich panel, blast response, critical impulse to failure,
analytical model.

INTRODUCTION

T
HERE HAS BEEN growing interest in using lightweight composite
sandwich panels for the construction of military land and sea vessels,

which can be exposed to blast and impact during combat. Composite
sandwich panels used in these applications offer significant weight savings
leading to increased payload and greater range of travel, reduced electromag-
netic and acoustic signatures, better corrosion resistance, and lower mainte-
nance cost when compared to traditional metallic panels. Already a great deal
of work has been accomplished in the study of projectile impact of composite
sandwich panels. A recent review of dynamic loading of composite panels can
be found in Hampson and Moayamedi [1]. Tagarielli et al. [2] have recently
demonstrated that glass fiber vinyl sandwich beams with PVC foam cores and
balsa wood have higher ballistic resistance than monolithic glass fiber vinyl
beams of equal weight.While there has been much research concerning localized
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projectile impact damage of composite sandwich panels, very little work has
been done to address damage of composite sandwich panels under distributed
pressure pulse loading, such as that caused by an underwater or air blast.

Several recent articles have dealt with the blast resistance of metal
sandwich panels with metallic foam, honeycomb, truss, and other types of
metal sandwich core topologies [3–6], but none of these can be directly
applied to a composite sandwich panel made of anisotropic elastic facesheets
and polymeric foam or balsa wood cores. The facesheets of the composite
sandwich panels usually consist of fiber-reinforced laminates that are
anisotropic, inhomogeneous, and elastic, while the metallic sandwich panel
consists of isotropic, homogeneous, and elastic–plastic materials. This
article presents an analytical model that can be used to determine the blast
performance of a composite sandwich panel. It specifically provides an
analytical model for predicting the transient response and failure of a
composite sandwich panel subjected to pressure pulse or impulsive loading,
i.e., load durations that are of the order of the through-thickness wave travel
time and are short compared to the time associated with overall bending/
shear panel deformation. Finite element analysis with ABAQUS Explicit is
used as a tool for comparing with the results of the analytical model.

PROBLEM FORMULATION

Consider a fully clamped, composite sandwich panel of radius a, as shown
in Figure 1. The facesheets consist of orthotropic composite plates of thick-
ness h, and the core is crushable polymeric foam of thickness H. Assume for
simplicity that the panel is subjected to a uniformly distributed pressure pulse

pðtÞ ¼
po 1� t

�

� �
, 0 � t � �

0, t � �

�
ð1Þ

a

X

r
Z

y

p(t)

h

H

h

Figure 1. Composite sandwich panel subjected to uniformly distributed pressure pulse.

358 M. S. HOO FATT AND L. PALLA



where po is the peak pressure and � is the load duration. Other more
complicated pressure transients can be used to more accurately simulate
underwater and air explosions [7,8], but as seen later in this study, that it is
not the actual function used to describe the pressure transient; rather, it is
used to measure the impulse (integrated area under the pressure pulse
diagram) that governs the blast response and ultimate failure of the panel.

Provided no failure has occurred to the panel from the blast, the response
of the composite sandwich panel may be described by the three phases of
motion depicted in Figure 2(a)–(c). In Phase I, a through-thickness,
compressive stress wave propagates from the incident facesheet to the rear
facesheet. In this phase the sandwich panel primarily experiences core
crushing, while impulsive transverse shear reaction forces are induced around
the clamped boundaries. Figure 2(a) shows that there is no global deflection in
Phase I. At the end of Phase I, momentum and kinetic energy are transferred
globally to the panel and the now-established impulsive transverse shear
reaction force just begins to propagate from the clamped boundaries toward
the center of the panel. The pressure pulse resulting from the blast would
have either ended or decayed to almost negligible amplitude by the start of

(a)

(b) 

(c)

Figure 2. Three phases of blast response: (a) Phase I: through-thickness wave propagation,
(b) Phase II: transverse wave propagation, and (c) Phase III: elastic vibration.
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Phase II. Momentum, equivalent to the impulse from the blast, would be
transferred to the sandwich panel with a reduced core thickness from Phase I.
In Phase II, the transverse shear stress wave due to the reaction forces at the
clamped boundary propagates from the clamped boundary toward the center
of the panel. This transverse stress wave is an unloading wave, causing
bending and shear deformations to develop behind its front, as shown in
Figure 2(b). The elastic unloading transverse shear wave brings the panel to
maximum deflection when it reaches the center of the panel. At the end of
Phase II, the unloading transverse shear wave reverses sign and direction of
travel thereby causing the panel to rebound. The transverse shear wave
reflects back and forth from the boundary to the center of the panel in
Phase III. As depicted in Figure 2(c), elastic vibrations take place in Phase III.

During Phase I, high-intensity transverse shear stresses are developed at
the clamped boundary and these may cause transverse shear fracture at the
clamped boundaries of the panel. Transverse shear fracture can be avoided
by using reinforcements at the boundaries. The second mode of failure that
can occur during blasts is tensile fracture at the center of the panel where
there is maximum bending strain at the end of Phase II. These two failure
modes in addition to permanent deformation were first observed on
impulsively loaded aluminum beams by Menkes and Opat [9] and later, on
aluminum plates by Teeling-Smith and Nurick [10]. They have also been
experimentally observed on composite plates by Franz et al. [11].

This article focuses on the first two phases of blast response described in
Figure 2(a) and (b) because they are relevant to the failure of the composite
sandwich panel subjected to blast loading. The analytical solutions presented
for the panel response is to be distinguished from previous models in which
Phase II was treated as the forced modal response of sandwich panels [12].
Wave propagation effects are taken into consideration in both phases. The
wave propagation models presented here should be distinguished from
solutions in the field of ultrasonics which involves the transmission,
dispersion, and reflection of very small, amplitude stress-wave propagation
in order to evaluate the microstructure of a composite panel. Here we
are concerned with the propagation of stress waves in a panel subject to
high-intensity loading and the subsequent deformation and damage initiation
that results from the loading. Phase II is treated as an initial-value problem
because the load duration is short compared to the transverse wave
propagation time and the natural period of vibration in Phase III.

PHASE I – THROUGH-THICKNESS WAVE PROPAGATION

The wave speed in polymeric foam is low and a thick composite sandwich
panel with a polymeric foam core is likely to undergo transient local facesheet
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indentation and core crushing while the pressure pulse is still acting. Take for
example, H100 PVC foam core with a density of 100 kg/m3 and a compressive
elastic modulus of 35MPa. Elastic uniaxial stress waves propagate through a
25mm-thick core made of H100 PVC foam in �0.04ms. An initial pressure
pulse duration of this magnitude is not uncommon for naval composite
sandwich ships subjected to underwater and air blast explosions [7,8]. Thus
one can assume that permanent plastic deformations of the core take place
from a transient event, that is, during the load application. Phase I response is
described by stress waves propagating through the thickness of the facesheets
and core.

Transmission and Reflection at Interfaces

The transmission and reflection of stress waves through the multi-layered
composite sandwich panel is shown in Figure 3. Stress waves are transmitted
from the incident facesheet to the foam at Interface 1 and from the foam to
the distal facesheet at Interface 2. When the incident stress �I first reaches
Interface 1, the transmitted stress �T1

and the reflected stress �R1
are given as

follows [13]:

�T1
¼ �kT1

pðt� t1Þu t� t1h i, kT1
¼

2�cCc

ð�fCf þ �cCcÞ
ð2Þ

and

�R1
¼ �kR1

pðt� t1Þu t� t1h i, kR1
¼
ð�cCc � �fCfÞ

ð�f Cf þ �cCcÞ
ð3Þ

where t1¼ h/Cf is the wave transit time through the facesheet; Cf and Cc are
thewave speeds in the facesheet and core, respectively; �f and �c are the density of
the facesheet and core, respectively; and uhi is the unit step function.

Foam

Interface 1 Interface 2

Incident
facesheet

Distal
facesheet

σT

σR1

σR

σR

σR σT

σT

σR

σI

σT

σT

1 2

2

2 2
2

1

1

Figure 3. Transmission of stress waves through facesheets and foam in sandwich panel.
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The wave speed in an orthotropic plate in uniaxial strain is derived in
Appendix A as

Cf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �12ÞE33

1� �12 � �32ð�13 þ �23Þ½ ��f

s
ð4Þ

where Eij and �ij are elastic modulus and Poisson’s ratio of the orthotropic
facesheet. This wave speed is usually higher than the more commonly used
uniaxial stress wave speed, which is equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E33=�f

p
. The wave speed in the

foam is discussed in the following section.
The reflected wave in the incident facesheet is tensile because

�fCf � �cCc. This reflected wave is again reflected, but as a compressive
stress wave when it reaches the outer surface of the incident facesheet. The
process of reflection and transmission of waves at Interface 1 repeats itself
over and over again at intervals of 2t1. Thus the transmitted stress in the
foam at Interface 1 is given as

�T1
¼ �kT1

pðt� t1Þu t� t1h i þ kT1
kR1

pðt� 3t1Þu t� 3t1h i

� kT1
k2R1pðt� 5t1Þu t� 5t1h i:::

þ ð�1Þnþ1kT1
knR1p t� ð2nþ 1Þt1ð Þu t� ð2nþ 1Þt1

� �
ð5Þ

where n is the number of reflections up to that time.
The transmitted stress wave in the foam �T1

reflects back as a compressive
wave into the foam and is transmitted as a compressive stress wave in the
distal facesheet when it first reaches Interface 2. The transmitted stress in the
distal facesheet �T2

is further reflected as a tensile stress wave from the outer
surface of the distal facesheet. This reflected stress waves is then transmitted
as a tensile stress wave in the foam and reflected back as a compressive stress
wave into the facesheet. The part that is transmitted to the foam adds to the
reflected stress waves in the foam �R2

. This process repeats itself indefinitely
so that the reflected stress wave at any time is given by

�R2
¼ �kR2

�T1
ðt� t2Þu t� t2h i þ kT2

kT1
�T1
ðt� 2t1 � t2Þu t� 2t1 � t2h iþ

� kT2
kT1

kR1
�T1
ðt� 4t1 � t2Þu t� 4t1 � t2h i

þ kT2
kT1

k2R1
�T1
ðt� 6t1 � t2Þu t� 6t1 � t2h i � � �

þ ð�1Þnþ1kT2
kT1

knR1
�T1
ðt� 2nt1 � t2Þu t� 2nt1 � t2h i ð6Þ

where t2 ¼H/Cc, kT2
¼ 2�fCf=ð�fCf þ �cCcÞ and kR2

¼ ð�fCf � �cCcÞ=
ð�fCf þ �cCcÞ. The reflected stress is a tensile unloading elastic stress
wave. Permanent plastic strains or local indentation of the foam results after
elastic unloading.
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Elastic and Plastic Waves in Foam

The facesheets are very stiff and remain elastic during wave transmissions,
but the polymeric foam core is elastic–plastic with a compressive stress–
strain characteristic as shown in Figure 4 [14]. The foam is linear elastic with
a compressive modulus of Ec until it yields at a flow stress, q. Rapid
compaction of cells causes the density to change in the plateau region until
full densification has occurred at "D. The stress rises to a maximum plastic
stress �p at the densification strain. The maximum plastic stress at the
densification strain depends on the load intensity.

If the pressure pulse amplitude is high enough to yield the core, elastic and
plastic waves would be generated in the foam during Phase I. In Ashby et al.
[15], the elastic uniaxial stress wave speed in the foam is given by

ffiffiffiffiffiffiffiffiffiffiffiffi
Ec=�c
p

and the plastic wave speed is given by Cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�p � qÞ=�c"D

p
, where �p is

the stress in the densification region (Figure 4). Elastic waves propagate
first in the core and are later followed by plastic waves, as shown in Figure 5.
By substituting isotropic properties for foam in Equation (4), one can
derive the following expression for elastic wave speed in the foam in a

V

q

C

p

Vep

p Ce

Plastic
wave front

Facesheet
Foam

Elastic
 wave front

D
c

σ

ρρ

Figure 5. Elastic and plastic wave fronts in foam.

q

σ

σ
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Densification

Elastic

Plateau
p

Dε ε

Figure 4. Compressive stress–strain curve of polymeric foam.
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state of uniaxial strain:

Ce ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �cÞEc

1� �c � 2�2c
� 	

�c

s
ð7Þ

The densification strain is related to particle velocities in the elastic and
plastic regions, Ve and Vp, respectively. After time t, the plastic zone gage
length is Cpt and the compression in the plastic zone is Vpt� Vet. Therefore,
the densification strain is

"D ¼
Vp � Ve

Cp
ð8Þ

The particle velocity in the plastic region is in turn related to the plastic
stress �p and density of foam after densification �D [13]:

Vp ¼
�p
�DCp

ð9Þ

where �D ¼ �c=ð1� "DÞ. Similarly, Ve ¼ q=�cCe. Combining Equations (8)
and (9) to eliminate Vp and expressing Cp in terms of �p gives the following
quadratic equation that can be solved for �p:

�c��D
�c


 �2

�2pþ
2�Dq

�c

�c��D
�c


 �
�
V2

e�
2
D

�c"D

� 

�pþ

�2Dq
2

�2c
þ
V2

e�
2
Dq

�c"D
¼ 0 ð10Þ

Local Indentation

Permanent plastic strains arise when the elastic unloading wave reaches the
plastic wave front. The local indentation is confined to the plastic zone and
may be calculated from the densification strain and the characteristic gage
length of the plastic zone. This characteristic gage length is Cp�T, where �T
is the time from the start of transmission of �p to the time when the elastic
unloading wave reaches the plastic wave front. Thus the local indentation is

� ¼ "DCp�T ð11Þ

Let tp be the start time of plastic wave transmission of �p at Interface 1. Then,

�T ¼ 3t1 þ
H

Ce
þ
ðH� Cp�TÞ

Ce
� tp ð12Þ

Solving for �T, one gets

�T ¼
ð2H=Ce þ 3t1 � tpÞ

ð1þ Cp=CeÞ
ð13Þ
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The start time of plastic wave transmission tp is determined by the
transmitted core stress defined in Equation (5).

PHASE II – GLOBAL SHEAR/BENDING

Subsequent to Phase I, the load has been removed and the core has been
crushed permanently to a height of H0 ¼ H� �. Momentum is transferred to
the sandwich panel, which has become impulsively loaded with a uniformly
distributed velocity field (Figure 6(a) and (b)). Conservation of momentum
gives the initial velocity of the panel as

vi ¼
po�

2ð�cHþ 2�fhÞ
ð14Þ

Let us denote the distance from the center of the panel to the wave front of
the transverse shear wave as �. A transverse shear elastic unloading wave
propagates from the clamped boundaries with velocity _�. This unloading
wave instantaneously brings the plate to rest behind the wave front. As the
plate is brought to rest, it undergoes shear and bending deformations as
shown in Figure 6(a).

System Lagrangian

Dynamic equilibrium of the complete sandwich can be expressed in terms
of the maximum deflection at the center, �, and an equivalent shear angle, ao.
These two degrees of freedomhave associated velocities, vi and�, respectively.
The kinetic energy for the sandwich is thusT ¼ ð1=2Þmeffv

2
i þ ð1=2ÞIeff�

2, where
meff ¼ ��

2½2�fhþ �cH� is the effective sandwich mass and Ieff is the effective

    

a a

 (a v – ξ)

vi

vi

a

a a

(a – ξ) (a – ξ)(a – ξ)

ξξ ξ

ξξ ξ ξ

ξ a

(a) (b)

Figure 6. Global panel bending/shear response: (a) deformation profiles and (b) velocity
fields.
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sandwich rotary inertia. Assuming that the rate of angular rotation is
maximum at the wave front and decreases linearly to zero at the boundary,

_	ðrÞ ¼
0, 0 � r � �

�
ða� rÞ

ða� �Þ
, � � r � a

8<
: ð15Þ

Then, the effective rotary inertia for the sandwich is Ieff ¼ ð�=6Þ ~Iða� �Þðaþ 3�Þ,
where

~I ¼
X3
k¼1

�kðz
3
k � z3k�1Þ ¼

�f
12
ð3hH2 þ 3h2Hþ h3Þ þ

�c
12

H3:

The elastic potential energy of the system is equivalent to the bending/
shear strain energy of the sandwich, � ¼ U. The Lagrangian for the whole
model is L ¼ T��. For dynamic equilibrium,

@

@t

@L

@vi


 �
�
@L

@�
¼ 2�� _� 2�fhþ �cH

� 	
vi þ

@U

@�
¼ 0 ð16Þ

and

@

@t

@L

@�


 �
�
@L

@	o
¼ �

@Ieff
@t
þ Ieff

@�

@t
þ
@U

@	o
¼ 0 ð17Þ

Bending/Shear Strain Energy Potential

Assume that in-plane deformations are negligible compared to the
transverse deformation. The elastic strain energy of the symmetric sandwich
panel with the orthotropic facesheet is then given as

U¼

Z
S

Ds
11

2

@	

@x


 �2
(

þDs
12

@


@y


 �
@	

@x


 �

þ
Ds

22

2

@


@y


 �2

þAs
55

	2

2
þ	

@w

@x
þ
1

2

@w

@x


 �2
" #

þAs
44



2

2
þ


@w

@y
þ
1

2

@w

@y


 �2
" #

þDs
66

1

2

@	

@y


 �2

þ
@	

@y

@


@x
þ
1

2

@


@x


 �2
" #)

dS

ð18Þ

where w is the transverse deflections, 	 and 
 are shear angles associated
with the x and y directions, respectively, Ds

ij is the sandwich bending stiffness
matrix, As

44 and As
55 are the transverse shear stiffnesses, and S is the panel

surface area. The superscript ‘s’ is used to denote the sandwich properties.
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Equation (18) is a special case of a more general expression for the elastic
strain energy of a symmetric sandwich panel with orthotropic facesheet [16].

Finite element analysis using ABAQUS Explicit indicates that the
transverse deformation, w, and the shear rotations with respect to the
radial direction, 	, are of the following forms:

wðrÞ ¼

�, 0 � r � �

� 1�
r� �

a� �


 �2
 !2

, � � r � a

8><
>: ð19Þ

and

	ðrÞ ¼
0, 0 � r � �

4	o
ðr� �Þða� rÞ

ða� �Þ2
, � � r � a

8<
: ð20Þ

where � is the global deflection and 	o is the rotation at r ¼ ðaþ �Þ=2. The
deflection profile described by Equation (19) was found by fitting functions
to the transient deflection profiles in the region. The transverse shear angle
function was derived from the transverse shear strain, grz, and slope of the
deflection profile: 	 ¼ �rz � @w=@r.

To evaluate the integral expression in Equation (18) to polar coordinates,
set dS ¼ rdrd� and derivatives with respect to x and y as @=@x ¼ cos � @=@r�
sin �=r @=@� and @=@y ¼ sin � @=@rþ cos �=r @=@�, respectively. Furthermore,
for the special case of Ds

22 ¼ Ds
11 and As

44 ¼ As
55, Equation (18) becomes

U ¼
8

3

ðaþ �Þ

ða� �Þ
�Ds

11 þ 2Ds
12 þ ð2þ �ÞD

s
66

� 	
	2o

þ
2

105

As
55

ða� �Þ
28�ða3
�

� a�2 � a2� þ �3Þ	2o

þ ð�176a2 þ 16�aþ 160�2Þ	o�þ ð29�� þ 35�aÞ�2
	

ð21Þ

EQUATIONS OF MOTION
The propagation speed of the unloading elastic wave _� is assumed

constant and defined as a negative quantity in Figure 6(a) and (b). Denoting
_� ¼ �ða� �Þ=t and � ¼ vit, one gets the following coupled equations of
motion from Equations (16) and (17):

� 2�½2�fhþ �cH��
ða� �Þ

t
vi þ

2

105

As
55

ða� �Þ
�16ða� �Þ½ ð11aþ 10�Þ	o

þ 2�ð29� þ 35aÞvit� ¼ 0 ð22Þ
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and

�

6
~Iða� �Þðaþ 3�Þ

d2	o
dt2
�
�

3
~I
ða� �Þða� 3�Þ

t

d	o
dt

þ
16

3

ðaþ �Þ

ða� �Þ
�Ds

11 þ 2Ds
12 þ ð2þ �ÞD

s
66

� 	
	o

þ
2

105
As

55 56�ða2 � �2Þ	o � 16ð11aþ 10�Þvit
� 	

¼ 0 ð23Þ

where 	oð0Þ ¼ 0 and _	oð0Þ ¼ 0.

TRANSIENT DEFORMATIONS

As an example, consider a fully clamped, sandwich panel made of E-glass
vinyl ester facesheets and Divinycell H100 foam core, with a radius 250mm,
facesheet thickness 2 mm, and core thickness 25 mm. Material
properties for the E-glass vinyl ester and Divinycell H100 foam are given
in Table 1. The material properties for the Divinycell H100 and H200 foams
in Table 1 were taken from Mines et al. [17]. As noted in the footnotes of
Table 1, additional material properties for the Divinycell H100 and H200
foams as well as the Klegecell R300 foam were taken from the data in these
references [18–23]. Let the sandwich panel be subject to a uniformly
distributed pressure pulse of the form given in Equation (1), where
po¼ 10MPa and �¼ 0.05ms.

This problem was modeled in 2D form assuming axi-symmetric conditions
for the Phase I response and in full 3D form for both Phase I and Phase II
responses using ABAQUS Explicit Version 6.7. In the 2D model, continuum
axi-symmetric, four-node reduced integration, CPX4R, was chosen for both
facesheets and foam. In the 3D model, four-node reduced integration shell
elements, S4R and continuum 3D, and eight-node reduced integration
element, C3D8R, were chosen for the facesheets and core, respectively. The
E-glass vinyl ester was considered as orthotropic elastic material, and the
Divinycell H100 foam was modeled as crushable foam with isotropic
hardening. The plastic hardening curves were taken from Ashby et al. [15]
for the Divinycell H100 and H200 foams, and Rizov and Mladensky [20] for
the Klegecell R300 foam. Although full integration elements could have been
used for the FEA analysis, it was found that there would be very minor
differences in the solution with full and reduced integration elements. Use of
full integration elements simply did not warrant the very long computational
run time and huge data files associated with them.
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Local Core Crushing: Phase I Response

The FEA predicted distributions of the through-thickness particle
velocity and compressive stress at various times during Phase I are shown
in Figure 7(a) and (b). It is clear that elastic waves propagate at a faster speed
than the plastic waves. The elastic wave front is marked by a jump in the
stress amplitude of q¼ 1.4MPa. Particles behind the elastic wave front would
have a particle velocity of Ve ¼ q=�cCe ¼ 20:1m/s. The analytically predicted
particle velocity in the elastic region compares very well with the FEA values
shown in Figure 7(a) and (b). According to Equations (4) and (7), the elastic
wave speed in the E-glass vinyl ester facesheets and the Divinycell H100 foam

Table 1. Facesheet and foam material properties.

E-glass/vinyl
ester

Divinycell
H100

Divinycell
H200

Klegecell
R3005

Density (kg/m3) 1391.3 100 200 300
Thickness (mm) 2 25 25 25
E11 (þ) (GPa) 17 0.126 0.170 –
E22 (þ) (GPa) 17 0.126 0.170 –
E33 (þ) (GPa) 7.481 0.126 0.170 –
E11 (�) (GPa) 19 0.035 0.105 0.263
E22 (�) (GPa) 19 0.035 0.105 0.263
E33 (�) (GPa) – 0.035 0.105 0.263
�12¼ �21 0.13 0.313 0.34 0.2346

�13¼ �23 0.282 0.313 0.34 0.2346

�31¼ �32 0.12 0.313 0.34 0.2346

G12¼G21 (GPa) 4.0 0.013353 0.04034 0.1066

G23¼G32 (GPa) 1.731 0.013353 0.04034 0.1066

G13¼G31 (GPa) 1.731 0.013353 0.04034 0.1066

q (MPa) – 1.4 4.35 7.8
"D – 0.76 0.7 0.285
�1f (þ) (MPa) 270 3.2 6.4 –
�1f (�) (MPa) 200 1.53 4.36 –
�2f (þ) (MPa) 270 3.5 6.4 –
�2f (�) (MPa) 200 1.53 4.36 –
�12f(þ)¼ �21f(þ) (MPa) 40 1.47 3.86 –
�13f(þ)¼ �31f(þ) (MPa) 31.61 1.47 3.86 –
�23f(þ)¼ �32f(þ) (MPa) 31.61 1.47 3.86 –
"1f(þ) 0.021 – – –
Ea (MJ/m3) 2.7 – – –

1Obtained from Reference [18].
2Obtained from Reference [19].
3Obtained from Reference [20].
4Obtained from Reference [21].
5Obtained from Reference [22].
6Estimated from Reference [23].
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would be 2414m/s and 696.5m/s, respectively. For the 2mm-thick facesheets
and the 25mm-core, the elastic compressive stress wave reaches the distal
facesheet at about 0.0375ms, which corroborates with the FEA results of
0.0377ms shown in Figure 7(a) and (b).

Behind the elastic stress waves are the plastic stress waves. The amplitude of
the plastic stress wave exceeds the flow stress of 1.4MPa and increases up to a
peak value, which can be determined from Equation (10). The highest
transmitted stress was calculated from Equation (10) as �p¼ 2.1MPa. At this
plastic stress value, the plastic wave speed was calculated as Cp¼ 95.97m/s.
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Figure 7. Distribution of through-thickness particle velocity and stress at the center of
the panel during and just after Phase I: (a) velocity and (b) stress.
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The transmitted stress at Interface 1, which is described in Equation (5),
must be calculated separately for elastic and plastic responses because the
transmission and reflection factors, kT1

and kR1
, respectively, depend on the

density and wave speed in the foam. A FORTRAN program was written to
evaluate the time variation of the transmitted stress at Interface 1 in two
parts: an initial elastic response whereby �T1

5q and �cCc ¼ �cCe followed
by a plastic response whereby �T1

4q and �cCc ¼ �DCp. The FORTRAN
results are shown by the solid line in Figure 8. There is a jump in the
transmitted stress when the core changes from linear elastic response to
plastic response at the densification strain. This follows from the
approximate compressive stress–strain relation for foams [14,15]. The
peak plastic stress �p¼ 2.1MPa occurs at tp¼ 0.039ms. The transmitted
stress at Interface 1 from FEA is also shown in Figure 8 for comparison.
The predicted peak plastic stress was about 4.5% lower than the maximum
compressive stress of 2.2MPa found at 0.0396ms from FEA. The
transmitted stress from FEA is smooth and shows no jump discontinuity
when the core begins to plastically flow because the plastic hardening curve
is more gradual and only approximates the ideal case of a plateau and an
infinite gradient at the densification strain shown in Figure 4. From the
calculated values of Cp and tp, local core crushing was estimated as 2.3mm
from Equations (11) and (13).

Global Bending/Shear: Phase II Response

The initial global panel velocity was determined from Equation (14) as
vi ¼ 31m/s. The sandwich bending and shear stiffness were evaluated with a
reduced core thickness H0 ¼ 22.7mm. Note that a 2.3mm indentation
changes the core height from 25mm to 22.7mm. Since the bending stiffness
is proportional to the cube of core height, this reduces the bending stiffness
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by 25%. A MATLAB program was written to solve Equations (22) and (23)
for � and 	o. First, an expression for � in terms of 	o was derived from
Equation (22) and then substituted into Equation (23) to eliminate �. Then,
the resulting second-order nonlinear differential equation in 	o was solved
using a Runge–Kutta ordinary differential equation solver (ode45) in
MATLAB. Equation (22) is cubic in �, but only one of the three roots for �
gives physically realistic solutions for 	o.

The transient deflection profile is fully determined from Equation (19),
knowledge of �(t), and the fact that � ¼ vit. As shown in Figure 9, the
predicted transient deformation profiles compared very well with the FEA
results; the predicted value for � was within 7% of FEA. The solution for
	oðtÞ is used to predict strains and damage initiation in the panel in the
following section.

DAMAGE INITIATION

One important reason for developing analytical models is to provide simple
design tools for determining the survivability of the panel when it is subject to
an intense pressure pulse load. There are critical impulses, combinations of
peak pressures and pulse durations, which would just cause damage at
initiation in the panel. Recall from the transient deformation analysis in the
previous section that the maximum bending strains occur either at the center
or at the clamped edges of the sandwich panel. It is assumed that the clamped
edges would be protected from damage and therefore the center of the panel is
the most critical area for damage initiation.

To compare the analytical predictions to the results of ABAQUS Explicit,
Hashin’s failure criteria [24] was chosen to predict damage initiation.
In Hashin’s theory, the following four damage-initiation mechanisms are
considered for a unidirectional laminate: fiber tension, matrix tension, fiber
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compression, and matrix compression. These are expressed in terms of
principal stress �ij, material strengths, and the following failure parameters,

Fiber tension

F t
f ¼

�11
XT

� �2
þ
�12
SL

� �2
ð24Þ

Matrix tension

F t
m ¼

�22
YT

� �2
þ
�12
SL

� �2
ð25Þ

Fiber compression

F c
f ¼

�11
XC

� �2
ð26Þ

Matrix compression

F c
m ¼

�22
2ST

� �2
þ
�12
SL

� �2
þ

YC

2ST


 �2

�1

" #
�22
YC

ð27Þ

where XT and YT are the longitudinal and transverse tensile strengths, XC

and YC are the longitudinal and transverse compressive strengths, SL is
the longitudinal shear strength, and ST is the transverse shear strength.
When F t

f ¼ 1, F t
m ¼ 1, F c

f ¼ 1, or F c
m ¼ 1, the corresponding damage

mode initiates. For the 08/908 orthotropic laminate facesheets, �11¼ �22 and
XT
¼YT, so that fiber tension and matrix tension failure conditions in

Equations (24) and (25) are identical. The fiber and matrix compression
criteria, Equations (26) and (27), also apply to both principal directions.

For the orthotropic facesheet with fibers in 08 and 908 parallel to the x
and y axes, one arrives at the following relationship between principal
stresses and strains

�11
�22
�12

8<
:

9=
; ¼

Q11 Q12 0

Q12 Q11 0

0 0 Q66

2
64

3
75 "x

"y
�xy

8<
:

9=
; ð28Þ

where Qij is the transformed stiffness matrix. The strains in the rectangular
coordinates are evaluated using transformed polar coordinates as follows:

"x ¼ z
@	

@x
¼ zcos�

@	

@r
ð29Þ

"y ¼ z
@


@y
¼ zsin�

@	

@r
ð30Þ

�xy ¼ z
@	

@x
þ
@	

@y


 �
¼ z cos� þ sin�ð Þ

@	

@r
ð31Þ
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Thus, the principal stresses are expressed in polar coordinates as

�11 ¼ z
4	oðaþ � � 2rÞ

a� �ð Þ
2

Q11cos� þQ12sin�
� �

ð32Þ

�12 ¼ z
4	oðaþ � � 2rÞ

ða� �Þ2
Q12cos� þQ22sin�
� �

ð33Þ

�12 ¼ z
4	oðaþ � � 2rÞ

ða� �Þ2
Q66ðcos� þ sin�Þ ð34Þ

The principal stress components are greatest at the top or bottom of the
outer facesheets, z ¼ 	ðH0=2þ hÞ, and for Q11 ¼ Q22, each stress compo-
nents is maximum at � ¼ 458. Furthermore, the impulse that causes damage
is related to either the tensile fiber or matrix conditions (Equations (24) or
(25)) and first occurs at r¼ 0 and when �¼ 0. A criterion for damage
initiation following tensile fiber or matrix failure is given by:

1 ¼
2	2oðH

0 þ 2hÞ2

a2
ðQ11 þQ12Þ

XT


 �2

þ
2Q66

SL


 �2
" #

ð35Þ

The above failure criterion gives a combination of permanent core height H0

and shear angle 	o for damage initiation. A critical impulse would be
responsible for this combination of H0 and shear angle 	o.

For the sandwich panel with H100 PVC foam core in the example, it was
predicted that a critical impulse Icr¼ 54.84MPa-s (po ¼ 2:2MPa and
�¼ 0.05ms) would cause damage initiation at the center of the panel. At
this value of the pressure pulse, the core had almost negligible permanent
deformation at the end of Phase I,H0 ¼ 24mm. The ABAQUS Explicit finite
element program was run using Hashin’s failure criteria for damage
initiation. Figure 10(a) shows that damage was initiated near center of the
panel when the pressure pulse was adjusted to po¼ 3MPa and �¼ 0.05ms,
or an impulse of 75MPa-s was applied. Below this peak load and duration,
no damage occurred in the FEA. Thus the critical impulse to failure is
Icr¼ 75MPa-s as predicted by FEA. The analytical critical impulse to failure
is �27% less than FEA predictions. The discrepancy between analytical and
FEA predictions was attributed to the fact that in the FEA, tensile fiber,
and/or matrix damage did not take place at the center of the panel as was
assumed in the analytical model.

Damage initiation of sandwich panels with the same 2mm-thick, E-glass
vinyl ester facesheets and two other cores, namely Divinycell H200 and
Klegecell R300 foams, were also considered. Material properties for the
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Divinycell H200 and Klegecell R300 foams are listed in Table 1. The
analytical predictions for the critical impulse to failure using the wave
propagation model and Hashin’s tensile fiber and/or matrix failure criteria
compared better with the FEA predictions than with the Divinycell
H100 foam core, as indicated in Figure 11. The analytical predictions for
the Divinycell H200 and Klegecell R300 foams were about 13% higher
than FEA results. The actual failure site for damage initiation in the
sandwich panels with the Divinycell H200 and Klegecell R300 foams was
exactly at the center of the distal facesheet, as assumed in the analytical
model. The damage-initiation site in the Divinycell H200 foam core sandwich
panel is shown in Figure 10(b) and should be contrasted with the damage-
initiation site in the Divinycell H100 foam core sandwich panel, which is
shown in Figure 10(a).

(a)

(b)

Figure 10. Damage initiation at bottom facesheet using Hashin’s failure criteria:
(a) Divinycell H100 core sandwich and (b) Divinycell H200 core sandwich.
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CONCLUDING REMARKS

Analytical solutions for the blast response of a foam-core composite
sandwich panel were derived considering two phases of deformation:
(a) core crushing during through-thickness wave propagation and (b) global
panel bending/shear during transverse shear wave propagation. Global
equilibrium equations of motion were formulated from the system
Lagrangian and used to obtain transverse deflection and shear rotations.
The predicted transient deformation of the sandwich panel was within 7% of
FEA results using ABAQUS Explicit.

The proposed wave propagation model was used in conjunction with
Hashin’s failure criteria to determine critical impulses that would cause
damage to initiate at the center of the panel. Analytical predictions of the
critical impulse for damage initiation compared fairly well with ABAQUS
predictions, thereby rendering the analytical model a useful design tool
for manufacturing blast-resistant composite sandwich panels. In the case
of the sandwich panel with the H100 PVC foam core, damage initiated
close to, but not at the center of, the distal facesheet in the ABAQUS
Explicit solution. This event could have taken place if the small-amplitude,
high-frequency waves ahead of the unloading shock front led to a
re-distribution of the tensile stresses around the panel center.
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These small-amplitude, high-frequency waves were neglected in the
analytical model, but they occur in real-life applications. The analytical
models proposed in this paper should only be used for providing rough
estimates and for comparison purposes.
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NOMENCLATURE

a ¼Panel radius
Aij ¼Membrane stiffness matrix

As
44, A

s
55 ¼ Shear rigidity of core
Cc ¼Wave speed in core
Ce ¼Elastic wave speed in core
Cf ¼Wave speed in facesheet
Cp ¼Plastic wave speed in core
DS

ij ¼Bending stiffness of the sandwich
Eij ¼Young’s modulus

F T
f , F

T
m, F

C
f , F

C
m ¼Hashin’s failure index

Gij ¼ Shear modulus
h ¼Facesheet thickness
H ¼Original core thickness
H0 ¼Core thickness after compression

~I ¼ Sandwich rotary inertia per unit area
Ieff ¼Effective rotary inertia of sandwich
Icr ¼Critical impulse to failure
kR ¼Reflection factor
kT ¼Transmission factor
L ¼Lagrangian

meff ¼Effective mass of sandwich
p ¼Pressure pulse
po ¼Pressure pulse amplitude
q ¼Core crushing strength

Qij ¼Transformed stiffness matrix
r ¼ In-plane radial coordinate

SL, ST
¼Longitudinal and transverse shear strength
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t ¼Time
T ¼Kinetic energy
tp ¼ Start time of transmission
t1 ¼Wave travel time through faceheet
t2 ¼Wave travel time through core

uhi ¼Unit step function
vi ¼ Initial sandwich panel velocity
Ve ¼Particle velocity in core elastic region
Vp ¼Particle velocity in core plastic region
w ¼ Sandwich panel transverse deflection

x, y ¼ In-plane rectangular coordinates of panel
XC, YC

¼Longitudinal and transverse compressive strength
XT, YT

¼Longitudinal and transverse tensile strength
z ¼Through-thickness coordinate
	 ¼ Shear angle along x-axis
ao ¼Amplitude of shear angle along x-axis

 ¼ Shear angle along y-axis

o ¼Amplitude of shear angle along y-axis
� ¼Local indentation

� ¼Amplitude of global panel deformation
�T ¼Time from the start of transmission
"D ¼Foam densification strain
"x ¼ Strain in the x-direction
"y ¼ Strain in the y-direction
gxy ¼ Shear strain
�ij ¼Poisson’s ratio
� ¼Potential energy
� ¼ In-plane circumferential coordinate
�c ¼Density of core
�D ¼Core density after densification
�f ¼Density of facesheet
�x ¼ Stress in the x-direction
�y ¼ Stress in the y-direction
�I ¼ Incident stress
�p ¼Maximum foam stress at the densification
�R ¼Reflected stress
�T ¼Transmitted stress
� ¼Pressure pulse duration

�xy ¼ Shear stress
� ¼Extent of local indentation

� ¼Angular velocity amplitude
ð_Þ ¼ dðÞ=dt ¼Time derivative
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APPENDIX

Uniaxial Strain Wave Speed in an Orthotropic Plate

Stress waves propagating through the thickness of the orthotropic face-
sheets shown in Figure 1 travel in material that is constrained laterally in the
x- and y-directions. To evaluate this wave speed, set "x¼ "y¼ 0. In the special
case of a 08/908 laminate, �x¼ �y, E11¼E22, �12¼ �21, and �31¼ �32, two of
the 3D stress–strain relations become

"y ¼
ð1� 
12Þ

E11
�x �


32
E33

�z ¼ 0 ðA1Þ

"z ¼
�ð
13 þ 
23Þ

E11
�x �

1

E33
�z ðA2Þ

Solving for �x in Equation (A1), we get

�x ¼

32
E33

E11

ð1� 
12Þ
�z ðA3Þ

Substituting the above expression for �x in Equation (A2) gives

�z ¼
ð1� 
12ÞE33

1� 
12 � 
32ð
13 þ 
23Þ½ �
"z ðA4Þ

Equation (A4) represents a stress–strain relation for an orthotropic
material in 1D or uniaxial strain. The wave speed for the material in this
state is given by

Cf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 
12ÞE33

1� 
12 � 
32ð
13 þ 
23Þ½ ��f

s
ðA5Þ

where �f is the mass density.

REFERENCES

1. Hampson, P.R. and Moayamedi, M. (2007). A Review of Composite Structures Subjected to
Dynamic Loading, Int. J. Crashworthiness, 12(4): 411–428.

2. Tagarielli, V.L., Deshpande, V.S. and Fleck, N.A. (2007). The Dynamic Response of
Composite Sandwich Beams to Transverse Impact, Int. J. Solids Struct., 44(7–8): 2442–2457.

Analytical Modeling of Composite Sandwich Panels 379



3. Vaziri, A. and Hutchinson, J.W. (2007). Metal Sandwich Plates Subject to Intense Air
Shocks, Int. J. Solids Struct., 44(6): 2021–2035.

4. Deshpande, V.S. and Fleck, N.A. (2005). One-Dimensional Response of Sandwich Plates
to Underwater Shock Loading, J. Mech. Phys. Solids, 53(11): 2347–2383.

5. Hutchinson, J.W. and Xue, Z. (2005). Metal Sandwich Plates Optimized for Pressure
Impulses, Int. J. Mech. Sci., 47(4–5): 545–569.

6. Xue, Z. and Hutchinson, J.W. (2004). A Comparative Study of Impulse-Resistant Metal
Sandwich Plates, Int. J. Impact Engg, 30(10): 1238–1305.

7. Cole, R.H. (1984). Underwater Explosions, Princeton University Press, New Jersey.

8. Smith, P.D. and Hetherington, J.G. (1994). Blast and Ballistic Loading of Structures,
Butterworth Heinemann, Oxford.

9. Menkes, S.B. and Opat, H.J. (1974). Broken Beams, Exp. Mech., 13: 480–486.

10. Teeling-Smith, R.G. and Nurick, G.N. (1991). The Deformation and Tearing of Thin
Circular Plates Subjected to Impulsive Loads, Int. J. Impact Engg., 11(1): 77–91.

11. Franz, T., Nurick, G.N. and Perry, M.J. (2002). Experimental Investigation into the
Response of Chopped-Strand Mat Glass Fibre Laminates to Blast Loading, Int. J. Impact
Engg., 27(6): 639–667.

12. Librescu, L., Oh, S-Y. and Hohe, J. (2006). Dynamic Response of Anisotropic Sandwich
Flat Panels to Underwater and In-Air Explosions, Int. J. Solids Struct., 43(13): 3794–3816.

13. Graff, K.F. (1975). Wave Motion in Elastic Solids, Oxford University Press, London.

14. Gibson, L.J. and Ashby, M.F. (1999) Cellular Solid: Structures and Properties, Cambridge
University Press, Cambridge.

15. Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, J.W. and Wadley,
H.N.G. (2000). Metal Foams: A Design Guide, Butterworth Heinemann, London.

16. Vinson, J.R. (1999). The Behavior of Sandwich Structures of Isotropic and Composite
Materials, Technomic Publishing Co., Lancaster.

17. Mines, R.A.W. and Alias, A. (2002). Numerical Simulation of the Progressive
Collapse of Polymer Composite Sandwich Beams under Static Loading, Composites:
Part A, 33(1): 11–26.

18. Boh, J.W., Louca, L.A., Choo, Y.S. and Mouring, S.E. (2005). Damage Modelling of
SCRIMP Woven Roving Laminated Beams Subjected to Transverse Shear, Composites:
Part B, 36(5): 427–438.

19. Scida, D., Aboura, Z., Benzeggagh, M.L. and Bocherens, E. (1999). A Micromechanics
Model for 3D Elasticity and Failure of Woven-Fibre Composite Materials, Compos. Sci.
and Technol., 59(4): 505–517.

20. Rizov, V. and Mladensky, A. (2007). Influence of the Foam Core Material on the
Indentation Behaviour of Sandwich Composite Panels, Cell. Polym., 26(2): 117–131.

21. Steeves, C.A. and Fleck, N.A. (2004). Collapse Mechanisms of Sandwich Beams with
Composite Faces and a Foam Core, Loaded in Three-point Bending. Part II: Experimental
Investigation and Numerical Modelling, Int. J. Mech. Sci., 46(4): 585–608.

22. Mahfuz, H., Thomas, T., Rangari, V. and Jeelani, S. (2006). On the Dynamic Response
of the Sandwich Composites and their Core Materials, Compos. Sci. Technol., 66(14):
2465–2472.

23. Diab Klegecell R Grade Technical data, Available at: http://www.compass.cern.ch/
compass/tech-board/materials/Klegecell_R.pdf (accessed December 15, 2007).

24. Hashin, Z. (1980). Failure Criteria for Unidirectional Fiber Composites, J. Appl. Mech., 47:
329–334.

380 M. S. HOO FATT AND L. PALLA



International Journal of Crashworthiness
Vol. 14, No. 1, January 2009, 37–47

Impact perforation of sandwich panels with Coremat©R
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Analytical solutions for the quasi-static and low-velocity perforation of sandwich panels with woven roving E-glass/vinyl
ester facesheets and Coremat were derived. A multi-stage perforation process involving delamination, debonding, core shear
fracture and facesheet fracture was used to predict the quasi-static failure load and ballistic resistance of the panel. The high
core-crushing resistance and damping of the Coremat resulted in rupture of the distal facesheet before the incident facesheet
during panel perforation because they limited the amount of local indentation compared with global panel deformation.
Analytical predictions of the quasi-static load-deflection response and the dynamic contact force history were within 10% of
the test results.

Keywords: impact; Coremat; sandwich structures; analytical model

1. Introduction

Composite sandwich panels are used extensively in the
aerospace, marine, transportation and recreational indus-
tries because of their high-specific stiffness and strength,
corrosion resistance, tailorability and high-fatigue life. In
many of these applications, the composite panel may be
subjected to localized projectile impact. Therefore, much
work has been done in an effort to determine the failure load,
ballistic limit, perforation energy and damage induced into
composite sandwich panels subjected to quasi-static inden-
tation and projectile impact [1,8,15]. Although most of this
research has been experimental, few analytical solutions
have been proposed because of the complicated interaction
between the composite facesheet and core during deforma-
tion and failure. Analytical models provide physical insights
to a problem, offer simple design tools and can be used to
benchmark more refined finite element analysis (FEA).

The objective of this article is to present analytical so-
lutions for the quasi-static and impact perforation of an
E-glass/vinyl ester and Coremat sandwich panel. The ana-
lytical models are derived using experimental results from
Mines et al. [8]. Coremat is a high-density/high-energy ab-
sorption resin impregnated non-woven polyester with 50%
microsphere and is commonly used in the marine indus-
try because of its high-impact resistance [6]. Impregnated
Coremat has a density of around 610 kgm−3, whereas the
standard foam density for marine craft is 100 kgm−3. It is
primarily used in decks and hulls that are susceptible to
high-impulsive loads. In earlier work, Lin and Hoo Fatt [7]
developed an analytical model to describe the quasi-static
and impact perforation of the E-glass/epoxy with the alu-

∗Corresponding author. Email: hoofatt@uakron.edu

minium honeycomb core. This article is an extension of
earlier work and addresses the impact perforation of com-
posite sandwich panels made with impact resistant core
materials.

2. Problem formulation

Consider the composite sandwich panel and rigid inden-
ter/projectile, with hemispherical nose of radius R and a
mass MO, as shown in Figure 1. The facesheets are thin or-
thotropic membranes of dimension 2a× 2a × h, and the
core is a crushable polymeric foam of dimension 2a×
2a × H . This particular core is made of a Coremat, which
has a core-crushing resistance that can be described as rigid,
linear strain hardening [8].

Upon loading, the panel experiences simultaneous lo-
cal indentation and global deformation. Experiments [1,
8, 15] indicate the fracture mechanisms as well as the
load-displacement characteristics of sandwich panels sub-
jected to impact velocities near or at the ballistic limit
that are similar to those observed in quasi-static cases.
Three stages must occur for total perforation of the sand-
wich panel: (i) initial failure during which one of the
skins of the panel fractures; (ii) penetration of the indenter
through the core and surviving facesheet and (iii) complete
panel perforation including frictional resistance between
the indenter/projectile and sandwich panel. Delamination,
debonding, core shear fracture and tensile fracture of in-
cident and distal facesheets occur during the perforation
process.
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Figure 1. Geometry of composite sandwich panel.

3. Static indentation

Local indentation consists of front facesheet indentation
and core crushing, whereas global deformation consists of
bending and shearing of the entire panel. Local indenta-
tion and global deformation are considered independently
because it is assumed that facesheet indentation is local-
ized and has marginal effect on the overall thickness of the
sandwich panel.

3.1. Local indentation

Top facesheet indentation is modelled by considering a rigid
indenter pressing into an orthotropic plate resting on a rigid,
linear strain-hardening foundation. The total potential en-
ergy of the system is

� = U + D − W (1)

where U is the elastic strain energy of the facesheet, D the
work dissipated in crushing the core and W the work done
by external forces.

When a fully clamped isotropic plate undergoes trans-
verse deflection greater than one half of the thickness of the
plate, in-plane membrane forces are no longer insignificant
compared with the bending moment resistance of the plate
[13]. Membrane plate theory is often used to determine the
deflection of plates when deflections are greater than the
thickness of the plate.

Hoo Fatt and Lin [3] showed that the same membrane
stiffening characteristics of isotropic plates occur in or-
thotropic laminates. As the top facesheet of most sandwich
configurations is thin and local indentation are usually sev-
eral times greater than the top facesheet thickness, the top
facesheet responds like an orthotropic membrane on a foun-
dation (core resistance). In addition, in-plane deformations,
u and v, are negligibly small compared to transverse deflec-
tions, w. The elastic strain energy therefore becomes

U = 1

8

∫
S

[
A11

(
∂w

∂x

)4

+ A22

(
∂w

∂y

)4

+(
2A12 + 4A66

) (
∂w

∂x

)2 (
∂w

∂y

)2
]

dS (2)

where Aij is the membrane stiffness of the orthotropic
facesheet and S is the surface area.

The work dissipated in crushing the Coremat is given
by

D =
∫

S

(
a1 + k

2H
w

)
wdS (3)

where a1 and k are the core’s crushing flow strength and
strain hardening modulus, respectively. Both of these can be
obtained from the uniaxial compressive stress-strain curve
of the core (see Mines et al. [8] for example).

The exact solution for the transverse deflection of an
axisymmetrical isotropic plate under centre point loading
is used to describe the local indentation of the sandwich
panel, w:

w(r) = δ

[
1 − r

ξ

]2

(4)

where δ is the local indentation under the indenter, ξ is
the length of the deformation zone, and r2 = x2 + y2. The
total potential energy then becomes

� = C1
δ4

ξ 2
+ πa1

6
δξ 2 + kπ

30H
δ2ξ 2 − Pδ (5)

where C1 = π
60 (3A11 + 3A22 + 2A12 + 4A66) . The total

potential energy � is a function of two unknown pa-
rameters, ξ and δ. An equilibrium condition occurs when
∂�(δ,ξ )

∂δ
= 0. Minimizing the potential energy yields the fol-

lowing load-indentation response:

P = 4C1δ
3

ξ 2
+ πa1ξ

2

6
+ πkδξ 2

15H
(6)

The load-deformation response is dependent on ξ and is
minimum when ∂P

∂ξ
= 0. Therefore,

P = 4C1δ

√(
5πa1Hδ+2πkδ2

)
120C1H

+
(

5πa1Hδ2 + 2πkδ3

30H

)

×
√

120C1H(
5πa1Hδ + 2kπδ2

) (7)

3.2. Global panel deformation

Again assuming in-plane deformations are negligible com-
pared with the transverse deformation, one can express the
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elastic strain energy of the symmetric sandwich panel with
orthotropic facesheet as

U = 4
∫ a

0

∫ a

0

{
Ds

11

2

(
∂ᾱ

∂x

)2

+Ds
12

(
∂β̄

∂y

)(
∂ᾱ

∂x

)
+ Ds

22

2

(
∂β̄

∂y

)2

+As
55

[
ᾱ2

2
+ ᾱ

∂w

∂x
+ 1

2

(
∂w

∂x

)2
]

+As
44

[
β̄2

2
+ β̄

∂w

∂y
+ 1

2

(
∂w

∂y

)2
]

+Ds
66

[
1

2

(
∂ᾱ

∂y

)2

+ ∂ᾱ

∂y

∂β̄

∂x
+ 1

2

(
∂β̄

∂x

)2
]}

dxdy

(8)

where w is again used to express transverse deflections of
the panel, ᾱ and β̄ are shear angles associated with the x-
and y-directions, respectively, Ds

ij is the sandwich bending
stiffness matrix, and As

44 and As
55 are the transverse shear

stiffness. The superscript ‘s’ is used to denote the sandwich.
Equation (8) is a special case of a more general expression
for the elastic strain energy potential of a sandwich panel
found in Chapter 5 of Vinson [14].

The following functions were used to describe the trans-
verse deformation, w, and the shear rotations with respect
to the x- and y-axis, ᾱ and β̄:

w(x, y) = �

(
1 −

(
x

a

)2)2(
1 −

(
y

a

)2)2

(9)

and

ᾱ(x, y) = αo sin

(
πx

a

)(
1 −

(
y

a

)2)2

(10)

β̄(x, y) = βo sin

(
πy

a

)(
1 −

(
x

a

)2)2

(11)

where � is the global deflection under the indenter and αo

and βo are rotations at the centre of the panel. The above
functions satisfy the boundary conditions that w = 0 and
ᾱ = β̄ = 0 at the edges and were found by fitting func-
tions from static indentation analysis of the sandwich panel
using ABAQUS Standard. The transverse deformation of
the panel was described by the midline deflection profile
of the sandwich panel (midline of the core) in the FEA
model. The shear angles were calculated from the relations
ᾱ = γxz − ∂w

∂x
and β̄ = γyz − ∂w

∂y
, where the slopes with re-

spect to the x- and y-axis were calculated from the fitted
deflection profile in the FEA model.

Substituting derivatives of the expressions in Equations
(9–11) into Equation (8) gives the following expression for
the strain energy:

U=F1�
2+F2α

2
o + F3β

2
0 + F4�α0 + F5�β0 + F6α0β0

(12)

where

F1 = 32768

33075
(As

44 + As
55),

F2 = 128

315
a2As

55 + 128π2

315
Ds

11 + 128

105
Ds

66,

F3 = 128

315
a2As

44 + 128π2

315
Ds

22 + 128

105
Ds

66,

F4 = −4096

105π3
aAs

55, F5 = −4096

105π3
aAs

44 and

F6 = 2304

π6
(Ds

12 + Ds
66).

The total potential energy then becomes

� = F1�
2 + F2α

2
o + F3β

2
0 + F4�α0

+F5�β0 + F6α0β0 − P� (13)

Minimizing � with respect to �, αo and βo gives a
closed-form expression for the global load-deflection re-
sponse,

P = Kg� (14)

where Kg = [4F1(F2+F3+F6)−(F4+F5)2]
2(F2+F3+F6) .

Table 1 gives the facesheet and core material proper-
ties for the sandwich panels considered in this research.
The lateral dimensions of the sandwich panel are 2a × 2a
= 500 × 500 mm2. Most of these material properties are
taken from Mines et al. [8], except for the Mode II fracture
toughness (GIIc) of E-glass/vinyl ester and Coremat, which
are estimated from similar materials in Stevanovic et al.
[12] and Kolat et al. [5], respectively. The material prop-
erties in Table 1 are used to calculate the local indentation
and global deformation under static indentation with a 50-
mm-diameter tup and a comparison of the predicted load-
deflection characteristics under the indenter with test data
is shown from points A to C in Figure 2. The total deflection
X1 in Figure 2 is the displacement of the indenter, that is,
X1 = δ + �. The analytical solution for the load deflection
is within 5% of the test data except near the failure point.

4. Failure mechanisms

Failure of the composite sandwich panel involves the in-
teraction of several complicated mechanisms including
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Table 1. Material properties of woven roving E-glass/vinyl ester
and Coremat.

E-Glass/Vinyl Ester Coremat

Density (kg/m3) 1391.3 640
Thickness (mm) 0.48 9.34
E11 (+) (GPa) 17 0.8
E22 (+) (GPa) 17 0.8
E33 (GPa) – 0.35
ν12 0.13 0.36
ν13 – 0.6
ν23 – 0.6
ν21 0.13 0.36
ν31 – 0.45
ν32 – 0.45
G12 = G21 (GPa) 4.0 0.29
G23 = G32 (GPa) – 0.068
G13 = G31 (GPa) – 0.068
σ3f (−) (MPa) – 22
a1 (MPa) – 10
k (MPa) – 100
GIIC (J/m2) 2757 1400
σ1f (+) (MPa) 270 –
σ1f (−) (MPa) 200 –
σ2f (+) (MPa) 270 –
σ2f (MPa) 200 –
τ12f (+) = τ21f (+) (MPa) 40 –
τ13f (+) = τ31f (+) (MPa) – 5
τ23f (+) = τ32f (+) (MPa) – 5
ε1f (+) 0.021 –
ε3f (−) – 0.025
Ea (MJ/m3) 2.7 –

delaminations in the ply, debonding between the facesheet
and core, core shear fracture and fracture of the facesheets.
Although some of these mechanisms may be the result of
progressive or accumulated damage, failure associated with
a sudden loss in panel stiffness is considered due to brittle
or unstable fracture. Fracture mechanics is used to calcu-
late the critical contact loads associated delamination and
debonding. Core shear fracture and facesheet failure are
predicted from the material parameters such as the core

Figure 2. Variation of quasi-static load with indenter displace-
ment.

shear strength and the specific energy absorption of the
facesheet laminate.

4.1. Delamination/debonding

An approximate solution for the delamination threshold
load in a quasi-isotropic orthotropic plate under static in-
dentation is given by Olsson et al. [10] as

P st
del = π

√
32GIIcD

3
(15)

where GIIc is the Mode II interlaminar frac-
ture toughness and D = √

D11D22 (η + 1) /2,

η = (D12 + 2D66) /
√

D11D22. Under impact loads,
Olsson et al. [10] also determined that the threshold
delamination load is P

dyn
del = 1.213P st

del. This formula can
be used to approximate the threshold load for delamina-
tion/debonding in the E-glass/vinyl ester and Coremat
sandwich panel by assuming Dij = Ds

ij . Separate loads
should be calculated for delamination and debonding
because values for the Mode II interlaminar shear fracture
toughness are generally not the same.

4.2. Core shear failure

Consider local indentation of the isolated Coremat (no
facesheet) by the hemispherical-nose indenter. The crush-
ing load under the indenter is given by

P = 2π

∫ ρ

0

(
a1 + kw

H

)
rdr (16)

where w = √
R2 − r2 + δ − R is the local deflection under

the indenter and ρ is the contact radius of the indenter
with the top facesheet. A simple relation between the local
indentation δand the contact radius ρ is given by

δ = R −
√

R2 − ρ2 (17)

Isolated core shear failure takes place when
P = Pc = 2πρcrHτcr, where ρcr is the critical contact ra-
dius at core shear failure and τcr = τ13 is the transverse
shear strength of the Coremat. Integrating Equation (16),
using Equation (17) to eliminate δ, and setting P = Pc give
the following implicit solution for ρcr :

a1ρcr

2H
+ k

3ρcrH 2

[
R3 − (

R2 − ρ2
cr

) 3
2

]

− kρcr

2H 2

√
R2 − ρ2

cr = τcr (18)

The corresponding load for isolated core shear fracture can
be calculated once ρcr is known. The load at which the
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Coremat sandwich panel undergoes core shear failure is
higher than the core shear fracture load of isolated Coremat
because the sandwich also has to resist the front facesheet
membrane resistance. This load is calculated by using Equa-
tion (17) to find the local deflection at core shear fracture
δcr and Equation (7) for the corresponding load.

4.3. Facesheet failure

When the strain energy density in the facesheets is greater
than the material toughness, that is, the specific energy
absorbed in a uniaxial tension test Ea, failure can occur.
The strain energy density in an orthotropic facesheet is

Uo = 1

2

(
Q̄11ε

2
x + Q̄22ε

2
y + 2Q̄12εxεy + Q̄66γ

2
xy

)
(19)

where εx ,εy and γxy are in-plane strains and Q̄ij are
components of the transformed stiffness matrix. In the
back facesheet, the strain varies through the sandwich
panel thickness and is given by εx = z ∂ᾱ

∂x
, εy = z

∂β̄

∂y
, and

γxy = z( ∂ᾱ
∂x

+ ∂β̄

∂y
), where Equations (10) and (11) are used

to evaluate strains. According to these expressions, the max-
imum compressive and tensile strains due to global defor-
mation occur in the front and back facesheets, respectively.
The front facesheet strains are tensile and estimated by the
average strain method presented in Lin and Hoo Fatt [7].

4.4. Multi-stage perforation model

Each failure mechanism is considered independently, and
the loads for delamination, debonding, core shear fracture
and back and front facesheet fractures are calculated. The
lowest failure load corresponds to core shear fracture at
0.45 kN, thereby signifying that this takes place before
fracture of either the top or bottom facesheets. Debonding
and delamination then takes place at 9.92 and 13.92 kN, re-
spectively. Core shear fracture, delamination and debonding
have no effect on the load-deflection response. A catas-
trophic load drop is caused when the back facesheet frac-
tures at 17.5 kN. As shown in Figure 2, this is about 25%
higher than the experimental failure load at 14 kN because
displacement-based energy methods are generally less ac-
curate in predicting stresses and strains than they are in
predicting deflections.

The sandwich panel can still resist loads after the back
facesheet fails because the front facesheet is still intact.
A multi-stage perforation model illustrated in Figures 3
(a)–(c) are proposed to explain what happens after back
facesheet failure:

Stage I – Local indentation and global deformation up
to core shear fracture, as depicted in Figure 3 (a). Core
shear fracture occurs at roughly 45◦ with respect to the
plane of the panel because this corresponds to a plane of

Figure 3. Multi-stage perforation process: (a) core shear failure
and back facesheet debonding, (b) back facesheet fracture (c) front
facesheet failure and perforation.

maximum shear stress. Back facesheet debonding is trig-
gered by core shear fracture at a 45◦ angle.

Stage II – Deformation beyond core shear fracture and
ending with back facesheet fracture, as indicated in Figure
3 (b). The core-crushing resistance used to calculate the
local load-indentation response remains unchanged since
the facesheets are intact.

Stage III – Deformation up to front facesheet fracture
(Figure 3 (c)). Local petaling occurs immediately following
a cross-hair fracture in the back facesheet. Four petals bend
from the backside within the debond region. As shown in
Figure 4, the load is resisted by membrane stretching of the
front facesheet, transverse shearing of the Coremat within
an annular region surrounding the projectile and bending re-
sistance of the petals. The size (radius) of the back facesheet
debond λ is estimated from the contact force P is transmit-
ted to back facesheet via the truncated cylindrical core that
has been sheared.

The strain energy associated with membrane stretching
of the front facesheet and is found from the first term of
Equation (5) and setting ξ = λ:

Uf = C1
δ4

λ2
(20)

The elastic strain energy associated with transverse
shear deformations γrz surrounding the projectile is
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Figure 4. Local deformation in Stage III.

Figure 5. Two-df model for impact of composite sandwich panel.

Figure 6. Transient deflection at panel centre with 10-kg projectile travelling at 4.43, 6.26, and 7.67 m/s: (a) Global and (b) Local.

given by

Ush =
∫

V

1

2
Gc

13γ
2
rzdV (21)

where Gc
13 is the core transverse shear stiffness,

dV = 2πHrdr and r varies from 0 to λ. Assume the fol-
lowing linear distribution for transverse shear strains:

γrz = δ

λ

(
1 − r

λ

)
(22)

Substituting Equation (22) with Equation (21) and in-
tegrating give

Ush = Gc
13πH

12
δ2 (23)

The bending energy due to petaling is derived in Ap-
pendix A by considering each petal as a cantilever beam
with varying width. Since there are four petals associated
with the facesheet perforation, the total energy due to petal-
ing is

Up = 8D̃11

3λ2
(δ − δb)2 (24)

where D̃11 = ∑N
j=1 Erj (z3

j − z3
j−1) is an equivalent bend-

ing stiffness, Erj = 4[
1

E11
+

(
1

G12
− 2ν12

E11

)
+ 1

E22

] is an equivalent

modulus along the centre axis of the petal (45◦ to principal
or fibre directions), N is the number of plies in the facesheet
and δb is the local deflection at back facesheet failure.

The total potential energy during Stage III local inden-
tation is given by

� = C1
δ4

λ2
+ Gc

13πH

12
δ2 + 8D̃11

3λ2
(δ − δb)2 − Pδ (25)
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Figure 7. Contact force history with 10-kg mass projectile trav-
elling at 7.67 m/s assuming different damping constants of the
Coremat.

Minimizing the potential energy yields the following
load-indentation response:

P = 4C1

λ2
δ3 + G13πH

6
δ + 16D̃11

3λ2
(δ − δb) (26)

To approximate reduced global panel stiffness, we as-
sume an average value between the global stiffness with
fully intact facesheets and the global stiffness with only the
top facesheet in the sandwich, that is, the back facesheet
does not contribute to the bending stiffness when calculat-
ing the Ds

ij stiffness matrix. The predicted load-deflection
response in Stage III is shown from points D to E in Figure 2.
The load drop at E corresponds to tensile failure of the front
facesheet.

5. Impact response

The impact response of the panel is found from the 2-df
mass-spring-dashpot system shown in Figure 5. The pro-
jectile mass is denoted Mo, and the effective mass of the
top facesheet and sandwich are represented by mf and ms,

respectively. Expressions for the effective facesheet and
sandwich masses are derived in Appendices B and C, re-
spectively, by assuming that the local and global velocities
are distributed in the same manner as their deformations.
The local deformation and global deformation are given
by δ = X1 − X2 and � = X2, respectively. The local in-
dentation resistance Pl , which is a non-linear function of
δ, and the global spring stiffness Kg are found from quasi-
static results and adjusted with the strain rate-dependent
material properties of the facesheet and core. High-strain
material tests show that the stiffness and strength of the
E-glass fibre-reinforced composites are very sensitive with
strain rate [4, 9, 11, 16]. Although dynamic material prop-
erties of Coremat are not readily available, we expect

Figure 8. Contact force history with 10-kg mass projectile trav-
elling at (a)Vo = 4.43 m/s, (b)Vo = 6.26 m/s and (c)Vo = 7.67
m/s.

that it would also be very rate-sensitive. Rate sensitiv-
ity of the Coremat is considered by introducing the lin-
ear dashpot with damping constant c in Figure 5. This
damping constant may be estimated from the impact test
data.

The equations of motion for the 2-df system are

(Mo + mf )Ẍ1 + Pl + c(Ẋ1 − Ẋ2) = 0 (27)
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Figure 9. Transient deflection at panel centre with 20-kg and 30-kg projectiles travelling at 6.26 m/s: (a) Global and (b) Local.

and

msẌ2 − Pl − c(Ẋ1 − Ẋ2) + KgX2 = 0 (28)

The initial conditions for the 2-df system are as follows:
X1(0) = 0, X2(0) = 0, Ẋ1(0) = Vo and Ẋ2(0) = 0, where
Vo is the initial velocity of the projectile. Equations (27) and
(28) represent a non-linear, coupled initial-value problem.
An explicit, Runge-Kutta differential equation solver was
used in MATLAB (ode45) to solve for X1 and X2. It should
be mentioned that other ode solvers in MATLAB, whether
explicit or implicit, gave approximately the same results
as ode45. The default error tolerance (10−3 to 10−4) in
MATLAB was also found to give adequate accuracy in the
problem.

Figures 6(a) and (b) show the predicted global and local
deflections under the indenter for the composite panel im-
pacted by a 10-kg projectile with various impact velocities,
respectively. The average strain rate in the top and bottom
facesheets ranged between 2 and 5 s−1. Although these
strain rates are low, they are not considered quasi-static
and E-glass fibre-reinforced composites exhibit strain rate
sensitivity even at low strain rates [2]. A 10% increase in
the facesheet stiffness and strength was assumed based on
the experimental data for woven E-glass fibre-reinforced
polyester in Shah Kahn et al. [11] as well as high-strain
rate data for unidirectional E-glass/vinyl ester laminates in
Oguni and Ravichandran [9].

The damping constant for the Coremat was first as-
sumed and adjusted to match the impact test results. As
indicated in Figure 7, for the case of the sandwich panel

Figure 10. Contact force history with: (a) 20-kg mass projectile travelling at 6.26 m/s and (b) 30-kg mass projectile travelling at 6.26
m/s.
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impacted with the 10-kg mass travelling at 7.6 m/s, the am-
plitude of the high-frequency vibrations would decay to a
negligible amount at about 9 ms due to the Coremat damp-
ing. With a damping constant set at 50 Ns/m, the predicted
contact force would be underdamped when compared to the
test results (see dotted line in Figure 7). On the other hand
with the damping constant set at 250 Ns/m, the predicted
contact force would decay to a negligible amount at about
8 ms (see dashed line in Figure 7), thereby indicating that
the assumed damping constant is too high. A damping con-
stant equal to 159 Ns/m was found to agree the best with
the contact force test data for the 10-kg mass travelling at
7.6 m/s. It will be shown later that this value appeared to
be the best value for the Coremat damping constant in all
of the impact tests.

Core shear fracture, delamination and debonding en-
ergies, although very small, were subtracted from the ki-
netic energy of the system at the instant they occurred. The
tearing energy in the back facesheets was estimated from
the fracture surface associated with petaling. These frac-
ture events were considered instantaneous compared to the
sandwich response time because these fractures constituted
brittle or unstable crack propagation.

The contact force between the projectile and the im-
pacted facesheet is given by F = −MoẌ1 and the predicted
contact force is compared to measured test data in Figures
8 (a)–(c). Damping from the Coremat attenuates the high-
frequency vibrations associated with local indentation and
core crushing. The analytical model is able to predict an av-
erage contact force to within 10% of the experimental data.
In all of these tests, the maximum global deformations were
less than 35.8 mm, which is about the deflection at which
the back facesheet would have failed assuming the stiff-
ness and strength of the facesheet increase with increasing
strain rate by the same amount. Thus, the analytical model
is consistent with the test results.

With increasing mass or projectile velocity, damage
would occur. Figures 9(a) and (b) show predicted global
and local deflections under the indenter for the composite
panel impacted by a 20-kg and 30-kg projectiles travelling
at 6.26 m/s, respectively. The corresponding contact force
history is shown and compared to test data in Figures 10 (a)
and (b). At a global panel deflection of about 35.79 mm,
the back facesheet just begins to tear. Impact with the 20-
kg mass just causes fracture of the back facesheet when the
contact force is at a maximum value, whereas impact with
the 30-kg mass just causes back facesheet failure at 7.9 ms,
about 5.1 ms before the time peak contact force would have
occurred. Stage III deformation in 20-kg mass impact ends
without front facesheet failure. In contrast to this, the front
facesheet in Stage III of the 30-kg mass impact reaches an
amount to cause fracture, roughly 11.3 mm. The projectile
thus penetrates the panel in the 30-kg mass impact. The
load drops more smoothly in the 30-kg mass experiment
because of friction between the projectile and sandwich.

These results are consistent with the experimental results
from Mines et al. [8], which gave the ballistic limit of the
panel for the 30-kg mass projectile at 7.67 m/s.

6. Conclusions

Analytical solutions were derived for the quasi-static and
impact perforation of an E-glass/vinyl ester and Coremat
sandwich panel. The panel deformation was decomposed
into local indentation and global deformation. An equiva-
lent 2-df mass-spring-dashpot system was used to find the
dynamic response of the composite sandwich panel sub-
jected to a drop-weight impact by a rigid hemispherical-
nose projectile. Several failure modes were considered, in-
cluding delamination, debonding, core shear fracture and
top and bottom facesheet failures. Analytical predictions
of the quasi-static load-deflection response were within 5%
of the test data, and the calculated failure load was about
25% higher than the test data. The predicted contact force
histories from the equivalent 2-df model were within 10%
of test data.

The analytical model presented in the article specifically
shows how local core properties can influence the deforma-
tion and ultimate failure of a composite sandwich panel.
It also provides a simple way to approximately describe
the material response of non-traditional, high density and
damping foams such as Coremat. Our analytical results in-
dicated that the high core-crushing resistance and damping
of the Coremat limited the amount of local indentation com-
pared to global panel deformation. As a result the Coremat
sandwich panel first ruptured in the distal facesheet rather
than the impacted facesheet. Such a failure mode may be
desirable from a practical standpoint because the outer sur-
face of a composite sandwich vessel undergoing impact
from external sources would remain intact if damage were
to just initiate.
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Appendix A

Bending energy due to petaling
Petals arise from the cross-hair cracks running along 0/90◦ fibre
directions in the back facesheet plies. Consider each petal to be a
beam of varying width, b(r) = 2r, where r is an axis, 45◦ to the
edge of the petals or principal ply directions and running along
in the centre of the petal. The bending moment resistance Mr is
given by

Mr =
∫ h/2

−h/2
σrzbdz (A-1)

where σr = σrj = Erjκz for the jth ply, Erj is an effective modulus
in radial direction and κ is the curvature of the petal. For an

orthotropic ply, the effective modulus in the radial direction is

Erj = 4[
1

E11
+

(
1

G12
− 2ν12

E11

)
+ 1

E22

] . (A-2)

The bending moment resistance in an orthotropic petal is therefore
given by

Mr = 2rκ

3

N∑
j=1

Erj

(
z3

j − z3
j−1

)
(A-3)

The strain energy due to the bending of a petal of length λ is

U =
∫ λ

0

1

2
Mrκdr = D̃11

6

∫ λ

0
b

(
d2v

dr

)2

dr (A-4)

where D̃11 = ∑N

j=1 Erj (z3
j − z3

j−1), κ = d2v

dr2 and v is the deflection
of the petal relative to the plane of the back facesheet. Assume
v = δp(1 − r

λ
)2, where δp is the maximum deflection of the petal.

Then,

U = 2D̃11

3

δ2
p

λ2
(A-5)

The maximum petal deflection can be expressed in terms of the
current local indentation by considering a shift in coordinates:
δp = δ − δb, where δb is the local indentation depth at the point
of back facehseet failure. In terms of the current local indentation
depth,

U = 2D̃11

3

(δ − δb)2

λ2
(A-6)

Appendix B

Effective mass of facesheet
The effective mass of the facesheet can be approximated by the
following velocity profile, which is the derivative of the deforma-
tion profile for the facesheet indentation:

ẇ(r) = δ̇

[
1 − r

ξ

]2

(B-1)

where δ̇ is the amplitude of the velocity profile.
The kinetic energy (KE) is then approximately

KE = πρhδ̇2

∫ ξ

0

[
1 − r

ζ

]4

rdr = π

30
ρhξ 2δ̇2 (B-2)
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The KE using an effective mass mf for the facesheet is

KE = 1

2
mf δ̇2 (B-3)

Setting equations (2–2) and (2–3) equal to each other, one finds
that the effective facesheet mass is

mf = π

15
ρhξ 2 (B-4)

Appendix C

Effective mass of sandwich panel
Assume the velocity distribution in the sandwich is the time deriva-
tive of the sandwich deformation

ẇ(x, y) = �̇

(
1 −

(
x

a

)2
)2 (

1 −
(

y

a

)2
)2

(C-1)

The total KE is

KE = 2
∫ a

0

∫ a

0
(ρcH + 2ρh)�̇2

[
1 − x2

a2

]4

×
[

1 − y2

a2

]4

dxdy (C-2)

After integration of Equation (C2), one gets

KE = 0.33(ρcH + 2ρh)a2�̇2 (C-3)

The KE using a lumped effective sandwich mass ms is given
as

KE = 1

2
ms�̇

2 (C-4)

Therefore, the effective sandwich mass is

ms = 0.66(ρcH + 2ρh)a2 (C-5)
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Summary. Analytical solutions were derived for the transient response of a foam-core 
composite sandwich panel subjected to blast loading.  The panel response consisted of two 
consecutive phases: (1) a through-thickness wave propagation phase leading to permanent 
core crushing deformations and (2) a transverse shear wave propagation phase resulting in 
global panel deflections. The predicted transient deformation of the sandwich panel was 
within 7% of FEA results using ABAQUS Explicit.

1 INTRODUCTION 
     There is growing interest in using lightweight composite sandwich panels for construction 
of naval ships, which can be exposed to blast and impact during combat.  Tagarielli et al. [1] 
have recently demonstrated that glass fiber vinyl sandwich beams with PVC foam cores and 
balsa wood have higher ballistic resistance than monolithic beams of equal weight.  While 
there has been much research concerning localized projectile impact damage of composite 
sandwich panels, very little work has been done to address damage of composite sandwich 
panels under distributed pressure pulse loading, such as that caused by an underwater or air 
blast.  Several recent articles have dealt with the blast resistance of metal sandwich panels 
with metallic foam, honeycomb, truss and wide variety of metal sandwich core topologies [2-
5] but none of these can be directly applied to a composite sandwich panel made of 
anisotropic elastic facesheets and polymeric foam or balsa wood cores.  The purpose of this 
paper is to present an analytical model that can be used to determine the blast performance of 
a composite sandwich panel. The paper specifically provides an analytical model for 
predicting the transient response and failure of a composite sandwich panel subjected to 
pressure pulse or impulsive loading, i.e., load durations are on the order of the through-
thickness wave travel time and are short compared to the time associated with overall 
bending/shear panel deformation.    
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2 PROBLEM FORMULATION 
Consider a fully clamped, composite sandwich panel of radius a, as shown in Fig. 1.  The 

facesheets consist of orthotropic composite plates of thickness h, and the core is crushable 
polymeric foam of thickness H.  Assume for simplicity that the panel is subjected to a 
uniformly distributed pressure pulse 

     
t

ttp
tp o

,0

0,1
   (1) 

where op is the peak pressure and is the load duration.  Other pressure transients can be used 
to more accurately simulate underwater and air explosions [6,7]; they will produce similar 
impulsive sandwich response as the triangular pressure pulse in Eq. (1).

Figure 1:  Composite sandwich panel subjected to uniformly distributed, pressure pulse.

Provided no failure has occurred to the panel during the blast, the response of the 
composite sandwich panel may be described by the three phases of motion shown in Fig. 2.  
In Phase I, a through-thickness stress wave propagates from the incident facesheet to the rear 
facesheet.  In this phase the sandwich panel experiences local core crushing and local 
facesheet deformation, while an impulsive transverse shear reaction force is induced at the 
clamped boundaries.  At the end of Phase I, kinetic energy is transferred globally to the panel 
and the impulsive transverse shear reaction force propagates from the clamped boundaries 
towards the panel center.  Phase II consists of the propagation of an elastic unloading 
transverse shear wave.  The pressure pulse has already ended and momentum is transferred to 
the sandwich panel, with reduced core thickness from Phase I.  The transverse shear stress 
wave due to the reaction forces at the clamped boundary propagates from the clamped 
boundary towards the center of the panel.  This transverse stress wave is an unloading wave, 
causing bending and shear deformations to develop behind the wave front.  The elastic 
unloading transverse shear wave brings the panel to maximum deflection.  At the end of 
Phase II, the panel rebounds and vibrates.  Elastic vibrations take place in Phase III.

During Phase I, high intensity transverse shear stresses are developed at the clamped 

a

H
h

h

p(t)

x

y
z

r
Ø
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boundary and these may cause transverse shear fracture at the clamped boundaries of the 
panel.  Transverse shear fracture is usually avoided by using reinforcements at boundaries.  
The second mode of failure that can occur during blasts is tensile fracture in the center of the 
panel when bending strains are at a maximum at the end of Phase II.  These two failure modes 
in addition to permanent deformation were first observed on impulsively loaded aluminum 
beams by Menkes and Opat [8] and later on aluminum plates by Teeling-Smith and Nurick 
[9].  They have also been experimentally observed on composite plates by Franz et al. [10].

Figure 2:  Three phases of blast response:  (a) Phase I: Through-thickness wave propagation,  
                 (b) Phase II:  Transverse wave propagation and (c) Phase III:  Vibration. 

This paper focuses on the first two phases of blast response described in Fig. 2 because 
they are relevant to the failure of the composite sandwich panel subjected to blast effects.  The 
analytical solutions presented for the panel response is to be distinguished from previous 
models in which the Phase II was treated as the forced modal response of sandwich panels 
[11].  In this paper, Phase II is taken as an initial-value problem since the load duration is 
short compared to the transverse wave propagation time and the natural period of vibration in 
Phase III.

3 PHASE I – THROUGH-THICKNESS WAVE PROPAGATION 
   In most blast situations the load duration is short compared to the natural period of the 

global sandwich response and the pressure pulse can be realized as an impulsive loading to 
the sandwich.  However, the wave speed in polymeric foam is low and a thick composite 
sandwich panel with a polymeric foam core is likely to undergo transient local facesheet 
indentation and core crushing while the pressure pulse is still acting.  Take for example, H100 
PVC foam core with a density of 100 kg/m3 and a compressive elastic modulus of 35 MPa.  
Elastic waves propagate through a 25 mm thick core made of H100 PVC foam in 0.04 ms.  
Blast pressure pulse durations of this magnitude are not uncommon for naval composite 
sandwich ships subjected to underwater and air blast explosions [6,7].  Thus one can assume 
that permanent plastic deformations of the core will take place from a transient event, i.e., 
during the load application.

(a) Phase I:  Through-thickness wave
                    propagation

(b) Phase II:  Transverse wave
                      propagation

(c) Phase III:  Vibration
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3.1 Transmission and reflection at interfaces   
The transmission and reflection of plane strain stress waves through the multi-layered 

composite sandwich panel is shown in Fig. 3.  Stress waves are transmitted from the incident 
facesheet to the foam at Interface 1 and from the foam to the distal facesheet at Interface 2.  
When the incident stress I first reaches Interface 1, the transmitted stress 

1T and the 
reflected stress 

1R are given as follows: 

ccff

cc
TTT CC

Ckttuttpk 2
,)(

111 11    (2) 

and

ccff

ffcc
RRR CC

CC
kttuttpk

111
,)( 11    (3) 

where fCht /1 is the wave transit time through the facesheet, fC and cC are the wave 
speeds in the facesheet and core, respectively; f and c are the density of the facesheet and 

core, respectively; and u is the unit step function.  The wave speed in an orthotropic plate 
in plane strain is given by 

f
f

EC
23133212

1233

1
1

     (4) 

where ijE and ij are elastic modulus and Poisson’s ratio of the orthotropic facesheet.  The 
wave speed in the foam will be discussed in the following section. 

The reflected wave in the incident facesheet is tensile because ccff CC .  This 
reflected wave is again reflected, but as a compressive stress wave, when it reaches the outer 
surface of the incident facesheet.  The process of reflection and transmission of waves at 
Interface 1 repeats itself over and over again at intervals 12t .  Thus the transmitted stress in the 
foam at Interface 1 is given as 

11
1

11
2

1111

12)12(1...

5)5(3)3()(

11

111111

tntutntpkk

ttuttpkkttuttpkkttuttpk
n
RT

n

RTRTTT
  (5) 

where n is the number of reflections up to that time.    
The transmitted stress wave in the foam 

1T will reflect back as a compressive wave into 
the foam and be transmitted as a compressive stress wave in the distal facesheet when it first 
reaches Interface 2.  The transmitted stress in the distal facesheet 

2T is further reflected as a 
tensile stress wave from the outer surface of the distal facesheet.  This reflected stress waves 
will then be transmitted as tensile stress wave in the foam and reflected back as compressive 
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stress wave into the facesheet.  The part that is transmitted to the foam will add to the 
reflected stress waves in the foam .

2R   This process repeats itself indefinitely so that the 
reflected stress wave at any time is given by 

2121
1

2121
2

2121

21212121

12)12(1...

7)7(5)5(

3)3()(

112

112112

1222

ttntuttntpkkk

tttutttpkkktttutttpkkk

tttutttpkktttutttpk

n
RTT

n

RTTRTT

TTRR

  (6) 

where ,/2 cCHt
ccff

ff
T CC

C
k

2
2

and .
2

ccff

ccff
R CC

CC
k   The reflected stress is a 

tensile unloading elastic stress wave.  Permanent plastic strains or local indentation of the 
foam results after elastic unloading. 

Figure 3:  Transmission of stress waves through facesheets and foam of sandwich panel. 

3.2 Elastic and plastic stress waves in polymeric foam 
The facesheets are very stiff and remain elastic during wave transmissions but the 

polymeric foam core is elastic-plastic with a compressive stress-strain characteristic as shown 
in Fig. 4 [12].  The foam is linear elastic with a compressive modulus of cE  until yielding at a 
flow stress q .  Rapid compaction of cells causes the density to change during the plateau 
region until full densification has occurred at .D   The stress rises to a maximum plastic 
stress p  at the densification strain.  

Elastic and plastic waves could therefore be generated in the foam during Phase I.  The 
elastic wave speed in the foam is given by cce EC and the plastic wave speed is given 

by
Dc

p
p

q
C [13], where p is the stress in the densification region (see Fig. 4).  Elastic 

waves propagated first in the core and are later followed by plastic waves, as shown in Fig. 5.

Foam

Interface  1 Interface  2

1

1

1
2

R1
R1

R 2
2

R 2

R 2

Incident
Facesheet

Distal
Facesheet
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The densification strain is related to particle velocities in the elastic and plastic regions, eV
and ,pV respectively, by 

p

ep
D C

VV
      (7) 

Figure 4:  Compressive stress-strain curve of polymeric foam. 

Figure 5:  Elastic and plastic wave fronts in foam. 

The particle velocity in the plastic region is in turn related to the plastic stress p and density 
of foam after densification D :

pD

p
p C

V       (8) 

where
D

c
D 1

.  Similarly,
ec

e C
qV .  Expressing pC in terms of p and combining 

Eqs. (7) and (8) give the following quadratic equation that can be solved for :p

q

Ec

Densification

Elastic

Plateau
p

V

q

C

p

Vep

p Ce

Plastic
wave front

Facesheet
Foam

Elastic
 wave front

D c
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02 22

2

2222
2

2

Dc

De

c

D
p

Dc

De

c

Dc

c

D
p

c

Dc qVqqVq   (9) 

3.3 Local indentation 
Permanent plastic strains arise when the elastic unloading wave reaches the plastic wave 

front.  The local indentation is given by 

          TC pD       (10)

where T is the time from the start of transmission of p  to the time when the elastic 
unloading wave reaches the plastic wave front.  A simple expression for T  is

     
ep

pe

CC
ttCH

T
/1
3/2 1      (11)

where pt  is the start time of transmission of p  at Interface 1. 

4 PHASE II– GLOBAL SHEAR/BENDING 
Subsequent to Phase I, the load has ended and the core has crushed permanently to a height 

HH .  Momentum is transferred to the sandwich panel, which has become impulsively 
loaded with a uniformly distributed velocity field (see Figs. 6 (a) and (b)).  Conservation of 
momentum gives the initial velocity of the panel as 

hH
pv

fc

o
i 22

      (12) 

Denote the distance from the center of the panel to the wave front of the transverse shear 
wave as .   A transverse shear elastic unloading wave propagates from the clamped 
boundaries with velocity .  This unloading wave instantaneously brings the plate to rest 
behind the wave front.  As the plate is brought to rest, it undergoes shear and bending 
deformations as exemplified in Fig. 6(a). 

4.1  System Lagrangian
Dynamic equilibrium of the complete sandwich can be expressed in terms of the maximum 

deflection at the center, , and an equivalent shear angle, .o   These two degrees of freedom 
have associated velocities, iv and , respectively.  The kinetic energy for the sandwich is 

thus 22

2
1

2
1

effieff IvmT , where Hhm cfeff 22  is the effective sandwich mass 

and eqI  is the effective sandwich rotary inertia.  The elastic potential energy of the system is 
equivalent to the bending/shear strain energy of the sandwich, U .  The Lagrangian for the 
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whole model is .TL  For dynamic equilibrium, 

022 UvHhL
v
L

t icf
i

   (13) 

and

0
o

eff
eff

o

U
t

I
t

ILL
t

   (14) 

   (a) Deformation profiles.        (b) Velocity fields.

  Figure 6:  Global panel bending/shear response:  (a) Deformation profiles and (b) Velocity fields.

4.2  Bending/shear strain energy 
Assume in-plane deformations are negligible compared to the transverse deformation.  The elastic 

strain energy of the symmetric sandwich panel with orthotropic facesheet is then given as

drdr
xxyy

D
y
w

y
wA

x
w

x
wA

y
D

xy
D

x
D

U

ss

s
a s

s
s

22
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2/
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2
22
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2
11

2
1

2
1

2
1

2

2
1

222
4

  (15)

where w is the transverse deflections, and are shear angles associated with the x- and y-directions, 
respectively, s

ijD is the sandwich bending stiffness matrix, and sA44  and sA55  are the transverse shear 
stiffnesses.  The superscript “s” is used to denote the sandwich.  Derivatives with respect to x and y 
can be transformed to polar coordinates before evaluating the above-mentioned integral expression.  

Finite element analysis using ABAQUS Explicit indicates that the transverse deformation, w ,
and the shear rotations with respect to the radial direction are of the following forms: 

a a

vi

(a-  ) (a-  )

vi

a a

a a

(a-  ) (a-  )

45



Michelle S. Hoo Fatt and Leelaprasad Palla. 

ar
a
r

r

rw
,1

0,0
22     (16) 

and

ar
a

rar
r

r
,4

0,0

2o
             (17) 

where  is the global deflection and o is the rotation at .2/ar   Substituting derivatives of 
the expressions in Eqs. (16) and (17) into Eq. (15) gives the following expression for the strain energy: 

2222322355

2
661211

35291601617628
105

2

22
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aaaaaa
a
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DDD
a
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oo

o

(18)

4.3  Equations of motion 
Assume the rate of angular rotation is similar to the shear rotation field in Eq. (17):   

ar
a

rar
r

r ,4

0,0

2

     (19) 

Then, the effective rotary inertia for the sándwich is ,~
15
8 22aII eff where

.
12

33
12

~ 3322
3

1

3
1

3 HhHhhHzzI cf

k
kkk Denoting

t
a

and ,tvi

one gets the following coupled equations of motion from Eqs. (13) and (14):            
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            (20) 
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where 0)0(o and .0)0(o

5 AN EXAMPLE 
As an example consider a fully clamped, sandwich panel made of E-glass vinyl ester 

facesheets and H100 foam core, with a radius 250 mm, facesheet thickness 2 mm, and core 
thickness 25 mm.  Material properties for the E-glass vinyl ester and H100 are given in
Table 1.  Let the sandwich panel be subject to a uniformly distributed pressure pulse of the 
form given in Eq. (1), where 10op MPa and 05.0 ms.   

Table 1 : Facesheet and foam material properties.

This problem was modeled in 2D assuming plane strain conditions for Phase I response 
and in full 3D for both Phase I and II responses using ABAQUS Explicit.  The H100 foam 
was modeled as an elastomeric foam with volumetric hardening.  Additional foam properties, 
such as the plastic hardening curve were taken from Ref. [14].   

5.1  Local core crushing:  Phase I response 
The transmitted stress transient at Interface 1, Eq. (5), and the same stress transient from 

FEA are shown in Fig. 7.  The highest transmitted stress was calculated from Eq. (9) as 
42.2p MPa, which occurs at 037.0pt ms from Fig. 7.  This was about 10% higher than 

the maximum compressive stress of 2.2 MPa found from FEA.  From the calculated values of 
p and pt , local core crushing was estimated as 3.2 mm from Eqs. (10) and (11).   

E-Glass/Vinyl Ester      Divinycell H100 
Density (kg/m3)           1391.3 100
Thickness (mm) 2 25
E11 (+) (GPa)                17 0.126 
E22 (+) (GPa)                17 0.126 
E33 (+) (GPa)               8.5 0.126 
E11 (-) (GPa)                 17 0.035 
E22 (-) (GPa)                 17 0.035 
E33 (-) (GPa)                8.5 0.035 

12                                                  0.13 0
13                                                 0.28 0 
23                                                 0.28 0 

G12=G21 (GPa)             4.0  0.0175 
G23=G32 (GPa)             4.2 0.0175 
G13=G31 (GPa)             4.2 0.0175 
 q (MPa)                       -- 1.66 

D                    -- 0.8 
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Figure 7:  Transmitted stress at Interface 1 up to peak stress. 

5.2 Global bending /shear:  Phase II response 

The initial global panel velocity was determined from Eq. (12) as 31iv m/s.  The 
sandwich bending and shear stiffness were evaluated with a reduced core 
thickness 8.21H mm.  A MATLAB program was written to solve Eqs. (20) and (21) 
for and o .  As shown in Fig. 8, the predicted transient deformation profiles compared very 
well to FEA results; the predicted value for was within 7% of FEA.    

Figure 8:  Transient deflection profiles of composite sandwich. 
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6 CONCLUDING REMARKS 

Analytical solutions for the blast response of a foam-core composite sandwich panel were 
derived considering two phases:  (a) core crushing during through-thickness wave propagation 
and (b) global panel bending/shear during transverse shear wave propagation.  Global 
equilibrium equations of motion were used to obtain transverse deflection and shear rotations. 
The predicted transient deformation of the sandwich panel was within 7% of FEA results 
using ABAQUS Explicit.
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Abstract  

Analytical models for the quasi-static and low-
velocity perforation of composite sandwich panel 
with woven roving E-glass/vinyl ester facesheets and 
CorematTM were developed.  A multi-stage 
perforation process involving delamination, 
debonding, core shear fracture and facesheet 
fracture was used to calculate the quasi-static 
failure load and ballistic limit of the panel. The high 
core crushing resistance of the CorematTM caused 
the distal facesheet to fracture before the incident 
facesheet during panel perforation.  This is in 
contrast to sandwich panel with honeycomb and 
conventional polymeric foams, whereby damage first 
occurs on the incident faceheet. Analytical 
predictions of the quasi-static load-deflection 
response and the dynamic contact force history were 
within 10% of the test results.   
 
 

1 Introduction  

Composite sandwich panels are used 
extensively in the aerospace, marine, transportation, 
and recreational industries because of their high 
specific stiffness and strength, corrosion resistance, 
tailorability, and high fatigue life.  In many of these 
applications, the composite panel may be subjected 
to localized projectile impact.  Therefore, much 
work has been done in an effort to determine the 
failure load, ballistic limit, perforation energy and 
damage induced into composite sandwich panels 
subjected to quasi-static indentation and projectile 
impact [1-3].  While most of this research has been 
experimental, few analytical solutions have been 
proposed because of the complicated interaction 
between the composite facesheet and core during 
deformation and failure.   

The objective of this paper is to present 
analytical models that can be used to describe quasi-
static and impact perforation of an E-glass/vinyl 

ester and CorematTM sandwich panel.  The analytical 
models are derived using experimental results from 
Mines et al. [3].  In Ref. [3], quasi-static and low-
velocity impact perforation tests with a 
hemispherical-ended indenter/projectile were done 
on two types of composite sandwich panels:  a 
woven roving E-glass/vinyl ester skin with 
CorematTM core and an E-glass/epoxy with an 
aluminum honeycomb core.  CorematTM is a high 
density/high energy absorption resin impregnated 
non-woven polyester with 50% microsphere and is 
commonly used in the marine industry [4].  
Although the mechanical properties of the facesheets 
in both sandwich panels were similar in these tests, 
the Coremat had a much higher crushing resistance 
than the aluminum honeycomb.  As a result of this, 
failure in the Coremat sandwich first occurred on the 
back (distal) facesheet while failure in the aluminum 
honeycomb sandwich occurred on the front 
(incident) facesheet.  In earlier work, Lin and Hoo 
Fatt [5] developed an analytical model to describe 
the quasi-static and impact perforation the E-
glass/epoxy with the aluminum honeycomb core.  
This paper is an extension of earlier work to develop 
analytical models for the impact perforation of 
composite sandwich panels.   

 

2 Problem Formulation  

Consider the composite sandwich panel, as 
shown in Fig. 1.  The facesheets are thin orthotropic 
membranes of dimension a x a x h, and the core is a 
crushable polymeric foam of dimension a x a x H.  
This particular core is made of a Coremat, which has 
a core crushing resistance that is linear strain-
hardening [3].  Typical low-density foam cores have 
constant core crushing resistance.  The 
indenter/projectile has a hemispherical-nose of 
radius R and a mass Mo.  The indenter/projectile is 
assumed rigid compared to the sandwich panel.   
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Upon loading, the panel experiences simultaneous 
local indentation and global deformation.  Analytical 
solutions for the local load-deflection as well as the 
global load-deflection will be derived using the 
principle of minimum potential energy in the 
following section.  Experiments [1-3] indicate the 
fracture mechanisms as well as the load-
displacement characteristics of sandwich panels 
subjected to low-velocity impact are similar to those 
observed in quasi-static cases.  Three stages must 
occur for total perforation of the sandwich panel:  (i) 
initial failure during which one of the skins of the 
panel fractures; (ii) penetration of the indenter 
through core and surviving facesheet; and (iii) 
complete panel perforation including frictional 
resistance between the indenter/projectile and 
sandwich panel.  Delamination, debonding, core 
shear fracture, and tensile fracture of incident and 
distal facesheets occur during the perforation 
process.  The order in which these failure 
mechanisms occur depends on geometry and 
material properties.  Simple analytical failure criteria 
have been proposed for composite sandwich beam 
structures [6], but these cannot be directly applied to 
the composite sandwich plate.      
 
3  Static Perforation 
 

Approximate solutions for the quasi-static local 
indentation and global deformation of a composite 
sandwich panel will be derived using the principle of 
minimum potential energy.  Local indentation 
consists of front facesheet indentation and core 
crushing, while global deformation consists of 
bending and shearing of the entire panel. Local 
indentation and global deformation will be 
considered independently, and the total panel 
deformation is considered as the sum of the local 
indentation and global deformation.  When either the 
top or bottom facesheet fails, both local and global 
load-deflection characteristics will change.  
Complete sandwich panel perforation does not occur 
until both facesheets and core have failed.   

 
3.1  Local indentation 
 

Top facesheet indentation is modeled by 
considering a rigid indenter pressing into an 
orthotropic membrane resting on a rigid-plastic 
foundation.  The total potential energy of the system 
is 
 

WDU −+=∏     (1) 

 
 

 
Fig. 1 Geometry of composite sandwich panel. 

 
 
where U is the elastic strain energy of the facesheet, 
D the work dissipated in crushing the core, and W 
the external work done.   

Under moderately large deflection, the 
facesheet responds like an orthotropic membrane.  
The strain energy associated with bending is 
negligible compared to the membrane energy 
associated with in-plane stretching.  In addition, in-
plane deformations, u and v, are negligibly small 
compared to transverse deflections, w.  With these 
two assumptions, the elastic strain energy becomes  
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where ijA is the membrane stiffness of the 

orthotropic facesheet and S is the area.  
The work dissipated in crushing the Coremat is 

given by 
 

∫ 






 +=
S

1 wdSw
H

k
aD     (3) 

 
where 1a  and k are the core’s crushing flow 
strength and strain hardening modulus, respectively.   

The exact solution for the transverse deflection 
of an axi-symmetrical isotropic plate under center 
point loading is used to describe the local 
indentation of the sandwich panel, w: 
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whereδ  s the local indentation under the indenter, ξ  
is the length of the deformation zone, and 

.yxr 222 +=  The total potential energy then 
becomes 
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The total potential energy ∏  is a function of two 
unknown parameters,ξ  and δ .  From the principle 
of minimum potential energy, an equilibrium 

condition occurs when .0
),( =

δ∂
ξδ∏∂

   Minimizing 

the potential energy yields the following load-
indentation response: 
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The first term in the right-hand side of Eq. (7) 
represents membrane resistance of the facesheet, 
while the second term in Eq. (7) is due to the 
Coremat crushing resistance.   
 
3.2  Global panel deformation 
 

Again assuming in-plane deformations are 
negligible compared to the transverse deformation, 
one finds the following expression for the elastic 
strain energy of the symmetric sandwich panel with 
orthotropic facesheet: 
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      (8) 
 
where w is again used to express transverse 

deflections,α andβ are shear angles associated with 

the x- and y-directions, respectively, s
ijD is the 

sandwich bending stiffness matrix, and sA44  and sA55  

are the transverse shear stiffnesses.  The superscript 
“s” is used to denote the sandwich.  

Finite element analysis using ABAQUS 
Standard was used to describe the transverse 
deformation,w , and the shear rotations with respect 

to the x- and y-axis, α  and β , as follows: 
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where ∆∆∆∆  is the global deflection under the indenter 
and oα and oβ are rotations at the center of the 

panel.  The above functions satisfy the boundary 

conditions that 0=w  and 0== βα  at the edges.  
Substituting derivatives of the expressions in 

Eqs. (9)-(11) into Eq. (8) gives the following 
expression for the strain energy: 
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The total potential energy then becomes 
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Minimizing ΠΠΠΠ  with respect to ∆∆∆∆ , oα and oβ  gives a 
closed-form expression for the global load-
deflection response, 
 

∆∆∆∆gKP =              (14) 
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Table 1 gives the facesheet and core material 
properties for the sandwich panels considered in this 
research.  Most of these material properties come 
from Ref. [3], but some have been estimated from 
Refs. [7] and [8].  These material properties were 
used to calculate the local indentation and global 
deformation under static indentation with a 25 mm 
diameter tup.  A comparison of the predicted load-
deflection characteristics under the tup with test data 
is shown from points A-C in Fig. 2.  The total 
deflection 1X  in Fig. 2 is the displacement of the 

indenter.  It is the sum of local indentationδ and 
global deformation ,∆  i.e., .X1 ∆∆∆∆+δ=   Neither 
the front (incident) nor the back (distal) facesheet 
were perforated during this event, and the analytical 
solution for the load-deflection is within 5% of the 
test data. 

 

Table1. Material properties of woven roving E-
glass/vinyl ester and Coremat. 

 E-Glass/ 
Vinyl 
Ester  
                                                       

Firet   
Coremat 

Density (kg/m3)                     1391.3 640 
Thickness (mm) 0.48 9.34 
E11 (+) (GPa)                            17 0.8 
E22 (+) (GPa)                            17 0.8 
E33 (GPa)                                   -- 0.35 
ν12                                                                  0.13 0.36 
ν13                                                                -- 0.57 
ν23                                                              -- 0.57 
ν21                                                               0.13 0.36 
ν31                                                                -- 0.45 
ν32                                                                  -- 0.45 
G12=G21 (GPa)                         4.0  0.29 
G23=G32 (GPa)                           -- 0.068 
G13=G31 (GPa)                           -- 0.068 
σ3f (-) (MPa)                              --  22 
 a1 (MPa)                                    -- 10 
 k (MPa)                                    -- 100 
 ILSS (MPa)                          51.6  51.6* 

 GIIC (J/m2)                          2757  1400 

σ1f (+) (MPa)                           270 -- 
σ1f (-) (MPa)                            200 -- 
σ2f (+) (MPa)                           270 -- 
σ2f (-) (MPa)                            200 -- 
τ12f (+)=τ21f (+) (MPa)             40 -- 
τ13f (+)=τ31f (+) (MPa)                -- 5 
τ23f (+)=τ32f (+) (MPa)               -- 5 
ε1f (+)                                       0.021 -- 
ε3f (-)                                          -- 0.025 
Ea (MJ/m3) 2.7 -- 

    * Interlaminar shear strength is assumed equal to 
E-Glass/vinyl ester. 

 
4   Failure Mechanisms 
 

As mentioned earlier several failure 
mechanisms may occur during local indentation and 
global deformation.  Simple failure criteria are 
derived for each of these mechanisms below.  A 
multi-stage damage model to complete perforation 
will be proposed once the initial failure mechanism 
is determined.  
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Fig. 2 Variation of quasi-static load with penetrator 
displacement. 
 
 
4.1 Delamination/debonding  
 

Although not a catastrophic failure mode, 
delamination between plies and debonding between 
facesheets and core will occur when the interlaminar 
shear strength and bond strength are exceeded.  
Fracture mechanics can be used to calculate 
threshold loads for the onset of delamination and 
debonding.  An approximate solution for the 
delamination threshold load in a quasi-isotropic 
orthotropic plate under static indentation is given by 
Olsson et al. [9] as 
 

3

32 DG
P IIcst

del π=               (15) 

 
where IIcG is the Mode II interlaminar fracture 

toughness and ( ) ,2/1DDD 2211 +η=  

( ) 22116612 DD/D2D +=η .  This formula can be 

used to calculate the threshold load for 
delamination/debonding in the E-glass/vinyl ester 
and Coremat sandwich panel by assuming 

.DD s
ijij =   Under impact loads, the threshold 

delamination load is .213.1 st
del

dyn
del PP =   Separate 

loads should be calculated for delamination and 
debonding because values for the Mode II 

interlaminar shear fracture toughness are generally 
not the same.   

The size of the delamination may found from 
equilibrium considerations and assuming that the 
transverse stress is parabolic through the thickness, 
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where r and z are the radial and through-thickness 
coordinates, respectively. The delamination or 
debonding radius is found by evaluatingrzτ at the 
appropriate interlayer and stetting it equal to the 
interlaminar shear strength of the facesheet or the 
interlaminar bond strength of between the facesheet 
and core. 
 
 
4.2 Core shear failure 
 

Consider local indentation of isolated Coremat 
(no facesheet) by the hemispherical-nose indenter.  
The crushing load under the indenter is given by 

rdr
H
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aP ∫ 





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 +=
ρ

π
0

12                      (17) 

where RrRw 22 −δ+−=  is the local deflection 
under the indenter andρ  is the contact radius of the 
indenter with the top facesheet.  A simple relation 
between local indentationδ and contact radius ρ  is 
given by 
 

22 ρδ −−= RR              (18) 

 
Isolated core shear failure takes place when  

,2 crcc HPP τπρ== where cρ  is the critical 

contact radius at core shear failure and 13ττ =cr  is 

the transverse shear strength of Coremat.  
Integrating Eq. (17), using Eq. (18) to eliminate δ , 
and setting cPP = give the following implicit 

solution for cρ : 
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The corresponding load for isolated core shear 
fracture can be calculated oncecρ is known.  The 

load at which the Coremat sandwich panel 
undergoes core shear failure is higher than the core 
shear fracture load of isolated Coremat since the 
sandwich also has to resist the front facesheet 
membrane resistance.  The core shear fracture load 
for the Coremat sandwich panel is found by 
requiring the second term of Eq. (7) be equal tocP .    
 
4.3 Front/back facesheet failure 
 

One can use strain energy density to predict 
facesheet failure.  The strain energy density in an 
orthotropic facesheet is 

 

)QQ2QQ(
2

1
U 2

xy66yx12
2
y22

2
x11o γ+εε+ε+ε=

             (20) 
 
where xε , yε , and xyγ are in-plane strains and ijQ  

are components of the transformed stiffness matrix.  
When the strain energy density is larger than the 
toughness, i.e, the specific energy absorbed in a 
uniaxial tension test Ea, failure can occur.   

In the back facesheet, the strain varies through 
the sandwich panel thickness and are given by  

,
y

z,
x

z yx ∂
β∂=ε

∂
α∂=ε and .

yx
zxy 









∂
β∂+

∂
α∂=γ  

where Eqs. (10) and (11) are used to evaluate strains.  
According to these expressions, the maximum 
compressive and tensile strains due to global 
deformation occur in the front and back facesheets, 
respectively.  The front facesheet strains may be 
estimated by the average strain method presented in 
Ref. [5].  Since the strains due to local indentation in 
the front facesheet are tensile and opposite in sign to 
the compressive strains caused by global bending, 
the magnitude of the strains in the back facesheet is 
always larger.  Failure due to global deformation 
will therefore first occur in the back facesheet rather 
than the front facesheet.   

Our calculated results show that the strain 
energy density in both front and back facesheets are 
maximum under the indenter and along the 0 and 90o 
directions.  This means cracks in the front or back 
facesheet will emanate in four directions 
corresponding to the 0 and 90o reinforcement 
directions of the woven skins.   

The failure loads for delamination, debonding, 
cores shear fracture, and back facesheet fracture are 
given in Table 2.  The lowest load corresponds to 
core shear fracture, thereby signifying that this takes 
place before fracture of either top or bottom 
facesheets.  Since the core is still trapped between 
facesheets, the local indentation and global 
deformation response remain relatively unchanged.  
After core shear fracture, the contact radius between 
indenter and top facesheet still increases with load 
and the Coremat crushes with almost the same 
characteristics as when there was no core shear 
fracture.  Debonding and delamination then takes 
place at 7.6 and 10.7 kN, respectively.  The back 
facesheet finally fractures at 17.4 kN.  This is about 
25% higher than the experimental failure load at  
14 kN.  Approximate energy methods are generally 
less accurate in predicting stresses and strains than 
they are deflections.    

When the back facesheet fails, new load-
deflection relations must be derived since the panel 
becomes weaker and less stiff.  A progressive or 
multi-stage perforation model will be used to derive 
these new load-deflection relations in the next 
section. 
 
Table 2.  Load and deflection at each failure mode. 

Failure Mode Load 
(kN) 

Local 
Indentation 

(mm) 

Global 
Deflection 

(mm) 
Delamination 10.7 4.5 23.8 

Debonding 7.6 3.8 17.4 

Core Shear 3.8 2.6 8.6 

Back 
Facesheet 

17.4 5.9 36.8 

 
 
4.4  Multi-stage perforation model  
 

The following multi-stage perforation model is 
proposed as illustrated in Figure 3 (a)-(c): 

 
Stage I – Local indentation and global 

deformation up to core shear fracture, as depicted in 
Fig. 3 (a).  Core shear fracture occurs at roughly 45 
degrees with respect to the plane of the panel since 
this corresponds to a plane of maximum shear stress.  
It is easier for the crack to extend horizontally 
thereby debonding the core from the back facesheet 
rather than continue at the 45 degree angle into the 
facesheet.  The transverse bond strength is an order 
of magnitude smaller than the transverse shear 
strength of the facesheet.   
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back 

Stage II – Deformation beyond core shear 
fracture and ending with back facesheet fracture, as 
indicated in Fig. 3 (b).  The core crushing resistance 
used to calculate the local load-indentation response 
remains unchanged since the facesheet are intact.  
Eventually a cross-hair fracture develops on the back 
facesheet, as is also shown in Fig. 3(b).        

Stage II I– Deformation up to front facesheet 
fracture (see Fig. 3 (c)).  Both global and local 
deformation continues after the back facesheet fails.  
The back facesheet petals under the indenter and 
local indentation becomes softer.  A new load-
deformation response will occur in Stage III and will 
be discussed in the next section.  The global panel 
stiffness is little affected by the cross-hair fracture 
and is assumed to be roughly the same prior to back 
facesheet fracture.   
 
4.4 Back facesheet debonding after core shear 
fracture 
 

Back facesheet debonding is triggered by core 
shear fracture at a 45 degree angle. The size (radius) 
of the back facesheet debond λ can be calculated by 
assuming the tensile strength at the interface of the E 
glass/vinylester and Coremat is 73=tσ  [10] and 

the following equilibrium condition: 
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
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(21) 

 
where Hd c += ρ is the radial distance to the start 

of the debonding region and cρ is the critical contact 

radius at core shear fracture.   The right-hand side of 
Eq. (21) is the force exerted on the back facesheet by 
the Coremat in terms ofρ .  Since ρ is related to 

δ by Eq. (18), one can determine the debond radius 
for any load using the load-indentation relation in 
Eq. (7).  Substituting geometric and materials 
properties into Eq. (19) gives 8.7=cρ mm.   

Solving Eq. (21) at the back facesheet failure load 
and deflection gives 9.32=λ mm. 
 
4.5 Local indentation response in Stage III  
 

Local petaling occurs immediately following 
cross-hair fracture in the back facesheet.  The global 

sandwich panel stiffness is little affected by the 
localized petaling, but the local indentation 
resistance is much reduced, especially under the 
indenter.  As shown in Fig. 3 (c), transverse shearing 
rather than compression of the Coremat is occurring 
beneath the indenter.  Once again the minimum 
potential energy is used to predict the local-
indentation response. 

 

 
 
 
 
  
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
 

 
 
 

 
 
 

 
 
 
 
Fig. 3 Multi-stage perforation process: (a) core shear 
failure and back facesheet debonding, (b) back 
facesheet fracture, (c) front facesheet failure and 
perforation. 
 

The total potential energy during Stage III local 
indentation is given by    

( ) δδδ
λ

δπ
λ
δ

P
DHG

C c −−++=∏ 2

2
11213

2

4

1
3

~
8

12
  (22) 

 

   (a) Core shear fracture and back facesheet debonding. 

   (b) Back facesheet failure. 

(c) Front facesheet failure and perforation. 

back 
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where 13G is the core transverse shear stiffness, 

( )∑
=

−−+=
N

j
jj zzEED

jj
1

3
1

32
22

2
1111

~
 is a beam 

equivalent bending stiffness, N is the number of 
plies in the facesheet, and cδ is the local deflection 

at back facesheet failure.  The first term of the 
potential energy is the membrane energy of the front 
facesheet, the second term is the core shearing 
energy and the last term is the bending energy of 
four petals (see Fig. 3 (c)).  Minimizing the potential 
energy yields the following load-indentation 
response: 
 

( )c

DHGC
P δδ
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δπδ

λ
−++=

2
11133

2
1

3

~
16

6

4
      (23) 

  
    The predicted load-deflection response in 

Stage III is indicated by the dashed line in Fig. 2.  
Because the back facesheet failure load was 
overpredicted only a small portion of this graph is 
actually used in the predicted response.  The load 
drop at E corresponds to tensile failure of the front 
facesheet.   
 
5  Low-Velocity Impact Response 
 

    The impact response of the panel is found 
from the two degree-of-freedom mass-spring-
dashpot system shown in Fig. 4.  The projectile mass 
is denoted ,oM  and the effective mass of the top 

facesheet and sandwich are represented by 

fm and ,sm respectively.  Expressions for the 

effective facesheet and sandwich masses are derived 
by assuming the local and global velocities are 
distributed the same as their deformations.  The local 
deformation and global deformation are given by 

21 XX −=δ  and ,X 2=∆∆∆∆  respectively.  The local 

indentation resistance lP  and the global spring 
stiffness Kg are found from quasi-static results and 
adjusted with the strain rate-dependent material 
properties of the facesheet and core.  High strain 
material tests show that the stiffness and strength of 
the E-glass/vinyl ester increases with increasing  
strain rate [11].  High strain rate tests on polymeric 
foams indicate that they are fairly rate insensitive 
[12].  The Coremat material properties are therefore 
assumed to be the same as in quasi-static tests.  In 
addition to the local and global stiffness, a linear 
dashpot is used to represent damping of the 

Coremat.  The damping constant for the dashpot is 
calculated from the impact test results since there is 
no published data on Coremat damping properties.    

 
Fig. 4 Two degree-of-freedom model for impact of 
composite sandwich panel. 
 

The equations of motion for the two-degree-of-
freedom system are 
 

0)()( 211 =−+++ XXcPXmM lfo
&&&&            (24) 

 
and 
 

0)( 2212 =+−−− XKXXcPXm gls
&&&&            (25) 

 
The initial conditions for the two-degree-of-freedom 
system are as follows: ,0)0(X1 =  ,0)0(X2 =  

o1 V)0(X =& , and 0)0(X2 =& , where oV  is the initial 
velocity of the projectile.  

Equations (24) and (25) represent a nonlinear, 
coupled initial-value problem.  An ode solver was 
used in MATLAB to solve for 1X and 2X .  The 
contact force between the projectile and the 
impacted facesheet is given by 
 

1oXMF &&−=               (26) 
 

Each failure event occurring during transient 
deformation would decrease the kinetic energy of 
the system.  The energy absorbed by 
delamination/debonding is the product of the 
interlaminar shear fracture toughness and 
appropriate areas.  These areas may be estimated 
from Eq. (15) and the delamination and debonding 
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loads.  The core shear fracture energy is given also 
given by the product of the core transverse shear 
fracture toughness and its associated fracture area.  
The fracture energy due to petaling of the back and 
front facesheets are estimated from the tear energy 
of the E-glass/vinyl ester.  Expressions for the tear 
energy associated with petaling are taken from Lin 
and Hoo Fatt [5].  

Figure 5 compares the calculated contact force 
with test data for panels impacted by a 10 kg 
projectile and exhibiting neither top or bottom 
facesheet fracture.  A 10% increase in the facesheet 
stiffness and strength is assumed and the damping 
constant is estimated at 159.8 Ns/m.  The analytical 
model is able to predict an average contact force to 
within 10% of the experimental data.  In all of these 
tests, the maximum global deformations were less 
than 36.8 mm, which is about the deflection at which 
the back facesheet would have failed.  It is assumed 
both the stiffness and strength of the facehseet 
would increase with increasing strain rate by the 
same amount such that the global deflection at back 
facesheet failure remains the same in the impact 
tests.  

 

 
 
Fig. 5 Contact force history of impact with 10 kg 
mass projectile at 4.43, 6.26 and 7.67 m/s. 
 

Core shear fracture, delamination and 
debonding energy should be subtracted from the 
kinetic energy of the system at the instant they 
occur.  The time duration of these events are 
instantaneous compared to the sandwich response 
time since these failures constituted brittle or 
unstable crack propagation.  The energy associated 
with delamination and debonding is very small and 
has negligible effect on the solution.  The core 

transverse shear fracture energy could not be 
estimated for lack of data on the core transverse 
fracture toughness.  It is assumed to be negligibly 
small, although it was noticed that there was a load 
drop in the test data at about the load core shear 
fracture would occur.    

With increasing mass or projectile velocity, 
damage would occur.  Figure 6 compares the 
calculated and experimental contact forces for the 
panel with an impact mass of 20 and 30 kg and an 
impact velocity of 6.26 m/s.   

 

 
Fig. 6 Contact force history of impact with 20 and 
30 kg mass projectile at 6.26 m/s. 

 
Impact with the 20 kg just causes fracture of 

the back facesheet when the contact force is at a 
maximum value.  At this time, the global panel 
deflection is almost 36.8 mm.  The final deflections 
and velocities at this time are used as initial 
conditions in a new simulation of the coupled 
equations of motion with the Stage III local-
indentation response instead of the Stage I/II local-
indentation response.  The damping constant is 
assumed to increase to 1000 Ns/m since damping 
associated with localized core shearing is higher 
than damping associated with core crushing.  The 
predicted solution is very close to the test data in 
Stage I/II, but the contact force in Stage III is about 
20% higher than the test results.  This is because loss 
of kinetic energy due to tearing of the back facesheet 
is not accounted for since the velocities at the instant 
of back facesheet fracture are zero at the peak 
contact force.   

Impact with the 30 kg mass causes complete 
panel perforation.  Unlike the 20 kg mass impact, 
back facesheet failure takes place at 8.1 ms, about 



Hoo Fatt M. S.,Sirivolu D.  

10 

4.4 ms before the time peak contact force would 
have occurred.  The tear energy is subtracted from 
the kinetic energy of the back facesheet at this time 
and a new residual velocity of the back facesheet is 
calculated.  The coupled equations of motion are 
then solved again using this residual velocity and the 
corresponding displacements and projectile velocity 
as initial conditions, the Stage III local indentation 
response and the damping constant set to 1000 
Ns/m.  Immediately the local deflection ,XX 21 −  
exceeds the amount to cause front facesheet failure.  
Therefore both back and front facesheet take place at 
the same time.  This predicted result is similar to 
what was found in the test. 
 
6 Conclusions 
 

Analytical models were derived for quasi-static 
and impact perforation of an E-glass/vinyl ester and 
Coremat sandwich panel.  The panel deformation 
was decomposed into local indentation and global 
deformation.  An equivalent two degree-of-freedom 
mass-spring-dashpot system was used to find the 
dynamic response of the composite sandwich panel 
subjected to a drop-weight impact by a rigid 
hemispherical-nose projectile.  Equivalent spring 
resistances were derived from the quasi-static load-
displacement response and adjusted dynamic 
material properties of the facesheet.  Several failure 
modes were considered, including delamination, 
debonding, core shear fracture, and top and bottom 
facesheet failures. 

Analytical predictions of the quasi-static load-
deflection response were within 5% of the test data.  
However, the calculated failure load was about 25% 
higher than the test data.  This type of accuracy is 
typical of using the minimum potential energy to 
approximate the load-deformation response of 
panels.  Analytical predictions of the dynamic 
response, in particular the contact force history, also 
compared very well with the test data.  The two 
degree-of-freedom model was able to simulate the 
correct physics of impact perforation. Without 
failure of either back or front facesheets, predicted 
contact force histories were within 10% of test data.   
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