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“*Applications

- =Nature Monitoring - Civil
(Disaster, Forest Fire, Weather)

=Surveillance & Coverage - Military
(SA, Decision Support, ISR)

*Remote Sensing - Science
(GIS, Ocean Map Building, etc)




+Research Goals
2 Dispatch a swarm of networked UAVs as communication relay

nodes for real-time decision-making support and situational
awareness

UAYV Desired Paths




<+ Research Issues

2 High Bandwidth Communication Links (Max. Throughputs)

JWide Area/Range Coverage (Network Coverage Control)

2Long-Term Communication Relay (Aerial Platforms)




**ODbjective and Approach

1Develop control algorithms that allow UAVs to reposition
themselves autonomously at optimal flight location to
maximize the communications link quality

Concept for Sensor Networking Between Heterogeneous Vehicles



»Control Method
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*+ Real-Time Optimization
» Cost Function : Communication performance
» Constraint . UAV positioning equation

max J, (x,) subjecttox,,, = f (x,u,)

XkeD

Cost Function (J)

L ‘](Xk):‘](Xk’yk’zk’¢k’xnode,i) J

X = communications nodes (x,,Y,,Zz.,d. )= UAV position and attitude (bank)

node,i

Equations of 3D/2D UAV Motion

{ f(Xk):{xm:xk+vcos(z//h)At J

Y = Yk "‘VSin(Wh)At

where V is body-axis speed and v, is the yaw angle of the vehicle




** Real-Time Optimization
» If partial derivatives of the cost function are known

» Solution: Extremum Control (Gauss-Newton Optimization)

[ xk+1:xk+uk:xk—angl(xk)VJ(xk) ]

0°J

(%) w(xo{a‘i" (x,), - ,iJ (xk)j

1,k a n,k

where H, =h;(x,)=

ikOXj

» Issue: 3-D Complex Optimization Problem

J (Xk 1 yk 1 Zk J ¢k 1 Xnode,i) =J (¢k ’”d”)

Whel’e HdH - \/(Xuav _ Xnode)2 + (yuav o ynode)2 + (Zuav _ Znode)2



*» Gradient-Type Extremum Control

» Measured SNR is discontinuous and slow (1 Hz)
» Subjective to noise and cluttered environment
» Affected by the orientation of a UAV (fast maneuver)

{ v' Computation of gradient/hessian values is nontrivial }

s Approaches and Solutions

» Mathematical Communications Modeling
* Provide continuous reference values at fast mode
* Predict a maximum operation point

» Model-Free Adaptive Extremum Control
= Gradient is obtained by numerical method without model
* Robust to noise and cluttered environment






aWhy Signal-to-Noise Ratio Model
[C =W log, (1+ SNR)]: Shannon-Hartley Theorem

where C is channel capacity (bits per second) W - bandwidth (Hz) of the channel

v'Channel capacity (C) is proportional to the SNR and the bandwidth (W)

aSignal-to-Noise Ratio (SNR) Model
P(Bm) . A ,GG, }

P (dBm) ( )

SNR(dBm) =
[ (em axd] L,

|d|| = distance




Effect ofxthe Arrival Angle
on Antenna Pattern Loss

»Antenna Pattern Loss : Function of Arrival Angle y;(t)
70 =-00-0sin(a®-v®) |

which is the angle between the incident ray and horizontal wing of a UAV

Hi (t) = tan_l (Z(t) _ ZnOde'i ) @ (t) _ tan—l y(t) - ynode,i
\/(x(t) —Xooge )2 + (V) = Yooge, )2 ! X() = Xoge




aStatic SNR Map in East-North-Up coordinates
» Fixed altitude, heading & bank angle
» Path loss, Antenna pattern loss

SNR Map
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aUse on-line gradient estimation of SNR function to
drive the set point to its max location

2 0On-line estimator does not require a precise model

SNR

Gradient
Estimator

Compensator
b=a(v1,) a
dt*

Self-Estimating Extremum Control Architecture




Q Perturbation Based Gradient Estimator

The purpose is to make g-g* as small as possible, so that
the output is driven to its minimum J*

How It Works ?

Let y = J (&) be a general mapping function

Assume @ be a current parameter

I 11lC1 r1llCl

Perturbation asin wt around é leads to

~

y=1J (é+ asin wt) ~ J (9)+ ag_JHL@ sin wt

J(H)=J*+J?(6—B*):, J">0

Peak-Seeking Architecture
(Stability Proof by Kristic, 2001)

Applying high-pass filter (differentiator) gets rid of constant term and leads to

0J ,
Yy, ra—| Slhwt

0=0




Demodulating v, with sinwt divides the signal into a low-frequency signal and
high-frequency signal
1 ad

0=0 2

1 ad

=—a—
° =%

cos 2wt
0=0

Applying low-pass filter (integrator) gets rid of the sinusoidal term and provides an
estimate of the gradient of J ()

Denote § = 9—@" the convergence error, and taking a derivative of the errors leads to

2 A 1 VRN~
[9:9 ~ kEaJ (9 )9 J

which become stable with a proper choice of the parameter, a and k i.e., kal "(9*) <0




a How Self-Tuning Extremum Control Works ?

~ Key idea is to integrate an on-line gradient estimator into an
extremum control to get optimal location for UAVs

2 Consider 2-D Motion in {I} Frame

[ o). {X(t) =v(t)cos (i, (1)) 1

y(t) =v(t)sin (v, (t))

where V is body-axis speed and v, is the yaw angle of the vehicle

-1 Motion with Constant Speed

where VvV =const



Then SNR function becomes an implicit function of heading angle

[J = SNR(x(1), y(t)) = SNR(x(y, (1)), y (v, (t)))}

=J (‘//h (t))

Gradient Descent Extremum Control is expressed by
[ Via =W T, VI, ]
where vJ, =48] /oy e R

Assume that SNR is a quadratic function
[J (v (®)=7" +%%(t) ") +w() J

Unknown




»Adaptive Convergence Rate ¢,

Armijo-Wolfe Conditions

J (%, + e, d,) < I (%) + e d VI(X,) where 0<c <c, <1

dTvI(x, +e.d,)>c,d VI(x,)

Adaptive Convergence Control Law

p
O<y<l if AJ ., >7, where
a,.., =y, where
y=1 else A, <z,
\
= { Voo () = 7 it [y, () -y =V/R |<e,
T Ve ) =+ y 2@y (1) other

-




Applying On-Line Gradient Estimator

0J t d ;\
[ Vs = % (V’() ) dt(v‘]lﬁ(t)):“(‘”(t))}

Then the extremum controller is expressed by

f dy(t
com( ) W( ) (t)—(VJ )
= ,ua(t)‘ On-line Gradient Estimator
N J
alt):

Orbit Circle Guidance at Final Steady-Stage

.comt = .ss - / —y. = <
{u(t){. 4 (.) 4 ) if | () W =V/IR| ESS}

W com (t) =Yt U OZ(t) W(t) other

RSS :V/WSS :






Piccolo Plus Autopilots  2-Stroke Gas Engine Engine
Mount

Rascal 110 UAV (ARF Airframe)

lash card with standalone code
jj GNC PC104

Mesh Card

CPU fan
PelcoNet350
video server

Flash card with

Windows
Gateway

PC104

Onboard PC104 & Payload Stack

Rapid Flight Test Design Keys
Reduce development time

Upgrade is flexible

Convenience of high level programming
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Tracking antenna and Wave Relay mesh link ~ Gimbal Camera
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Movie

SNR Model Verification with respect to UAV Trajectories
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SNR Variation with respect to UAV Trajectories



% it Error between Flight Test Data and Simulink Results

SNR Error Plots Between Real and Model Values



+Flight Test (Nov. 20, 2008)

» Validate the designed onboard adaptive self-tuning
controller & the communication models

-
| SELECTED | UDP | Way R lay

SNR
' Ji = f(X¢l//)

Local Host Computer | = == —i——— i — 1

Network Coverage Control using Extremum-Seeking Control
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UAV Trajectory Control for Max Communication Links (SNR)

(Movie)
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Plot of UAV Trajectory over SNR Maps



% in Error between Actual and Simulated SNR Data

1800

1600

1400

1200

1000

E
o
s
=]
=

800

600

400 +

EDD 1 | 1 1 | 1 |
1400 -1200 -1000 -800 -R00 =400 -200 o 200
East (m)

Plot of SNR Errors Between Model and Observation Ones




a0 Communication Propagation Model

Communication propagation model was developed, which
Include the effects of the path loss, antenna pattern loss,
and the orientation of aerial platforms

Proposed models were validated through real flight tests

A Self-Tuning Extremum Control for UAVs Location

On-lie adaptive gradient estimator was integrated into an
extremum control architecture

Proposed self-estimating extremum control is robust to
even low signal-to-noise ratio signal

Effectiveness of the self-tuning optimizer was validated
through real time flight tests

QApplicable for Decentralized Network Coverage Control



