VISION: Predict Microstructure-Sensitive Cyclic $S - e$ Curves!

Key: Include as many Microstructural & Chemistry Variables as Possible
1. REPORT DATE
2003

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
VISION : Predict Microstructure-Sensitive Cyclic &\#56256;&\#56406;&\#56256;&\#56336;&\#56256;&\#56392; Curves !

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Materials and Manufacturing Directorate Air Force Research Laboratory

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 unclassified

 b. ABSTRACT
 unclassified

 c. THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT
 UU

18. NUMBER OF PAGES
 33

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Std Z39-18
OUTLINE

Microstructure Effects Within Grains (g+g)
Using DD SIMULATIONS (S.Rao, T.A.Parthasarathy, D.M.Dimiduk, P.M.Hazzledine)

• PROGRESS : Established a Working Model / Methodology
• CURRENT FOCUS : Connectivity (“Handshakes”)

Using FEM (Y-S Choi, T.A.Parthasarathy, D.M.Dimiduk)

• Unit Cell Model : Identified Key Issues – Refinements

Grain-Grain Interaction
• Polycrystal Model : Using DD results

Grain-Defect Interaction
Discrete Dislocation (DD) Simulations

Random Distribution of Cubes in a box

Spatial Distribution Varies with Plane of Sectioning

(111) Sections
DD : Established 2D Methodology (Low T athermal)

<table>
<thead>
<tr>
<th>Model</th>
<th>Findings: Parametric Studies</th>
<th>Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitate Hardening</td>
<td>Differs from Analytical Model (Reppich)</td>
<td>Other Models?</td>
</tr>
<tr>
<td></td>
<td>Size & V_f Dep. Reasonable (Expt.)</td>
<td>Scatter, ~10% Thresholding</td>
</tr>
<tr>
<td></td>
<td>Real Microstructure Simulated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APB Energy: Primary Factor</td>
<td>Measure/Calc.</td>
</tr>
<tr>
<td></td>
<td>Friction Stress in g Significant</td>
<td>Measure?</td>
</tr>
<tr>
<td></td>
<td>Coherency, Curvature: Negligible</td>
<td></td>
</tr>
<tr>
<td>Multi-Slip WH</td>
<td>3D with cross-slip (Comp. Limited)</td>
<td>Parallel Proc. (CHSSI, AFOSR)</td>
</tr>
</tbody>
</table>

Need “Handshakes” to Meet AIM Goals
DD : Current Focus - Connectivity (“Handshakes”)

- Phase Field Simulations
- TEM
- Pollock-type Model
- FEM Polycrystal Simulations
- Discrete Dislocation Simulations
- Rapid Plug-in?
- APB
- Parameters
- CRSS, \(\hat{g}_o \)
- Saturation, \(\hat{g}_s \)
- Work-hardening, \(A^{ab} \)
- TEM
- Representative Microstructure
- SEM
- Discrete Dislocation Simulations
- Calibration Validation
- Advance Fidelity Of Representation
- Micro Tests
- Atomistic Simulations

3/21/03 - Santa Fe
AFRL
DD : Current Focus - Connectivity (“Handshakes”)

- **Phase Field Simulations**
- **TEM**
- **Pollock-type Model**
- **FEM Polycrystal Simulations**
- **APB**
- **Discrete Dislocation Simulations**
- **SEM**
- **Micro Tests**
- **TEM**
- **Polycrystal**
- **Simulations**
- **Rapid Plug-in?**
- **Representative Microstructure**
- **CRSS, \(\hat{g}_o \)**
- **Saturation, \(\hat{g}_s \)**
- **Work-hardening, \(A^{ab} \)**
- **Advance Fidelity Of Representation**
- **Calibration Validation**
- **Advance Fidelity Of Representation**

3/21/03 - Santa Fe

AFRL
DD Parametric Studies

Fit's to Parametric Studies ⇒ Pollock-type Model
Pollock-type Model: (derived from DD results)

$$\text{CRSS} = \min \left\{ (A_1 + A_2 G_{APB}) + \right.$$

$$+ (C_1 - C_2 G_{APB} + C_3 G_{APB}^2 - C_4 G_{APB}^3) \frac{C}{0.3} \right\}$$

$$+ \left\{ F \left\{ [P_1 + P_2 t_g' + P_3 t_g'^2], \left[M_1 t_g^{M2}\right] \right\} \right.$$

$$\left. + f_{g'} \left(t_{0g'} + k_{g'} d_{g'}^{-0.5}\right) \right\}$$

$$S_Y = (1 - f_{g'}) \left\{ M \left(\text{CRSS} \right) + k_{g+g'} d_{g+g'}^{-0.5} \right\} + f_{g'} \left(t_{0g'} + k_{g'} d_{g'}^{-0.5}\right)$$
Data from Pollock’s slides

Exp.
- **Coh %**
 - 0.1
 - 0.0125
- **Vf-Total**
 - 0.544
- **Vf-t**
 - 0.01
 - 0.006
- **Size-t**
 - 0.334
 - 0.12
 - 0.04175
 - 0.015
- **Vf-s**
 - 0.2
- **Size-s**
 - 1.7
- **Vf-p**
 - 3.82
- **Size-p**
 - 100
 - 50
- **d_{(GH)}**
 - 6
- **sol-g**
 - 50
- **sol-g’**
 - 6

Fit Par.
- **APB**
 - 360
 - 40.00
- **M**
 - 3
- **k_{O}**
 - 500

Schirra (IN100)
- YS (ksi) = 66.3 + 6.43 x ASTM Grain Size #
- + .89 x % Cooling g’
- - 114.5 x cooling g’ size (in microns)
Data from Pollock on IN100 (PWA 1100 - ver.3)

YS (ksi) = 66.3 + 6.43 x ASTM Grain Size + .89 x % Cooling - 114.5 x cooling g' size (in micron)

<table>
<thead>
<tr>
<th>Exp.</th>
<th>oh %</th>
<th>Vf-Total</th>
<th>Vf-t</th>
<th>Size-t</th>
<th>Vf-s</th>
<th>Size-s</th>
<th>Vf-p</th>
<th>Size-p</th>
<th>d_{g-g'}</th>
<th>sol-g</th>
<th>sol-g'</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1</td>
<td>0.6</td>
<td>0.06</td>
<td>0.002</td>
<td>0.34</td>
<td>0.17</td>
<td>0.2</td>
<td>1.2</td>
<td>4.1</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>0.0125</td>
<td></td>
<td></td>
<td></td>
<td>0.0425</td>
<td>0.02125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fit Par.</th>
<th>APB</th>
<th>M</th>
<th>k_g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>360</td>
<td>3</td>
<td>450</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coherency</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/21/03 - Santa Fe</td>
</tr>
</tbody>
</table>
Rene 88 - 1200 F Data (from Pollock’s slides)

Data from Pollock’s slides

<table>
<thead>
<tr>
<th>Coh %</th>
<th>Experimental Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>d (g') (um)</td>
</tr>
<tr>
<td>0.1478</td>
<td>0.2321</td>
</tr>
<tr>
<td>0.1636</td>
<td>0.322</td>
</tr>
<tr>
<td>0.1489</td>
<td>0.32487</td>
</tr>
<tr>
<td>0.1669</td>
<td>0.3346</td>
</tr>
<tr>
<td>0.2738</td>
<td>0.1322</td>
</tr>
<tr>
<td>0.3865</td>
<td>0.2708</td>
</tr>
<tr>
<td>0.2477</td>
<td>0.2416</td>
</tr>
<tr>
<td>0.39</td>
<td>0.2771</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APB</th>
<th>M</th>
<th>k_q</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>3</td>
<td>500</td>
</tr>
</tbody>
</table>

3/21/03 - Santa Fe AFRL
DD: Current Focus - Connectivity (“Handshakes”)

- Phase Field Simulations
- Representative Microstructure
- TEM
- Pollock-type Model
- APB
- FEM Polycrystal Simulations
- Discrete Dislocation Simulations
- Calibration Validation
- Rapid Plug-in?
- CRSS, \(\hat{g}_o \)
- Saturation, \(\hat{g}_s \)
- Work-hardening, \(A^{ab} \)
- Advance Fidelity Of Representation
- SEM
- Micro Tests
- Atomistic Simulations

3/21/03 - Santa Fe

AFRL
SEM Image -> CRSS

<table>
<thead>
<tr>
<th>Bore</th>
<th>Rim</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>t = 275 MPa</td>
<td>t = 275 MPa</td>
<td>t = 265 MPa</td>
</tr>
</tbody>
</table>

![Bore Image](image1)
![Rim Image](image2)
![Web Image](image3)
Current Focus - Connectivity (“Handshakes”)
Atomistic Simulations -> Refinements of DD

DD Neglects Core Effects

Atomistics Include Core Effects

APB Energy
Critical Parameter

CSF, Core Effects Important?
(Cross-slip within g')
Atomistics Simulation Validation Results

- EAM Potential with APB=140, CSF=120, SF(Ni)=60

- FLAT INTERFACE:

 Atomistics
 - Stress for first partial to enter: \((CSF-SF)/b\)
 - Stress for second partial to enter: \((APB)/b\)
 - No diffuse core effect

\[\text{DD} \quad \text{Max Stress} = \text{Stress for 1}^{\text{st}} \text{Disln entry} = (APB)/b\]

\[\Rightarrow \text{APB Energy Sufficient, if APB} \quad (CSF-SF)\]
DD : Current Focus - Connectivity (“Handshakes”)

- Phase Field Simulations
- TEM
- Pollock-type Model
- APB
- Discrete Dislocation Simulations
- Rapid Plug-in?
- FEM Polycrystal Simulations
 - CRSS, \(\hat{g}_o \)
 - Saturation, \(\hat{g}_s \)
 - Work-hardening, \(A^{ab} \)
- TEM APB Representative Microstructure
- Parameters
- \(gg \) Images
- SEM Calibration Validation
- Micro Tests
- Atomic Simulations
- Advance Fidelity Of Representation

3/21/03 - Santa Fe
AFRL
$D^D \to FEM$ Handoffs

\[g^a (r^b) = n b \sqrt{A^{ab} r^b} \]
DD -> FEM Handoffs

Forest Obstacle Model (Franciosi, 1985)

\[
\dot{g}^a = \dot{g}_o + mb \sqrt{\ddot{a}} A^{ab} r^b
\]

Initial Hardness = CRSS

\[
\dot{g}^# = \frac{h^2 mb}{2(\dot{g} - \dot{g}_o)} k_o \ddot{a} l^a g^# + q \ddot{a} g^#
\]

\[q = q_o \frac{\dot{g}_s - \dot{g}}{\dot{g}_s - \dot{g}_o}
\]

Strengthening interaction coefficients
Microstructure Effects Within Grains (g→g)
Using DD SIMULATIONS (S.Rao, T.A.Parthasarathy, D.M.Dimiduk, P.M.Hazzledine)

- PROGRESS: Established a Working Model / Methodology
- CURRENT FOCUS: Connectivity ("Handshakes")

Using FEM (Y-S Choi, T.A.Parthasarathy, D.M.Dimiduk)

- Unit Cell Model: Identified Key Issues – Refinements

Grain-Grain Interaction
- Polycrystal Model: Using DD results

Grain-Defect Interaction
FEM : Unit Cell Model (Single Grain)

- Evaluated Unit Cell Approach using A-B Formalism
 - Yield Point -> determined by geometrical constraint
 (different mechanism than DD)
 - W-H beyond Yield -> strain-gradient term dominant

- Refinement : Relaxation of Elastic \mathcal{G} (using DD results)
FE Simulation of (g+g') : Unit Cell Approach

\[
\# = \#_0 \text{sgn}(t^a) \hat{t}^a |t^a|^{1/m} \quad \text{with} \quad \# = \frac{h^2 m^b}{2(\hat{g} - \hat{g}_o)} k_o \ddot{a} |l^a| \quad \text{Only } l^a \text{ (GND) contribution to slip resistance.}
\]
Effect of Strain-Gradient Parameter: k_o

Experimental data (from Busso / ALSTOM, 1998)

$S_{[001]}$ (Pa)

$\sigma_{[001]}$

$\hat{g}_o = 60 \text{MPa}, m = 0.03, \mu = 0.001$

Elastic-Plastic Transition

No Evolution of Slip Resistance
Effect of \hat{g}_o

$\hat{g}_o = 374 \text{ MPa}, k_o = 2$

$\hat{g}_o = 60 \text{ MPa}, k_o = 2$

Experimental data (from Busso / ALSTOM, 1998)

$\hat{g}_t + \Delta t = \hat{g}_t + \Delta t \hat{g}_t$
Length Scale Effects: \(g \) Size, \(V_f \)

- Constant \(g \)-ppt. \(V_f = 68\% \)
- Change \(g \)-size (g channel width)

![Graph 1](image1)

- Constant \(g \)-size = 0.52 \(\text{m} \)
- Change \(g \)-\(V_f \) (g channel width)

![Graph 2](image2)

\[\hat{g}_o = 60 \text{ MPa}, m = 0.03, \hat{\rho}_o = 0.001, k_o = 5 \times 10^{-5} \]
Effect of g_0 3D Geometry

- Elastic g_0 + Elasto-viscoplastic g
- $g_0 = 60 \text{MPa}, m = 0.03, g_0^f = 0.001, k_0 = 0$ for Viscoplasticity
Effect of g_i 3D Geometry

- Elastic g_i + Elasto-viscoplastic g
- $\hat{g}_o = 60\text{MPa}$, $m = 0.03$, $\dot{\gamma}_0 = 0.001$, $k_o = 0$ for Viscoplasticity

Graphs showing the stress-strain relationship for g, g_i, and $g_i + g$.
The onset of softening accompanied by the massive shears localized along the edges and the corners in the \(g_g \) interfaces.

- Break down of geometric (kinematic) constraints
- Need to compare with experimental observations at this particular T-range.

\[V_f = 68\%, \ g_{\text{size}} = 0.52 \, \text{nm} \]
\[\hat{g}_o = 60 \, \text{MPa}, \ m = 0.03 \]
\[\hat{g}_o = 0.001, \ k_o = 5 \times 10^{-5} \]
FEM : Unit Cell Model (Single Grain)

- Evaluated Unit Cell Approach using A-B Formalism
 - Yield Point \(\rightarrow\) determined by geometrical constraint
 - captures \(V_f\) Effect
 - W-H beyond Yield \(\rightarrow\) strain-gradient term dominant
 - captures size effect during work-hardening

- **Refinement : Allow Plasticity in \(\gamma\) (using DD results)**
 - DD captures APB cutting,
 - FEM captures Geometrical Constraint effect and Work Hardening
OUTLINE

Microstructure Effects Within Grains (\(g \leftrightarrow g\))
Using DD SIMULATIONS (S.Rao, T.A.Parthasarathy, D.M.Dimiduk, P.M.Hazzledine)

- PROGRESS : Established a Working Model / Methodology
- CURRENT FOCUS : Connectivity (“Handshakes”)

Using FEM (Y-S Choi, T.A.Parthasarathy, D.M.Dimiduk)

- Unit Cell Model : Identified Key Issues – Refinements

Grain-Grain Interaction
- Polycrystal Model : Using DD results

Grain-Defect Interaction
FEM : Polycrystal Model

• FY 2003 Goal : Combine DD with FEM to Build 1st gen. \((\mathfrak{q}\mathfrak{g})\) Polycrystal model

 – Wigner-Seitz Cell (Beaudoin) – (144 grains, 12 el/gr)
 – Use DD results for \(g_0\) and \(A_{ij}\)
 – A-B model for Strain-gradient Terms

• Beyond FY 2003

 – Build/Borrow \(\mathfrak{g}\) const. Law to Model IN100 type alloy
 – Real Image 3D Polycrystal Models
 • Adaptive Meshing of Realistic Microstructures
Building Bridges: Inputs for Pollock-type Model

\[s_y(C_i, T, \epsilon, \delta, \ldots) = \]

Needs Development Within Atomistics

\[f_g \frac{T_o}{C T} \frac{dc}{dC_i} \frac{C_i}{C} + Mf_i \frac{G_{APB}}{b} \]

Obtain by Dislocation Kinetics Simulation

\[M \frac{4}{\rho^{1.5}} \frac{T_L}{bd_s} \sqrt{f(1 - f_p)} \frac{\rho d_s g}{2T_L} - \frac{1}{\rho} \]

- **strong coupling**

\[M \frac{G}{2b} \sqrt{2bd_s f(1 - f_p)} \frac{4}{\rho^{1.5}} - \frac{Gf(1 - f_p)\alpha}{2b} \]

- **weak coupling**

Obtain by FEM Simulation of Grain Distribution Effects

\[+ (1 - f_p) k_y \frac{1}{\sqrt{d_g}} + f_p \frac{\dot{\epsilon}}{\epsilon} (T)_{Ni,Al} + \frac{\dot{\alpha}}{\epsilon} \frac{dc}{dC_i} C_i \frac{\alpha}{\epsilon} + f_p k_y \frac{1}{\sqrt{d_g}} \]

3/21/03 - Santa Fe
Building Bridges ...

TO

- Inputs for Pollock-type Model 3-6 mo.
- Fatigue Models (McDowell,..) 1-2 yrs

FROM

- Constitutive Laws (Parks, Cuitino/Ortiz, ..) 3-6 mo.
- 3D Voronoi Meshing (Parks, Gosh, ..) 3-6 mo.