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ABSTRACT 
Volunteer computing is a powerful platform for solving complex 
scientific problems. MindModeling@Home is a volunteer 
computing project available to the cognitive modeling community 
for conducting research to better understand the human mind. We 
are interested in optimizing search processes on volunteer 
resources, yet we are also interested in exploring and 
understanding changes in model performance across interacting, 
non-linear mechanisms and parameter spaces. To support both of 
these goals, we have developed a stochastic optimization 
approach and integrated it with MindModeling@Home. We tested 
this approach with a cognitive model on a sample parameter 
space, demonstrating significant decreases in computational 
resource utilization and search runtime, while also providing 
useful visual representations of performance surfaces. Future 
work will focus on scaling the technique to more volunteers and 
larger parameter spaces, as well as optimizing the performance of 
the search algorithm in regards to the challenges inherent with 
volunteer computing. 

Categories and Subject Descriptors 
G.1.6 [Mathematics of Computing]: Optimization – global 
optimization, stochastic optimization.  

General Terms 
Algorithms and Performance. 

Keywords 

Stochastic optimization, global optimization, parameter space, 
volunteer computing, search, BOINC. 

1. INTRODUCTION 
The cognitive science community aims to understand the nature of 
the human mind. Towards this end, it is common to develop 
software-based cognitive models that instantiate a theoretical 
account of some aspect of human cognition. Exercising the model 
reveals performance and behavior characteristics that are used for 
validation, prediction, and prescription. 

Many cognitive scientists construct models within the framework 
of a cognitive architecture, which provides theoretically 
motivated constraints based on years of psychological research. 
These constraints represent the invariant characteristics of the 
human cognitive system that are assumed to be relatively 
persistent and consistent across individuals, contexts, and time. 
Along with these constraints come architectural parameters that 
can influence model behavior in meaningful ways, such as 
influencing the rate at which the model “thinks” or how easily it 
can recall knowledge [2]. The parameters constitute a search 
space, and while the number of dimensions and increments across 
them can vary, most of our spaces are between 100 thousand and 
2 million parameter combinations. The time it takes to test a 
model at a particular parameter combination can vary greatly 
depending on the task and context, ranging from a fraction of a 
second to hours. Furthermore, the results are often highly 
stochastic as a reflection of human performance, and the model 
may need to be run hundreds of times to determine the central 
tendency. 

Large parameter spaces with long running models require 
significant amounts of computational resources to search [6]. At 
the time of this writing, volunteer computing resources 
contributing to Berkeley Open Infrastructure for Network 
Computing (BOINC) projects boast 3.1 petaflops of 
computational power [3], which makes volunteer computing a 
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tempting resource for the cognitive modeling community’s large 
computational demands. To avail these resources, we have 
developed MindModeling@Home [8]  

2. MINDMODELING@HOME 
The MindModeling@Home system can be used to simulate a 
cognitive model on a large number of volunteer resources, thereby 
decreasing the time required to explore and enumerate a 
parameter space compared to limited, costly local resources. 
MindModeling@Home is an implementation of a BOINC task 
server on our own hardware, with the addition of a batch 
management system, a domain specific client application, and a 
web interface for model submission. Using the web interface, the 
modeler uploads their model, specifies the parameter space to be 
searched, selects the version of the cognitive architecture to be 
used, and then submits the batch. The batch processing system is 
responsible for dividing the parameter space into work units, 
which are then submitted to the BOINC task server.  

Next, BOINC clients running on MindModeling@Home 
volunteer computers download the client application and one or 
more work units to be computed. The client application is 
responsible for running the model using the selected cognitive 
architecture and collecting the results. Once the computation of a 
work unit is complete, the BOINC client sends the results back to 
the server. 

Upon receiving results from a volunteer resource, the 
MindModeling@Home batch system processes and aggregates the 
data. The batch system tracks how much of the search space has 
been explored, uses this to determine when the job is complete, 
and presents the batch progress to the modeler via the web 
interface. 

Even with large numbers of volunteer resources, searching 
cognitive model parameter spaces can still be computationally 
overwhelming. To reduce the computation demand, we have 
experimented with intelligent search and exploration algorithms 
integrated with the MindModeling@Home framework.  

3. OPTIMIZATION STRATEGIES 
There are many optimization strategies to choose from that work 
well within the context of a workstation. A smaller set generalizes 
well to high performance computing (HPC) clusters, and an even 
smaller set generalizes well to volunteer computing networks.  

Volunteer resources present a challenging computational context 
because volunteers have a great deal of systemic control—they 
pull down work when they like, and they provide results if and 
when they like. Yet optimization algorithms by nature are 
designed to be in control—they measure samples, make a 
decision, measure more samples, etc. If the optimization 
algorithm lacks enough completed samples to make a decision—
perhaps because a volunteer computer was retasked or shut off-- 
the algorithm cannot move forward, and cannot generate 
meaningful new work for volunteers until time-outs provoke 
remedial measures. Parallelization declines, and overall efficiency 
is lost. 

Other BOINC projects have confronted this challenge with 
various search optimization algorithms. MilkyWay@Home, for 
example, has developed a parallel genetic algorithm as well as a 
particle swarm optimization for BOINC [5]. POEM@HOME has 
published results using several techniques: the stochastic 

tunneling method, the basin hopping technique, the parallel 
tempering method, and an evolutionary approach [10].  

The optimization techniques used are telling, because they all fall 
under the broad category of stochastic optimization. The 
stochastic optimization family of techniques intentionally 
introduce and rely upon random elements in the search process. 
Because work generated includes random elements, there is no 
limit to the amount of work available at any time for volunteers 
(i.e. we can generate limitless random numbers). Furthermore, 
because decisions are based on stochastic information, these 
algorithms are typically robust to incomplete data that might 
result when a volunteer fails to return results in a reasonable 
amount of time. Stochastic optimization approaches, it seems, are 
a good match for volunteer resources. 

4. CELL 
The approaches adopted by other volunteer projects work well for 
searching, but they do not fully meet our requirements. We are not 
only interested in searching for optima, but it is also useful in our 
line of research to visually explore the parameter space [7]. This is 
an important distinction because most optimized search strategies, 
such as those mentioned above, tend to localize sampling, which 
makes it difficult to produce a plot of the full parameter space..  

Therefore, we have developed a new methodology and 
implementation called Cell that samples broadly enough in the 
parameter space to produce visualizations while simultaneously 
searching for optima. The process is fairly simple: we begin by 
sampling the entire parameter space with a stochastic uniform 
distribution. As volunteers return the results of their model runs, 
Cell estimates the best fitting hyper-plane for each dependent 
measure via simple linear regression. 

A single flat hyper-plane poorly approximates a typical cognitive 
model parameter space, so once the sample count has reached a 
critical threshold, the parameter space is split in half along its 
longest dimension. The critical threshold for splitting is currently 
defined as 2x the number of samples required to produce good 
regression predictions, as defined by Knofcyznski and Mundfrom 
[9], 

Following the first split there is a single bend in the space, as each 
resulting half is independently analyzed for best fitting hyper-
planes. At this point the algorithm skews the sampling distribution 
toward the half of the space that better fits human performance. 
Once volunteers return enough samples, it too will split, the 
sampling distribution will again be adjusted, and the process 
continues until the best fitting section of the space is too small to 
split (a resolution defined by the modeler). The resulting structure 
of divisions and analyses is often called a regression tree [1]. 

While Cell has met with some success on workstation and high 
performance computing clusters, it was unclear whether the 
integration challenges with MindModeling@Home would 
compromise performance (these issues are discussed below). To 
test Cell’s efficiency on MindModeling@Home, we ran the same 
cognitive model twice, once with Cell and the other as a full 
combinatorial mesh. The space was comprised of two parameters, 
each with 51 divisions, producing a mesh of 2601 nodes. 
Although Cell will sample anywhere, it was configured to split the 
space along the same grid lines used in the full combinatorial 
mesh, 



 

Because the cognitive models produce stochastic results, the full 
combinatorial mesh sampled each node 100 times to obtain a 
reliable measure of central tendency. While not critical for visual 
exploration of the full space, an accurate central tendency is 
necessary for searching for the best model fit. To control the test 
and measure resource utilization, four dedicated local machines 
with two cores each substituted for volunteer resources. 

5. RESULTS 
During our test we tracked CPU utilization, computational 
efficiency, and wall clock time. We also tested the quality of the 
search and visualization results. Table 1 shows the difference in 
performance between the two runs. 

Table 1. Performance comparison between the full 
combinatorial mesh and Cell. Better performance is bolded. 

Cell demonstrated a large computational savings in terms of 
model runs, requiring only 6.5% of the full combinatorial mesh. 
Wall clock time was also improved, although not quite as 
dramatically with a 74% reduction in time.  

The volunteers utilized an average of 44% less CPU resources 
during the course of the Cell run versus the full combinatorial 
mesh. While this was not unexpected (see Discussion), a higher 
CPU utilization is desirable to make the most of available 
resources. On the server side CPU utilization was slightly less 

with Cell, but additional tests will be required to determine 
whether the difference is significant and, if so, identify the root 
cause. 

To test the effectiveness of the search algorithm at identifying the 
optimal fit of the model to human data, we reran the model 100x 
using the predicted best-fitting parameter values from each 
approach. We then computed the correlation between model 
performance and human performance for two key task dependent 
measures: reaction time and percent correct. Although the full 
combinatorial mesh produced better results than Cell, Cell’s 
results were still very usable and well worth the computational 
savings.  

For our cognitive modeling work the parameter space outside of 
the optimal fitting area serves a descriptive purpose, so capturing 
the qualitative behavior of the parameters is a higher concern than 
quantitative predictions. Figure 1 shows a comparison of the 
parameter spaces constructed with full combinatorial mesh versus 
Cell. We also computed the quantitative difference as shown in 
Table 1 under the heading “Overall Parameter Space.” The RMSD 
values for the two main dependent measures were calculated by 
running a second full combinatorial mesh and comparing it to the 
first full mesh and to interpolated Cell data.  

6. DISCUSSION 
Although the results are promising, the model only represents one 
example, and the volunteer count was intentionally limited so that 
we could monitor resource utilization. We suspect that the 
optimization benefits will be directly related to the model 
performance, the number of volunteers, and the size of the work 
unit (i.e., how many samples are computed) for volunteers.  

For example, consider 500 volunteers, all available to search a 
new model. Traditionally, MindModeling@Home sizes work 
units to last about an hour, which for a fast model like the one we 
used could amount to 6000 samples. 500 volunteers with 6000 
samples each would require Cell to generate a uniform 
distribution with 3 million samples to accommodate the available 
resources. If it only takes 100 samples to make a decision and 
split the space, there will be approximately (3,000,000 – 100) / 2 
samples calculated unnecessarily in the down selected half of the 
space. The data will still be useful for visualization, or in the event 
that the search reselects the other half of the space, but generally 
this is an undesirable behavior. 

To mitigate this issue we used small work units for the Cell run, 
but this approach comes with a price. For fast models like the one 
used in our test, small work units decrease the computation / 
communication time ratio on the volunteer resources, thus 
decreasing efficiency. The smaller ratio with the Cell run is 
evidenced by the 44% reduction in CPU utilization on the 
volunteers. Most of our cognitive models are much slower than 
the one used in this test, however, so in practice the issue may be 
alleviated or eliminated, depending upon the specific model. 

Our approach to integrate Cell with MindModeling@Home 
required that Cell maintain a stockpile of work for volunteers. It 
was difficult to keep enough work units ready for distribution, 
without requesting more samples than were needed to split the 
space. We set the amount of samples sent out to remain between 4 
– 10 times the number required, in consideration that some clients 
would take longer than others to return results, and to maintain 
enough work to keep the clients busy computing samples a greater 

Metric Full Combinatorial 
Mesh Cell 

Implementation Efficiency 

Model Runs 260,100 17,100 

Search Duration (hours) 20.13 5.23 
Avg. CPU Utilization 

(Volunteers) 68.5% 24.6% 

Avg. CPU Utilization 
(Server) 6.43 2.59 

Optimization Results 

R – Reaction Time .97 .97 

R – Percent Correct .94 .90 

Overall Parameter Space 

RMSE – Reaction Time 28.9ms 128.8ms 

RMSE – Percent Correct .7% 1.3% 

Figure 1. Full combinatorial mesh parameter space, left, 
compared with the Cell parameter space, right. The best 

fitting data are towards the top, which is more finely detailed 
due to more intense sampling.  
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percentage of the time. This way, although some computational 
work may have been superfluous, the overall run time decreased, 
and volunteer requests for new work were fulfilled more 
frequently. In the future, a tighter integration between Cell and 
BOINC that generates work dynamically upon request should help 
address this issue. 

RAM utilization is another consideration when using Cell. 
Because Cell is constantly receiving new data and recomputing 
regression planes, it must maintain the data in memory for 
efficiency. In our test, Cell’s RAM usage was as expected (about 
200 bytes per sample), but even this modest amount can become a 
limitation with tens of millions of samples. 

Although we ran Cell on our servers, the Rosetta@home project, 
which aims to predict protein structures, uses a different approach. 
In their case, many volunteers make rough predictions of the same 
protein structure using a stochastic optimization technique. The 
results returned include many different predictions with varying 
degrees of success, and the best prediction is then plucked out 
from among them [4]. For MindModeling@Home, this approach 
may be desirable to reduce CPU and memory loads on the servers. 
In this scenario, Cell would run on the volunteer resources. By 
reducing the threshold of samples required to split the space, best 
fits would be predicted much more quickly, albeit more roughly. 
We could then sift through all the results returned to determine the 
best overall fit, just like Rosetta@home. This is an interesting 
option that we may explore in the future. 

7. CONCLUSION 
Optimizing search and exploration with volunteer computing 
resources is a challenging problem. Like other volunteer 
computing projects, we have found that this integration is best 
achieved through stochastic optimization algorithms. Our 
algorithm differs from others used in the volunteer computing 
community in that we characterize the full parameter space as 
well as searching for best fits. This algorithm was successfully 
integrated with our volunteer computing project, 
MindModeling@Home, and the test results were promising. 

Future refinement will focus on tuning the relationship between 
work unit size, model performance, and the amount of volunteer 
resources available. Understanding this relationship and exploring 
variations to our current approach will be the focus of future 
work. 

8. ACKNOWLEDGMENTS 
The views expressed in this paper are those of the authors and do 
not reflect the official policy or position of the Department of 
Defense or the U.S. Government. This research was sponsored by 
grants 07HE01COR and 10RH04COR from the Air Force Office 
of Scientific Research, and by the Warfighter Readiness Research 

Division of the Air Force Research Laboratory’s Human 
Effectiveness Directorate. 

9. REFERENCES 
[1] Alexander, W. P., & Grimshaw, S. D. 1996. Treed 

Regression. Journal of Computational and Graphical 
Statistics, 5, 156-175. 

[2] Anderson, J. R. 2007. How can the human mind occur in the 
physical universe? Oxford University Press, Oxford, UK. 

[3] BOINC, 2010. Retrieved January6, 2010, from Berkeley 
University of California: http://boinc.berkeley.edu/. 

[4] Das R, Qian B, Raman S, Vernon R, Thompson J, Bradley P, 
Khare S, Tyka MD, Bhat D, Chivian D, Kim DE, Sheffler 
WH, Malmström L, Wollacott AM, Wang C, Andre I, Baker 
D. 2007. Structure prediction for CASP7 targets using 
extensive all-atom refinement with Rosetta@home. Proteins 
69 Suppl 8, 118-28. 

[5] Desell, T., Magdon-Ismail, M., Szymanski, B., Varela, C., 
Newberg, H. and Cole N. 2009. Robust Asynchronous 
Optimization for Volunteer Computing Grids. In 5th IEEE 
International Conference on e-Science (December 2009) 
Oxford, UK, 263-270. 

[6] Gluck, K. A., Scheutz, M., Gunzelmann, G., Harris, J., and 
Kershner, J. 2007. Combinatorics meets processing power: 
Large-scale computational resources for BRIMS. In 
Proceedings of the Sixteenth Conference on Behavior 
Representation in Modeling and Simulation (Orlando, 
Florida). Simulation Interoperability Standards Organization, 
73-83. 

[7] Gluck, K. A., Stanley, C. T., Moore, L. R., Reitter, D., 
Halbrügge, M. 2010. Exploration for Understanding in 
Model Comparisons. Under review, Journal of Artificial 
General Intelligence. 

[8] Harris, J., Gluck, K. A., Mielke, T., and Moore, L. R. 2009. 
MindModeling@Home … and Anywhere Else You Have 
Idle Processors [Abstract]. In A. Howes, D. Peebles, & R. 
Cooper (Eds.) Proceedings of the Ninth International 
Conference on Cognitive Modeling (Manchester, United 
Kingdom), paper 249. 

[9] Knofcyznski, G. T., & Mundfrom, D. 2008. Sample sizes 
when using multiple linear regression for prediction. 
Educational and Psychological Measurement. 68, 431-442. 

[10] Schug, A., Verma, A., Wenzel, W., and Schoen, G. 2005. 
Biomolecular structure prediction with stochastic 
optimization methods. Adv. Eng. Materials 7, 1005. 

 

 


