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Abstract.

We present direct measurements of the limb-darkened intensity profiles of the late-type giant stars

HR 5299, HR 7635, and HR 8621 obtained with the Navy Prototype Optical Interferometer (NPOI) at the Lowell
Observatory. A triangle of baselines with lengths of 18.9m, 22.2m, and 37.5m was used. We utilized squared
visibility amplitudes beyond the first minimum, as well as triple amplitudes and phases in up to 10 spectral
channels covering a wavelength range of ~650nm to ~850nm. We find that our data can best be described
by featureless symmetric limb-darkened disk models while uniform disk and fully darkened disk models can
be rejected. We derive high-precision angular limb-darkened diameters for the three stars of 7.44 mas £ 0.11 mas,
6.18 mas + 0.07 mas, and 6.94 mas + 0.12 mas, respectively. Using the HIPPARCOS parallaxes, we determine linear
limb-darkened radii of 114 Rp £ 13R@, 56 Re =4 R, and 98 Rg + 9 R, respectively. We compare our data to a
grid of Kurucz stellar model atmospheres, with them derive the effective temperatures and surface gravities without
additional information, and find agreement with independent estimates derived from empirical calibrations and
bolometric fluxes. This confirms the consistency of model predictions and direct observations of the limb-darkening
effect.
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1. Introduction

For a detailed understanding of stellar atmospheres and
stellar evolution, it is of essential importance to obtain ac-
curate observational estimates of stellar surface structure
parameters on all scales. These parameters include diam-
eters, limb-darkening profiles, photospheric asymmetries,
and special features like hot spots. Model atmospheres
are mainly constrained by observations of stellar spectra.
Direct measurements of the limb-darkening profile can, in
principle, provide an independent estimate of the temper-
ature change with continuum opacity and, thus, an in-
dependent observational verification. So far, the detailed
intensity profile and the whole variety of additional sur-
face structure parameters could only be observed in the
case of the Sun. Today’s interest, however, includes other
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phases of stellar structure and evolution, for instance stars
in late evolutionary phases (Manduca et al. |19_77| Scholz &
Takeda [[987, Hofmann & Scholz [199g, Jacob et al. 00().
These stars might exhibit asymmetric (e.g. Wittkowski et
al. [1998) and even highly fragmented (e.g. Weigelt et al.
199§) mass-loss events, which are believed to be triggered
by the conditions on the stellar surfaces. Unfortunately,
direct measurements of surface structure parameters are
rare. While diameters have so far been obtained for sev-
eral hundred stars with interferometric and lunar occulta-
tion techniques, the second-order effect, limb-darkening,
has been directly observed for only a very limited number

of stars (Hanbury Brown et al. [[974; Haniff et al. [995;
Quirrenbach et al. [[99; Hajian et al. [[99§). Additional

surface features have been detected on the apparently
largest supergiants o Ori, o Sco, and « Her contributing
with 5% to 20% to the total source fluxes at optical wave-
lengths (Buscher et al. [[990; Wilson et al. ; Gilliland

& Dupree [199¢; Burns et al. [[997; Tuthill et al. ;
Young et al. 2000)).
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The NPOI, located near Flagstaff, Arizona, is espe-
cially designed for imaging of stars and their environments
and is described in detail by Armstrong et al. ([L99§).
The methods of ”baseline bootstrapping” and ”wave-
length bootstrapping” (see Roddier , Quirrenbach et
al. , Hajian et al. ) can be used in order to de-
tect weak fringe contrasts, i.e. low visibility values, on re-
solved stars by detecting the higher-contrast fringes on a
chain of shorter effective spacings which comprise the long
baselines. Hajian et al. demonstrated that boot-
strapping with the NPOI astrometric subarray enabled
the measurement of visibility values of a resolved stellar
disk beyond the first minimum. By analyzing NPOI triple
visibility products, they verified that the intensity profiles
of a Ari and « Cas deviate from uniform disks due to the
effect of limb-darkening.

Here, we use NPOI’s bootstrapping ability and apply
an improved bias correction in order to utilize squared
visibility amplitudes, in addition to triple amplitudes and
closure phases, of three much fainter but well resolved late-
type stars for spatial frequencies on both sides of the first
minimum. Since there are three squared visibility ampli-
tudes for each triple amplitude, more information can be
used for the analysis of stellar intensity profiles. In an at-
tempt to check the consistency of direct observations and
model predictions of the limb-darkening effect as a func-
tion of continuum wavelength, effective temperature, and
surface gravity, we compare our multi-wavelength inter-
ferometric data to a grid of Kurucz stellar model atmo-
spheres. In addition, we determine high-precision limb-
darkened diameters.

2. Observations

Interferometric observations of the three late-type giants,
HR 5299 (M4), HR 7635 (K5), and HR 8621 (M4), were
performed with the NPOI using the configuration de-
scribed by Benson et al. ([[997).

The center, east, and west siderostats of the astromet-
ric subarray were used with effective apertures of 12.5 cm.
They provide baselines with lengths of 18.9m, 22.2m,
and 37.5m at azimuths (measured east from north) of
—67°5, 63°6, and 86°0, respectively. The three afocal
beams of light are reduced in diameter and sent into vac-
uum delay-lines for compensation of optical path differ-
ences (OPDs) before they are combined pairwise using
beamsplitters. Three of the afocal output beams corre-
sponding to the three baselines are dispersed by a prism,
focused by a lenslet array onto 32 optical fibers, and de-
tected by avalanche photodiodes (APDs), covering a spec-
tral range from 450nm to 850nm. The fringe packet is
detected through modulation of the OPDs and is kept
centered close to zero residual delay using the method of
”group delay fringe tracking” (Armstrong et al. )

Table [If lists names and characteristics of the observed
stars together with the observing dates, the number of
obtained scans, and the names and estimated diameters
of the calibrator stars. During a scan of 90s, the pho-

ton count rate for every channel is determined in eight
temporal bins (synchronous with the delay line modula-
tion), which sample a fringe every 2ms. After each scan,
a background measurement was taken on blank sky near
the star. Immediately before or after each scan of a pro-
gram star, a scan on one of the calibrator stars as specified
in Table ﬂwas recorded. The calibrator stars were chosen
to be located near the appropriate program stars on the
sky. Their diameters were estimated using a calibration
obtained by Mozurkewich et al. ([[991) based on the ap-
parent visual magnitude and the (R — I) color index and
are small enough so that possible errors in this estimate
do not noticeably affect the calibration of our much larger
resolved program stars.

In order to compensate for detection noise bias terms
(see Sect.H), incoherent (i.e. fringeless) data on several
stars covering a range of apparent visual magnitudes were
recorded on July 22, 2000, by moving the delay lines off
the fringe packet.

The signal-to-noise ratio of the measured visibilities
decreases for spectral channels with shorter wavelengths
owing to their narrower bandwidths (the channels are
equally spaced in wavenumber), poorer seeing, and the
red color of the observed stars. Therefore, only the 10 red-
dest channels were used for the data analysis of HR 7635,
and the 5 reddest channels for that of the fainter stars
HR 5299 and HR8621. The central wavelengths of the
10 reddest spectral channels are known to within about
1% to be (852, 822, 794, 769, 745, 723, 702, 683, 665,
649) nm, while their bandwidths range from ~31nm for
the 852nm channel to ~16nm for the 649nm channel.
These passbands mainly provide continuum observations
and are not dominated by spectral features. The absorp-
tion band/continuum ratio is relatively small for the K5
star and the strong TiO bands at 671 nm and 714nm are
not covered by the spectral channels used for the M4 stars.
However, for the M4 giants, some spectral channels are af-
fected by molecular absorption bands, which will be taken
into account.

Figure [l shows the obtained coverages of the uv-plane
for HR 5299, HR 7635, and HR 8621 based on all observa-
tion dates and those spectral channels used for the data
analysis. These spatial frequencies range up to a radius
of ~ 300 cycles/arcsecond, which corresponds to a spatial
resolution of 3.3 mas.

3. Data reduction and calibration

The raw data were processed, reduced, and calibrated as
described in detail by Hummel et al. () This process
includes (1) calculation of the real (X;) and imaginary (Y;)
parts of the complex visibility for each baseline ¢ and each
spectral channel by Fourier transform of the bin counts
as a function of time, (2) calculation of the squared visi-
bility amplitudes (|V;|?) and amplitude (|V123]) and phase
(123, " closure phase”) of the complex triple product, av-
eraged over the 1s intervals, (3) editing of the 1s data, (4)
further averaging over a scan of 90s, and (5) calibration
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Table 1. Names (bright star catalog number HR, FK5 catalog number, common name) of the program stars, together
with their properties (spectral type, apparent visual magnitude my, HIPPARCOS parallax miyig, bolometric flux For)
and observational parameters (observing date, number of obtained scans, names of calibrator stars and their estimated
diameters ©car.). Spectral Type, my, and mig are taken from the HIPPARCOS catalogue (Perryman & ESA ),
references for Fp,) are cited below. Note, HR 7635 was classified as K5-M0 by Morgan & Keenan (), as K5 before.

HR FK5 Name Spectral my Tirig Fgoi  Ref. | Observing # of  Calibr. Ocal.
Type [mag] [mas] [107' W/m?] Dates scans  stars [mas]
5299 1368 BY Boo M4.2111 5.13 7.01+0.66 2.523£0.40 a | 2000-07-07 2  FK5527 0.5
2000-07-13 4
7635 752 ~ySge K5IIT 3.51  11.90+£0.71 2.79240.14 b | 2000-07-21 6 FK5768 0.3
8621 V416 Lac MAIIT ~ 5.11  7.5940.57 2000-07-07 2  FK5891 0.3
2000-07-12 2 HR8494 0.8
2000-07-13 3
References for bolometric fluxes: (a) Tsuji )7 (b) Alonso et al. ([L999).
. 300 T T T T T . 300 T T T T T . 300 T T T T T
g HR 5299 g HR 7635 % HR 8621
g 200p 1§ 200p i g 200f ]
B 100 B 100 E 100
[} F E [} F E [} F 4
2 " 2 3 :
g -100¢ i § -100 i § -100f ' E
8 _o00f 1 B8 -200f 1 8 -200f E
5 200 g 200 5 200
o -300 . . . . . @ -300 . . . . . 2 -300 . . . . .
-300 -200 -100 O 100 200 300 -300 -200 -100 O 100 200 300 -300 -200 -100 O 100 200 300

Spatial frequency u [cycles/arcsec]

Spatial frequency u [cycles/arcsec]

Spatial frequency u [cycles/arcsec]

Fig. 1. Plot of the obtained coverages of the uv-plane of the HR 5299, HR 7635 and HR 8621 observations based on
all observation dates (see Table EI) and on those spectral channels which were used for the data analysis, i.e. the 10
reddest channels for HR 7635 and the 5 reddest channels for the fainter stars HR 5299 and HR 8621.

of the program star’s squared visibility amplitudes, triple caused by atmospheric turbulence (Jennison [195§). No

amplitudes, and closure phases by normalization with the
corresponding smoothed (time kernel of 20 min) quantities
of the calibrator stars.

In step (2) |V|? is calculated using the unbiased esti-
mator

P < X24Y2-02(N) >
< N >2 ’

- [

sin(m/n)

(1)

=f
where n = 8 is the number of bins, N the total photon
count rate in 2ms, and o? the variance of the intensity
caused by photon and detection noise. For stellar observa-
tions, |V |? is compensated for background intensity by an
additional factor < N >? / < N — D >2 where D is the
background rate. The use of a squared quantity requires
attention to the bias term o7 which is discussed in detail
below. The triple product in step (2) is calculated using
the unbiased estimator

[Vigg|e'?128 =< (X +iY1)(Xy +iY2) (X3 +iY3) > . (2)

The phase ¢123 of the complex triple product, formed by
a triangle of baselines, is not corrupted by the phase noise

bias correction is required for the triple product, since
the noise from the three detector arrays receiving the sig-
nal from each baseline is uncorrelated (e.g. Hummel et al.
). In a triple with two short baselines and one long
baseline resolving a stellar disk, as in the configuration
used here, the triple amplitude has a higher signal-to-
noise ratio than the squared visibility amplitude on the
long baseline. This effect can be seen in our data shown
below. It can be understood due to the fact that the low
visibility on the long baseline is not squared but multiplied
with higher amplitudes from the other two baselines in the
triple. This effect was also confirmed by simulations of vis-
ibility data based on Poisson noise. For the long baseline
a visibility amplitude of 0.1 was assumed and for the two
short baselines a visibility amplitude of 0.6. The signal-to-
noise ratio of the squared visibility on the long (east-west)
baseline was found to be 5 while that of the triple product
was 20.

Formal errors for the squared visibility amplitudes,
triple amplitudes and closure phases were calculated based
on the scatter of the 1s samples. Calibration errors of the
squared visibility amplitudes were estimated to be 7% for
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HR 7635 and 10% for HR 5299 and HR 8621 based on com-
parisons of different scans and on calibrations with other
calibrator stars at slightly farther distances in time and
position. The total (formal and calibration) errors for the
triple amplitudes and closure phases of HR 7635, HR 5299,
and HR 8621 were estimated to be 2, 1.5, and 2 times the
formal errors, respectively.

Noise bias compensation The use of the squared quantity
|[V|? requires attention to bias corrections as shown by
Hummel et al. (199) for NPOI data, by Colavita ([999)
for the case of the Palomar Testbed Interferometer, and
by Davis et al. for the Sydney University Stellar
Interferometer. The noise bias term o7 in Eq. [I] is equal
to N in case of Poisson statistics (e.g. Shao et al. [[98§).
Since the NPOI detectors exhibit non-Poisson noise, due
to after-pulsing of the APDs, the noise bias is estimated
by 02 = Z% (Hummel et al. [99§). Here, Z2 is the fringe
amplitude floor estimated at four times the modulation
frequency (X and Y are calculated at the temporal fre-
quency k=1 to select the component corresponding to the
modulation frequency of the delay lines). However, de-
spite the Z2 bias compensation, positive visibility am-
plitudes are observed for fringeless data and this bias,
B :=|V|? (fringeless data,0? = Z2, D = O), was found to
be a function of N and to be different for each spectral
channel ¢ and each spectrometer 7. It was modeled with a
power-law
B(i,c) = ag(i,c) N©1(-) (3)
where parameters ag and a; were fitted to the fringeless
data. This additional bias was compensated by using
0}(N)=Z2Z?+BN?/f, (4)
in Eq. EI Obtained ranges for parameters ag and a; are
[0.25,3.4] and [-1.48,-0.93], respectively. Thus, B is ap-
proximately inversely proportional to N, i.e. the star’s
brightness. Consequently, its magnitude relative to the
squared visibility amplitude is largest for low visibility val-
ues of faint stars. Therefore, the compensation of this addi-
tional noise bias is essential to obtain the very low squared
visibility amplitudes of our faint program stars around and
beyond the first minimum with a precision that allows an
analysis of the limb-darkened intensity profiles. For in-
stance, for our stars HR 5299, HR 7635, and HR 8621, the
total biases o7 f/N? for the bluest used channel and the
37.5m baseline amount to about 0.056, 0.063, and 0.063,
respectively. Residuals of ~0.004, ~0.004, and ~0.003 re-
main after the Z2 correction and are compensated by
B. For comparison, the squared visibility amplitude of a
fully darkened disk at the second maximum has a value of
0.0074.

The triple amplitudes and closure phases are not af-
fected by this bias, as mentioned above.

4. Data analysis and results

Figures E, B and @ show all obtained squared visibility
amplitude, triple amplitude, and closure phase data of
HR 5299, HR 7635, and HR 8621, respectively. Also shown
are best fitting uniform disk models, fully darkened disk
models, and Kurucz stellar model atmospheres as de-
scribed below.

The measured squared visibility amplitude of all three
program stars as a function of increasing uv-radius de-
creases monotonously towards a minimum, beyond which
they increase. The low values are difficult to measure since
they correspond to vanishing fringe contrasts. The mea-
surement of almost zero squared visibility amplitude val-
ues with acceptable error bars at the minima confirms the
feasibility of the bootstrapping technique as well as the
correctness of the photon and detection noise bias com-
pensation. The observed functional form of the squared
visibility amplitude is expected for a disklike object inten-
sity distribution. The consistency of visibility values with
baselines of different orientations excludes large deviations
from circular symmetry. The absence of systematic varia-
tions with smaller spatial frequencies excludes additional
large-scale structures like circumstellar material with con-
siderable intensity.

The triple amplitudes show a similar behaviour for
decreasing wavelength, i.e. increasing spatial resolution,
with a minimum at a wavelength where the closure phases
clearly exhibit a flip from 0 to 7. The absence of intermedi-
ate closure phases indicates object intensity distributions
which are symmetric through reflection. Thus, for spectral
channels with a bandwidth covering the location of the
phase flip, intermediate values can occur. For HR 8621,
all recorded triple amplitudes and closure phases were be-
yond the minimum and the flip, due to the star’s large
diameter in relation to the effective baseline lengths. The
triple amplitudes and closure phases show a higher signal-
to-noise ratio than the squared visibility amplitudes on
the long baseline, as discussed in Sect. H

The complex visibility of an astronomical object is re-
lated to the object intensity distribution through a Fourier
transform. Consequently, the object intensity distribution
can in principle be directly reconstructed from interfer-
ometric data using imaging techniques which effectively
interpolate the limited coverage of the wv-plane. This was
performed with NPOI data e.g. by Benson et al. ([L997) for
the double star Mizar A and by Hummel et al. ([1999) for
Matar. However, in order to obtain accurate estimates of
physical parameters, model fits are a better choice. This
applies especially to stellar disks since their imaging would
require more resolution elements. Here, our data provide,
roughly, two resolution elements across the diameter of
the stars. The strength of the limb-darkening is related to
the height of the second maximum of the visibility func-
tion. The diameter is then determined by the locations of
the minima of the visibility function and of the flip of the
closure phases.
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Table 2. Best fitting diameters of HR 5299, HR 7635, and
HR 8621 based on the models of a uniform disk (UD),
a fully darkened disk (FDD) and the best fitting Kurucz
model atmosphere (best K.) together with the obtained x2
values. For HR 5299, HR 7635, and HR 8621 the numbers
of degrees of freedom are 150, 300, and 175, respectively.
The quantity €gfna denotes the final error of the diame-
ter based on the best Kurucz model atmosphere due to
the formal error (€formal) and calibration error (€calibr.) of
the underlying data as well as on an error resulting from
the choice of Teg and logg (€model). The last four rows
give the mean values and standard deviations of the UD
and FDD diameters determined for each spectral chan-
nel separately and corrected with factors derived from the
expected model atmosphere.

HR 5299 HR 7635 HR 8621
) X, | © xr | © Xi
[mas] [mas] [mas]
UD 6.82 3.15 | 5.67 4.36 | 6.25 4.23
FDD 7.85 1.38 | 6.61 2.26 | 7.39 1.67
best K. 7.44 1.15 | 6.18 1.17 | 6.94 1.31
€formal 0.03 0.01 0.03
€calibr. 0.10 0.07 0.10
€model 0.02 0.02 0.05
€final 0.11 0.07 0.12
corr. dup 7.45 6.11 6.92
o(dup) 0.07 0.02 0.08
corr. depp | 7.50 6.13 6.95
o(drDD) 0.06 0.02 0.08

Uniform disk and fully darkened disk models Since the data
as described above suggest a circularly symmetric disklike
object intensity distribution I, models of a uniform disk
(UD, I =1for 0 < pu <1, I =0 otherwise, 4 = cos©
being the cosine of the angle between the line of sight and
the normal of the surface element of the star) and a fully
darkened disk (FDD, I = p) are used as a first approach
to describe the data. In these cases, the visibility functions
are given by

2 J1(zup) 3/m J32(xrDD)
Vup = —— FDD = ——— 55— ()
TUD \/ngDD
with zupFpp = 7Oup,FpD Vu? +v? a dimensionless

spatial frequency (u, v: spatial frequencies [cycles/arcsec]
as in Figures ﬂ, E, E, E, O: angular diameter of the star)
and J; and J3 /5 the Bessel function of first kind and orders
1 and 3/2 (see e.g. Hestroffer [[997). With V calculated
for each baseline ¢ € {1, 2,3}, the squared visibility ampli-
tudes |V;|?, the amplitude of the triple amplitude |V V2 V3|
and the closure phase ¢1 + ¢2 — ¢3 (¢; = 0 where V; > 0
and ¢; = m where V; < 0) can be derived.

A x? minimization algorithm (simplex method) was
applied in order to find the best fitting angular diameters
Oup and Oppp, using all available data, i.e. the squared
visibility amplitudes, the triple amplitudes and the clo-
sure phases. The derived diameters are shown in the first

two rows of Table E, together with the corresponding re-
duced x?2 values. For HR 5299, HR 7635, and HR 8621 the
numbers of degrees of freedom are 150, 300, and 175, re-
spectively. These Y2 values show that the UD model can
be rejected and that the FDD model is a better descrip-
tion of our data. The model functions are indicated by
solid lines (UD) and dashed lines (FDD) in Figs. B-f] The
minima of the visibility and triple amplitude functions are
well defined by the data. Before and in particular beyond
the minima, our measured triple amplitudes for all three
stars are significantly lower than the UD model values
and slightly higher than the FDD model values. This in-
dicates limb-darkened disks, less extreme than fully dark-
ened disks, as predicted for late-type giants. Therefore,
the specific limb-darkened profiles were investigated as de-
scribed in the following paragraphs.

Uniform disk and fully darkened disk models corrected for
the effect of limb-darkening Before we present a direct fit
of all our data to theoretical model atmospheres, we take
an alternative approach that is based on results which are
independent of a particular model atmosphere.

Model atmospheres predict a decrease of the degree
of limb-darkening with increasing wavelength, i.e. a tran-
sition from near-FDD to near-UD continuum shapes,
while the “true” limb-darkened diameter is wavelength-
independent (Manduca et al. [[977, Hofmann & Scholz
1999). Since our data provide information at different
spectral channels, they can be used to test stellar model
atmospheres on their predicted wavelength dependence of
UD and FDD diameters.

Recently, Hestroffer () discussed a limb-darkening
law Iy = p®, with a a positive real number, as empir-
ical brightness distribution function. This representation
of the center-to-limb variation which uses only one limb-
darkening coefficient includes the UD and FDD models
and is very well suited to describe a wide range of dif-
ferent realistic limb-darkening shapes (Hofmann & Scholz
). Thus, in principle our data could be used to simul-
taneously determine both the apparent limb-darkened di-
ameter of our program stars and their limb-darkening pa-
rameter a for each spectral channel. However, by means
of Monte-Carlo simulations based on the actual coverage
of the uv-plane of these observations and the claimed pre-
cision, it was found that this determination is ambiguous.

The employed method was first used by Hanbury

Brown ([[974), then applied by Quirrenbach et al. (1996)

and recently used for theoretical studies by Hofmann &
Scholz ([[998) and Davis et al. (000). The diameters based
on UD and FDD models were derived for each spectral
channel separately using only the squared visibility ampli-
tudes up to the first minimum, since these data can well
be described by UD and FDD models. The triple ampli-
tudes and closure phases were not used since most of them
contain visibility values beyond the first minimum, which
do not fit UD and FDD models. The resulting UD and
FDD diameters were multiplied by limb-darkening cor-
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Fig. 5. Diameters based on uniform disk (UD, diamonds) and fully darkened disk (FDD, triangles) models for each
spectral channel together with the Kurucz model atmosphere predictions (connected by solid lines). In addition, the
limb-darkened (LD) diameters are shown which were derived by applying correction factors to the UD and FDD
diameters. The mean LD diameters as quoted in Table E are indicated by the solid lines. The error bars represent
the standard deviation of the obtained LD diameters. For comparison, the dotted lines indicate the limb-darkened
diameters which were derived by the direct fit to a grid of Kurucz model atmospheres.

rection factors to obtain the limb-darkened diameter of
the star. Following the authors mentioned above, the cor-
rection factors were derived as the ratios z1p 0.3/Tup,0.3
and xLD,O.3/xFDD,O.3 with ILD,0.3, LUD,0.3 = 2.0818, and
ZFDD,0.3 = 2.3451 being the spatial frequencies where the
squared visibility amplitudes |Vip|?, [Vup|? and |Vipp|
(see Eq. E and E) equal 0.3. For the determination of zrp,
the Kurucz model atmosphere as described in detail in the
following section was used with values for Teg and logg
according to the spectral type of the star.

The obtained diameters are plotted in Fig. E as a
function of wavelength. The mean values and standard
deviations of the corrected UD and FDD diameters are
shown in the last four rows of Table E Our observed
wavelength dependence of the UD and FDD diameters
corresponds well with the model predictions. The small
predicted deviations from a monotonous wavelength de-
pendence are caused by effects of molecular absorption
bands. Especially in the case of the brightest of our pro-
gram stars, HR 7635, our obtained diameters match the
model predictions very well. Here, a larger number of spec-
tral channels could be used and the effective temperature
causes the transition from the UD to FDD model to oc-
cur in the observed wavelength range. For all our program
stars, no systematic deviations between observations and
model predictions occur; which indicates the correctness
of the atmosphere models used. Consequently, the derived
limb-darkened diameters are, as required, independent of
wavelength. The results based on the UD fit and those
based on the FDD fit are consistent.

The uncorrected UD and FDD diameters can be used
for future comparisons with other model atmospheres and,
furthermore, for future analyses taking additional infor-
mation at other wavelengths into account. However, this
approach cannot make use of our data at long base-
lines and the corresponding triple amplitudes and closure
phases. In order to provide more accurate limb-darkened

Table 3. Comparison of minimum y2 values obtained
by fitting our HR 5299 and HR 7635 data to a grid of
Kurucz model atmospheres with solar chemical abun-
dances (Kurucz [1993) based on effective temperatures
ranging from 3500K to 4500K and logg ranging from
0.0 to 2.5. For each program star, the best x2 values are
marked by a box. For HR 5299 and HR 7635 the numbers
of degrees of freedom are 150 and 300, respectively.

HR logg/ |00 05 10 15 20 25
Tor
(K]

5209 3500 | 1.25 1.9 [L15] 117 119 1.23
3750 | 119 119 119 118 1.8 117
4000 | 121 121 121 120 120 1.20
4250 | 127 127 126 126 126 1.26
4500 | 142 140 138 137 136 135

7635 3500 | 1.50 140 1.35  1.38 147 1.8
3750 | 129 129 129 129 127 1.26
4000 | 118 1.17 117 118 118
4250 | 120 120 119 119 1.19 119
4500 | 1.26 125 124 123 123 1.23

diameters and to discriminate between different model as-
sumptions a direct fit of all our data to Kurucz model
atmospheres is described in the following paragraph.

Comparison of our interferometric data with a grid of Kurucz
stellar model atmospheres In an effort to compare different
model atmosphere predictions based on a grid of effective
temperatures and surface gravities with our interferomet-
ric data, rather than assuming a particular model pro-
file a priori, the best x2 values based on different models
were determined. In this way, theoretically predicted dif-
ferences of the strength of the limb-darkening effect for
different effective temperatures and surface gravities can
be compared to direct measurements.
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Kurucz ([[993) tabulates monochromatic intensities
I(1) and limb-darkening ratios I(u)/I(1) for 17 val-
ues of p in 1221 frequency intervals ranging from
9.09nm to 160.0 um, based on grids of model atmo-
spheres for different chemical abundances. Here, his
grid for solar chemical abundances and a microtur-
bulent velocity of wvgyp = 2kms™! was used (file
7 cfakub.harvard.edu/grids/gridP00/ip00k2.pck19”). The
data is available for effective temperatures T.g ranging
from 3500K to 50000K in steps of 250K (for low Tug)
and surface gravities logg (cgs) from 0 to 5 in steps of
0.5. For all our program stars, Teg < 4000K and logg < 2
are predicted, based on their spectral types (see Table
H). Thus, only models with Toz € [3500K,4500K] and
log g € [0,2.5] were considered.

NPOI  passband-specific  limb-darkening ratios
I.(n)/1.(1) were calculated by integrating the Kurucz
data over each of the NPOI spectral channel’s ¢ € [1,10]
sensitivity functions. The NPOI spectral channels may be
affected by molecular absorption bands, which is taken
into account by the calculation of passband-specific limb-
darkening model profiles. Compact photospheres were
assumed, i.e. I.(p = 0) = 0. I.(1) was set to 1 since our
measured visibility values are scaled to V' (0) = 1 for each
spectral channel separately.

Following Dayvis et al. (, the model visibility val-
ues were derived by numerical evaluation of the Hankel
transform of the obtained tabulated intensity profiles

fol I () Jolrrp (1 — )Y 2| pdu
Jo Le(w)pdp

with zr,p = 7 O1p Vu? + v2 the dimensionless spatial fre-
quency as described above, but now based on the star’s
limb-darkened angular diameter ©1,p. No approximation
of the tabulated model limb-darkened profiles by any limb-
darkening law was used. The model squared visibility
amplitudes, model triple amplitudes, and model closure
phases were derived as described above.

Based on each of the 30 considered Kurucz models (five
values for Teg and six values for logg), the wavelength-
independent limb-darkened diameter, treated as the only
free parameter, and the corresponding x? value were de-
rived as described above using all our available data, i.e.
the squared visibility amplitudes, the triple amplitudes,
and the closure phases.

For our three program stars, the lowest obtained 2
values are listed in Table E7 together with the obtained
best fitting limb-darkened diameters. Table E shows all
resulting x2 values for HR 5299 and HR 8621, where the
lowest x2 values are marked by a box.

The occurrence of minimum x?2 values larger than 1.0
might, in principle, be caused by optimum parameters ly-
ing in between our grid points, a wrong model assumption,
an underestimation of the calibration errors, or system-
atic calibration errors. An underestimation of the calibra-
tion errors leading to total errors underestimated by only
7% and 8% is most likely to be the main cause for the

Vip =

; (6)

deviations from unity in the cases of HR 5299 and HR
7635 since these errors can only be roughly estimated (see
Sect. E) A considerable part of the larger deviation from
unity, a value of 1.31, in the case of HR 8621 might also be
caused by an effective temperature lower than 3500K, i.e.
an incorrect model assumption, or systematic effects dur-
ing the calibration process. The stellar atmosphere model
was adopted as the best fit to our data for HR 5299 and
HR 7635. The x2 values were analyzed as a function of
Ter and log g for these program stars only, as follows.

For these program stars, significantly different x2 val-
ues are obtained for different model parameters, for exam-
ple, in the case of HR 5299 we obtain values between 1.15
and 1.42. At higher temperatures, differences for varying
Teg are larger than for varying log g, because of the lat-
ter’s lesser effect on the limb-darkened profile (see e.g.

Manduca et al. [[977).

To take the deviations of the y? values from unity
into account, the values in Tab. E were normalized to
unity at the minimum for the following analysis. Using
this method, the total assumed errors in our data are in-
creased by common mean factors of 1.07 and 1.08, ne-
glecting that calibration errors depend on the value of the
visibility. It was verified that due to the smallness of this
correction the results obtained are still valid and that it
is insignificant whether the total data errors are rescaled
or just the calibration errors.

Near the minimum, the x? function is expected to be
a quadratic function of each of the varied parameters.
Therefore, for each star, a parabola was fitted to the x?
values as a function of Teg with fixed best-fitting log g
and as a function of log g with fixed best-fitting Teg. Here,
more digits were used than shown in Table E The most
likely values for the parameters Teg and logg can be es-
timated by the locations of the minima of the parabola.
Assuming purely Gaussian noise, the corresponding 1o
errors can be estimated as the variation in the parame-
ters which will increase the normalized total x? values by
1 from its value at the minimum of the fitted parabola
(see e.g. Bevington & Robinson [[991)). For HR 5299 and
HR 7635, the x2 values as a function of T.g as well as of
log g match a parabola very well. This confirms that ef-
fects due to systematic calibration errors or an incorrect
model assumption are not of considerable size. However,
small additional errors due to these effects cannot be ruled
out and are not included in the error analysis presented
here. For HR 5299, the x?2 values in Table E as a function
of Tog extend to the minimum but not beyond. However,
the one-sided x?2 values fit a parabola with a minimum at
3520 K very well, confirming that our grid point at 3500 K
is in fact close to the minimum. The derived most likely
values and the errors are shown in Table E and are com-
pared to independent estimates in Sect. E

For all our program stars, the best y?2 values derived
here are significantly better than those based on the FDD
model (see Table ). This effect is most noticeable in the
case of HR 7635, due to the higher signal-to-noise ratio of
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the data and the higher T.g resulting in limb-darkening
that is not as close to the FDD case as for the cooler stars.

The limb-darkened diameters corresponding to the
best fitting models are shown in Table E Errors €gna) were
derived based on the formal errors and calibration errors
mentioned in Sect. B and on those due to the choice of
Tes and logg. For the latter error, the standard devia-
tions of diameters based on models with Teg and logg
values within their error bars were taken. For HR 8621 all
30 considered models were included.

The squared model visibility amplitudes, model triple
amplitudes, and model closure phases obtained with the
best fitting Kurucz model atmosphere are indicated by the
squares in Figs. E—E They coincide well with our measured
data and describe them considerably better than the UD
and FDD models. The observed data of HR 8621 differ
slightly from the model values which might be explained
by calibration errors or a wrong model assumption as men-
tioned above. The absence of further systematic deviations
between the model predictions and our data confirms that
extended photospheres with I(x = 0) > 0 need not to be
considered and that the width of the NPOI spectral chan-
nels does not noticeably affect our analysis.

Deviations from featureless symmetric disks Although, as
discussed above, our data indicate a featureless symmet-
ric disk, a formal search for solutions with an asymmetric
object intensity distribution was performed in order to
validate this interpretation. All our data were fitted to
a limb-darkened profile as derived before but with an el-
liptical shape. Starting values for the position angle of
the major axis were chosen from 0°to 180°in steps of
10°and for the axis ratios (major axis/minor axis) two
starting values of 1.05 and 1.1 were considered. For the
stars HR 5299, HR 7635, and HR 8621, slightly better y?2
values than for the symmetric intensity profile were de-
rived with axes ratios of 1.02, 1.01, and 1.01, respectively.
These small deviations from circular symmetry are not
significant for an asymmetric object intensity distribution,
but can be caused, for instance, by systematic calibration
errors. However, this study does exclude elliptical object
intensity distributions with larger axis ratios.

In order to estimate whether additional hot spots, as
they were found on the surfaces of « Ori, o Sco, and o Her
(see Sec. [) could be detected in our data, model squared
visibility amplitudes, triple amplitudes, and closure phases
were calculated for one example based on our best fitting
limb-darkening model with one additional hot spot. The
spot’s intensity was chosen to be only 2% of the star’s
intensity, which is clearly less than that of the spots on
a Ori, aSco, and aHer. The spots were assumed to be
unresolved and to have a separation of half of the star’s
limb-darkened radius. Two position angles were consid-
ered, namely that of the preferred direction of the uv-plane
coverage and that perpendicular to it. Figureﬂ shows the
model predictions, indicating that the existence of such
a spot would significantly affect the closure phases and
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the triple and visibility amplitudes around their minima.
The different triple and visibility amplitudes might be
modeled by another stellar diameter and limb-darkening
profile, but the occurrence of closure phases significantly
different from values of 0 and m, however, could only be
explained by an asymmetric intensity distribution. Our
data is not consistent with such a noticeable asymmetry.
Consequently, it can be concluded that the existence of an
unresolved single spot on the surfaces of our program stars
with an intensity at least as high as studied above is highly
unlikely. A resolved spot is unlikely, too, since its intensity
contribution would be higher. However, by an analysis of
the closure phases we cannot rule out a centered spot.

5. Discussion

Based on the data analysis described in Sect. ] it fol-
lows that all our interferometric data are consistent with
featureless circularly symmetric limb-darkened disks. The
method of comparing all our interferometric data to a grid
of Kurucz model atmospheres allows the determination of
the effective temperature and surface gravity without ad-
ditional information in the cases of HR 5299 and HR 7635
and provides an accurate estimate of the limb-darkened
diameter Orp.

Independent estimates for T.g and logg can be ob-
tained by empirical calibrations of the spectral type.
Additionally, Tog and the linear limb-darkened diameter
D can be derived by using the bolometric flux Fpo (see
Table ) and the HIPPARCOS parallax g, together
with our value for ©pp. The errors are dominated by the
uncertainties of Fpoi and mrig. As a result, variations of
Orp have little impact on Teg and this estimate of Teg
can be regarded as sufficiently independent of our deter-
mination by the direct fit to Kurucz model atmospheres
as well.

Table @ lists the results obtained by the direct fit to
Kurucz model atmospheres together with the independent
estimates. The error estimates for Teg and log g are based
on the analysis of Table [] as described above.

Figureﬂ compares the two derived Teg values, obtained
by the direct fit to a grid of Kurucz model atmospheres,
and by ©rp and Fj,o1, with different empirical calibrations.
For HR 8621 the data quality is, as mentioned above, not
sufficiently high to obtain Teg and log g by means of the di-
rect fit to Kurucz model atmospheres. For HR 5299, both
the T,g value and log g value derived by this fit to Kurucz
model atmospheres are well consistent with the indepen-
dent estimates. For HR 7635, the obtained T.g value is
higher than that of the independent estimates and con-
sistent only within ~ 2 ¢. The value obtained for logg is
consistent with the empirical calibration.

Our derived values for ©Opp are generally consis-
tent with earlier determinations of uniform disk diame-
ters corrected for limb-darkening. They are available for
HR 5299 (7.0mas+0.3mas by Dyck et al. 996, [998
and for HR 7635 (7.4 mas + 0.2 mas by Hutter et al 1989;
5.5 mas =+ 0.5 mas by Dyck et al. [[996 ). For HR 7635,
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Table 4. Best fitting limb-darkened diameters Orp, effective temperatures, and surface gravities as derived by the
direct fit of our interferometric data to a grid of Kurucz model atmospheres as described above (Tables || and B).
Using Orp together with the HIPPARCOS parallax g4, and the bolometric flux Fgo (see Table m) the linear stellar
diameter D (Orp, myig) and the effective temperature Teg (O1p, Frol) are derived. For further comparison, the effective
temperatures T (Sp.T.) and surface gravities logg (Sp.T.) derived from empirical calibrations of the spectral type

(Schmidt-Kaler [[983) are shown.

HR OLp Terr [K] log g D (Oup, mrig) Terr (OuD, FBol) | Test (Sp.T.) logg (Sp.T.)
[mas] Ro] (K] (K]

5299 | 7.44+0.11 3520+190 1.3+0.4 | 22872 34204160 3410 <13

7635 | 6.1840.07 41604100 0.9+1.0 | 11275 38504 70 3950 1.7

8621 | 6.9440.12 -~ - 197117 3430 <1.3

Alonso et al. derived a limb-darkened diameter of
6.12mas £+ 0.2 mas by means of the infrared flux method
(IRFM), wich is in very good agreement with our value.

Our derived linear limb-darkened radii for the three
stars of 114Rg £ 13 R, 56 Rp 24 R, and 98 Rg £ 9Rp
are in good agreement with those obtained with the em-
pirical calibration for M giants by Dumm & Schild ([999)
based on the HIPPARCOS parallaxes, V' magnitudes, and
V — I color indexes, which are 119 R, 60 R, and 97 Rg,
respectively.

The circular symmetry of our observed object inten-
sity distributions is expected because at optical wave-
lengths only the surfaces of the stars themselves are
observed rather than additional circumstellar envelopes
where asymmetric morphologies were discovered. These
asymmetries in the envelopes can be caused by, e.g., rota-
tions so slow that they do not observably affect the star’s
shape. The absence of additional surface features as ob-
served on the surfaces of the apparently largest super-
giants might be explained by the higher surface gravities
of our program giant stars.

6. Summary

Featureless symmetric limb-darkened stellar disks provide
good fits to our NPOI interferometric data of HR 5299,
HR 7635, and HR 8621. We are able to discriminate be-
tween model atmospheres with different effective temper-
atures and surface gravities. We find that our interfero-
metric measurements and stellar model atmosphere pre-
dictions by Kurucz ([1993) of the limb-darkening effect are
consistent. We obtain high-precision (1%-2% accuracy)
limb-darkened angular disk diameters and derive linear
radii and effective temperatures using the HIPPARCOS
parallaxes and bolometric fluxes reported in the litera-
ture. With reduced noise terms and the upcoming simul-
taneous combination of six beams at NPOI we will be able
to obtain even more precise limb-darkened diameters of a
much larger number of stars. Furthermore, interferomet-
ric data will soon allow the discrimination between model
atmospheres with different effective temperatures, surface
gravities and even chemical abundances with higher preci-
sion than in this first attempt. Thus, further observational
constraints for model atmospheres will become available,
in addition to observations of stellar spectra.
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Fig. 7. Comparison of our derived HR 5299 and HR 7635
Teg values with different effective temperature scales
(Ridgway et al. m7 Schmidt-Kaler m, DiBenedetto
& Rabbia [1987, Dyck et al. [1996). The symbols shifted to
the left of the nominal spectral type position indicate the
values derived by the direct fit to a grid of Kurucz model
atmospheres. The symbols shifted to the right indicate the
values derived from the limb-darkened angular diameter
©1,p and the bolometric flux Fio.
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